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Abstract

Face Recognition Under Varying Illuminations

by

Mohammadreza Faraji, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Xiaojun Qi
Department: Computer Science

This dissertation proposes four effective methods to produce illumination-invariant fea-

tures for images with various levels of illuminations. The first proposed method presents a

logarithmic fractal dimension (LFD) method by employing the log function and the frac-

tal analysis to produce illumination-invariant representations. The LFD method is also an

effective edge enhancer technique to extract and enhance facial features such as eyes, eye-

brows, nose, and mouth. The second method proposes a modified version of local directional

patterns (LDP), eight local directional patterns (ELDP), which uses Kirsch compass masks

to compute the edge responses of a pixel’s neighborhood. Then, the ELDP code scheme

uses all the directional numbers to produce an illumination-invariant image. The third

method, called adaptive homomorphic eight local directional patterns (AH-ELDP), first,

uses adaptive homomorphic filtering to reduce the influence of illumination from an input

face image. Secondly, it applies an interpolative enhancement function to stretch the filtered

image. Finally, it applies the EDLP code scheme on the enhanced filtered image to create an

illumination-invariant representation. The final method, complete ELDP (CELDP), seam-

lessly combines adaptive homomorphic filtering, simplified logarithmic fractal dimension,

and complete ELDP to produce illumination-invariant representations. CELDP considers

the relations among magnitudes as well as directions of all eight directional edge responses
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to achieve robustness against illumination variations and noise. The extensive experimental

results on four face databases and one video face database show that the final proposed

CELDP method consistently achieves the best face recognition accuracy on all databases

compared with six recent state-of-the-art methods and the three proposed methods. The

AH-ELDP method achieves the second best face recognition on all image databases.

(101 pages)
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Public Abstract

Face Recognition Under Varying Illuminations

by

Mohammadreza Faraji, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Xiaojun Qi
Department: Computer Science

Face recognition under illumination is really challenging. This dissertation proposes

four effective methods to produce illumination-invariant features for images with various lev-

els of illuminations. The proposed methods are called logarithmic fractal dimension (LFD),

eight local directional patterns (ELDP), adaptive homomorphic eight local directional pat-

terns (AH-ELDP), and complete eight local directional patterns (CELDP), respectively.

LFD, employing the log function and the fractal analysis (FA), produces a logarithmic

fractal dimension (LFD) image that is illumination-invariant. The proposed FA feature-

based method is an effective edge enhancer technique to extract and enhance facial features

such as eyes, eyebrows, nose, and mouth.

The proposed ELDP code scheme uses Kirsch compass masks to compute the edge

responses of a pixel’s neighborhood. It then uses all the directional numbers to produce an

illumination-invariant image.

AH-ELDP first uses adaptive homomorphic filtering to reduce the influence of illumi-

nation from an input face image. It then applies an interpolative enhancement function to

stretch the filtered image. Finally, it produces eight directional edge images using Kirsch

compass masks and uses all the directional information to create an illumination-insensitive

representation.
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CELDP seamlessly combines adaptive homomorphic filtering, simplified logarithmic

fractal dimension, and complete eight local directional patterns to produce illumination-

invariant representations.

Our extensive experiments on Yale B, extended Yale B, CMU-PIE, and AR face

databases show the proposed methods outperform several state-of-the-art methods, when

using one image per subject for training.

We also evaluate the ability of each method to verify and discriminate face images

by plotting receiver operating characteristic (ROC) curves which plot true positive rates

(TPR) against the false positive rates (FPR).

In addition, we conduct an experiment on the Honda UCSD video face database to sim-

ulate real face recognition systems which include face detection, landmark localization, face

normalization, and face matching steps. This experiment, also, verifies that our proposed

methods outperform other state-of-the-art methods.
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Chapter 1

Face Recognition under Varying Illuminations

1.1 Face recognition

Body and behavioral characteristics such as fingerprints, iris, finger/palm, voice, signa-

ture, and face are often called biometrics [1]. Today, any application that requires security

and access control can be integrated with biometric systems and technologies, which makes

the biometric field very attractive [1]. Fig. 1.1 [1] shows the distribution of the most

popular biometrics from a commercial point of view. Clearly, fingerprints are the most pop-

ular biometrics in the last decade with 52% of the distribution. However, some biometrics

have shortcomings. For example, iris recognition is extremely accurate, but implementing

an iris recognition system is expensive. Fingerprint recognition systems are reliable and

non-intrusive, but need individuals’ collaboration. Face recognition is a good compromise

between reliability and social acceptance. It balances security and privacy well and can be

employed in places with a large concourse of unaware or non-collaborative visitors [1].

Fig. 1.2 shows a framework for a typical face recognition system [2] which includes

four main stages: Face Detection, Landmark Localization, Face Normalization, and Face

Matching. These stages are briefly explained below.

Face Detection: In the first stage, faces are detected using face detectors such as

SNoW-based (sparse network of windows) face detector [3], Viola-Jones detector [4], and

skin-color-pixel-based Viola-Jones face detector [5]. The SNoW-based face detector is a

sparse network of linear units (functions) over a common predefined or incrementally learned

feature space. Viola-Jones detector, the most popular detector, is a robust real-time face

detector to distinguish faces from non-faces. The detector has four main stages including

Haar-like Feature Selection, Integral Image Creation, Adaboost Training algorithm, and
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Fig. 1.1: The distribution of the most popular biometrics in terms of percentage.

Fig. 1.2: Typical framework for illumination-invariant face recognition [2].

Cascaded Classifiers. Haar-like features are reminiscent of Haar basis functions [6] which

use the idea of Haar wavelets. They consider adjacent rectangular regions at a specific

location in a detection window which moves over the input image. Haar-like features sum

up the intensity values in each region and calculate the difference between these sums to

categorize subsections such as eye and cheek of a face. The Integral Image (also known

as the summed area table) efficiently computes any scale or location of these features in

a constant time. Since the total number of extracted Haar-like features is very large, a

simple modification of the AdaBoost procedure [7] is used to exclude a large majority of

the Haar-like features and focus on a small set of critical features. Viola-Jones detector,

finally, employs a fast cascaded classifier which focuses attention on promising regions of
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the image (i.e., where an object might occur) to distinguish faces from non-faces. The

skin-color-pixel-based Viola-Jones face detector combines a hybrid skin color model and the

Viola-Jones face detector. The hybrid skin color model, called RGB-CbCrCg, classifies skin

and non-skin pixels. The skin region is first extracted using a set of bounding rules and then

optimized by employing the multi-objective differential evolution method. The segmented

face regions are finally identified using the Viola-Jones algorithm.

Landmark Localization: In the second stage, respective facial landmarks are local-

ized for each detected face. These landmarks usually are locations of eyes, eyebrows, nose,

and mouth. Fig. 1.3 shows regions in a face which contain facial key point features or

landmarks. In the last decade, various facial landmark localization techniques have been

proposed. Some of recently proposed techniques include Boosted Regression with Markov

Networks (BoRMaN ) [8], Local Evidence Aggregation for Regression Based Facial Point De-

tection (LEAR) [9], Discriminative Response Map Fitting (DRMF ) [10], and Chehra v .1

(meaning “face” in Hindi) [11].

LEAR detects 20 facial landmarks (Fig. 1.4(a)). It can use every location in a point’s

neighbourhood to predict where the target point is relative to that location. LEAR em-

ploys a stochastic process to obtain a precise prediction of the target location. It combines

different target predictions into a function by aggregation of Gaussian distributions. The

maximum of this function corresponds to the target. This aggregation of Gaussian dis-

tributions cancels out the effect of incorrect estimates to generate correct estimates since

incorrect estimates produce more uncorrelated predictions. LEAR then finds facial points

in a few iterations. Finally, it uses Markov networks to confirm whether a set of predicted

facial points adhere to shape statistics. If they do not follow shape statistics, Markov

networks suggest new candidate locations to continue the search for facial points.

Chehra, however, locates 49 facial landmarks (Fig. 1.4(b)). It is an incremental for-

mulation for a cascade linear regression face alignment framework, which can be used as

tracking software as well as landmark localization software. This framework is a type of

discriminative deformable face alignment framework and is a static generic model built
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Fig. 1.3: Regions of interest in a face which include facial landmarks in a face (image source:
http://www.andrew.cmu.edu/user/thihoanl/face.jpg).

completely from off-line training data. It uses an iteratively learned cascade of regression

functions to directly map the textual features to shape. Chehra incrementally updates

the cascade of linear regressions such that all levels in a cascade can be trained (and up-

dated) independently using only the statistics of the previous level, instead of the previous

iterations.

Face Normalization: In the third stage, detected faces are geometrically normalized

and corrected by facial landmarks. First, geometric rectification is applied to normalize the

pose. Pose normalization then uses facial landmarks to estimate the frontal view for each

face [12]. To this end, the angle between the line passing the locations of the external corners

of eyes and the horizontal axis can be used to compute the head’s roll value and rotate

the face accordingly. Then, the possibly rotated landmarks are further used to determine

whether the face is the left/right/frontal view. In case the face is non-frontal, a frontal view

can be estimated by stretching pixels. Face images can be automatically cropped using

facial landmarks, since landmarks exactly indicate the locations of key facial points in the

image. The illumination preprocessing method is finally applied on the cropped images

to obtain illumination-insensitive face images. In this stage, if face images contain facial
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Fig. 1.4: Facial landmark localization results by (a) LEAR, and (b) Chehra.

expressions such as smile, anger, and scream, Gabor feature-based expression normalization

can be employed to extract facial features that are robust to expression variations [13–15].

Face Matching: In the final stage, an identification process is used on the normalized

faces to recognize the identity of the faces. This stage includes feature extraction and

face classification. In feature extraction, each face is converted to a one-dimensional vector

to be used for classification. Each face might also be divided into a regular grid of cells

to extract histograms [16]. Dimension reduction methods can also be used to reduce the

dimension of the data before a classifier is employed to verify the identity of input face

images. Representative dimension reduction methods include principal component analysis

(PCA) [17–19], independent component analysis (ICA) [18,20], kernel principal component

analysis (KPCA) [21, 22], Fisher’s linear discriminant analysis (FDA) [23], kernel Fisher’s

linear discriminant analysis (KFDA) [24,25], and singular value decomposition (SVD). For

example, PCA computes a subset of principal components in a set of training faces. It

then projects face images into the space of these principal components to compute feature

vectors. Finally, the face classification stage uses the extracted features to classify and

verify a new unknown face image with respect to the image database. Some of the popular

classification methods used in face recognition systems are k nearest neighbors [26, 27],

neural-networks [28,29], and sparse representation classifier (SRC) [30,31].

For instance, the k nearest neighbor method uses a majority voting algorithm to classify

a face image. It assigns the input face image to the most common subject among its k nearest
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Fig. 1.5: Face images from the Yale B face database displaying illumination variations. Images are
from the same subject [32].

neighbors. When k = 1, the 1 nearest neighbor method simply assigns the input face image

to its nearest neighbor face image (i.e., subject) in the database. A distance measure (e.g.,

l2 norm) is used to compute the similarity between the input face image and face images

in the database. SRC finds a sparse representation of the test face image in terms of the

training set as a whole by solving a simple convex program, up to some sparse error due to

occlusion. The main idea of SRC is that the sparse nonzero coefficients should concentrate

on the training samples which actually have the same identity as the test image.

1.2 Illumination-invariant methods

The performance of a face recognition system is significantly affected by five key factors

including illumination variations, pose changes, facial expressions, age variations, and oc-

clusions [1,34]. Figs. 1.5, 1.6, 1.7, 1.8, and 1.9 individually show samples of face images with

the above five key factors illustrated. Illumination variations such as shadows, underexpo-

sure, and overexposure in face images, as one of the crucial problems among these factors,

have attracted much attention in the face recognition community in the last decade [2]. As a

result, to deal with illumination variations, various methods have been proposed which can

be categorized into the following three groups, namely, gray-level transformation methods,

gradient or edge extraction methods, and face reflection field estimation methods [2].

Gray-level transformation methods redistribute the intensities in a face image with
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Fig. 1.6: Face images from the FEI face database displaying pose variations [33].

Fig. 1.7: Face images from the AT&T (formerly ORL) face database displaying expression variations
[38].

Fig. 1.8: Face images from the FG-NET aging database displaying age variations. Each row shows
images of the same subject [39,40].

Fig. 1.9: Face images from the AR face database displaying occlusions [32].
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a linear or non-linear transformation function to correct the uneven illumination to some

extent [2]. Representative methods include histogram equalization (HE) [35], local his-

togram specification (LHS) [36], and gamma intensity correction (GIC) [37]. HE adjusts

and flattens the contrast of the image using the image’s histogram. LHS uses the ideal

face images (i.e., captured under normal lighting conditions) to learn the local histograms

and local histogram statistics. It then removes both the low and high frequency parts of

illumination on face images, as well as enhancing face features lying in the low frequency

part. GIC maps the image I(x, y) to the image G(x, y) using αI(x, y)1/γ , where α is a

gray-stretch parameter and γ is the Gamma coefficient.

Gradient or edge extraction methods compute gradients of a face image as an

illumination-insensitive representation since gradients are more stable than the pixel in-

tensities under different lighting conditions [2]. Some examples of such methods include di-

rectional gray-scale derivative (DGD) [41], local binary patterns (LBP) [42] and its modified

version local ternary patterns (LTP) [16], local directional patterns (LDP) [43], enhanced

LDP (EnLDP) [44], local directional number patterns (LDN) [45], directional pattern of

phase congruency (DPPC) [46], and discriminant face descriptor (DFD) [47]. DGD extracts

gray-level gradients in horizontal and vertical directions which are robust to absolute inten-

sity variations but are still greatly affected by severe shadows. LBP and LTP take a local

neighborhood around each pixel and threshold the neighborhood pixels based on the value of

the central pixel. LDP, EnLDP, and LDN use eight Kirsch compass masks (M0,M1, ...,M7)

to produce eight directional edge images which are used to produce illumination-invariant

representations. All the eight Kirsch masks as shown in Fig. 1.10 can be produced by

rotating the first Kirsch mask (M0) 45◦ apart in eight directions [48]. Fig. 1.11 illustrates

code schemes for the LBP, LDP, EnLDP, and LDN approaches. DPPC replaces the in-

tensity value required for calculating the traditional LDP with the phase congruency (PC)

value at the corresponding pixel. The DFD method is an improvement of the LBP feature

descriptor. It is involved with three-step feature extraction to maximize the appearance

difference from different persons and minimize the difference from the same person.
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Fig. 1.10: Kirsch compass masks in eight directions.

Reflectance field estimation methods estimate the face reflectance field, which is

illumination-invariant, from a face image. They usually apply the reflectance-illumination

model [2] as their face imaging model. Self-quotient image (SQI) [49,50], single-light-region

& single-dark-region SQI [51], logarithmic total variation (LTV) [52,53], logarithmic wavelet

transform (LWT) [54], generic intrinsic illumination subspace [55], local normalization [56],

adaptive smoothing (AdaS) [57], logarithmic discrete cosine transform (LDCT) [58], large &

small logarithmic discrete cosine transform (L&S Log-DCT) [59], Gradientface [60], Weber-

face [61], and generalized Weberface (GWF) [62] are representative methods. SQI, which

is a ratio image between a given test image and its smoothed version, implicitly indi-

cates that each preprocessed image is illumination-invariant [63]. The single-light-region

& single-dark-region SQI method separately processes bright and dark areas in the image

by SQI without changing the essential characteristics of the face image. The LTV model

improves SQI by utilizing the total variation (TV) model to factorize an image. It enhances

the SQI’s edge-preserving ability and lessens its parameter selection problem. LWT uses

wavelet-based denoising techniques to reduce illuminations, while generating a multiscale

facial structure. The generic intrinsic illumination subspace approach estimates the illu-

minance component using a bootstrap set. The approach assumes that the illumination

images are from a specific ideal class and share the same generic intrinsic illumination sub-

space. The local normalization method treats a face image as a combination of a sequence

of small and flat facets whose illumination is modeled by a multiplicative term and an ad-

ditive term. Then, it applies a normalization technique to the image point by point which

normalizes the intensity values within each facet to be of zero mean and unit variance. The
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Fig. 1.11: Illustration of code schemes LBP, LDP, EnLDP, and LDN approaches. (a) Edge response
images produced by convolving the original face image and Kirsch compass masks together with
their response values at their specific same locations marked in blue dots. (b) Top: The LDN,
EnLDP, and LDP window generated by the directional numbers at the same specified location of
each response image. Bottom: The LBP window at the same specified location of the original image
(the center pixel with an intensity value of 57). (c) The LDN, EnLDP, LDP, and LBP codes at the
same specified location. (d) The final LDN, EnLDP, LDP, and LBP images generated by applying
the same procedure to all locations of the original image.

AdaS method estimates the illumination by smoothing the input image using an iterative

method. LDCT employs the discrete cosine transform (DCT) to compensate for illumi-

nation variations in the logarithmic domain. Considering illumination variations mainly

lie in the low-frequency band, it truncates an appropriate number of DCT coefficients to

minimize illumination variations. L&S Log-DCT decomposes the face image into large- and

small-scale features. It then removes illumination variations on the large-scale features by

setting some of the low-frequency DCT coefficients to be zero in the logarithmic domain. A

minor correction is made on the small-scale features. Finally, L&S Log-DCT reconstructs

an illumination-invariant image by combining the processed large- and small-scale features.

The Gradientface method creates a ratio image between the y-gradient and the x-gradient

of a given image. The Weberface method, inspired by Weber’s law and based on the Weber

local descriptor (WLD) [64], creates a ratio image between the local intensity variation and

the background. The Gradientface and Weberface methods are proven to be illumination-
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insensitive. The GWF method is a generalized multi-scale version of the Weberface method.

It also considers an inner and outer ground for each pixel and assigns different weights for

them to develop a weighted GWF (wGWF). Huang and Li [65] combine three distinct

methods (i.e., homomorphic filtering, ratio image generation, and anisotropic smoothing)

to preprocess each face image and then apply an illumination compensation method on the

preprocessed image for the face recognition task.

Some researchers also classify illumination-invariant methods into three categories: il-

lumination modeling, preprocessing and normalization, and illumination-invariant feature

extraction [63].

The first category includes statistical or physical models in which the model parameters

are extracted by low-dimensional linear subspaces [66]. However, the main limitations and

shortcomings of this category of approaches are constructing a linear subspace and requiring

several sample images for training [63].

Preprocessing and normalization approaches improve illumination conditions of images

without using any face model or surface information. Since they are simple and feasible,

they can be employed before other face recognition methods [2,67]. Representative methods

are HE [35], LHS [36], and GIC [37].

The main goal of the third category is to extract illumination-invariant features. Most

of the recently proposed methods belong to this category. Representative methods include

SQI [49,50], single-light-region & single-dark-region SQI [51], LTV [52,53], LWT [54], generic

intrinsic illumination subspace [55], local normalization [56], AdaS [57], LDCT [58], L&S

Log-DCT [59], Gradientface [60], Weberface [61], GWF [62], LBP [42], LTP [16], LDP [43],

EnLDP [44], LDN [45], DPPC [46], and local phase quantisation and multi-resolution local

binary pattern fusion [68].

In this dissertation, we focus on face recognition under varying illumination. We

present four different methods to produce illumination-invariant features. Our extensive

experiments show each proposed method outperforms several state-of-the-art methods.
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1.3 Contributions

This dissertation presents a few contributions which will be explained in detail in each

chapter. The most significant contributions of this research are as follows:

1. Proposing methods which operate in the gradient domain to be robust against illumi-

nation variations.

2. Proposing logarithmic fractal dimensions (LFD) to transfer face images to the frac-

tal dimension (FD) domain and produce illumination-invariant representations which

enhance facial features such as eyes, eyebrows, nose, and mouth while keeping noise

at a low level.

3. Proposing eight local directional patterns (ELDP) to extract more edge information

by utilizing all eight directional edge images compared to LDP approaches.

4. Proposing adaptive homomorphic eight local directional patterns (AH-ELDP) to in-

corporate ELDP with an adaptive filter and an enhancement function to automatically

attenuate the low-frequency (i.e., illuminance) component of each original face image

and effectively enhance the contrast of the filtered image, respectively.

5. Incorporating LFD images with AH-ELDP to produce complete ELDP (CELDP)

which considers the magnitude of edge images as well as all the eight directions.

As the contributions point out, we propose four evolving methods (i.e., LFD, ELDP,

AH-ELDP, and CELDP) to produce illumination-insensitive representations. All these

methods are individual systems and can be used to produce illumination-invariant im-

ages. However, AH-ELDP uses ELDP as the final stage to obtain the AH-ELDP image.

The CELDP method used in our final system simplifies the LFD method by significantly

reducing the running time without compromising the performance and combines the sim-

plified LFD method with the adaptive filter and ELDP to obtain illumination-invariant

images. The CELDP method considers not only all eight directional edge images but also

the magnitude of these edge images.
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1.4 Evaluation

We evaluate the proposed methods by conducting experiments on four publicly available

image databases with large illumination variations. We also use a video face database to

evaluate our methods. We implement all the stages of the practical face recognition system

including face detection, landmark localization, face normalization, and face matching as

shown in Fig. 1.2 to recognize faces in the video face database. In addition, we use receiver

operating characteristic (ROC) curves to illustrate the ability of each method to verify and

discriminate face images. In the following, we explain face databases and discuss ROC

curves as they will be used in this research for evaluation purposes.

1.4.1 Face databases

We evaluate the proposed methods by conducting experiments on four publicly available

image databases (i.e., Yale B, extended Yale B, CMU-PIE, and AR [32,69,70]) as well as the

Honda UCSD video database [71]. These databases have different illumination conditions

which help us to evaluate our methods in different illumination and light changes. We use

the recognition accuracy, which is computed as the percentage of the number of correctly

recognized faces to the number of all probe (testing) images, as the performance measure.

In the following, we review these face databases.

Yale B face database: The Yale B database contains 5760 grayscale face images

(480× 640 pixels) of 10 subjects under nine poses and 64 illumination conditions (i.e., 576

images per subject). We use frontal face images in our experiment, so each subject has 64

images. All images are cropped and resized to 100×100 pixels. Fig. 1.5 shows eight sample

images for a subject from this database. These images are categorized into six subsets based

on the angle between the light source directions and the central camera axis: S0 (0◦, 6 images

per subject), S1 (1◦ to 12◦, 8 images per subject), S2 (13◦ to 25◦, 10 images per subject), S3

(26◦ to 50◦, 12 images per subject), S4 (51◦ to 77◦, 10 images per subject), and S5 (above

78◦, 18 images per subject). S0 contains six images per subject, which are shown in the first

column of Fig. 1.12 for one subject. These six images, respectively, have -35, -20, 0, 20, 45,

and 90 degrees of elevation of the light source. Positive elevation implies the light source
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is above the horizon, while negative elevation implies the light source is below the horizon.

We conduct six experiments to evaluate the performance of the proposed methods. In the

ith experiment, we use the ith image from each subject in S0 as the reference (training)

image and the remaining five images from each subject in S0 (50 images in total) and all

the images in each of the other five subsets as probe (testing) images. In each experiment,

the remaining five probe images for each subject in S0 are formed a new subset S0’ with

50 images. Then, for each experiment, we compute the recognition accuracy for each of the

six subsets (i.e., S0’, S1, S2, S3, S4, and S5). Next, the average face recognition accuracy

of each subset across all the six experiments is computed and, considered as the recognition

accuracy for the respective subset. We also report the standard deviation of the recognition

accuracy across all the six experiments for each subset. Finally, we compute the average

and standard deviation of the face recognition accuracy across all the six subsets.

The Weberface and Gradientface methods compute the face recognition accuracy of one

training session, wherein the first image per subject from S0 is chosen for training. However,

we conduct more thorough experiments by using each of six images per subject from S0 for

training and computing the average face recognition accuracy using the remaining images

outside of each of six training sessions.

Extended Yale B face database: The extended Yale B database contains grayscale

face images (480×640 pixels) of 38 subjects under nine poses. We use frontal face images in

our experiment. Each subject has 64 images (2414 images out of 2432 images are used since

18 images are corrupted). All images are cropped and resized to 100× 100 pixels. Similar

to the Yale B face database, these frontal face images are categorized into six subsets based

on the angle between the light source directions and the central camera axis: S0 (0◦, 228

Fig. 1.12: Face images in S0 of the Yale B face database.
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images), S1 (1◦ to 12◦, 301 images), S2 (13◦ to 25◦, 380 images), S3 (26◦ to 50◦, 449 images),

S4 (51◦ to 77◦, 380 images), and S5 (above 78◦, 676 images). S0 contains six images per

subject, which are similar to S0 in the Yale B database and have -35, -20, 0, 20, 45, and

90 degrees of elevation of the light source. We conduct six experiments using the same

experimental settings for the Yale B database. Since the extended Yale B face database

also contains the Yale B face database, images in Figs. 1.5 and 1.12 are also sample images

from this database.

CMU-PIE face database: The CMU-PIE database, collected at Carnegie Mellon

University in 2000, contains 41,368 grayscale images (486 × 640 pixels) from 68 subjects.

They are captured under 13 different poses, 43 different illuminations, and 4 different ex-

pressions. Frontal images from the illumination subset (C27) are used in our experiment.

This subset contains 21 images per subject. All images are cropped and resized to 100×100

pixels. Fig. 1.13 shows all 21 images for a subject from this database. We conduct 21 ex-

periments to evaluate the performance of the proposed methods. In the ith experiment, we

use the ith image from each subject as the reference (training) image and all the other 20

images as the probe (testing) images.

AR face database: The AR database, collected at Ohio State University, contains

over 4,000 color images corresponding to 126 people’s faces (70 men and 56 women). They

are frontal view faces with different facial expressions, illumination conditions, and occlu-

sions (sun glasses and scarf) [32]. Each person participated in two sessions, separated by

a two-week (14 days) time period. The same pictures were taken in both sessions. We

use the cropped version of the database used in [72]. This version contains 100 subjects

(50 men and 50 women) of the size of 165 × 120 pixels. However, we still crop the faces

to be similar to the other databases that we used. We only use images with illumination

conditions and neutral expressions. They include two images with neutral expressions, two

with light from the left, two with light from the right, and two images with light from both

sides for each subject. Since the original size is small, all images are resized to 64×64 pixels.

This also helps us to evaluate the robustness of parameters in our methods with different
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Fig. 1.13: Illustration of 21 sample images for a subject from the CMU-PIE database.

sized images. Fig. 1.14 shows all eight images for a subject from the AR database. We

conduct eight experiments to evaluate the performance of the proposed methods. In the

ith experiment, we use the ith image from each subject as the reference (training) image

and all the other seven images as the probe (testing) images.

Honda UCSD video database: The Honda UCSD video database is a standard

video database for evaluating face tracking/recognition algorithms [71]. Each video sequence

is recorded in an indoor environment at 15 frames per second, and each lasts for at least 15

seconds. The resolution of each video sequence is 640×480. Each individual is recorded in

at least two video sequences. All the video sequences contain significant 2-D (in-plane) and

3-D (out-of-plane) head rotations. In each video, the person rotates and turns his/her head

in his/her own preferred order and speed. Typically in about 15 seconds, the individual is

able to provide a wide range of different poses. However, some of these sequences contain

difficult events such as partial occlusion, face partly leaving the field of view, and large scale

changes. The database contains two datasets corresponding to the two video sequences. We

use training and testing subsets from the first dataset, which respectively contain 20 videos

for training and 39 videos for testing. The training videos belong to 20 human subjects,

while the testing videos contain 19 individuals of these subjects. We exclude the subject

that is not in the testing set in our experiment.
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Fig. 1.14: Eight images with light changes and neutral expression from a subject in the AR face
database.

1.4.2 Receiver Operating Characteristic (ROC) Curve

The ROC curve is a graphical plot to illustrate the verification and discrimination

ability of a binary classifier. It plots the true positive rate (TPR) against the false positive

rate (FPR) of the classifier. A classifier or method with higher TPR and lower FPR indicates

a better verification and discrimination ability. Since we use the same classifier for all

methods, the ROC curve can illustrate the ability of each method to verify and discriminate

face images. Here, a positive match indicates an input image for a subject is determined to

be the same subject as the reference (training) image.

1.5 Outline

The dissertation is organized as follows based on the main contributions of the research:

Chapter 2 proposes a novel fractal analysis (FA) feature-based preprocessing method,

called Logarithmic Fractal Dimension (LFD), to generate an illumination-invariant repre-

sentation for a given face image.

Chapter 3 proposes a modified version of Local Directional Patterns (LDP), called

Eight Local Directional Patterns (ELDP), to produce an illumination-insensitive represen-

tation from an input face image.

Chapter 4 proposes a three-step illumination-invariant face recognition method. This

method derives a descriptor called Adaptive Homomorphic Eight Local Directional Patterns

(AH-ELDP) to produce an illumination-insensitive representation.

Chapter 5 proposes a complete eight local directional patterns (CELDP) method,

which effectively incorporates the proposed LFD and AH-ELDP methods to produce robust

illumination-insensitive representations.
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Chapter 6 evaluates the aforementioned proposed methods by conducting experiments

on four publicly available image face databases with large illumination variations as well as a

video face database. It, also, compares them with several recently proposed state-of-the-art

methods to illustrate the effectiveness of the proposed methods.

Chapter 7 draws the conclusion of the dissertation.
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Chapter 2

Face Recognition under Varying Illuminations with

Logarithmic Fractal Analysis

2.1 Introduction

Fractal analysis (FA), as a type of texture analysis, has been recently used in medi-

cal imaging and image processing [73–76]. For texture analysis of fractal features, image

intensities are transformed to the fractal dimension (FD) domain [74]. The FD transform

is considered as an edge enhancement and preprocessing algorithm that does not increase

noise [73, 74]. Specifically, Al-Kadi and Watson [74] enhance edges in respective images

using FA to differentiate between aggressive and nonaggressive malignant lung tumors.

Kim et al. [75] apply FA to detect and predict glaucomatous progression. Zlatintsi and

Maragos [76] use multiscale FA to quantify the multiscale complexity and fragmentation of

different states of the music waveform.

In this chapter, we propose to apply a novel FA feature-based preprocessing method

to generate an illumination-invariant representation for a given face image. To the best

of our knowledge, this is the first attempt to apply FA in the face recognition task to

achieve illumination-insensitive representation. To this end, we first perform a log-based

transformation to partially reduce the illumination effect and make the image brighter. This

log function expands the values of dark pixels and compresses brighter pixels in the image.

As a result, pixel values are spread more uniformly. We then transfer the scaled image to

a Logarithmic FD (LFD) image using the Differential Box-Counting (DBC) algorithm [74,

77,78]. The proposed method makes the following contributions:

1. Using a simple and efficient log function to expand dark pixels and compress bright

pixels for partial illumination reduction.
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2. Transforming face images to the FD domain to produce the illumination-invariant

representation.

3. Enhancing facial features such as eyes, eyebrows, nose, and mouth while keeping noise

at a low level.

2.2 Methodology

2.2.1 FA Feature-Based Method

The FD transform is an effective edge enhancer technique that keeps the noise level

low [73,74]. Since edge magnitudes are largely insensitive to illumination variations [45], we

apply FA to produce corresponding FD images of given face images to achieve illumination-

insensitive representation.

Fractals are defined as a geometrical set whose Hausdorff-Besicovitch dimension strictly

exceeds the topological dimension. They describe non-Euclidean structures that show self-

similarity at different scales [74]. Most of biological and natural features tend to have a

FD [74]. We use the DBC algorithm, a popular computationally efficient method for dealing

with large images, to quickly transfer face images to FD images [74,77–79].

In order to transfer the face image Im of size M × N to the image FD in the FD

domain, we first compute a sequence of two-dimensional matrices Mat’s to overlay the

image Im at each pixel (x, y) as follows:

Matd−1(x, y) = (floor[
max (Wd(x , y))−min(Wd(x , y))

d
] + 1)(

dmax

d
)2 (2.1)

where d is the scaling factor with a minimum value of 2 and a maximum value of dmax that

represents how much a specific structure of pixels is self-similar to its surroundings, Wd(x, y)

is a d × d window or neighborhood block whose center is positioned at the location (x, y)

of an image. When d is an odd number, the center is in the middle of the neighborhood

block. When d is an even number, the center is to the left and above the middle of the

neighborhood block. Fig. 2.1 shows the center position for the d × d neighborhood block
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Fig. 2.1: Illustration of the center position (shown in black) for the d× d neighborhood block when
d = 2, 3, 4, 5, 6.

when d = 2, 3, 4, 5, 6. max and min operations obtain the highest and lowest intensity

values in the image block covered by the d×d neighborhood block centering at the location

(x, y) of an image, respectively. Specifically, for each scaling factor d, the center of a sliding

neighborhood block of size d × d is positioned at each pixel in an image. The maximum

intensity value and the minimum intensity value of the image portion covered by the sliding

neighborhood block are used to compute the new value at the corresponding pixel location

following Eq. (2.1).

We then convert each two-dimensional matrix Matd−1 of size M × N to a one-

dimensional column vector of size (M ×N)× 1 and concatenate the converted (dmax − 1)

column vectors to obtain the two-dimensional matrix V , which has (M × N) rows and

(dmax−1) columns. For each row in the matrix V , it indicates the new values computed by

Eq. (2.1) at a particular location in an image across scales from 2 to dmax. For example,

the first row in V contains the new values at location (1, 1) of an image across scales from 2

to dmax. The last row in V contains the new values at location (M,N) of an image across

scales from 2 to dmax. Here, we use the one-dimensional vector v(x,y) to denote the new

values at location (x, y) of an image across scales from 2 to dmax with v(x,y),d indicating the

new value at location (x, y) for the scaling factor of d.

Finally, for each pixel (x, y), we generate the fractal slope by the linear regression line

of the one-dimensional vector v(x,y) and the scaling factor d (d = 2, ..., dmax) to represent

the FD value at (x, y) (i.e., FD(x, y)). To this end, we first apply the log function on all
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the elements of V and the respective scaling factor d to compress the dynamic range of the

images [74]. The FD value at (x, y) is then computed as the fractal slope of the least square

linear regression line by:

FD(x, y) =
Sv(x, y)

S
(2.2)

where S and Sv are the sums of squares as follows:

S =

dmax−1∑
d=1

(log(d))2 −
(
∑dmax−1

d=1 log(d))2

dmax − 1
(2.3)

Sv(x, y) =

dmax−1∑
d=1

log(d)(log(v(x,y)),d))−
(
∑dmax−1

d=1 log(d))(
∑dmax−1

d=1 log(v(x,y),d))

dmax − 1
(2.4)

The transformation process to convert face images to FD images is illustrated in steps

2 and 3 of Fig. 2.2.

2.2.2 Implementation

This subsection illustrates how to implement the proposed method. First, we perform

a log-based transformation to partially reduce the illumination effect and make the image

brighter. This log function expands the values of dark pixels and compresses the values of

bright pixels. Next, we transfer the scaled image to the FD domain using the FA feature-

based method introduced in the previous subsection. The final image is called LFD image.

The entire process to compute the LFD image is illustrated in Fig. 2.2 and the algorithmic

view of the proposed method is summarized in Algorithm 2.1.

Fig. 2.3 shows two face images along with their corresponding Log and LFD images.

It clearly demonstrates that the log function reduces the illuminance to some extent. Fur-

thermore, LFD images enhance the important features of faces such as eyes, eyebrows, nose,

mouth, and the shape of the face in general. Comparing LFD images with their original

images verifies that the proposed method produces illumination-insensitive features. Fig.
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2.4(a) shows 21 images for a subject from the CMU-PIE database and Fig. 2.4(b) shows

their corresponding LFD images.

Algorithm 2.1 The algorithmic view of the proposed LFD method.

2.3 Parameter dmax

The proposed FA feature-based method has only one parameter dmax. It is the maxi-

mum value for the scaling factor which represents how much a specific structure of pixels

is self-similar to its surroundings. Different values for dmax can lead to different accuracy.

Fig. 2.5 lists the recognition accuracy for CMU-PIE and Yale B databases using values

ranging from 2 to 20 for dmax. It clearly shows both databases have similar trends towards

dmax. Specifically, accuracy for both databases increases gradually until dmax value is al-

most 9 and then accuracy does not significantly change for dmax values more than 9. This

observation indicates different face databases would have similar behavior regarding dmax

since CMU-PIE and Yale B databases contain different illumination conditions. Therefore,

we recommend to use a dmax value between 9 and 12 for the face recognition task to achieve

a decent compromise between computational time and good face recognition accuracy. We
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Fig. 2.2: Illustration of the proposed LFD process: 1) The face image is scaled by the log function.
2) For each d, the matrix Matd−1 is computed using the DBC algorithm. 3) Mat’s are converted
to V and the LFD image is obtained using Eq. 2.2.

set dmax to be 10 for both face databases in our experiment.

2.4 Summary

We propose a FA feature-based method to produce illumination-invariant features from

face images with illumination variations. Our contributions are:

• Applying an effective and simple log transformation to produce partially illumination

reduced face images.

• Applying the FA feature-based method to produce the illumination-invariant face rep-

resentations (i.e., LFD images) while enhancing facial features such as eyes, eyebrows,

nose, and mouth and keeping noise at a low level.
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Fig. 2.3: Results of the proposed FA feature-based method. (a) original face images; (b) scaled
images after the log operation; and (c) LFD images.

Fig. 2.4: Illustration of sample images and their LFD images. (a) 21 samples from the CMU-PIE
database(b) Corresponding LFD images.
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Fig. 2.5: Comparison of the recognition accuracy of the proposed LFD method with different dmax

values ranging from 2 to 20 for CMU-PIE and Yale B images.
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Chapter 3

Face Recognition Under Illumination Variations Based on

Eight Local Directional Patterns

3.1 Introduction

The LBP, LTP, LDP, EnLDP, and LDN methods produce illumination-invariant rep-

resentations. The LBP and LTP methods summarize local gray-level structures. They take

a local neighborhood of P pixels in a circle of radius R around each pixel and subtract the

value of the central pixel from them to obtain eight values. Usually, for face recognition

applications, P and R are set to be 8 and 2, respectively. LBP converts the resulting eight

values to the values of 1’s if they are positive and 0’s if they are negative and then transfers

the 8-bit binary pattern to the corresponding decimal value. LTP uses a user-specified pos-

itive threshold to convert the resulting eight values to 1’s, -1’s, or 0’s. If they are greater

than the threshold, convert them to 1’s; if they are less than the negative of the threshold,

convert them to -1’s; otherwise, convert them to 0’s. Finally, it splits the ternary pattern

into two binary patterns. The final LBP and LTP images are illumination-invariant.

LDP, EnLDP, and LDN operate in the gradient domain to produce illumination-

invariant representations. They could be also considered as LBP approaches. However,

they use edge directional information instead of intensity changes, since edge responses are

insensitive to lighting variations [45]. Specifically, they use Kirsch compass masks (Fig.

1.10) to compute the edge responses and produce eight directional edge images (or eight di-

rectional numbers) for a face image by the convolution of the original face image OriIm(x, y)

and each of eight masks Mi (0 ≤ i ≤ 7). LDP considers an 8-bit binary code for each pixel

and assigns 1’s to the three bits corresponding to the three prominent numbers and 0’s to

the other five bits. EnLDP and LDN consider a 6-bit binary code for each pixel. In EnLDP,
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the first three bits code the position of the top positive directional number and the next

three bits code the position of the second top positive directional number. In LDN, the

first three bits code the position of the top positive directional number and the next three

bits code the position of the top negative directional number. The generated codes are then

converted to their corresponding decimal values to respectively produce LDP, EnLDP, and

LDN images, which are illumination-invariant.

This chapter proposes an illumination-invariant face recognition method, called Eight

Local Directional Patterns (ELDP). This new ELDP method uses all the eight directional

numbers instead of the three prominent directional numbers as used in LDP or the top two

positive directional numbers as used in EnLDP or the top positive and negative directional

numbers as used in LDN to encode more local structural information and intensity changes

of a face image. The proposed ELDP makes the following contributions:

1. Operating in the gradient domain to be robust against illumination variations and

noise.

2. Extracting more edge information by utilizing all eight directional edge images.

3. Considering relations among eight directional numbers to use valuable structural in-

formation.

3.2 Methodology

To produce the illumination-invariant representation, we first use Kirsch compass masks

to compute the edge responses (i.e., eight directional edge images). Each of these eight edge

images represents the edge significance in its respective direction [45]. These edge responses

have different importance levels, but all of them are significant. As a result, we use all the

eight directional numbers of each pixel to assign an associated 8-bit binary code. If the

directional number of its edge image is positive, we set the value of the respective bit to

1. Otherwise, we set the value of the respective bit to 0. It should be noted that the

ordering of the directional numbers is not important as long as the same order is employed

for all images. Here, we use the conventional order used in LBP approaches in our system.
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Finally, we compute the corresponding decimal value for the binary code and consider it

as the pixel’s ELDP value. Fig. 3.1 illustrates the detailed steps to compute the ELDP

value at one location. The same procedure can be applied to all locations in a face image

to produce the final ELDP image as shown in Fig. 3.1(d).

ELDP is similar to LBP in one perspective since both transform the 8-bit binary code

to a decimal value. However, they use different mechanisms to generate the 8-bit code.

Specifically, ELDP uses the positive or negative edge response information of the eight

directional edge images to generate the 8-bit code. LBP uses the sparse points compared

with the center pixel in each neighborhood of the original image as the threshold (i.e., few

number of intensities in a neighborhood) to generate the 8-bit code. As a result, LBP

discards most of the information in the neighborhood, makes the method sensitive to noise,

and limits the accuracy of the method [45]. ELDP avoids the above shortcomings of LBP

by using more edge information from the entire neighborhood and is therefore superior to

LBP.

The proposed ELDP is also similar to LDP, EnLDP and LDN methods [43,45] from the

perspective of the use of Kirsch compass masks to compute the edge responses. However,

LDP, EnLDP, and LDN respectively use the three prominent directional numbers, the first

and second top positive directional numbers, and the top positive and negative directional

numbers to generate their corresponding binary codes. ELDP uses all eight directional

numbers to generate its 8-bit binary code. Since these eight directional numbers provide

the “panorama view” of gradient directions in a chosen neighborhood, ELDP offers the

following advantages:

• It is robust against illumination variations and noise by operating in the gradient

domain [45].

• It extracts more edge information by utilizing all eight directional edge images.

• It indicates valuable structural information from the neighborhood by considering the

relations among eight directional edge responses.
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Fig. 3.1: Illustration of the proposed ELDP code scheme. (a) Edge response images produced by
convolving the original face image and Kirsch compass masks together with their response values
at their specific same locations marked in blue dots. (b) Top: The ELDP, LDN, EnLDP, and LDP
window generated by the directional numbers at the same specified location of each response image.
Bottom: The LBP window at the same specified location of the original image (the center pixel with
an intensity value of 57). (c) The ELDP, LDN, EnLDP, LDP, and LBP codes at the same specified
location. (d) The final ELDP, LDN, EnLDP, LDP, and LBP images generated by applying the same
procedure to all locations of the original image.

• It is simple and easy to compute.

3.3 Implementation

Similar to other work, we first smooth the face image with a Gaussian filter to reduce

the side-effect of shadow boundaries and make the gradient computation more robust to

noise [60, 61]. We then implement the ELDP code scheme. The algorithmic view of the

proposed method is summarized in Algorithm 3.1.

Fig. 3.2 shows sample original images from the CMU-PIE face database and their

corresponding ELDP images. It clearly shows the ELDP code scheme reduces the effect of

illumination and produces illumination-insensitive images since all ELDP images look alike

as shown in Fig. 3.2(b).
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Algorithm 3.1 The algorithmic view of the proposed ELDP.
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Fig. 3.2: Illustration of sample images and their ELDP images. (a) 21 samples from the CMU-PIE
database (b) Corresponding ELDP images.

3.4 Summary

We propose a new illumination-invariant face descriptor, ELDP, to preprocess face

images with illumination variations. The proposed ELDP method uses Kirsch compass

masks to compute eight directional edge responses in the gradient domain, which is robust

against illumination changes and noise. It extracts more edge information by utilizing all

eight directional edge images. It also indicates valuable structural information from the

neighborhood by considering the relations among eight directional edge responses.
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Chapter 4

Face Recognition under Varying Illuminations Based on

Adaptive Homomorphic Eight Local Directional Patterns

4.1 Introduction

This chapter proposes a three-step illumination-invariant face recognition method. The

new method derives a descriptor called Adaptive Homomorphic Eight Local Directional

Patterns (AH-ELDP) to produce an illumination-insensitive representation. As a result,

we name it as the AH-ELDP method. First, the proposed method employs an adaptive

homomorphic filter to reduce the influence of illumination. Then, it uses the interpolation

function to enhance the image features. Finally, it applies all the eight directional edge

numbers to produce illumination-invariant features to recognize faces.

The contributions of the proposed AH-ELDP method are:

1. Adjusting the homomorphic filter parameter c to automatically attenuate the low-

frequency (i.e., illuminance) component of each original face image.

2. Employing an interpolation function to effectively enhance the contrast of the filtered

image.

3. Presenting a new gradient-based descriptor by considering the relations among all

eight directional edge responses to achieve robustness against illumination variations

and noise [45] and represent more valuable structural information from the neighbor-

hood.
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4.2 Methodology

The proposed AH-ELDP method consists of three steps. The first step is to use homo-

morphic filtering to reduce the illumination effects. The second step is to apply an inter-

polative enhancement function to stretch the contrast of the filtered image. The last step

employs the ELDP method, explained in Chapter 3, to produce the illumination-invariant

representation of a face image.

4.2.1 Homomorphic Filtering

Based on the Lambertian-reflectance model, a face image I is represented as follows:

I(x, y) = R(x, y)L(x, y) (4.1)

where I(x, y), R(x, y), and L(x, y) are respectively the pixel intensity, reflectance, and

illuminance at position (x, y) of a face image [61, 65, 80]. Specifically, R is considered

as a high-frequency signal closely corresponding to texture information of a face because

reflectance indicates the contrast arrangement of skin, eyebrows, eyes, and lips of a face. L

is considered as a low-frequency signal because the illumination values of neighboring pixels

in a face image are similar to each other [65].

In order to reduce the influence of illumination, we use the homomorphic filter H(u, v)

as a Gaussian highpass filter [80]. This filter adjusts the image intensity by strengthening the

high-frequency signal and attenuating the low-frequency signal [65]. However, the Fourier

transform of the two functions, R(x, y) and L(x, y), in Eq. (4.1) is not separable. So, we

use the logarithmic operation to separate these functions as follows:

ln(I(x, y)) = ln(R(x, y)) + ln(L(x, y)) (4.2)

We then apply the Fourier transform F on the logarithmic results by:
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F (ln(I(x, y))) = F (ln(R(x, y))) + F (ln(L(x, y)))

⇔ FI(u, v) = FR(u, v) + FL(u, v)

(4.3)

where FI(u, v), FR(u, v), and FL(u, v) are the Fourier transform of ln(I(x, y)), ln(R(x, y)),

and ln(L(x, y)), respectively. Now, we multiply the homomorphic filter, H(u, v), on both

sides of Eq. (4.3) to yield the following:

S(u, v) = H(u, v)FI(u, v)

= H(u, v)FR(u, v) +H(u, v)FL(u, v)
(4.4)

where S is the filtered result in the frequency domain. Subsequently, we let F−1 denote

the inverse Fourier transform and compute IF−1(x, y) as the inverse Fourier transform of

S(u, v) as follows:

IF−1(x, y) = F−1(H(u, v)FR(u, v)) + F−1(H(u, v)FL(u, v))

= RF−1(x, y) + LF−1(x, y)
(4.5)

where RF−1(x, y) = F−1(H(u, v)FR(u, v)), and LF−1(x, y) = F−1(H(u, v)FL(u, v)).

Finally, we use the exponential operation to yield the desired filtered image If (x, y) as

follows:

If (x, y) = expIF−1 (x,y) = expRF−1 (x,y)expLF−1 (x,y)

= Rf (x, y)Lf (x, y)

(4.6)

where Rf (x, y) = expRF−1 (x,y) and Lf (x, y) = expLF−1 (x,y) are illuminance and reflectance

of the filtered image at position (x, y), respectively.
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Similar to [65], we use the modified Gaussian highpass filter discussed in [80] to define

H(u, v) by:

H(u, v) = (γH − γL)[1− exp−cD2(u,v)/D2
0 ] + γL (4.7)

where D(u, v) is the distance from (u, v) to the origin of the centered Fourier transform, D0

is the cutoff distance measured from the origin, γL < 1 and γH > 1 are the parameters of

the filter, and c is a constant to control the sharpness of the slope of the filter function as it

transitions between γH and γL [80]. The homomorphic filtering using the aforementioned

process is summarized in Fig. 4.1. We finally normalize the filtered image If so that the

normalized filtered image f falls in the range of [0, 1]. Fig. 4.2(a) and (b) show two sample

images and their corresponding homomorphic filtered images, respectively. Fig. 4.2(b)

clearly indicates that the homomorphic filtering attenuates the low-frequency component

that is the illuminance of an image.

4.2.2 Image Enhancement

After reducing the illumination influence, we enhance features of the filtered face image.

To this end, we adopt the idea of the interval type-2 fuzzy sets [81] to enhance the contrast

of the filtered image by making the darker area in the image brighter and the brighter area

in the image darker. We then set the lower and upper values for each pixel that is currently

in the range of [0, 1] as follows:

µLower(x, y) = f2(x, y) (4.8)

and
µUpper(x, y) = f0.5(x, y) (4.9)
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Fig. 4.1: Homomorphic filtering approach to partially reduce the illumination of a face image.

Fig. 4.2: Illustration of the intermediate results obtained by the three steps of the proposed AH-
ELDP method. (a) Original face images; (b) Homomorphic filtered images; (c) Enhanced filtered
images; and (d) AH-ELDP images after extracting eight local directional patterns.

where µLower(x, y) and µUpper(x, y) are the lower and upper values of the normalized filtered

pixel value at position (x, y), respectively. The enhancement function is then defined by:

g(x, y) = (µLower(x, y)× fmean(x, y))

+(µUpper(x, y)× (1− fmean(x, y))) (4.10)

where fmean(x, y) ( 0 ≤ fmean(x, y) ≤ 1) and g(x, y) are respectively the local mean and

the enhanced value at position (x, y). From the mathematical perspective, Eq. (4.10) is

actually the linear interpolation between the two end points (i.e., the lower and upper

values). g(x, y) is close to the lower value when fmean(x, y) is close to 1 (i.e., when the

pixel is in a bright neighborhood). Similarly, g(x, y) is close to the upper value when

fmean(x, y) is close to 0 (i.e., when the pixel is in a dark neighborhood). Therefore, this

interpolation function makes pixels in a dark neighborhood brighter and pixels in a brighter

neighborhood darker. In other words, it enhances the details of the filtered image in dark

and bright neighborhoods. Fig. 4.2(c) shows the results of this interpolative enhancement

operation on two homomorphic filtered images.
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Fig. 4.3: Illustration of the proposed AH-ELDP method. (a) An original face image along with
its corresponding homomorphic filtered and enhanced filtered images. (b) Edge response images
produced by computing the convolution of the enhanced filtered image and Kirsch compass masks
together with the directional numbers at their specific same positions marked in blue dots. (c) The
3× 3 AH-ELDP window generated by the directional number at the same specified position of each
response image. (d) The AH-ELDP code at the same specified position. (e) The final AH-ELDP
image generated by applying the same procedure to all positions of the original image.

4.2.3 Eight Local Directional Patterns

This subsection presents a modified version of the LDP method to produce illumination-

invariant features since enhanced filtered images still contain part of the illumination infor-

mation. As we explained earlier, LDP-based methods (i.e, LDP, EnLDP, and LDN) operate

in the gradient domain to produce illumination-invariant features. LDP, EnLDP, and LDN

use the three prominent directional numbers, the two top positive directional numbers, and

the top positive and negative directional numbers of the eight directional numbers at each

position to generate illumination-invariant representations, respectively.

However, each edge directional image represents the edge significance in its respective

direction and each directional number provides the gradient direction in a chosen neighbor-

hood. Therefore, all the edge responses are significant. The proposed AH-ELDP method

uses all the eight directional numbers, instead of only few of them, to provide more valu-

able structural information of the neighborhood. We assign an 8-bit binary code to each

pixel. If the directional number of its edge directional image is positive, we set the value of

the respective bit to 1’s. Otherwise, we set the value of the respective bit to 0’s. Finally,

the binary code is converted to its corresponding decimal value which is considered as the

pixel’s AH-ELDP value. Fig. 4.3 illustrates the detailed steps to compute the AH-ELDP
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value at one position. The same procedure can be applied to all positions to obtain the final

AH-ELDP image as shown in Fig. 4.3(e). The algorithmic view of the proposed AH-ELDP

method is summarized in Algorithm 4.1. Fig. 4.4 shows sample original images from the

CMU-PIE face database and their corresponding AH-ELDP images. It clearly shows the

AH-ELDP method reduces the effect of illumination and produces illumination-insensitive

images since all AH-ELDP images look alike as shown in Fig. 4.4(b).

Algorithm 4.1 The algorithmic view of the proposed AH-ELDP.

The three steps are combined to produce illumination-insensitive representations for

face images under varying illuminations. The adaptive homomorphic (AH) filter is a high-

pass filter which is used to attenuate the low frequency signal (i.e., illumination component)

and strengthening the high frequency signal (i.e., texture information). This filter has been
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Fig. 4.4: Illustration of sample images of the CMU-PIE database and their AH-ELDP images. (a)
21 samples for a subject (b) Corresponding AH-ELDP images.

explained in [80] in more detail and used in [65] to reduce illumination in face images. We

designed a method to compute the adaptive c value to automatically adjust the homomor-

phic filter for each face image based on its illumination (low frequency). So the illumination

of each face image is reduced based on its own frequency.

The interpolative enhancement function is used to enhance the contrast of the filtered

image. It simply uses the linear interpolation to adjust the intensity values by making

darker pixels in the image brighter and brighter pixels in the image darker. The degree of

contrast enhancement is varied depending on the brightness change in a region. As a result,

the facial features of each face image are enhanced.

Finally, ELDP is a modified version of the LDP approach to produce the edge responses

which are insensitive to lighting variations [43–45]. ELDP uses all the eight directional num-

bers, instead of few of them as used in LDP, to provide more valuable structural information
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of the neighborhood.

Each of these three steps either enhances face images or reduces and removes illumi-

nation. Therefore, the proposed AH-ELDP method deems to be an illumination-invariant

method for the face recognition.

4.3 Settings of Parameters

The AH-ELDP method has four parameters which all belong to the homomorphic

filter: D0, γL, γH , and c. D0 is the cutoff distance as conventionally defined in the band-pass

filter. γL and γH are the lowest and highest values of the filter and c controls the transitions

between γL and γH . Based on Eq. (4.7), c along with D0 (i.e., D0/
√
c) determines the actual

cutoff distance. This makes c the most important parameter of the system. Fig. 4.5 shows

the image representation of the homomorphic filter for different c values and different D0,

γL, and γH values. It clearly shows the shape of the filter changes gradually with changing

values of c and D0. However, the shape of the filter does not change much with changing

values of γL and γH . This indicates that c is the most important parameter in our system.

On the other hand, every face image has different unknown amount of illuminations that

require a different filter to reduce its illumination. Therefore, we produce the adaptive

homomorphic filter based on each input face image by adjusting the c parameter.

The homomorphic filter operates in the frequency domain. Frequency is directly related

to the rate of changes and intuitively associates with patterns of intensity variations in an

image [80]. The origin of the Fourier transform contains the slowest varying frequency

component which corresponds to the average gray level intensity of the image. While

moving away from the origin, the frequency changes from low to high. Since illumination

variations are mainly contained in the low frequency components, components around the

origin contain most illumination changes. To this end, we consider a square window of

components around the origin of Fourier transform and use a proportion of some of these

low frequency components to determine the adaptive parameter c for the homomorphic

filter. This proportion approximately indicates the slope of changes in the low frequency.
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Fig. 4.5: The image representation of the homomorphic filter for five different c values versus (a) five
different D0 values with the empirically determined values of γL=.5 and γH=1.1, (b) five different
γL values with the empirically determined values of γH=1.1 and D0=15, and (c) five different γH
values with the empirically determined values of γL=.5 and D0=15.

Therefore, we define the parameter c as follows:

c =
Mag1
Mag2

(4.11)

where Magi indicates the ith largest magnitude value within the square window. We use the

magnitude to compute c since it measures the strength of the frequency components. The

origin of the Fourier transform is excluded because it only represents the average intensity

of the image. In our experiment, we empirically set the length of the square window to be

15% of the smallest dimension of the image. For example, we use a window of size 15× 15

centering at the origin of Fourier transform for a face image of size 100 × 100. The other

parameters are empirically set to be: γH=1.1, γL=0.5, and D0=15. D0 is the cutoff distance

and is set to be the length of the window.

We also investigate the effects of different γL and γH on the face recognition perfor-

mance when adaptive c is used. CMU-PIE, Yale B, and extended Yale B face databases

have different charactritics and features. Therefore, a good performance on one of them for

a method does not guarantee obtaining a good performance on the other one for the same

method. Also, parameters of each method might need to be different for each database. The

results of different γL and γH values on the three databases are summarized in Tables 4.1

through 4.3. Our experiments in Tables 4.1, 4.2, and 4.3 verify the choices of γL and γH do
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not affect the performace of AH-ELDP too much. The values in these tables are the average

face recognition accuracy of respective experiments yielded by the AH-ELDP method using

seven different values for each γL and γH and the adaptive c values. In our experiments,

we choose γL=.5 and γH=1.1 to have a good balance among three face databases.

We also conduct some experiments to evaluate the influence of the adaptive parameter

c. Fig. 4.6 shows the performance of AH-ELDP for CMU-PIE, Yale B, and extended Yale

B databases when a fixed value of c is used. It clearly demonstrates the different trends

for three face databases. For example, the performance of AH-ELDP on the CMU-PIE

database slightly improves when the value of c increases. On the contrary, the performance

of AH-ELDP on the Yale B and the extended Yale B database improves when the value of c

decreases. Therefore, the adaptive c introduced in Eq. (4.11) adjusts the homomorphic filter

based on the illumination (low frequency) of each face image. Comparing the performace of

AH-ELDP using the adaptive c (refer to Tables 4.1, 4.2, and 4.3) with the performance of

AH-ELDP using the fixed c values (refer to Fig. 4.6), we can clearly see that the AH-ELDP

method achieves a balanced performance using the adaptive c on all three databases.

We also conduct eight experiments on each of the three publicly available databases

to investigate the influence of D0 on the face recognition accuracy. Fig. 4.7 shows the face

recognition accuracy for CMU-PIE, Yale B, and extended Yale B databases using different

D0 values including 1, 5, 10, 15, 20, 25, 30, and 35, respectively. It clearly confirms that

the value of 15 is a good choice for D0 for face images of 100×100 pixels.

4.4 Summary

We propose a three-step illumination-invariant face recognition method, called AH-

ELDP, to preprocess face images with illumination variations. The proposed AH-ELDP

method offers the following advantages:

• Using an adaptive c to adjust the homomorphic filter for each face image to reduce

the illumination influence using the slope of changes in the low frequency components

of the image.
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Table 4.1: Recognition accuracy (%) of AH-ELDP with different γL and γH values and the adaptive
c values and the empirically determined D0 (i.e., 15) for the CUM-PIE face images.

γH/γL .1 .2 .3 .4 .5 .6 .7
1.1 99.32 99.38 99.41 99.45 99.45 99.46 99.51
1.2 99.29 99.34 99.41 99.45 99.45 99.42 99.46
1.3 99.32 99.33 99.39 99.40 99.41 99.44 99.44
1.4 99.34 99.33 99.38 99.38 99.38 99.40 99.42
1.5 99.32 99.32 99.37 99.38 99.39 99.38 99.38
1.6 99.32 99.33 99.36 99.37 99.39 99.39 99.37
1.7 99.32 99.33 99.35 99.36 99.36 99.36 99.37

Table 4.2: Recognition accuracy (%) of AH-ELDP with different γL and γH values and the adaptive
c values and the empirically determined D0 (i.e., 15) for the Yale B face images.

γH/γL .1 .2 .3 .4 .5 .6 .7
1.1 96.51 96.69 96.53 96.45 96.67 96.27 95.93
1.2 96.30 96.43 96.38 96.24 96.35 96.40 95.95
1.3 96.01 96.19 96.24 96.08 96.19 96.11 96.01
1.4 95.93 96.01 95.87 95.90 95.98 96.01 95.95
1.5 95.79 95.85 95.74 95.66 95.87 95.87 95.69
1.6 95.74 95.74 95.56 95.53 95.50 95.66 95.45
1.7 95.74 95.58 95.58 95.34 95.45 95.42 95.37

• Applying an interpolative enhancement function to stretch the contrast of the filtered

image.

• Employing Kirsch compass masks to compute edge responses and considers the rela-

tions among eight directional numbers to obtain the AH-ELDP image which is robust

against illumination variations and represents more valuable structural information

from the neighborhood.
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Table 4.3: Recognition accuracy (%) of AH-ELDP with different γL and γH values and the adaptive
c values and the empirically determined D0 (i.e., 15) for the extended Yale B face images.

γH/γL .1 .2 .3 .4 .5 .6 .7
1.1 85.02 85.23 85.53 85.57 85.77 85.70 85.44
1.2 84.79 85.07 85.21 85.32 85.54 85.58 85.47
1.3 84.63 84.87 85.08 85.19 85.44 85.34 85.33
1.4 84.60 84.78 84.90 84.94 85.05 85.13 85.14
1.5 84.51 84.63 84.68 84.76 84.86 84.85 84.83
1.6 84.39 84.55 84.52 84.60 84.65 84.69 84.72
1.7 84.36 84.39 84.49 84.46 84.59 84.51 84.51

Fig. 4.6: Comparison of the recognition accuracy of the AH-ELDP method with different fixed
values for c and the empirically determined values γL=.5, γH=1.1, and D0 =15 for CMU-PIE, Yale
B, and extended Yale B images.

Fig. 4.7: Comparison of the recognition accuracy of the AH-ELDP method with different D0 values
for the adaptive c and the empirically determined values γL=.5 and γH=1.1 for CMU-PIE, Yale B,
and extended Yale B images.
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Chapter 5

Face Recognition under Varying Illuminations Using

Logarithmic Fractal Dimension-based Complete Eight Local

Directional Patterns

5.1 Introduction

The LDP-based approaches such as LDP, EnLDP, LDN, and the proposed ELDP

method operate in the gradient domain to produce illumination-invariant representations.

They use directional information to produce edge responses which are insensitive to light-

ing variations [45]. The proposed AH-ELDP method combines three steps to produce

illumination-invariant images. It first applies an adaptive homomorphic filter on the origi-

nal face image in the frequency domain to attenuate the low frequency signal (i.e., illumi-

nance) and strengthen the high frequency signal (i.e., texture information) of the image.

An adaptive c is used to adjust the homomorphic filter for each face image based on the

slope of changes in the low frequency components of the image and reduce the influence of

its illumination. Next, AH-ELDP applies an interpolative enhancement function to stretch

the contrast of the filtered image. Finally, similar to the ELDP method, it uses Kirsch com-

pass masks to compute edge responses and considers the relations among eight directional

numbers to obtain the AH-ELDP image.

On the other hand, the fractal analysis (FA) as a type of texture analysis has been

recently used in medical imaging [73–75] and signal processing [76]. The proposed LFD

method performs a log function on a face image to expand dark pixels and compress bright

pixels for partial illumination reduction. It then transfers the face image to the FD domain

to produce the illumination-invariant representation by using the DBC algorithm.

In this chapter, we propose a new method which combines adaptive homomorphic
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filtering, simplified logarithmic fractal dimension, and complete eight local directional pat-

terns to produce illumination-invariant representations. The proposed method effectively

encodes face images with various levels of illuminations. To this end, we first filter images

using the adaptive homomorphic filter to partially reduce the illumination. We then use

the simplified logarithmic fractal dimension transformation as an effective edge enhancer

technique to enhance facial features and remove illumination to some point. We finally

produce eight edge directional images using Kirsch compass masks and propose a complete

ELDP (CELDP) which considers both directions and magnitudes of the edge responses to

obtain illumination-invariant representations.

The contributions of the proposed method are:

1. Using the adaptive homomorphic filter to attenuate the low-frequency (i.e., illumi-

nance) component of each face image.

2. Transforming filtered face images to the LFD domain to enhance facial features such

as eyes, eyebrows, nose, and mouth while keeping noise at a low level.

3. Employing a gradient-based descriptor which considers the relations among directions

and magnitudes of all eight directional edge responses to achieve robustness against

illumination variations and noise and represent more valuable structural information

from the neighborhood.

5.2 Methodology

The proposed method consists of three steps. The first step is to use the adaptive homo-

morphic filter to partially reduce the illumination. The second step is to apply the simplified

LFD method to enhance facial features. The last step employs a complete ELDP (CELDP),

which uses both direction and magnitude of edge responses to produce the illumination-

invariant representation. Fig. 5.1 illustrates the framework of the proposed method to

produce final matching scores for an input face image.
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Fig. 5.1: The framework of the proposed method.

5.2.1 Adaptive homomorphic filter

In the first step, we apply the adaptive homomorphic filter on the face image.

The adaptive homomorphic filter explained in the sub-section 4.2.1 is used to partially

reduce the illumination. A face image I uses the Lambertian-reflectance model (i.e.,

I(x, y) = R(x, y)L(x, y), where I(x, y), R(x, y), and L(x, y) are respectively the pixel in-

tensity, reflectance, and illuminance at position (x, y)) to employ the homomorphic filter

H(u, v) as a Gaussian high-pass filter which strengthens the high-frequency signal and at-

tenuates the low-frequency signal [65,80].

The process of applying the filter is represented in Fig. 5.2. It indicates that the

logarithmic function is used to separate the R and L functions so that the operation can be

performed in the frequency domain. The Fourier transform result is then multiplied with

the adaptive homomorphic filter to reduce the illuminance. The filtered image is obtained

by the exponential function of the inverse Fourier transform.

The homomorphic filter H(u, v) is represented as follows:

H(u, v) = (γH − γL)[1− exp−cD2(u,v)/D2
0 ] + γL (i.e., Eq. 4.7) (5.1)

where D(u, v) is the distance from (u, v) to the origin of the centered Fourier transform, D0

is the cutoff distance measured from the origin, γL < 1 and γH > 1 are the parameters of
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Fig. 5.2: Homomorphic filtering approach to partially reduce the illuminance of a face image (Fig.
4.1).

the filter, and c is a constant to control the sharpness of the slope of the filter function as it

transitions between γH and γL. Since c along with D0 (i.e., D0/
√
c) determines the actual

cutoff distance, it is considered as the most important parameter of the filter. As proposed

in the chapter 4, the c parameter is computed by:

c =
Mag1
Mag2

(i.e., Eq. 4.11) (5.2)

where Magi indicates the ith largest magnitude value (i.e., the strength of the frequency

components) at non-zero frequency locations within a square window centering at the origin

of the Fourier transform.

5.2.2 Logarithmic fractal dimension

In the second step, we perform the LFD method on top of the filtered image. The LFD

method presented in Chapter 2, first, applies a log function on the filtered image to expand

the values of dark pixels and compress the values of bright pixels. Then, it transfers the

obtained image to the FD domain using the DBC algorithm. In the following, we shortly

present the LFD method without referring readers to Chapter 2.

LFD computes a sequence of two-dimensional matrices Mat’s to overlay the filtered

image f of size M ×N at each pixel (x, y) as follows:

Matd−1(x, y) = (floor[
max (Wd (x , y))−min(Wd (x , y))

d
] + 1)(

dmax
d

)2 (i.e., Eq. 2.1)(5.3)

where d is the scaling factor with a minimum value of 2 and maximum value dmax that

represents how much a specific structure of pixels is self-similar to its surroundings. Wd(x, y)
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is a d × d neighborhood block whose center is at location (x, y) of an image. When d is

an odd number, the center is in the middle of the neighborhood block. When d is an even

number, the center is to the left and above the middle of the neighborhood block. max and

min operations obtain the highest and lowest intensity values in the image block covered

by the d × d neighborhood block centering at the location (x, y) of an image, respectively.

Specifically, for each scaling factor d, the center of a sliding neighborhood block of size d×d

is positioned at each pixel in an image. The maximum intensity value and the minimum

intensity value of the image portion covered by the sliding neighborhood block are used to

compute the new value at the corresponding pixel location following Eq. (5.3).

Each two-dimensional matrix Matd−1 of size M ×N is then converted to a one-

dimensional column vector of size (M × N) × 1 and the converted (dmax − 1) column

vectors are concatenated to obtain the two-dimensional matrix V , which has (M ×N) rows

and (dmax − 1) columns. Each row in the matrix V contains the values computed by Eq.

(5.3) at a particular location in an image across scales from 2 to dmax. For example, v(x,y)

denotes the obtained values at location (x, y) of an image across scales from 2 to dmax. A

log function is then applied on all the elements of V and the respective scaling factor d.

The LFD image is finally computed as follows:

LFD(x, y) =
Sv(x, y)

S
(i.e., Eq. 2.2) (5.4)

where S and Sv are the sums of squares as follows:

S =

dmax−1∑
d=1

(log(d))2 −
(
∑dmax−1

d=1 log(d))2

dmax − 1
(i.e., Eq. 2.3) (5.5)

Sv(x, y) =

dmax−1∑
d=1

log(d)(log(v(x,y)),d))−
(
∑dmax−1

d=1 log(d))(
∑dmax−1

d=1 log(v(x,y),d))

dmax − 1
(i.e., Eq. 2.4)(5.6)

The original LFD method (Chapter 2) sets dmax to be 10 and recommends to set

dmax to be between 9 and 12 for face images. However, we observe that the structure
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of pixels in a face image changes slowly across scales. Therefore, skipping each adjacent

scale does not lose much information and we propose to set d = 2, 4, 6, ..., dmax. In this

way, the number of overlay two-dimensional matrices Mat (i.e., the column dimension of

the matrix V ) decreases to a half (i.e., dmax/2) and these targeted scales are involved in

the computation in Eq. (5.5) and Eq. (5.6). Obviously, this reduces computational time

to transfer an image to its FD image by a half and therefore reduces the run time of the

method significantly.

5.2.3 Complete ELDP (CELDP)

The LFD image obtained from the adaptive homomorphic filtered image is fed into the

ELDP process. To this end, we compute eight edge directional images using Kirsch compass

masks to produce the ELDP image. Given a pixel (x, y) in the LFD image, if Ii(x, y) shows

the ith (i=0,1,...,7) directional number computed by the ith Kirsch compass mask Mi, the

respective ELDP value at the pixel (x, y) is defined as follows:

ELDP (x, y) =

i=7∑
i=0

D(Ii(x, y))(2)i (5.7)

where

D(z) =

 1 z > 0

0 otherwise

Fig. 5.3 shows the process of producing an ELDP value of a pixel using its eight direc-

tional numbers. Their directions (i.e., positive and negative) are used to obtain the ELDP

image, while their respective magnitude are discarded. We notice that a directional number

with a higher value is expected to contain more information about the texture changes in

its respective direction. Therefore, we propose to consider and integrate the influence of

the magnitudes of the directional numbers in the ELDP process. To this end, we adopt the

idea of the completed LBP (CLBP) method [82], which considers magnitudes of difference

between the neighborhood pixels and the central pixel as well as their corresponding signs,



52

to design the proposed CELDP. We define CELDP as the composition of direction compo-

nent (CELDPD) and magnitude component (CELDPM ), which respectively are defined as

follows:

CELDPD(x, y) = ELDP (x, y) (5.8)

CELDPM (x, y) =

i=7∑
i=0

M(abs(Ii(x, y)),m)(2)i (5.9)

where

M(z,m) =

 1 z > m

0 otherwise

and m is the average of absolute values of all the eight edge directional images. Basically,

CELDPD is the proposed ELDP, explained in Chapter 3, and contains the information

of the directions of edge responses. CELDPM has a similar 8-bit binary code structure.

However, it thresholds the absolute value of all eight magnitude values for each pixel based

on the average of absolute values of all the eight edge images (i.e., m). Fig. 5.4 shows the

process of producing an CELDPM value of a pixel using its eight magnitudes.

Fig. 5.5 illustrates the process of the proposed method to produce the final CELDPD

and CELDPM images from an input face image. Clearly, both CELDPD and CELDPM

images contain important features which are illumination-invariant. Fig. 5.6 shows sample

original images from the CMU-PIE face database and their corresponding CELDPD and

CELDPM images. It clearly shows the CELDP method reduces the effect of illumination

and produces illumination-insensitive images since all CELDPD (and CELDPM ) images

look alike as shown in Fig. 5.6(b) (and Fig. 5.6(c)).
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Fig. 5.3: ELDP code computation for eight directional numbers computed using eight Kirsch masks
for a pixel. This computation is also used for CELDPD.

Fig. 5.4: CELDPM code computation for eight magnitudes of directional numbers using the average
of absolute values of all the eight edge images as the threshold (i.e., 83).

5.2.4 Classification

Similar to the Weberface, the one nearest neighbor (1NN) method with l2 norm (1NN-

l2) is used as the classifier. 1NN-l2 simply assigns an input image to its nearest neighbor

image in the database. Therefore, recognition accuracy only shows the effectiveness of

preprocessing methods in producing illumination-invariant features. To utilize the CELDPD

and CELDPM images of each input image for the classification task, we first compute

similarity distances DisD and DisM between the CELDPD and CELDPM images of the

input image and their corresponding CELDPD and CELDPM preprocessed images for all

images in the database, respectively. We then independently normalize all distances DisD

and DisM to be in the range of [0, 1]. We denote the normalized distances as NDisD and

NDisM , respectively. The final similarity measure Dis is computed by fusing NDisD and

NDisM as follows:
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Fig. 5.5: Illustration of the three steps of the proposed method.

Dis = α×NDisD + (1− α)×NDisM (5.10)

where α is the weight of the direction component of the edge images at the decision level.

We set α to be 0.80, as Guo et al. [82] proved that the local difference error made by using

the sign component of the LBP code to reconstruct an image is only 1/4 of the respective

error made by the magnitude component of the LBP code. This valid argument is used in

our system to compute the final similarity measure as a proportion of similarity measures

obtained from CELDPD and CELDPM components.

5.3 Summary

This chapter proposes a method to produce illumination-invariant representation for
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face images using logarithmic fractal dimension-based complete eight local directional pat-

terns. The proposed CELDP method offers the following advantages:

• Using adaptive homomorphic filter to partially reduce the illumination by attenuating

the low-frequency component of the face image.

• Applying the simplified logarithmic fractal dimension operation as an effective edge

enhancer technique to enhance facial features such as eyes, eyebrows, nose, and mouth

while keeping noise at a low level with a significantly reduced computational cost.

• Considering the relations among directions and magnitudes of all eight directional edge

responses to represent more valuable structural information from the neighborhood

and achieve robustness against illumination variations and noise.
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Fig. 5.6: Illustration of sample images of the CMU-PIE database and their CELDP images. (a) 21
samples for a subject (b) Corresponding CELDPD images (c) Corresponding CELDPM images.
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Chapter 6

Experimental results

6.1 Experimental settings

As explained in Chapter 1, we evaluate the proposed methods by conducting exper-

iments on four publicly available image databases with large illumination variations (i.e.,

Yale B, extended Yale B, CMU-PIE, and AR databases [32, 69, 70]) as well as the Honda

UCSD video database [71]. We also illustrate the verification and discrimination ability of

our methods using the ROC curves.

We compare the proposed methods with six recent state-of-the-art methods such as

Gradientface, Weberface, LBP, LDP, EnLDP, and LDN. Fig. 6.1 demonstrates six original

images from the Yale B face database, their corresponding preprocessed images gener-

ated by six compared state-of-the-art methods and the LFD, ELDP, AH-ELDP, CELDPD

and CELDPM images generated by the proposed methods. All of these methods are im-

plemented in MATLAB and their parameters are set as recommended by the respective

researchers. For the LBP method, we apply the uniform LBP operator with 8 pixels in a

circle of radius of 2. We also use the Gaussian filter with the Standard Deviation (SD) of 0.3

to smooth the image for Gradientface and ELDP methods and use the Gaussian filter with

the SD of 1 for Weberface method, since the above methods achieve decent accuracy for all

four databases using these values. Also, the parameters of the proposed system are set to

be: γH=1.1, γL=0.5, D0=15, and dmax=10. However, when images are of size 64× 64, we

set D0 to be proportion to this size (i.e., D0=64×0.15=9.6).

6.2 Results on the Yale B face database

As mentioned earlier in Chapter 1, we conduct six experiments for each compared

method. In each experiment, we use one of the six face images per subject in S0 for
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Fig. 6.1: Comparison of preprocessed images obtained by different methods. (a) Original face images
in S0 of the Yale B face database. Illumination-invariant images preprocessed by the methods of
(b) Gradientface, (c) Weberface, (d) LBP, (e) LDP, (f) EnLDP, (g) LDN, (h) LFD, (i) ELDP, (j)
AH-ELDP, (k) CELDPD, and (l) CELDPM .

training, and the remaining five images per subject in S0 (50 images in total) and all the

images in each of the other five subsets for testing. We then compute the average face

recognition accuracy of each subset across all the six experiments. Table 6.1 summarizes

the average recognition accuracy and its SD of each subset for the nine state-of-the-art

compared methods and the proposed CELDP method. For each experiment, S0’ contains

the images in S0 excluding the training image. We also include the average accuracy together

with its SD for all subsets including S0’, S1, S2, S3, S4, and S5 (i.e., 630 testing images

in total) in the last column of Table 6.1. The proposed CELDP method outperforms the

compared methods with the best face recognition accuracy of 99.47% and the smallest SD

of 0.004. It improves the face recognition accuracy of Gradientface, Weberface, LBP, LDP,

EnLDP, LDN, LFD, ELDP, and AH-ELDP by 9.18%, 7.52%, 10.92%, 15.69%, 15.73%,

20.72%, 4.56%, 8.85%, and 2.90%, respectively.
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6.3 Results on the extended Yale B face database

Using the same experimental settings for the Yale B database, we conduct six experi-

ments for each compared method. Table 6.2 summarizes the average recognition accuracy

and its SD of each subset for the nine state-of-the-art compared methods and the proposed

CELDP method. For each experiment, S0’ contains the images in S0 excluding the training

image. We also include the average accuracy and its SD for S0’, S1, S2, S3, S4, and S5 (i.e.,

2376 testing images in total) in the last column of Table 6.2. The proposed CELDP method

outperforms the other nine compared methods with the best face recognition accuracy of

94.55% and the smallest SD of 0.02, while the second highest accuracy of 85.77% is obtained

by the proposed AH-ELDP method. It improves the face recognition accuracy of Gradient-

face, Weberface, LBP, LDP, EnLDP, LDN, LFD, ELDP, and AH-ELDP by 20.05%, 16.27%,

28.74%, 32.83%, 29.01%, 38.09%, 14.04%, 18.41%, and 10.24%, respectively.

6.4 Results on the CMU-PIE face database

Fig. 5.6 shows all 21 images for a subject from this database and their corresponding

CELDPD and CELDPM images. We conduct 21 experiments to evaluate the performance

of our proposed methods. In the ith experiment, we use the image i from each subject as the

reference image and all the other 20 images as the test images. Fig. 6.2 shows the recognition

accuracy of different methods under each reference set. Obviously, the proposed method

outperforms the other methods for all reference images except for the AH-ELDP method

which achieves comparable accuracy as the proposed CELDP method. Table 6.3 summarizes

the average recognition accuracy and its SD of the ten compared methods for all reference

images. The proposed CELDP method achieves the highest average recognition accuracy of

99.53% and the smallest SD of 0.01, while the second highest accuracy of 99.45% is obtained

by the AH-ELDP method. Compared with the other nine methods, the proposed CELDP

method improves the face recognition accuracy of Gradientface, Weberface, LBP, LDP,

EnLDP, LDN, LFD, ELDP, and AH-ELDP by 2.46%, 5.10%, 4.36%, 19.31%, 6.10%, 10.05%,

1.71%, .60% and .08%, respectively. It clearly shows the effectiveness of the proposed

method.
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6.5 Results on the AR face database

We conduct eight experiments to evaluate the performance of the proposed methods.

In the ith experiment, we use the ith image from each subject as the reference image and

all the other seven images as the test images. Table 6.4 summarizes the average recognition

accuracy of the ten compared methods for all reference images.

The proposed CELDP method achieves the highest average recognition accuracy of

86.63%, while the second highest accuracy of 85.95% is obtained by the proposed AH-ELDP

method. Compared with the other nine methods, the proposed CELDP method improves

the face recognition accuracy of Gradientface, Weberface, LBP, LDP, EnLDP, LDN, LFD,

ELDP, and AH-ELDP by 19.49%, 27.47%, 14.20%, 12.51%, 1.64%, 4.44%, 1.59%, 1.26%

and .08%, respectively.

6.6 Results on the Honda UCSD video database

As explained in Chapter 1, in a typical face recognition system, the face detection

step is employed first to detect faces from images/video frames. Facial landmarks such

as locations of eyes, eyebrows, nose, and mouth are then localized which can be used for

the normalization process. In this research, the Viola-Jones face detector [4] is used to

detect faces in each frame. It is a robust real-time face detector to distinguish faces from

non-faces. Also, in our experiment, we use the most recently proposed facial landmark

localization technique, Chehra v .1 [11], to localize the landmarks in each face. Chehra is a

fully-automatic real-time face and eyes landmark detection and tracking software capable of

handling faces under uncontrolled natural setting. It determines 49 landmarks for each face.

Fig. 6.3 shows a video frame from the Honda database together with the face detection

and landmark localization results, where the the detected face is positioned in the green

bounding box and its 49 landmarks are marked by “*”.

Illumination-invariant methods require the face images to be in the frontal view and the

same size. Therefore, a series of preprocessing steps should be applied. Since the bounding

box for a detected face contains lots of non-facial features, especially the background, each

face needs to be cropped. If all faces are in the frontal view similar to the frontal view face
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Table 6.4: Average recognition accuracy (%) and corresponding SD in parentheses for AR face
images.

Methods Accuracy

Gradientface 72.50(.03)

Weberface 67.96(.03)

LBP 75.86(.03)

LDP 77.00(.01)

EnLDP 85.23(.01)

LDN 82.95(.02)

LFD 85.27(.02)

ELDP 85.55(.01)

AH-ELDP 85.95(.01)

CELDP 86.63(.01)

shown in Fig. 6.3, we only need to crop and resize all faces. We can use the landmarks,

i.e., the location of eyebrows, left and right corners of the left and right eyes (i.e., external

corners), and the lower part of mouth, to automatically crop the face. Fig. 6.4 shows the

cropped version of the detected face in Fig. 6.3.

However, in the Honda UCSD video database, most of faces are in non-frontal views.

Fig. 6.5 (a) shows a typical detected face in the non-frontal view and its landmarks. More

operations should be applied to normalize the pose and estimate the frontal view so the

processed face can be used in our system as well as other compared systems. Here, we use

landmarks for different tasks. To this end, we first compute the roll value for each detected

face. Roll is defined as the angle between the horizontal line and the line connecting the

external corners of the eyes. It is shown in Fig. 6.5 (b). We then determine whether the

face is in the frontal/right/left view. As shown in Fig. 6.5(c), y1 is computed as the distance

from the nose tip to the external corner of the right eye, and y2 is computed as the distance

from the nose tip to the external corner of the left eye. If y1 is equal to y2, the face is in

the frontal view. If y1 is greater than y2, the face is in the right view. Otherwise, it is in

the left view.

Next, we rotate the face image using the computed roll value. We also need to rotate

the landmarks to their new locations. Fig. 6.5(d) shows the result after rotating the face



64

Fig. 6.3: A detected face from the Honda database. Each of 49 landmarks extracted by Chehra v .1
is represented by “*”.

and its respective landmarks. In the proposed system, we assume the face is in the left view

before we estimate its frontal view. Therefore, if the face is in the right view (i.e., y1 > y2),

we flip the face to obtain its respective left view. Fig. 6.5(f) shows the flipped face for

Fig. 6.5(e), which is now in the left view. Then, we appropriately stretch each row from

the left side of the face to estimate the frontal view for the half of the face. The stretching

operation needs to keep important regions of a face in an appropriate scale with respect

to each other. Therefore, we divide the half face to four vertical bands. The boundary of

each band is determined using specific landmarks or midpoint between a pair of specific

landmarks. For every row in the cropped image, its respective four segments in the four

bands are stretched to have an equal size to produce the estimated frontal view of the half

face. The bands and the employed landmarks to estimate the frontal view of the half face

together with the estimated frontal view are shown in Fig. 6.5(g). Finally, the right view

of the face is reconstructed by flipping the estimated frontal left view. The final estimated

frontal view of the face is shown in Fig. 6.5(h).
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Fig. 6.4: Cropped face for the detected face in Fig. 6.3 using the facial landmarks.

After estimating the frontal view for each face, all face images are resized to the size

of 64×64. In this experiment, we use every other ten frame to evaluate the performance

of compared methods and exclude other frames due to the large number of frames. As a

result, there are 42 face images for each subject in this database on average. We can then

conduct the experiment on this reduced database. For the Honda UCSD video database,

we use five estimated frontal views of each subject from the training subset for training and

use estimated frontal views from the testing subset for testing. Since subjects have facial

expressions, we apply Gabor filters as a post-processing step to deal with expression varia-

tions. We also use sparse representation-based classifier (SRC) [30,31] as the classifier since

more than one image are used for training. SRC takes advantage of sparse representation

to achieve better performance when each subject has multiple images in training.

Table 6.5 summarizes the recognition accuracy of the ten compared methods. The

proposed CELDP method achieves the highest average recognition accuracy of 76.89%,

while the second highest accuracy of 75.15% is obtained by the proposed ELDP method.

Compared with the other nine methods, the proposed CELDP method improves the face

recognition accuracy of Gradientface, Weberface, LBP, LDP, EnLDP, LDN, LFD, ELDP,

and AH-ELDP by 7.21%, 3.22%, 3.19%, 27.41%, 5.72%, 9.33%, 2.34%, 2.31% and 7.03%,

respectively.

It should be mentioned that the compared methods behave differently on the Yale

B, extended Yale B, CMU-PIE, AR, and Honda UCSD databases. For example, when

not considering the four proposed methods, the Gradientface method achieves the second

best accuracy of 91.11% and 78.76% on the Yale B and Extended Yale B databases, the
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Fig. 6.5: Pose normalization process. (a) A detected face and its respective landmarks; (b) Angle
between the external corners of eyes and the horizontal axis determines the roll value (here, r=9.52◦);
(c) distances between the external corners of eyes and the nose tip determine whether the face is in
the left view or in the right view(e.g., y1 > y2 means it is in the right view); (d) the rotated face
using the roll value and its respective landmarks which are also rotated to the new locations; (e)
cropped face using the landmarks; (f) the cropped face is flipped; (g) the estimated frontal view of
the left side of the face; and (h) the right side of the face is reconstructed using the left side of the
face.

best accuracy of 97.14% on the CMU-PIE database, the fifth best accuracy of 72.50% on

the AR database, and the fourth best accuracy of 71.72% on the Honda UCSD database,

respectively. Our proposed methods also behave differently on different databases. For

instance, LFD achieves the third best accuracy on Yale B, extended Yale B, and Honda

UCSD databases, while it achieves the fourth best accuracy on CMU-PIE and AR databases.

Clearly, the proposed CELDP consistently outperforms all the other methods by achieving

the highest recognition accuracy on all these databases with different illuminations.

6.7 ROC curves and computational time

We plot ROC curves for the four databases. For Yale B and extended Yale B databases,

we use each of the six images in S0 as the reference image and all the rest as probe images

and compute the average of respective similarity measures as true and false scores. In a
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Table 6.5: Recognition accuracy (%) for Honda UCSD video face images.

Methods Accuracy

Gradientface 71.72

Weberface 74.49

LBP 74.51

LDP 60.35

EnLDP 72.73

LDN 70.33

LFD 75.13

ELDP 75.15

AH-ELDP 71.84

CELDP 76.89

similar setting, we use each of the 21 images for each subject in the CMU-PIE database as

the reference image and all the rest as probe images and compute the average of respective

similarity measures as true and false scores. Similarly, we use each of the eight images for

each subject in the AR database as the reference image and all the rest as probe images and

compute the average of respective similarity measures as true and false scores. Appendix

explains how to compute the TPR and FPR to plot a ROC curve for a given database with

M subjects and K images per subject when one reference image from each subject in the

training dataset is used for training and the rest images are used for testing. The reference

image in the Appendix changes from 1 to R, where R is 6 for Yale B and extended Yale B

databases, 21 for the CMU-PIE database, and 8 for the AR database.

For the Honda UCSD video database, since we use multiple images from each subject

for training and conduct one experiment using the remaining images as testing images, we

compute the average of similarity measures between each probe image from subject i and

training images for the subject i as true scores. We then compute the average of similarity

measures between each probe image from subject i and training images for all the subjects

excluding the subject i as false scores.

Figs. 6.6, 6.7, 6.8, 6.9, and 6.10 compare the respective ROC curves of ten compared

methods for Yale B, extended Yale B, CMU-PIE, AR, and Honda UCSD databases, respec-

tively. Clearly, the proposed CELDP method achieves the best verification and discrim-
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ination ability compared with the other state-of-the-art methods since it has the largest

area under the ROC curve. The proposed AH-ELDP method achieves the second best

verification and discrimination ability on four face image databases.

The proposed methods, also, have a comparable computational time with the compared

state-of-the-art methods. Fig. 6.11 shows average computational runtime for a face image

of the size of 100×100. The LFD method has the highest computational time, which is also

employed in our system. However, we efficiently simplify the method by skipping adjacent

scales while using the same dmax of 10.

6.8 Summary

This chapter includes our extensive experiments which evaluate the four proposed meth-

ods and compare them with six state-of-the-art methods proposed by other researchers. Our

extensive experiments show the final proposed CELDP method outperforms other state-of-

the-art methods and achieves the best overall face recognition accuracy of 99.39%, 94.35%,

99.53%, and 86.63% on Yale B, Extended Yale B, CMU-PIE, and AR face databases, re-

spectively, when using a simple 1NN-l2 classifier and one image per subject for training.

It also includes experimental results using the Honda UCSD video database. Our CELDP

method outperforms the other methods and achieves the best face recognition accuracy of

76.89% when using the SRC classifier and five images per subject for training.
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Fig. 6.6: Comparison of ROC curves of the ten compared methods for the Yale B database.

Fig. 6.7: Comparison of ROC curves of the ten compared methods for the extended Yale B database.
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Fig. 6.8: Comparison of ROC curves of the ten compared methods for the CMU-PIE database.

Fig. 6.9: Comparison of ROC curves of the ten compared methods for the AR database.
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Fig. 6.10: Comparison of ROC curves of the ten compared methods for the Honda UCSD video
database.

Fig. 6.11: Average computational runtime for a face image (100×100).
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Chapter 7

Conclusions

The necessity of security, privacy, and access control has increased the need for face

recognition systems. Illumination variations are one of the most crucial factors to affect

performance of face recognition systems. As a result, many researchers have studied face

recognition under varying illuminations and many illumination-invariant methods have been

proposed to produce illumination-invariant representations. This dissertation studies prac-

tical face recognition systems with a focus on faces under illumination variations and pro-

poses four evolving methods to produce illumination-insensitive representations. The four

proposed methods are logarithmic fractal dimensions (LFD), eight local directional pat-

terns (ELDP), adaptive homomorphic local directional patterns (AH-ELDP), and complete

ELDP (CELDP). Major contributions for the proposed methods are summarized as follows:

• The logarithmic fractal dimensions (LFD) method transfers face images to the fractal

dimension (FD) domain and produces illumination-invariant representations. The

LFD image enhances facial features such as eyes, eyebrows, nose, and mouth while

keeping noise at a low level.

• The eight local directional patterns (ELDP) method is a modified version of LDP

approaches which extracts more edge information by utilizing all eight directional

edge images, while LDP approaches such as LDP, EnLDP, and LDN only use up to

three directional numbers from the eight edge images.

• The adaptive homomorphic local directional pattern (AH-ELDP) method, first atten-

uates the low-frequency (i.e., illuminance) component of each original face image with

an adaptive filter. Then, it effectively enhances the contrast of the filtered image using
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an interpolative enhancement function. Finally, the enhanced filtered image incorpo-

rates the ELDP code scheme to produce an illumination-invariant representation.

• The complete ELDP (CELDP) method employs the adaptive homomorphic filter to

partially reduce the illumination of a face image. Then, it applies a simplified LFD

operation as an effective edge enhancer technique to enhance facial features. Finally, it

considers the relation among magnitudes of all eight directional edge responses as well

as the relation among their directions to extract more valuable structural information

from the neighborhood and achieve robustness against illumination variations and

noise.

All the four proposed methods are individual systems that can be used to produce

illumination-invariant representations. However, AH-ELDP employs ELDP as the final

stage to obtain the AH-ELDP image. The CELDP method also combines the simplified LFD

method with the adaptive homomorphic filter and ELDP to obtain illumination-invariant

representation.

Our extensive experiments on four publicly available face databases as well as a stan-

dard video database show that the CELDP method outperforms six state-of-the-art meth-

ods. Our evaluations using ROC curves also verifies the CELDP and AH-ELDP methods

have the best and the second best verification and discrimination ability compared to the

other methods considered.
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Compute TPR and FPR from a face database for ROC curves

To compute the true positive rate (TPR) and the false positive rate (FPR) and then

plot a ROC curve, we need the respective scores and labels. Thus, we first explain how

scores and labels in our experiments are computed. Similar to our experiments on Yale

B, extended Yale B, CMU-PIE, and AR databases, we assume there is only one reference

(training) image among R images for each subject in the training database and we conduct

R experiments on each database (R is 6 for the Yale B and the extended Yale B databases,

21 for the CMU-PIE database, and 8 for the AR database).

Given a face database with M subjects and K images per subject, we use one image

as the reference image Ir (r = 1,...,R; R ≤ K). We then define the training dataset as

T r = [trm]1×M , where trm is the feature vector of the reference image Ir for subject m (m =

1,...,M). The corresponding probe (testing) dataset can be defined as P r = [prm,k](K−1)×M ,

where prm,k is the feature vector of the kth probe image, k 6= r (i.e., k=1,...,r−1, r+1,...,K)

for subject m (m = 1,...,M).

True positive means we correctly assign a face from the individual x to the same

person x. Therefore, we define Mat truer = [dis(trm, p
r
m,k)](K−1)×M to store the similarity

measure between the feature vector of the rth reference image for subject m in the training

dataset T r(m = 1, ...,M) and the feature vector of each image for the same subject m in

the corresponding probe dataset P r (K − 1 images per subject), where dis(trm, p
r
m,k) is the

l2-norm-based distance between trm and prm,k.

False positive means we incorrectly assign a face from the individual x to the wrong

person y (x 6= y). Therefore, we define Mat falser = [dis(trm̂, p
r
m,k)](K−1)×M to store the

similarity measure between the feature vectors of all reference images in the training dataset

excluding the rth reference image for subject m and the feature vectors of the images for

the same subject m in the corresponding probe dataset (K − 1 images per subject). Here,

we use m̂ to represent all subjects excluding subject m, where dis(trm̂, p
r
m,k) is the average of

the l2-norm-based distances between prm,k and trm̂ (i.e., dis(trm̂, p
r
m,k) =

∑M
n=1;n 6=m dis(trn,p

r
m,k)

M−1 ).

Fig. 1 illustrates a graphical view of the notations and the computed distances. Green
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Fig. 1: Illustration of the process to compute scores and labels for ROC curves

curved connecting lines indicate the distance between probe images from one subject and

their respective reference image. Red straight connecting lines indicate distances between

probe images from one subject and the reference images from other subjects.

Now, we convert Mat truer and Mat falser to their respective 1D vectors with length

(K − 1)×M . We call these 1D vectors true scoresr and false scoresr , respectively. These

score vectors can be concatenated to form the new vector Sr of the size of 2× (K− 1)×M ,

which contains scores needed for plotting the ROC curve for the reference image Ir. The

respective label vector of the same size of 2 × (K − 1) × M can be simply obtained by

assigning the label 1’s to the scores corresponding to true scoresr elements and assigning

the label 0’s to the scores corresponding to false scoresr elements.

Next, we compute the TPR and the FPR for the obtained scores and their respective

labels for the reference image Ir. To this end, we first sort the scores in a descending

order and weigh them into two classes of weights based on their labels. In the first class

(Weights1), if a score belongs to the false scores, we set its weight value as 1’s and otherwise
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Fig. 2: Illustration of the process to compute TPR and FPR from a set of ten random scores and
their respective labels.

as 0’s. In the second class (Weights2), if a score belongs to the true scores, we set its weight

value as 0’s and otherwise as 1’s. Second, we compute cumulative weights for each class of

weights. As a result, each cumulative weights class has the lowest value of 0 or 1 and the

highest value of (K−1)×M (i.e., the total number of true or false labels). We then consider

2 × (K − 1) ×M indices (i.e., the number of indices equals the number of values in both

classes) to compute true positive (TP), false negative (FN), false positive (FP), and true

negative (TN). In other words, the indices are integers ranging from 1 to 2× (K − 1)×M .

For each index, the respective cumulative weight in class 1 (Weights1) indicates TP, and

FN is also simply obtained by subtracting its corresponding TP value from the highest

cumulative weight in class 1 (i,e., (K−1)×M). Similarly, the respective cumulative weight
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Fig. 3: ROC curve for the TPR and FPR values in Fig 2.

in class 2 (Weights2) indicates FP, and TN is obtained by subtracting its corresponding FP

value from the highest cumulative weight in class 2 (i,e., (K − 1)×M).

Finally, for each index, TPR and FPR are simply computed as follows: TPR = TP
TP+FN

and FPR = FP
FP+TN. Fig. 2 illustrates the process to compute TPR and FPR for ten

randomly generated scores with their labels. The top table contains the original scores and

their labels together with their sorted scores, weights in two classes, and cumulative weights

in two classes. The bottom left table presents computed TP, FN, and TPR. The bottom

right table presents FP, TN, and FPR. The respective ROC curve for these TPR and FPR

is shown in Fig. 3.

Following this procedure, we compute TPR and FPR values for all the reference images

(i.e., r= 1,..., R). Finally, TPR and FPR for the database can be easily computed as the

average of all TPR and FPR values across R experiments.
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