
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2015

Annotation Tools for Multivariate Gene Set Testing of Non-Model Annotation Tools for Multivariate Gene Set Testing of Non-Model

Organisms Organisms

Russell K. Banks
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Genetics and Genomics Commons, and the Statistics and Probability Commons

Recommended Citation Recommended Citation
Banks, Russell K., "Annotation Tools for Multivariate Gene Set Testing of Non-Model Organisms" (2015).
All Graduate Theses and Dissertations. 4515.
https://digitalcommons.usu.edu/etd/4515

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/27?utm_source=digitalcommons.usu.edu%2Fetd%2F4515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.usu.edu%2Fetd%2F4515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4515?utm_source=digitalcommons.usu.edu%2Fetd%2F4515&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ANNOTATION TOOLS FOR MULTIVARIATE GENE SET TESTING OF

NON-MODEL ORGANISMS

by

Russell K Banks

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Statistics

Approved:

Dr. John R. Stevens Dr. Daniel C. Coster
Major Professor Committee Member

Dr. Guifang Fu Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2015

ii

Copyright c© Russell K Banks 2015

All Rights Reserved

iii

Abstract

Annotation Tools for Multivariate Gene Set Testing of Non-Model Organisms

by

Russell K Banks, Master of Science

Utah State University, 2015

Major Professor: Dr. John R. Stevens
Department: Mathematics and Statistics

Many researchers across a wide range of disciplines have turned to gene expression anal-

ysis to aid in predicting and understanding biological outcomes and mechanisms. Because

genes are known to work in a dependent manner, it’s common for researchers to first group

genes in biologically meaningful sets and then test each gene set for differential expression.

Comparisons are made across different treatment/condition groups.

The meta-analytic method for testing differential activity of gene sets, termed multi-

variate gene set testing (mvGST), will be used to provide context for two persistent and

problematic issues in gene set testing. These are: 1) gathering organism specific annotation

for non-model organisms and 2) handling gene annotation ambiguities.

The primary purpose of this thesis is to explore different gene annotation gathering

methods in the building of gene set lists and to address the problem of gene annotation am-

biguity. Using an example study, three different annotation gathering methods are proposed

to construct GO gene set lists. These lists are directly compared, as are the subsequent

results from mvGST analysis. In a separate study, an optimization algorithm is proposed

as a solution for handling gene annotation ambiguities.

(93 pages)

iv

Public Abstract

Annotation Tools for Multivariate Gene Set Testing of Non-Model Organisms

by

Russell K Banks, Master of Science

Utah State University, 2015

Major Professor: Dr. John R. Stevens
Department: Mathematics and Statistics

Microarray chip technology enables researchers to obtain measures of gene activity for

essentially all genes in an organism. After grouping genes into biologically meaningful sets,

researchers employ certain statistical tests to identify which gene sets (biological processes)

show different levels of activity across different treatment groups. The idea is to identify

which biological processes are significantly affected by a certain treatment/condition in a

given organism.

Non-model organisms (such as sheep) are not widely studied so gene set membership

information is not always readily accessible. This thesis work utilizes two microarray studies

involving sheep to provide researchers with working examples of three different methods for

gathering gene set membership information for genes in non-model organisms.

Often after gathering gene set membership information for non-model organisms, there

exits ambiguity as to which set each gene belongs. A procedure for working through these

ambiguities is presented. All R code used to produce the presented results is included as

an appendix.

v

To my wife Lauren, completing this thesis is as much your accomplishment as it is mine.

vi

Acknowledgments

Thank you Dr. John Stevens for your help on this project during the past year. You’ve

taught me so much as an adviser and instructor and have made my time at Utah State an

enjoyable and invaluable experience.

Russell K Banks

vii

Contents

Page

Abstract . iii

Public Abstract . iv

Acknowledgments . vi

List of Tables . ix

List of Figures . x

1 Background . 1
1.1 Introduction . 1
1.2 Gene Expression and Gene Expression Technology 1

1.2.1 Microarray Technology . 2
1.3 Preprocessing Overview . 3

1.3.1 Expression Set Matrix . 3
1.4 Statistical Tests for Differential Expression of Genes 4

1.4.1 Limma/eBayes . 5
1.4.2 Matrix of P-Values . 6

1.5 Statistical Tests for Differential Expression of Gene Sets 7
1.5.1 The GO Consortium . 8
1.5.2 Multivariate Gene-Set Testing . 9

1.6 Annotation Sources . 10
1.6.1 Gene Expression Omnibus . 11
1.6.2 Platform Manufacturer’s Annotation 12
1.6.3 Ensembl’s BioMart . 12
1.6.4 Annotation Packages in R . 14

1.7 Stable Marriage Problem Algorithm . 15

2 Motivation . 17
2.1 Example Study 1 . 17
2.2 Example Study 2 . 18

3 Methods . 21
3.1 Example Study 1 . 21

3.1.1 mvGST Annotation . 22
3.1.2 Biomart Annotation . 22
3.1.3 Affymetrix Annotation . 24

3.2 Example Study 2 . 24
3.2.1 ProbeID-to-GOgnc Annotation . 25
3.2.2 Build GO Gene Sets . 29

viii

3.2.3 Sequence Alignments as Measures of Annotation Strength 30
3.2.4 SMP . 31

3.3 Custom R Annotation Packages . 32

4 Discussion . 34
4.1 Study 1 Discussion . 34

4.1.1 Compare GO Grouped Lists . 35
4.1.2 Compare mvGST Analysis Results 37

4.2 Study 2 Discussion . 37
4.2.1 GO Gene Set List: Ovis aries Microarray 41
4.2.2 mvGST Results . 42

4.3 Potential Extensions . 42

References . 44

Appendix . 47

ix

List of Tables

Table Page

1.1 Partial Expression Set Matrix . 4

1.2 Limma/eBayes Results with Bejamini-Hochberg Adjusted P-values 6

1.3 P-Value Matrix Header . 7

1.4 Available Biomart Release Versions and Dates 13

1.5 Partial Results of a Biomart Query . 14

3.1 GOgnc Candidates: Agilent Source . 25

3.2 GOgnc Candidates: Wood Research Lab Source 26

3.3 Translation Performance Metrics for GB ACC 27

3.4 Translation Performance Metrics for Candidate GOgncs 29

4.1 Agilent-019921 GO Gene Set List Summary 42

4.2 mvGST Analysis Results for Study 2 . 42

x

List of Figures

Figure Page

4.1 List performance is based on two metrics: 1) the total unique GO Identifiers
included in the list (vertical-axis) and 2) how many unique probeIDs are
included in at least one GO gene set (horizontal-axis). 36

4.2 Proportion concordant signifies the proportion of either GO IDs, Gene IDs,
or Gene Sets that are found in all lists within the different list comparisons
(found at vertical axis). 38

4.3 Illustrates the proportion of GO Gene Sets that are either significantly more
active, less active, or not differentially active in each list after mvGST analysis
at Day 12. 39

4.4 Illustrates the proportion of GO Gene Sets that are either significantly more
active, less active, or not differentially active in each list after mvGST analysis
at Day 14. 40

1

Chapter 1

Background

1.1 Introduction

The abundance of experimental gene expression measurements and annotation infor-

mation has provided both opportunities and challenges for the bio-statistical community.

Many sophisticated statistical methods for the analysis of high-throughput gene expression

data have been developed and refined. Unsatisfyingly, different methods still tend to iden-

tify different gene sets as significantly differentially expressed with no consensus as to which

method is preferable. Some of the more popular methods include GSEA, GSA, Global

Ancova, SAFE, and Global testing [1]. For the purposes of this thesis, the meta-analytic

method for testing differential activity of gene sets, termed multivariate gene set testing

(mvGST), will be used to provide context for two persistent and problematic issues in gene

set testing. These are: 1) gathering organism-specific annotation for non-model organisms

and 2) handling gene annotation ambiguities.

The primary purpose of this thesis is to explore different gene annotation gathering

methods in the building of gene set lists and to address the problem of gene annotation am-

biguity. Using an example study, three different annotation gathering methods are proposed

to construct GO gene set lists. These lists are directly compared, as are the subsequent

results from mvGST analysis. In a separate study, an algorithmic approach borrowed from

the field of graph theory is proposed as a solution for handling gene annotation ambiguities.

Chapter 1 of this thesis introduces previously-presented ideas and issues that are used

in subsequent chapters.

1.2 Gene Expression and Gene Expression Technology

Current methods for measuring gene expression are based on the concept that DNA

2

codes for RNA which in turn has a molecular function within the organism or codes for

polypeptides (the building blocks for proteins) [2]. In either case, the functional workings

of an organism can be profiled by measures of RNA abundance and in theory is also a

measure of RNA activity or gene expression activity. While it’s true that every cell in an

organism contains the entire genetic material specific to that organism, not every cell’s DNA

is expressed identically. For example, the same segment of DNA that codes for identical

gene products might be active in one cell type while simultaneously being completely inert

in another.

Different high-throughput technologies allow essentially all genes in the genome to be

measured experimentally. These large scale experimental gene expression profiles can be

obtained for thousands of genes simultaneously [3]. Generally, different gene expression

measurement technologies can be classified as array-based (microarrays) or sequence-based

(next-generation sequencing). There are advantages and disadvantages to both types, but

such discrepancies are not immediately relevant to the purposes of this thesis. The example

studies chosen for this thesis are array-based gene expression studies [4] [5].

1.2.1 Microarray Technology

The following is a physical description of a microarray. These concepts are important

in considering methods to measure annotation strength, see Chapter 3.2.3.

A DNA microarray is an orderly arrangement of thousands of identified se-
quenced genes printed on an impermeable solid support, usually glass, silicon
chips or nylon membrane. Each attached and identified sequenced gene corre-
sponds to a fragment of genomic DNA, cDNAs, PCR products or chemically
synthesized oligonucleotides of up to 70mers and represents a single gene. Usu-
ally a single DNA microarray slide/chip may contain thousands of spots with
each spot representing a single gene and collectively the entire genome of an
organism [6].

These spots are annotated with specific labels called probe identifiers, or probeIDs.

Each probeID in theory should be annotated to one gene identifier, or geneID. When

probeIDs and geneIDs are not in a one-to-one relationship, these annotations can be called

3

ambiguous annotations. Microarray manufacturers often provide probeID-to-geneID anno-

tation. An example of manufacturer mappings is given in [5], the use of which is detailed in

Chapters 3.1.3 and 3.2.1. The probe sequences of the Agilent-019921 microarray are 60-mer

sequences.

1.3 Preprocessing Overview

A lengthy discussion of statistical preprocessing methodology need not be discussed

here. It is sufficient to understand the purpose and data structure resulting from such

methods. An excellent review of the topic can be found in Zhijin Wu’s paper [7].

Preprocessing of oligonucleotide arrays typically include image processing, background

adjustment, data normalization/transformation and sometimes summarization when mul-

tiple probes are used to target one genomic unit [7].

The original hybridization data obtained from a microarray chip is an image. Through

image processing, pixels are measured resulting in raw intensity values for each probe. Back-

ground adjustment methods remove local artifacts and “noise.” Normalization methods are

meant to transform the data in such a way as to make measurements from different arrays

comparable in statistical analyses. Summarization methods combine probe intensity levels

resulting in one gene expression level value for every probe or probe set identifier [7] [8].

While many different methods of preprocessing exist, they mostly differ in the details

of how they accomplish the largely universal steps described above [7] [8]. It has also been

shown that preprocessing methods can significantly impact subsequent statistical analyses

[9]. RMA preprocessing (Robust Multi-Array Average) was the preprocessing method of

choice in both example studies considered in this thesis [4] [5].

1.3.1 Expression Set Matrix

The results of RMA preprocessing of raw data can be summarized in an expression

set matrix. The values of an expression set matrix are considered gene expression level

data and are typically on the log2 scale. Rows are specified with probeIDs and columns

4

specify array sample identity. An expression set matrix can be used in statistical tests of

significance meant to identify differentially expressed genes.

A header of the resulting data structure after RMA preprocessing of the raw data for

example study 1 is shown in table 1.4. This data was obtained through the Gene Expression

Omnibus repository archived under accession number GSE47776 [4].

Table 1.1: Partial Expression Set Matrix

GSM1159567 GSM1159568 GSM1159569 GSM1159570

AFFX-BioB-3 at 7.486 7.565 7.575 7.658
AFFX-BioB-5 at 7.393 7.365 7.277 7.357
AFFX-BioB-M at 7.977 7.958 7.953 7.990
AFFX-BioC-3 at 9.206 9.225 9.169 9.194
AFFX-BioC-5 at 8.570 8.634 8.537 8.573

AFFX-BioDn-3 at 11.263 11.363 11.309 11.295
AFFX-BioDn-5 at 9.985 10.142 9.970 10.025

AFFX-Bt-A00196-1 s at 3.743 3.526 3.839 4.015

Note: Full dimensions are 24128 rows by 12 columns. Data are RMA processed values from Study 1 2.1. Rows contain probeIDs of
Affymetrix Bovine Microarray. Columns contain sample identifiers.

1.4 Statistical Tests for Differential Expression of Genes

There are various approaches to test for differential expression (hereafter, DE) among

genes across conditions of interest for microarray experiments. Many papers compare differ-

ent methods, but a general consensus as to the best has not been reached. The development

of new methods is an active area of research [10] [11]. Generally, “One may distinguish be-

tween parametric tests. . . and non-parametric tests. One or two group t-test comparisons,

multiple group ANOVA, and more general trend tests are all instances of linear models

that are frequently used for assessing differential gene expression” [12]. Specific tests com-

monly used in identification of DE genes in microarray analyses include SAM (Significance

Analysis of Microarrays) and Limma (Linear Models for Microarray Data) [13] [14]. Both

are readily accessible in the Bioconductor project in R [15] [16]. The Limma approach was

selected for the identification of DE genes in both example studies described in Chapters

2.1 and 2.2.

5

1.4.1 Limma/eBayes

There are a multitude of methods to test for DE among genes in microarray analysis.

One commonly used method is Linear Models for Microarray Data (Limma).

Limma is a package for differential expression analysis of data arising from mi-
croarray experiments. The package is designed to analyze complex experiments
involving comparisons between many RNA targets simultaneously... The central
idea is to fit a linear model to the expression data for each gene. Empirical Bayes
and other shrinkage methods are used to borrow information across genes mak-
ing the analyses stable even for experiments with small number of arrays [14].

Limma is flexible with respect to platform and experimental design. While use of

Limma in this thesis is restricted to microarray data, the methods can be implemented for

count data (RNA-Seq data for example) as if they were microarray data by way of a voom

transformation as described by Charity Law et al. [17]. Multiple contrasts of interest can

be tested by the Limma method. These contrasts are constructed to address researchers’

hypotheses (tested contrasts for the example studies can be found in Chapters 2.1 and 2.2).

The Limma package also provides options to account for multiple tests of DE among

genes. Genome-wide microarray experiments typically have thousands of probe sets rep-

resenting genes, so it becomes necessary to adjust for the high number of tests to control

error rates. One common method to control the false discovery rate is by comparing the

Benjamini-Hochberg adjusted p-values to some rejection threshold α instead of raw p-values.

Table 1.2 provides an example of output from a Limma procedure on the first contrast of

example Study 1.

6

Table 1.2: Limma/eBayes Results with Bejamini-Hochberg Adjusted P-values

Day12.P-Day12.NP AveExpr F P.Value adj.P.Val

AFFX-BioB-3 at −0.025 7.744 0.034 0.857 0.984
AFFX-BioB-5 at 0.071 7.456 0.479 0.502 0.927
AFFX-BioB-M at 0.061 8.150 0.228 0.641 0.958
AFFX-BioC-3 at 0.077 9.351 0.491 0.496 0.926
AFFX-BioC-5 at 0.028 8.722 0.069 0.797 0.979

AFFX-BioDn-3 at 0.026 11.433 0.059 0.811 0.981

Note: Only the first 6 rows of 24128 are shown. For more detail about the contrasts considered in Example Study 1 see Chapter 2.1.
Rows contain probeIDs of Affymetrix Bovine Microarray. Columns contain sample identifiers.

1.4.2 Matrix of P-Values

Often researchers are interested in multiple contrasts of interest simultaneously. To

test the multiple contrasts of interest for both example studies, implementation of the R

package mvGST will be used. This method is described in more detail in Chapter 1.5.2.

Chapter 1.4.1 briefly describes the Limma procedure for obtaining p-values for genes

in a single contrast of interest. If the p-value for a given gene is lower than some rejection

threshold α we say that that gene is differentially expressed for the corresponding contrast

(e.g. these genes are differentially expressed in Treatment A vs. Control). Results for

tests of differential expression among genes under multiple contrasts of interested are easily

summarized in a matrix of p-values, where columns indicate the contrasts tested and the

rows specify probe or gene identifiers. Table 1.3 is a header of the p-value matrix obtained

in example Study 1.

7

Table 1.3: P-Value Matrix Header

Day12.P-Day12.NP Day14.P-Day14.NP

AFFX-BioB-3 at 0.857 0.661
AFFX-BioB-5 at 0.502 0.527
AFFX-BioB-M at 0.641 0.576
AFFX-BioC-3 at 0.496 0.786
AFFX-BioC-5 at 0.797 0.621

AFFX-BioDn-3 at 0.811 0.846

Note: P-values result from DE testing methods described in Chapter 1.4.1.
The full matrix contains 24128 rows.

1.5 Statistical Tests for Differential Expression of Gene Sets

Functional aspects of an organism can include gene products from numerous genes. The

identification of DE genes across treatments alone proves to be inadequate for researchers

concerned with deriving large-scale biological meaning due to treatment effect.

Statistical methods that test whether a gene set is differentially expressed (or differen-

tially active) across treatment groups can yield insights into large-scale biological functions

if the gene sets are constructed in biologically meaningful ways. “The study of gene set

function most commonly makes use of controlled vocabulary in the form of ontology anno-

tations” [18]. One widely used public repository where such ontology annotations can be

found is provided by the Gene Ontology Consortium [19]. More about the GO Consortium

is found in Chapter 1.5.1. GO annotations are the only gene-set annotations considered in

this thesis for reasons discussed in Chapter 1.5.2. Exploring different methods for collecting

GO annotations to build GO gene set lists is one of the primary purposes of this thesis and

is demonstrated in Chapter 3.

As was the case with tests for DE among genes, there are many and varied statistical

methods for testing DE among gene sets. Some of the most popular methods have been

stated previously in the introduction, Chapter 1.1. The multivariate gene set testing method

(mvGST) has been selected to analyze DE among different GO gene set lists, see Chapter

1.5.2 for more information on mvGST.

8

1.5.1 The GO Consortium

An introduction to the GO Consortium’s purpose and contributing member databases

can be found on the organization’s web page. It is sufficient here to state, “[t]he Gene

Ontology Consortium (GOC) is a set of model organism and protein databases and biological

research communities actively involved in the development and application of the Gene

Ontology” [19]. Prior to the GO consortium, it was all but impossible to compare functional

gene category profiles across different organisms because different organisms were annotated

using different conventions [3].

The GO is comprised of a collection of GO terms each of which has a unique identifier

(GO ID). Each GO ID can be thought of as a list of genes where each gene has a geneID, or

probeID if the microarray is directly annotated to GO. Each gene annotated to a GO term

only contributes to the gene product attribute identified by the GO term. It’s important

to note, mvGST analysis is only appropriate for gene set lists where elements of each gene

set are contributing members only.

Additionally, the GO can be thought of as a collection of three separate ontologies or

domains for gene product properties. A short description of each is included below [19].

Cellular Component (CC): These terms describe a component of a cell that is part of

a larger object, such as an anatomical structure or a gene product group.

Molecular Function (MF): Molecular function terms describe activities that occur at

the molecular level, such as “catalytic activity” or “binding activity.” GO molecular

function terms represent activities rather than the entities (molecules or complexes)

that perform the actions, and do not specify where, when, or in what context the

action takes place. Molecular functions generally correspond to activities that can be

performed by individual gene products, but some activities are performed by assembled

complexes of gene products.

Biological Process (BP): A biological process term describes a series of events accom-

plished by one or more organized assemblies of molecular functions. The general rule

9

to assist in distinguishing between a biological process and a molecular function is that

a process must have more than one distinct step.

“A GO annotation consists of a GO term associated with a specific reference that de-

scribes the work or analysis upon which the association between a specific GO term and gene

product is based. Each annotation also must include an evidence code to indicate how the

annotation to a particular term is supported” [19]. These evidence codes are generally sep-

arated by two types: Experimental Evidence codes and Computational Analysis Evidence

codes. For more information about evidence codes, one should access the GO Consortium’s

web page under “guide to GO evidence codes.” They are not used in the annotation gath-

ering methods contained in this thesis, but may provide additional information to measure

annotation strength, see Chapter 4.3.

1.5.2 Multivariate Gene-Set Testing

The following is taken from the mvGST package help file in R and provides an intro-

duction to the package.

mvGST provides platform-independent tools to identify GO terms (gene sets)
that are differentially active (up or down) in multiple contrasts of interest. Given
a matrix of one-sided p-values (rows for genes, columns for contrasts), mvGST
uses meta-analytic methods to combine p-values for all genes annotated to each
gene set, and then classify each gene set as being significantly more active (1),
less active (-1), or not significantly differentially active (0) in each contrast of
interest. With multiple contrasts of interest, each gene set is assigned to a profile
(across contrasts) of differential activity. Tools are also provided for visualizing
(in a GO graph) the gene sets classified to a given profile [20].

The testing and profiling of each gene set as more active (1), less active (-1), or not

significantly differentially active (0), is quite efficient and informative. Many methods for

testing gene set enrichment identify only significant differential activity across a single

contrast of interest let alone three levels of significant differential activity across multiple

contrasts. Detailed information about the statistical methodology behind mvGST can be

found in [20]. It is worthy to further emphasize here that the additional levels of differential

10

activity identified by mvGST stems from the understanding that every gene annotated to

a GO term contributes to the functional property described by the GO term. Therefore,

one-sided p-values for each gene, obtained by any statistical method for testing DE among

genes, can be used as a measure of contribution to the GO term.

A Benjamani-Yekutieli adjustment [20] for multiple possible dependent comparisons

will be used in mvGST analysis. It would be inappropriate to adjust for multiple com-

parisons twice, so raw p-values will be used to construct the matrices of p-values used in

mvGST analysis, see Chapter 3.

The package mvGST is not only a tool by which DE analysis for gene sets can be

conducted, it’s also a tool the user can use to gather annotation information and build

GO gene set lists. Annotation gathering methods provided by mvGST currently supports

annotation for 22 species. This limitation is due to the fact that there are only 22 organism-

specific annotation packages in Bioconductor.

These packages can contain probeID-to-GO annotation and geneID-to-GO annotation.

Translation options are provided when probeID-to-GO annotations are not available but

geneID-to-GO annotations are. Translation methods provided in mvGST give statistical

solutions to handle gene translation ambiguities, but have the potential to bias subsequent

gene set testing by omitting or creating p-values. This thesis proposes an alternative algo-

rithmic solution for handling translation ambiguities.

1.6 Annotation Sources

An annotation in functional gene expression studies refers to a statement that a gene

product has a particular functional property. These statements are stored in structured se-

mantic databases of which the GO is an example. There are many bio-ontological databases

that describe important aspects of biological domains and are often specific to field of study.

These databases not only store annotation statements but also simplify or omit less impor-

tant or irrelevant aspects, allowing for specific and meaningful queries [3].

In recent years, access to regularly updated bio-ontological databases has grown both

more important and efficient. The increasing rate of annotation entries to databases by

11

biological researchers and the improvements to database user-interfaces have greatly ac-

celerated research endeavors in the field of bioinformatics and has made access to current

annotation vitally important.

1.6.1 Gene Expression Omnibus

The example studies chosen to demonstrate methods proposed in this thesis were ob-

tained through the Gene Expression Omnibus. “[The] GEO is an international public

repository that archives and freely distributes microarray, next-generation sequencing, and

other forms of high-throughput functional genomics data submitted by the research com-

munity [21].” GEO records are organized by platform, sample and series.

“A Platform record is composed of a summary description of the array or sequencer

and, for array-based Platforms, a data table defining the array template. Each Platform

record is assigned a unique and stable GEO accession number (GPLxxx). A Platform may

reference many Samples that have been submitted by multiple submitters” [21]. Submitted

platform annotation information can come from the platform manufacturers, the research

group (submitters), or a combination of these. We explore this topic through two specific

examples in Chapter 2.

“A Sample record describes the conditions under which an individual Sample was

handled, the manipulations it underwent, and the abundance measurement of each element

derived from it. Each Sample record is assigned a unique and stable GEO accession number

(GSMxxx). A Sample entity must reference only one Platform and may be included in

multiple Series [21].”

“A Series record links together a group of related Samples and provides a focal point

and description of the whole study. Each Series record is assigned a unique and stable GEO

accession number (GSExxx) [21].” Information in a GSE submission include: summary

of experiment, overall design, contributor(s), submission details and researchers contact

information, platform information, curated data, and raw data. Both Study 1 and Study 2

are GSE records, see Chapter 2.

The Bioconductor package GEOquery provides a user interface to the GEO repository

12

from R. To upload information from the GEO repository into R, one need only reference the

targeted experiment’s GSE accession. More on GEOquery can be found in the GEOquery

help file.

1.6.2 Platform Manufacturer’s Annotation

The manufacturers of different gene expression technologies often provide access to

annotation information that maps manufacturer designed genes to common public domain

sequences [22]. For well-annotated microarray chips, direct annotation to GO might be

available. This option is attractive for researchers interested in GO gene set analysis as

mapping from probeIDs to GO-annotated geneIDs is unnecessary, thus avoiding researcher

created mapping ambiguities (annotation ambiguities are discussed in more detail in Chap-

ter 3.

Platform manufacturers’ gene annotation can be accessed through online annotation

repositories (see Chapters 3.1.2 and 3.2.1), annotation packages in R (see Chapter 3.1.1), or

can be downloaded directly from the manufacturer’s website (see Chapters 3.1.3 and 3.2.1).

Annotation information from manufacturers’ websites is stored as individual files for each

array type and is frequently updated, usually quarterly [23] [22]. These files tend to be

quite large, ranging from 5MB to 170 MB.

1.6.3 Ensembl’s BioMart

“Ensembl is a genomic interpretation system providing the most up-to-date annota-

tions, querying tools and access methods for chordates and key model organisms. Ensembl

does not produce genome assemblies, instead [they] provide annotation on genome assem-

blies that have been deposited into the INSDC (GenBank, ENA, DDBJ) and are publicly

available” [24].

Biomart is considered a “powerful” tool for microarray analysis [25]. The entire repos-

itory is easily accessed in R through the R package biomaRt. The annotation found in

biomaRt is commonly used to interpret and map gene identifiers [25]. The current Ensembl

13

Release 80 has gene annotation for 69 organisms. This number is far larger than the 30

organism-specific annotation packages currently in R, see Chapter 1.6.4.

Updates and Releases

The Ensembl release cycle is approximately every three months and may occasionally

be longer if considerable development work is being undertaken. Previous releases are

archived as completely separate websites allowing researchers to reproduce analysis results.

The current version as of May 2015 is release 80. Ensembl genes 80 is the version used in

all Biomart queries of this thesis, see Chapter 3.

Previous Biomart releases can be readily accessed using the package biomaRt in R.

The recommended method for accessing previous releases of Biomart is by changing the

host parameter in the useMart function. Table 1.4 shows the currently available Biomart

release archives.

Table 1.4: Available Biomart Release Versions and Dates

Version Date Version Date

Ensemble 80 May 2015 Ensemble 70 Jan 2013
Ensemble 79 Mar 2015 Ensemble 69 Oct 2012
Ensemble 78 Dec 2014 Ensemble 68 Jul 2012
Ensemble 77 Oct 2014 Ensemble 67 May 2012
Ensemble 76 Aug 2014 Ensemble 59 Aug 2010
Ensemble 74 Dec 2013 Ensemble 54 May 2009
Ensemble 73 Sep 2013
Ensemble 72 Jun 2013
Ensemble 71 Apr 2013

Biomart Query Structure

It may be beneficial to visualize an example of a Biomart query. Table 1.5 shows all

Ensembl geneIDs annotated to at least one GO ID for the Ovis aries (sheep) data set in

Study 1, see Chapter 2.2. The table also provides a third column identifying the GO domain

for each geneID-to-GO annotation. Tables such as these were used to build GO gene set

14

lists in Chapter 3 It is interesting to note that Ovis aries is not an organism supported by

mvGST annotation methods because there is not an org.db package for Ovis aries within

R.

Table 1.5: Partial Results of a Biomart Query

ensembl gene id go id go domain

1 ENSOARG00000000006 GO:0005739 cellular component
2 ENSOARG00000000006 GO:0005743 cellular component
3 ENSOARG00000000006 GO:0008137 molecular function
4 ENSOARG00000000006 GO:0016020 cellular component
5 ENSOARG00000000006 GO:0016021 cellular component
6 ENSOARG00000000006 GO:0016491 molecular function
7 ENSOARG00000000006 GO:0055114 biological process
8 ENSOARG00000000006 GO:0070469 cellular component

1.6.4 Annotation Packages in R

OrganismDbi is a meta framework for annotation packages in R. “The organismDbi

is a software package that helps tie together different annotation resources [26].” These

packages are in effect meant to be the place where “ALL” genetic information about a

specific organism can be found and queried [26]. Consequently, these packages can be very

large. OrgDb packages are updated quarterly. Organism-level packages in R are primarily

based on mapping using Entrez Gene identifiers [26]. As of May 2015, Bioconductor provides

some type of annotation information for only 30 different organisms [27].

Platform-level rather than organism-level packages are assembled packages in R using

microarray platform annotation information. This information provides annotation primar-

ily based on mapping using the platform probeIDs. For a well-annotated platform, packages

that contain direct GO annotations from the GO Consortium might be available.

R tools have been developed to combine information across different annotation pack-

ages using the four methods columns, key types, keys and select [26]. If a platform package

exists for a given organism but is not included in the org.db packages, they can be combined

quickly and easily for the construction of gene set lists. This method would be applicable if

15

a platform annotation package doesn’t include GO annotation. See Chapter 3.3 as to why

these methods of annotation were not included in this thesis.

1.7 Stable Marriage Problem Algorithm

A stable marriage problem (SMP) algorithm accomplishes the task of finding stable

mappings between elements of two different sets given input about preferences for every

element in both sets [28]. The sets can be thought of as two different columns, men and

women, with the elements of column one being different men and the elements of column

two being different women. A mapping can be thought of as a marriage. What is meant by

stability is that no marriage pairing or mapping will be better for both individuals in any

given pairing. In other words, taking into account individual marriage preferences for both

men and women, a SMP algorithm assures there is no pairing in which both the man and

the woman would be happier. The result is a bijective mapping.

An unequal number of men and women in the two columns do not invalidate the

proof, provided by David Gale and Lloyd Shapley in 1962. Their proof states that a SMP

can always be solved in such a way as all marriages are stable [29]. When columns are

of unequal length, the returned bijective mapping will simply be of length equal to the

smallest column. The following is a somewhat simple example in that only 5 men and 4

women are considered. The example is explained according to the implementation of the

SMP algorithm in the matchingMarkets R package [30].

Given 5 men and 4 women one wants to find the most stable marriages possible ac-

counting for preferences each man and each woman provides. Let the men’s preferences be

expressed as the matrix men.prefs with the ith column containing man i’s ranking over

the women in decreasing order of preference (i.e. most preferred first).

men.prefs =

1 4 1 3 2

4 3 2 2 3

3 2 3 1 4

2 1 4 4 1

16

.

Let the women’s preferences be expressed as the matrix women.prefs with the jth

column containing woman j’s ranking over the men in decreasing order of preference (i.e.

most preferred first).

women.prefs =

1 2 3 5

2 3 2 4

3 1 1 3

5 4 4 2

4 5 5 1

The resulting matrix stable.marriages (produced using the daa function from the

matchingMarkets [30] package in R) provides the optimal pairings with columns representing

the women and rows representing the men. Each TRUE value represents a marriage. Notice

only one TRUE in each i, j element of the matrix. Row 4 (man 4) has no marriage mapping

(remember there were 5 men and 4 women).

stable.marriages =

TRUE FALSE FALSE FALSE

FALSE FALSE TRUE FALSE

FALSE TRUE FALSE FALSE

FALSE FALSE FALSE FALSE

FALSE FALSE FALSE TRUE

The SMP algorithm is applied to gene annotations within each GO term in Chapter

3.2.4.

17

Chapter 2

Motivation

The primary purpose of this thesis is to explore gene annotation in the building of

gene set lists and address the problem of gene annotation ambiguity in mvGST analyses.

The current R package mvGST has limited annotation capabilities and provides temporary

methods for handling annotation ambiguities. Current methods and limitations of gathering

annotations by mvGST are discussed in Chapter 1.5.2.

To conduct mvGST analysis, one must have an experiment’s matrix of p-values (see

Chapter 1.3) and a list of meaningful gene sets or groupings. The matrix of p-values used

by the meta-analytical methods in mvGST are platform-independent, but the process of

building gene set lists is not. Two example studies are discussed in this thesis. Study 1 was

selected to compare mvGST results under current mvGST annotation methods to mvGST

results under annotation methods proposed in this thesis. Study 2 was selected to illustrate

the added flexibility the proposed annotation methods bring to mvGST analysis. Study

2 also provides an example to demonstrate the proposed SMP algorithmic alternative for

handling annotation ambiguities.

All data from the two example studies are simple completely randomized designs and

have been obtained through the public repository Gene Expression Omnibus on the NCBI

website. A useful interface to this repository has been provided for R users with the package

GEOquery [31].

2.1 Example Study 1

Example Study 1 has GEO accession number GSE47776. An experimental summary

and the model set-up used in this thesis are subsequently provided.

The corpus luteum (CL) is a temporary structure in the ovary that forms with each

18

menstrual cycle. Degradation of the CL leads to abortion, and understanding the activity

of biological processes in the CL is of interest to researchers of reproductive performance.

A study at Colorado State University tested the hypothesis, “gene expression differs

in corpus luteum (CL) collected from pregnant (P) and non-pregnant (NP) ewes [4].” The

Affymetrix Bovine Genome Array platform was used.

To test this hypothesis, six microarray samples were taken at Day 12 for three pregnant

ewes and three non-pregnant ewes. Six more microarray samples were taken on Day 14

for three different pregnant ewes and three different non-pregnant ewes. The different

treatments can be summarized as three replicates of the following:

P12: Pregnant ewes at Day 12

P14: Pregnant ewes at Day 14

NP12: Not Pregnant ewes at Day 12

NP14: Not Pregnant ewes at Day 14

Researchers involved in this study used their own models to test their hypothesis. In

this thesis, the following contrasts can be constructed to test for the effect of pregnancy at

each day by comparing expression profiles with the following contrasts:

1. H0 : P12 −NP12 = 0

2. H0 : P14 −NP14 = 0

Despite the study involving female sheep, the Affymetrix Bovine Genome Array plat-

form was used to gather measures of gene expression. This array is GO-annotated and is

supported by mvGST annotation methods. mvGST annotation methods will be compared

to Biomart and Affymetrix annotation gathering methods in Chapter 3.1. The results can

be found in Chapter 4.2.

2.2 Example Study 2

19

Example Study 2 has GEO accession number GSE52888. Additional platform anno-

tation was provided by researchers at the Wood Lab of the University of Florida and was

accessed by specifying the accession number GPL14112 [5]. This specific annotation is used

in Chapter 3.2 in building a list of GO gene sets, the elements of which are the probeIDs

of the microarray platform used in the study.

In this study, hypothalamic mRNA expression profiling was obtained using array

Agilent-019921, a sheep gene expression array platform. Chronically catheterized fetal

sheep were subjected to the following treatments:

C: Control (no treatment)

T1: Brachiocephalic Occlusion (BCO) Treatment (10 min., no other treatment)

T2: Estradiol Plus Brachiocephalic Occlusion Treatment

T3: Estradiol Treatment (250 ug/day x 5 days)

There are four replicates of each treatment resulting in sixteen samples total. The

Agilent array has 15008 unique probeIDs. In this thesis, meaningful contrasts to investigate

the differences due to treatment type will be tested in the following way:

1. H0 : T1 − C = 0

2. H0 : T2 − C = 0

3. H0 : T3 − C = 0

The Agilent-019921 microarray is an example of what in this thesis will be termed

a novel microarray for a non-model organism because probeID-to-GO annotation is not

available using the current mvGST annotation methods. It should be noted that the terms

“novel” and “non-model” are used differently elsewhere and were encountered in researching

GO annotation files [19].

mvGST fails to annotate this platform for the following two reasons:

20

1. The organism Ovis aries is not a supported parameter in mvGST

2. Mappings from probeIDs to a GO annotated gene naming convention are unavailable

with current mvGST annotation gathering methods.

Both constraints have been addressed with methods described in Chapter 3.2. For

brevity, GO annotated gene naming conventions will be referred to as GOgncs.

When probeID-to-GO mappings are unavailable, a GOgnc can be used as a trans-

lator. mvGST has implemented a strategy that first takes probeIDs and maps them to

GO-annotated Entrez IDs and then maps the probeIDs to GO terms. This strategy for

annotating probeIDs to GO is limited in two ways. First, only Entrez is considered as a

GOgnc translator. Second the function gconvert (used by mvGST to convert probeIDs to

Entrez) is limited to non-novel platforms currently supported by Ensembl. The Agilent-

019921 microarray is not supported in Ensembl’s Biomart.

If a GOgnc translator must be used to map to GO terms, there is a potential for

translation ambiguities to occur. Many-to-one and one-to-many translation ambiguities

that have the potential to bias mvGST analyses are discussed in mvGST: Tools For Multi-

variate and Directional Gene Set Testing [20]. The thesis proposes and includes solutions

within mvGST to handle translation ambiguities, but acknowledges them as temporary and

somewhat unsatisfying. This has motivated the development in Chapter 3.2.4 of an SMP

algorithmic approach for handling translation ambiguities by optimally choosing among

ambiguous annotations based on measures of annotation strength.

21

Chapter 3

Methods

The first consideration in building GO gene set lists for use in mvGST is to consider

the existence of probeID-to-GO annotation. If such annotation is available, then there is

no need for use of a GOgnc translator to provide probeID-to-GO mappings. Consequently

when such annotation is available, ambiguous potentially biasing mappings are avoided.

Example study 1 is an example where such is the case. When probeID-to-GO annotation is

not available, a GOgnc with annotation to the probeIDs on the microarray can be used to

build a meaningful list of GO gene sets. These GO gene sets can then be used in mvGST

analysis.

3.1 Example Study 1

To begin mvGST analysis of Study 1, an expression set matrix (see Chapter 1.3.1 and

Table 1.4) was uploaded into R using the getGEO function of the GEOquery package and

the study’s GEO accession number.

Next, a matrix of p-values is obtained through use of the R package limma (see Chapter

1.4.1). Table 1.3 shows the header for this matrix of p-values. Notice that the contrasts

of interest in the matrix of p-values represent the same contrasts described in Chapter 2.1.

This matrix of p-values will be used here in three different calls to mvGST’s profileTable

function, for demonstration purposes.

ProbeID-to-GO annotation is available for the bovine Affymetrix platform used in

example Study 1. The appropriateness of using a bovine microarray in a study involving

sheep lies outside the scope of this thesis.

Example Study 1 was chosen specifically for comparison purposes. The following three

main sources of probeID-to-GO annotation were considered in building the appropriate GO

22

gene set lists for this study:

1. mvGST (Chapter 3.1.1).

2. Ensembl’s Biomart (Chapter 3.1.2).

3. Affymetrix (Chapter 3.1.3)

These three sources provide enough information to construct GO gene set lists, the

differences of which are discussed in Chapter 4.

3.1.1 mvGST Annotation

The most convenient of all methods considered in this thesis for constructing a list

of GO gene sets is to call the annotation arguments in mvGST’s profileTable function.

The function was designed to build the list automatically before mvGST analysis. An

appropriate example of profileTable arguments for example study 1 are detailed below:

profileTable(pvals.study1, sig.level = 0.05, gene.ID = "affy",

organism = "btaurus", affy.chip="bovine.db", ontology = "BP",

method = 2, minsize = 1, maxsize = Inf, mult.adj = "BY")

By specifying these annotation arguments, this call to profileTable will build a list

of GO gene sets for Bos taurus biological processes. It should be noted that elements of

this list are GO terms where each is populated with the row names of the p-value matrix.

In this example, genes within each GO gene set are Affymetrix probeIDs.

3.1.2 Biomart Annotation

The second method for constructing a list of GO gene sets for Study 1 considers the

use of the R package biomaRt to query the Ensembl database. The following was used to

appropriately query the Ensembl database for Study 1.

ensembl_80_btaurus <- useMart(biomart="ENSEMBL_MART_ENSEMBL",

host="may2015.archive.ensembl.org",

23

path="/biomart/martservice",

dataset="btaurus_gene_ensembl")

annotation <- getBM(attributes=c(’affy_bovine’, ’go_id’, ’namespace_1003’),

values=T, mart = ensembl_80_btaurus)

The resulting structure for a similar example of a Biomart query can be seen in Chapter

1.6.3. Here the latest version of the btaurus gene ensembl dataset was used. The getBM

function allows for specific queries to this organism-specific dataset. To build a list of GO

gene sets similar to the list built with mvGST annotation methods, three attributes of

annotation for the Affymetrix Bovine array must be obtained. They include Affymetrix

probeIDs, GO IDs, and the domains for GO ID. Each row in this resulting data frame is

unique and may contain cells of missing data. Before constructing the list of GO gene sets,

it is appropriate to subset the data to only include rows with all three pieces of annotation

information and limiting the rows to only include probeID-to-GO annotations describing

biological processes. This sub-setting will ensure GO gene sets have at least one gene

(equivalent to the minsize=1 argument in mvGST’s profileTable function).

The hierarchical structure of GO necessitates obtaining the offspring GO terms for

each GO term already in the list and including them as separate gene sets in the list.

This procedure was done using code from mvGST’s profileTable function. The mvGST

package gathers GO-offspring information using the GO.db package.

Computation time to query Biomart takes anywhere from 2-5 minutes and depends on

the user’s internet connection speed. The construction of this particular list of gene sets for

the bovine Affymetrix array took about 5 minutes. This computation expense is larger but

comparable to mvGST’s annotation methods.

Below are gene sets five and six of the list constructed using this method. These sets

correspond to specific biological processes and contain five and one gene(s), respectively.

$‘GO:0000019‘

[1] "Bt.27218.1.A1_at" "Bt.24555.1.S1_at" "Bt.17276.1.A1_at" "Bt.7008.1.S1_at"

24

"Bt.894.1.S1_at"

$‘GO:0045950‘

[1] "Bt.894.1.S1_at"

3.1.3 Affymetrix Annotation

The third method one may employ to gather probeID-to-GO annotation is to go straight

to the microarray manufacturer. Depending on the structure of the annotation file provided

by the manufacturer, this method can prove to be tedious.

A .csv file was downloaded from Affymetrix’s annotation web page and read into R.

The file is rather large at approximately 50 Mb and contains probeID-to-GO annotation.

There are two columns in this file which contain all the information needed to build the

GO gene set list for biological processes (BP). The most difficult part in using this file was

extracting each unique GO term among descriptions of the GO terms. To accomplish the

task of identifying each GO term and extracting them from the file, a regular expression

was used to search for the 7 digit sequence common in all GO ID terms. The R code used

to accomplish this task can be found in the Appendix. After all GO terms were extracted

and put in list form, the original file was then used again to populate each GO term with

probeIDs annotated to each GO term.

The computation time for this process took over an hour, much longer than the previous

two methods considered in example Study 1. The results, however, were encouraging and

are discussed further in Chapter 4.

3.2 Example Study 2

A matrix of p-values was obtained using the methods described in Chapters 1.3.1,

1.4.1, 1.4.2, and the contrasts described in 2.2. It was mentioned in Chapter 3 that when

probeID-to-GO annotation is not available, then annotation from a GOgnc translator must

be used (see Chapter 2.2). The idea is to follow probeID-to-GOgnc-to-GO in order to obtain

probeID-to-GO annotation. When using a GOgnc translator, annotation ambiguities are

introduced and should be corrected prior to mvGST analysis. The goal of the methods

25

described in the subsequent sections is to provide an SMP-algorithm-optimized list of GO

gene sets for Ovis aries biological processes. The genes within each GO set of the resulting

list will be probeIDs from the Agilent-019921 Sheep Gene Expression Microarray.

For this example, the complete computation time to construct the final GO gene set

list is approximately 15 minutes. This expense includes multiple queries to Biomart.

3.2.1 ProbeID-to-GOgnc Annotation

ProbeID-to-GOgnc annotation for novel arrays are often not found in annotation repos-

itories. Such is the case with the Ovis aries Agilent-019921 microarray. No annotation for

this array is found in Ensembl’s Biomart. The gene naming conversion methods used in

mvGST also fail because they also use information provided by Ensembl (see Chapter 2.2).

Two annotation sources were obtained for Agilent-019921– the manufacturer’s annota-

tions and those provided by Charles Evans Wood’s research group [5]. GOgnc candidates

will be considered and compared from both sources of annotation, but first a quick glance at

the annotation available under each gene naming convention (gnc) can be found in Tables

3.1 and 3.2.

Table 3.1: GOgnc Candidates: Agilent Source

Annotated Uniquely Annotated Duplicated Annotation

ProbeID 1 1 0
PrimaryAccession 0.910 0.810 0.110
RefSeqAccession 0.470 0.320 0.330

GenbankAccession 0.860 0.770 0.110
UniGeneID 0.770 0.680 0.120

EntrezGeneID 0.210 0.110 0.490
GeneSymbol 0.210 0.110 0.490
GeneName 0.210 0.110 0.490
EnsemblID 0 0 0
TIGRID 0.680 0.560 0.180

GO 0.020 0.010 0.130
Description 0.900 0.800 0.110

GenomicCoordinates 0 0 0
Cytoband 0 0 0

26

Table 3.2: GOgnc Candidates: Wood Research Lab Source

Annotated Uniquely Annotated Duplicated Annotation

ID 1 1 0
GeneName 1 0.920 0.080

ORF 0.820 0.390 0.530
Approved Name 0.810 0.380 0.530

GB ACC 0.860 0.860 0
SPOT ID 0.010 0.010 0.100

These tables were created using the function quickView provided in the Appendix.

The “ProbeID” and “ID” naming conventions found in the first rows of Tables 3.1 and

3.2 identically contain the names of the probeIDs associated with the microarray Agilent-

01992. It can be seen in the tables that each probeID (ID) is unique. This is important

when considering probeID-to-GOgnc annotation ambiguities. The uniqueness of probeIDs

in this example indicate that only one-to-many type ambiguities can occur. It is also of

value to notice that only 0.020 of the probeIDs have some sort of GO annotation. This fact

illustrates what is meant by probeID-to-GO annotation not being available.

Tables 3.1 and 3.2 not only provide the names of all possible GOgnc translators one

might consider, but also give a preliminary indication as to which would make the best can-

didates. The column “Annotated” can be interpreted as showing the proportion of probeIDs

that have some sort of annotation for each row gnc. EntrezGeneID, for example, has anno-

tation for .21 of the probeIDs on the microarray. EntrezGeneID has unique annotation for

only .11 of the probeIDs. Also, there are 0.210 ∗ 15, 008 = 3, 152 probeID-to-EntrezGeneID

annotations, of which .49 are duplicated at least once. The column “Duplicated Annota-

tions” is an indication of the magnitude of translation ambiguities present. More specifically,

when taking into consideration the fact that all the probeIDs are unique, these duplications

indicate the magnitude of potentially biasing one-to-many translation ambiguities.

One might conclude that the best GOgnc translator candidates are “PrimaryAcces-

sion”, “GenbankAccession”, “Unigene”, “TIGRID” from Agilent and “GeneName”, “ORF”

and “GB ACC” from the Wood research group. However, such conclusions based on these

27

tabulations are premature. The performance of each of these naming conventions in map-

ping to probeIDs has been quantified but not their ability to map to GO. The gene naming

convention that most successfully maps to both probeIDs and GO terms is the most appro-

priate GOgnc translator.

GOgnc Potential Performance

GOgnc-to-GO annotations are obtained using Ensembl’s Biomart in a Biomart query

similar to that described in Chapter 3.1.2. The R function gncTranslate (see Appendix)

was created to merge two annotation bi-maps, one for the probeID-to-GOgnc bi-map as

provided by either Agilent or the Wood research group, and one for the GOgnc-to-GO

bi-map as provided by Ensembl’s Biomart. The output of this function is useful because

it provides the annotation matrices needed to build the list of GO gene sets and also

performance metrics for the GOgnc translator after mapping to GO. GenbankAccession

annotations given by Agilent provide the best example of a gnc that has a high “Annotated”,

“Uniquely Annotated”, and a low “Duplicated Annotation” combination, yet, it does not

map well to GO.

The following was executed in R and yields translation performance metrics for Gen-

bankAccession after mapping to GO in Table 3.3.

agilent.gnc.GB_ACC <- gncTranslate(probe.embl,embl.go,"embl",agilent$ProbeID)

agilent.gnc.GB_ACC[[3]]

Table 3.3: Translation Performance Metrics for GB ACC

gncs probe ids annotations go ids chipCoveragePotential

1 139 214 214 1097 0.01425906

The metric “chipCoveragePotential” in Table 3.3 is the number of microarray probeIDs

with annotation to at least one GO term over the total number of unique probeIDs. The

probeIDs with GO annotation have the “potential” to be used in mvGST analysis. After the

28

SMP procedure for Study 2 (see Section 3.2.4), the final “chipCoverage” metric is reported

in Chapter 4.2.

It can be seen from Table 3.3 that there are only 139 unique GenBankAccession iden-

tifiers that map to probeIDs and GO terms of biological processes (BP). These 139 Gen-

BankAccession identifiers map to 214 probeIDs and 1,097 different GO terms of BP. The

matrix of p-values has a p-value associated with each probeID which means only 214 p-values

will be used in subsequent mvGST analysis. This is only .0141 of the 15,008 probeIDs rep-

resented on this microarray chip. The best candidate for use in construction of the GO list

will have the most GO terms and the highest chipCoveragePotential. The term potential

is important because ambiguities have not yet been accounted for. After using the smp

function that will be described in Chapter 3.2.4 the final chipCoverage will be reported in

Chapter 4 and will always be less than the chipCoverage Potential.

By comparing gncs, probe ids and annotations, one can get an idea of the magnitude

of annotation ambiguity. As illustrated in Table 3.3 there are 214 probeID-to-GOgnc an-

notations and 214 probe ids. One can conclude from this that each probeID-to-GOgnc

annotation is unique because each probeID is unique. This is why both columns report

the same number of 214. Notice that there are fewer GOgncs than probeIDs illustrating

that there are many-to-one (many probeIDs to one GOgnc) annotation ambiguities only.

In other words, there are no one-to-many ambiguities.

Table 3.4 gives the performance metrics for different GOgnc translators after mapping

to GO BPs for each of the two sources of annotation information. The results are surprising

in that the GOgncs that initially looked like good candidates from output provided by the

quickView function, see Tables 3.1 and 3.2, turned out to map poorly to GO (i.e. had low

chipCoveragePotential and low numbers of unique GO gene sets).

The structure of the Wood annotation file consists of rows that contain microarray

probeIDs and columns that specify different gncs. The annotation provided by the Wood

Research Group was difficult to work with because multiple GOgncs were found under a

single column. The term ORF (a column in the file) in fact refers to Open Reading Frame

29

Table 3.4: Translation Performance Metrics for Candidate GOgncs

GOgncs probeIDs Annotations GO chipCoveragePotential

Agilent GB ACC 139 214 214 1097 0.01425906
Agilent Unigene 2661 3025 3025 5050 0.2015592
Agilent EntrezID 1627 2217 2217 4552 0.1477212
Agilent RefSeq 3030 3763 3763 5348 0.2507329
Wood GenBank 0 0 0 0 0

Wood ORF 5121 7298 7298 6698 0.486274

which is not even a gnc let alone a GOgnc. After exploring the “ORFgnc” in the Wood

annotation file, the majority of entries were comprised of GenBankAccession numbers and

HGNC symbols (HUGO Gene Nomenclature Committee Symbols [32]. It can be seen in

Table 3.4 that the Wood GenBankAccession did not provide any annotations and many

of these same GenBankAccession numbers are found in ORF. The reasonable step then

was to consider only querying Biomart for HGNC Symbols found within the ORF column.

This proved to be the best performing GOgnc with 6,698 unique GO terms, 5,121 unique

GOgnc identifiers, and 7,298 unique probeIDs. The chipCoveragePotential was also by far

the highest at 0.486274. These probeID-to-HGNC-to-GO annotations were selected to build

GO gene sets.

3.2.2 Build GO Gene Sets

Here the function groupBuilder (see Appendix) was used to group probeID-to-HGNC

annotations by GO terms. Using the results from Chapter 3.2.1, the call to groupBuilder

took approximately 4-5 minutes. Some smaller elements of the resulting list are shown

below.

$‘GO:0001869‘

gnc probe_id

3 A2M A_70_P017696

37941 SERPING1 A_70_P058611

$‘GO:0006103‘

30

gnc probe_id

9 AADAT A_70_P005451

42002 STAT5B A_70_P022711

42059 STAT5B A_70_P017016

42884 TAT A_70_P037681

The second GO term in the output (‘GO:0006103’) illustrates two ambiguous annota-

tions, namely:

42002 STAT5B A_70_P022711

42059 STAT5B A_70_P017016

STAT5B is a HGNC symbol identifier that is annotated to two different probeIDs

(A 70 P022711 and A 70 P017016). These annotation ambiguities within each GO term

will be handled using the proposed SMP procedure (see Chapter 3.2.4).

3.2.3 Sequence Alignments as Measures of Annotation Strength

Prior to selecting the optimal annotations within each GO group, a measure of strength

for each annotation must be calculated. It was proposed to use sequence alignment sim-

ilarity scores as a way of measuring the strength or quality of each annotation. The

pairwiseAlignment function in the Biostrings R package was used to conduct local-global

sequence alignments. When considering what alignment type to perform, look at the

Biostrings package help file. The local-global sequence alignment seemed most appropriate

in this example as probeID sequences from this array are much smaller (60-mer) than the

GO-gnc sequences.

Sequences were gathered in a Biomart query for each HGNC Symbol and each probeID

found in the GO list produced in Chapter 3.2.2. The 60-mer oligonucleotides sequences for

the probeIDs are all uniquely mapped in a 1-1 relationship. The HGNC symbols however

were not. The cDNA transcripts associated with each HGNC Symbol are Ensembl tran-

scripts. Some HGNC Symbols have multiple Ensembl cDNA transcripts. This observation

31

was noticed when the number of unique sequences (5718) and unique HGNC Symbols (5121)

resulted in unequal numbers. It should be noted there are more transcript sequences than

HGNC Symbols and also each HGNC Symbol is unique. This means there are only many

sequences-to-one HGNC ambiguity type, as in the example in Chapter 3.2.2. This fact will

be important when considering the proposed solution.

3.2.4 SMP

The SMP algorithm discussed in Chapter 1.7 will be applied to annotations in each

GO term. Preferences are determined by sequence alignment scores. The procedure returns

the maximum number of optimally “stable” 1-1 annotations within each GO term.

The solution chosen to handle sequence-gnc ambiguities was first to consider each anno-

tation in the GO-grouped list from Chapter 3.2.2. For each HGNC in the list with multiple

sequences, the sequence that maximized the alignment score when aligned to the probeID

sequence to which it was annotated was chosen. This procedure seemed the natural solution

for handling these sequence-gnc ambiguities in context of what is desired. This endeavor

was initially very challenging and computationally expensive, inspiring the annotator func-

tion (in Appendix) to limit the amount of string matches made by the smp function. The

changes in the manner of string comparison by the annotator function drastically reduced

the computation time when calling the smp function.

There are multiple procedures embedded in the smp function and will not be discussed

in detail here (see R code in the Appendix). As an overview, the function takes as arguments

results from Chapter 3.2.3. The first procedure executed by smp is to obtain the maximum

sequence alignment score for each annotation in each GO group. Then each probeID-

to-GOgnc annotation (in this example probeID-to-HGNC Symbols) in each GO group is

ordered according to GOgnc and then by alignment score. This ordering is important when

building the matrix of preferences for each GOgnc (see Chapter 1.7). The same ordering

methodology is done for the probeIDs to rank their preferences of GOgncs. Finally, for

each GO group the daa function (see Chapter 1.7) is called and returns optimal probeID-

to-GOgnc pairings. The result is the desired list of GO grouped probeIDs.

32

Similar to methods described in Chapter 3.1.2, the hierarchical structure of GO is

accounted for using code from mvGST. This step is the last so the resulting list can then be

used in mvGST analysis. Displayed below are some of the smaller elements of the resulting

list.

$‘GO:0000002‘

[1] "A_70_P062131" "A_70_P026981" "A_70_P071411" "A_70_P061636"

[5] "A_70_P062171" "A_70_P022551" "A_70_P045001" "A_70_P025356"

[9] "A_70_P020636" "A_70_P049666" "A_70_P049667" "A_70_P002736"

$‘GO:0000012‘

[1] "A_70_P063286" "A_70_P052106" "A_70_P039931" "A_70_P061911"

$‘GO:0000019‘

[1] "A_70_P010796" "A_70_P028691" "A_70_P024591"

This output contains three GO terms (GO:0000002, GO:0000012, GO:0000019) each

of which correspond to a biological process. The elements within each GO term are the

probeIDs corresponding to the Agilent-019921 microarray. The GO terms in the list could

have easily been populated with HGNC symbols instead of microarray probeIDs. For greater

interpretability, researchers may prefer GO gene set lists populated by gncs rather than

probeIDs.

3.3 Custom R Annotation Packages

Creating custom organism-specific annotation packages within R was investigated as

an annotation-gathering option. The idea was to create annotation packages for organisms

currently not supported by mvGST and add them prior to mvGST analysis. This method

was abandoned after creating annotation packages for Study 1 and Study 2.

Two annotation packages were created, one a Bos taurus package for Study 1 and

another Ovis aries package for Study 2. These annotation packages were built using the

33

makeOrgPackageFromNCBI function from the AnnotationForge package [26]. Both anno-

tation packages contained information for multiple gncs and transcript sequences, but as

compared to Biomart the selection was limited.

The custom-built Bos taurus package did not contain Affymetrix-to-GO annotation

unlike the annotation package for Bos taurus used by mvGST annotation methods. With

Affymetrix-to-GO annotation being available through both Biomart and Affymetrix’s own

annotation file, the failure of the custom annotation package approach to provide direct

GO annotation would have unnecessarily required a GOgnc translator. Translating unnec-

essarily would have introduced avoidable translation ambiguities. This result was taken as

evidence that this method of annotation was not as complete as others considered in this

thesis.

The custom Ovis aries package likewise did not contain probeID-to-GO annotation,

but this time Biomart also failed to produce direct GO annotation. The main strike against

the custom Ovis aries package was that it contained a paltry selection of GOgncs compared

to Biomart. It became evident that a custom Ovis aries package would never be preferred

to using Biomart as a method of implementing GOgnc translators.

As a final note, both packages took over three hours to compile. This expense can be

compared to a Biomart query that ranges from 3-5 minutes.

34

Chapter 4

Discussion

For Study 1, the three GO gene set lists constructed in Chapter 3.1 are compared. The

results of mvGST analysis using each of the three lists are also compared and discussed.

The performance metrics for the Ovis aries GO gene set list for Study 2 constructed

in Chapter 3.2 are reported. mvGST results for Study 2 are also shown and discussed.

To conclude, a brief discussion about possible extensions to this work is presented.

4.1 Study 1 Discussion

Study 1 allowed for the comparison of three different GO grouped Bos taurus gene set

lists. Somewhat surprisingly, the GO gene set lists vary widely depending on what method

is used to build them. Two metrics were considered in assessing which list would be best

to use in mvGST analysis– 1) the number of unique GO identifiers in each list and 2) the

number of unique probeIDs in each list relative to the number of probeIDs on the microarray

(chipCoverage).

The justification for choosing these two metrics is that no annotations were created

from methods discussed in this thesis and so the probeID-to-GO annotations were simply

gathered from different sources. Assessing the quality of annotation lies outside the scope

of this thesis. Therefore, the annotation-gathering method that yields the highest quantity

of annotation is considered the most appropriate. A brief note on annotation quality is

mentioned in Chapter 4.3

Figure 4.1 illustrates a visual comparison for the three different GO gene set lists built

in Chapter 3. The best-performing list in this figure would be the list closest to the upper

right corner. What can be seen in the plot is that the annotation method provided by

mvGST is the lowest performing method.

35

It is unclear which method is preferred when comparing the annotation provided by

Biomart and Affymetrix. The list constructed using annotation from Affymetrix provides

greater chipCoverage whereas the list constructed using annotation from Biomart has more

unique GO identifiers.

4.1.1 Compare GO Grouped Lists

The list performance plot in Figure 4.1 should be used to select the most appropriate

GO gene set list. Additionally, by comparing each of the three lists to each other, conclusions

about annotation concordance among the lists can be reached.

To compare lists to each other, four different list grouping comparisons were made.

They are: Biomart/Affy, Affy/mvGST, Biomart/mvGST, and Biomart/Affy/mvGST, see

Figure 4.2. Three criteria were used in the comparisons– 1) GO IDs, 2) probeIDs, and

3) Gene Sets. The proportion concordant for GO ID terms is the number of unique GO

ID terms that match in all lists of a given comparison over the number of unique GO ID

terms found in any one of the lists of a given comparison. The proportion concordant for

the probeID criterion is similar– it’s the number of probeIDs common to all lists in a list

grouping comparison over the number of probeIDs found in any one of the lists in a list

grouping comparison. The Gene Sets criterion considers both GO IDs and their probeID

elements. The proportion concordant for Gene Sets is the number of GO IDs with exactly

the same probeID elements in all the lists of a given comparison over the number of GO

IDs found in any one of the lists in the comparison.

Figure 4.2 illustrates that the GO gene set lists constructed using annotation from

Biomart and Affymetrix are the two most similar lists. Of the total unique GO IDs and

probeIDs among these two lists, approximately .78 and .74 of them are in both lists, respec-

tively. Other list comparisons have lower values for the GO ID and probeID criteria. When

considering the comparison groupings, this decrease is attributable to the mvGST method

of gathering annotation.

The fourth grouping (Biomart/Affymetrix/mvGST) is an interesting comparison be-

cause it indicates the proportion of concordance among all the lists. The proportion of

36

List Performance Plot

●

0.25 0.30 0.35 0.40 0.45 0.50

90
00

95
00

10
00

0
10

50
0

11
00

0

Chip Coverage

Un
iq

ue
 G

O
 Id

en
tif

ie
rs

● Biomart
Affymetrix
mvGST

Fig. 4.1: List performance is based on two metrics: 1) the total unique GO Identifiers
included in the list (vertical-axis) and 2) how many unique probeIDs are included in at
least one GO gene set (horizontal-axis). The best performing list will have the highest
values for both.

37

concordance for GO IDs and probeIDs seems low, just less than .75, but most surprising

might be the proportion of gene sets common to all three lists. This value stands at less

than two percent. This result indicates that less than two percent of the GO gene sets

among the lists are evaluated equally when mvGST analysis is performed.

4.1.2 Compare mvGST Analysis Results

The proportion of GO gene sets for each list identified as significant (or not) by mvGST

analysis can be seen in Figures 4.3 and 4.4 for Day 12 and Day 14, respectively. The results

from mvGST analysis were similar for each list in the proportion it identified as either

not significant, more active, or less active in Day 12; however, the list built by mvGST

annotation methods showed a slightly greater proportion of the GO gene sets identified as

more active compared to the other two lists. Consequently, the added proportion identified

as more active corresponds to a lesser proportion of GO gene sets identified as less active as

compared to the other two lists. These observations further demonstrate that the similarity

between the Affymetrix and Biomart created lists, shown in Chapter 4.1.1, can be seen after

mvGST analysis.

Figures 4.3 and 4.4 also demonstrate that the dissimilarity of the gene sets among the

lists doesn’t overly bias the proportion of gene sets identified as either significantly more

active, less active, or not differentially active as the proportions are very similar regardless

of which list was used in the analysis.

4.2 Study 2 Discussion

Study 2 provided an example of a novel microarray whose probeIDs could not be

directly mapped to GO. As a solution, a GO-annotated gnc was selected as a translator of

sorts to map probeIDs to GO terms. Different GO-annotated gncs performed with varying

results as translators for the microarray. It has been mentioned that the ORF column in the

annotation file provided by the Wood lab is not a gnc and is mostly comprised on HGNC

symbols (see Chapter 3.2.1). The HGNC symbol gnc was selected as the best-performing-

gnc translator because it yielded the highest performance metrics (see Table 3.4).

38

List Comparisons Plot

●

●

●

●

Biomart
Affy

Affy
mvGST

Biomart
mvGST

Biomart
Affy

mvGST

0 .25 .50 .75 1
Proportion Concordant

● GO IDs
Gene IDs
Gene Sets

Fig. 4.2: Proportion concordant signifies the proportion of either GO IDs, Gene IDs, or
Gene Sets that are found in all lists within the different list comparisons (found at vertical
axis). GO IDs indicate the unique names of GO terms. Gene IDs are the unique gene
identifiers. Gene sets consider both GO identifiers and their gene identifier elements.

39

List Comparison of mvGST Analysis Results: Day 12

●

●

●

mvGST

Affy

Biomart

0 .25 .5 .75 1
Proportion of GO Gene Sets

● Not Significant
More Active
Less Active

Fig. 4.3: Illustrates the proportion of GO Gene Sets that are either significantly more
active, less active, or not differentially active in each list after mvGST analysis. Further
explanation of the contrast of interest tested here, H0 : P12 − NP12 = 0, can be found in
2.1.

40

List Comparison of mvGST Analysis Results: Day 14

●

●

●

mvGST

Affy

Biomart

0 .25 .50 .75 1
Proportion of GO Gene Sets

● Not Significant
More Active
Less Active

Fig. 4.4: Illustrates the proportion of GO Gene Sets that are either significantly more
active, less active, or not differentially active in each list after mvGST analysis. Further
explanation of the contrast of interest tested here, H0 : P14 − NP14 = 0, can be found in
Chapter 2.1.

41

Sequences were then gathered for each probeID and each HGNC symbol identifier.

Working within the probeID-to-HGNC symbol annotation framework, sequence alignments

were performed to get measures of strength for each annotation. The maximum measure

was selected for HGNC symbols with multiple sequences. The SMP method for selecting the

most appropriate 1-1 mapping between probeIDs and HGNC symbols was then employed for

each GO term containing at least one HGNC symbol. Instead of populating GO terms with

HGNC symbols, probeIDs were used to populate the GO gene set list. Parent GO terms

of GO terms of this list were then obtained and populated with their GO term offspring

probeIDs accounting for the hierarchical structure of the gene ontology.

4.2.1 GO Gene Set List: Ovis aries Microarray

The Ovis aries Agilent-019921 microarray was used in Study 2. A summary of the

constructed GO gene set list can be found in Table 4.1.

Table 4.1 shows that all GO identifiers in the list are unique. This was expected

and only mentioned here as a check. The chipCoverage metric is truly interesting. The

chipCoverage metric is defined as the number of probeIDs used in mvGST analysis over

the total number of probeIDs on the microarray. Notice that the chipCoverage for this

list is 0.388. This value is approximately ten percent lower than the chipCoveragePotential

reported in table 3.4 (the chipCoveragePotential in Wood ORF). This loss in chipCoverage

is attributable to the SMP procedure described in Chapter 3.2. It is important to note that

the unique number of probeIDs included in the final analysis is 5,823, a number between

the reported number of unique GOgncs (5,121) and probeIDs (7,298) prior to the SMP

procedure. If the SMP method were done on the annotations prior to grouping them by

GO, the result would have been a total of 5,121 unique probeIDs used in mvGST analysis

due to the fact that the SMP method always returns a 1-1 mapping. Though somewhat

computationally expensive, doing the SMP procedure within each GO term allowed 702

probeIDs to be included in the final analysis that otherwise would not have been.

42

Table 4.1: Agilent-019921 GO Gene Set List Summary

Unique probeIDs GO IDs GO IDs chipCoverage

5, 823 10, 082 10, 082 0.388

4.2.2 mvGST Results

The results of mvGST analysis for Study 2 are stand-alone results and are reported in

Table 4.2 for completeness. An example of interpretation from Table 4.2 can be expressed–

there are 24 biological processes differentially more active (indicated by a 1) in the estradiol-

plus-brachiocephalic-occlusion (EBO) treatment group with no significant activity difference

(indicated by a 0) in the brachiocephalic-occlusion (BO) and estradiol (E) groups, when

compared to the control group. The other four rows can give similar interpretations.

For further methods to identify which gene sets are included in each profile, see mvGST:

Tools For Multivariate and Directional Gene Set Testing [20].

Table 4.2: mvGST Analysis Results for Study 2

BO-C EBO-C E-C BP

0 0 0 9, 745
0 0 1 271
0 1 1 42
0 1 0 24

Without the methods and tools developed as part of this thesis, the Ovis aries re-

sults given in Table 4.2 could not have been obtained using mvGST because Study 2 was

conducted with a less traditional platform in a non-model organism.

4.3 Potential Extensions

In the process of developing the methods described in this thesis, a few possible exten-

sions were discovered but not fully explored.

In constructing the GO gene set list for Study 2, probeID-to-GO-gnc (HGNC symbols)

annotation was considered. There is no compelling reason that multiple GO-gnc translators

43

could not be used. Doing so would likely increase both final chipCoverage and the number

of GO terms used in mvGST analysis.

Using multiple GO-gnc translators would use more completely the annotation available.

Where one probeID failed to map to a specific GO-gnc, there may be a mapping of that

same probeID to a different GO-gnc. The SMP procedure would ensure that multiple p-

values associated with the same probeID would not be included multiple times in any given

GO gene set. Multiple queries to Biomart may have to be done to accomplish this task.

Nevertheless, resulting lists constructed using multiple GO-gncs would be more complete.

When considering Agilent RefSeq as a GO-gnc translator in Chapter 3.2, two queries

were made to Biomart because it was unclear which gnc in Biomart was appropriate. The

code used to query Biomart for RefSeq can be used as an example of using multiple GOgncs

as translators.

Another possible extension is to consider how measures of annotation appropriateness

are to be calculated. These measures provide mapping preferences used in the SMP proce-

dure for each probeID and each GO gene identifier. They ultimately determine how ambi-

guities are handled. In this thesis, the pairwiseAlignment function (from the Biostrings

package [33]) returned sequence similarity scores for type local-global alignments as mea-

sures of annotation appropriateness. More sophisticated methods for assessing annotation

strength may be employed and used by the SMP procedure presented in this thesis.

44

References

[1] Maciejewski, H., “Gene set analysis methods: statistical models and methodological
differences,” Bioinformatics, 2013.

[2] Lodish, H., Berk, A., Zipursky, S., and et al., Molecular Cell Biology , New York: W.
H. Freeman, http://www.ncbi.nlm.nih.gov/books/NBK21640/, 4th ed., 2000.

[3] Robinson, P. N. and Baur, S., Introduction to Bio-Ontologies, CRC Press, 2011.

[4] Romero, J. J., Antoniazzi, A. Q., Smirnova, N. P., Webb, B. T., Yu, F., Davis, J. S., and
Hansen, T. R., “Pregnancy-associated genes contribute to antiluteolytic mechanisms in
ovine corpus luteum,” Physiological Genomics, Vol. 45, No. 22, 11 2013, pp. 1095–1108.

[5] Wood, C., Rabaglino, M., Richards, E., Denslow, N., and et al., “Transcriptomics of
the fetal hypothalamic response to brachiocephalic occlusion and estradiol treatment,”
Physiol Genomics, Jul 15 2014, pp. 523–32.

[6] Gundogdu, O. and Elmi, A., “Genome Resource Facility,”
http://grf.lshtm.ac.uk/microarrayoverview.htm, January 2015.

[7] Wu, Z., “A Review of Statistical Methods for Preprocessing Oligonucleotide Microar-
rays,” Statistical methods in medical research, Vol. 186, 2009, pp. 533–541.

[8] Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf,
U., and Speed, T. P., “Exploration, normalization, and summaries of high density
oligonucleotide array probe level data,” Biostatistics, Vol. 4, No. 2, 2003, pp. 249–264.

[9] Owzar, K., Barry, W. T., Jung, S.-H., Sohn, I., and George, S. L., “Statistical Chal-
lenges in Preprocessing in Microarray Experiments in Cancer,” Clinical Cancer Re-
search, Vol. 14, 2008.

[10] Vardhanabhuti, S., Blakemore, S., Clark, S., Ghosh, S., Stephens, R., and Ra-
jagopalan, D., “A comparison of statistical tests for detecting differential expression
using Affymetrix oligonucleotide microarrays,” Omics, Vol. 10, No. 4, 2006, pp. 555–
566.

[11] Fischer, E., Friedman, M. A., and Markey, M. K., “Empirical comparison of tests
for differential expression on time-series microarray experiments,” Genomics, Vol. 89,
No. 4, 2007, pp. 460–470.

[12] Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A., and Dudoit, S., editors, Bioin-
formatics and Computational Biology Solutions Using R and Bioconductor , Statistics
for Biology and Health, Springer New York, 2005.

[13] Tusher, V. G., Tibshirani, R., and Chu, G., “Significance analysis of microarrays ap-
plied to the ionizing radiation response,” Proceedings of the National Academy of Sci-
ences of the United States of America, Vol. 98, No. 9, 2001, pp. 5116–5121.

45

[14] Smyth, G., “limma: Linear Models for Microarray Data,” Bioinformatics and Compu-
tational Biology Solutions Using R and Bioconductor , edited by R. Gentleman, V. J.
Carey, W. Huber, R. A. Irizarry, and S. Dudoit, Statistics for Biology and Health,
Springer New York, 2005, pp. 397–420.

[15] Team, R. D. C., R: A Language and Environment for Statistical Computing , R Foun-
dation for Statistical Computing, Vienna, Austria, 2008, ISBN 3-900051-07-0.

[16] Gentleman, R. C., Carey, V. J., Bates, D. M., and others, “Bioconductor: Open
software development for computational biology and bioinformatics,” Genome Biology ,
Vol. 5, 2004, pp. R80.

[17] Law, C. W., Chen, Y., Shi, W., and Smyth, G. K., “voom: precision weights unlock
linear model analysis tools for RNA-seq read counts,” Genome Biology , Vol. 15, No. 2,
2014.

[18] Richards, A. J., Muller, B., Shotwell, M., Cowart, L. A., Rohrer, B., and Xinghua,
L., “Assessing the functional coherence of gene sets with metrics based on the Gene
Ontology graph,” Bioinformatics, Vol. 26, No. 10, 2010.

[19] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis,
A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver,
L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin,
G. M., and Sherlock, G., “Gene Ontology: tool for the unification of biology,” Nat
Genet , Vol. 25, No. 1, 05 2000, pp. 25–29.

[20] Mecham, D. S., mvGST: Tools For Multivariate and Directional Gene Set Testing , Mas-
ter’s thesis, Utah State University, http://digitalcommons.usu.edu/gradreports/382,
2014.

[21] “Gene Expression Omnibus,” http://www.ncbi.nlm.nih.gov/geo/, Accessed: 2015-05-
20.

[22] “Agilent,” http://www.chem.agilent.com/cag/bsp/gene lists.asp, Accessed: 2015-05-
20.

[23] “Affymetrix,” http://www.affymetrix.com/support/technical/annotationfilesmain.affx,
May, Accessed: 2015-5-20.

[24] Cunningham, F., Amode, M. R., and et al., “Ensembl 2015,” Nucleic Acids Research,
Vol. 43, No. D1, May 2015, pp. 662–669.

[25] Durinck, S., Spellman, T., Birney, E., and Huber, W., “Mapping identifiers for the
integration of genomic datasets with the R Bioconductor package biomaRt,” Nature
Protocols, Vol. 4, 2009, pp. 1184–1191.

[26] Carlson, M. and Pages, H., AnnotationForge: Code for Building Annotation Database
Packages, R Foundation, R package version 1.8.1.

[27] “OrganismDbi in Bioconductor,” May 2015.

46

[28] Gusfield, D. and Irving, R., “The Stable Marriage Problem: Structure and Algo-
rithms,” MIT Press, 1989, pp. 54.

[29] Gale, D. and Shapley, S., “College Admissions and the Stability of Marriage,” American
Mathematical Monthly , Vol. 69, 1962, pp. 9–14.

[30] Klein, T., matchingMarkets: An R package for the analysis of stable matching , 2014,
R package version 0.1-2.

[31] Davis, S. and Meltzer, P., “GEOquery: a bridge between the Gene Expression Omnibus
(GEO) and Bioconductor,” Bioinformatics, Vol. 14, 2007, pp. 1846–1847.

[32] “HGNC,” http://www.genenames.org/about/faq/#whatisthehgnc, Accessed: 2015-
05-20.

[33] Pages, H., Aboyoun, P., Gentleman, R., and DebRoy, S., “Biostrings: String objects
representing biological sequences, and matching algorithms,” R package version 2.34.0.

47

Appendix

48

library(GEOquery)

library(limma)

library(mvGST)

#################################

#Obtain Data for Example Study 1

#################################

#Get the expression data#

EsetGSE47776 <- getGEO("GSE47776",GSEMatrix=TRUE)

#It reads in as a list of length one. Point to the ExpressionSet and save as an

object

#so that it can be used in the global environment.

EsetGSE47776 <- EsetGSE47776$GSE47776_series_matrix.txt.gz

#Some functions used to explore an expression set object

#class(EsetGSE47776)

featureNames(EsetGSE47776)[1:5]

fvarLabels(EsetGSE47776)

#sampleNames(EsetGSE47776)

#varLabels(EsetGSE47776)

##

#Limma\eBayes to test DE among genes across contrasts of interest

#Results in a matrix of p-values

##

#Extract matrix of expression values

mat <- exprs(EsetGSE47776)

#Name columns appropriately where each column identifys a particular sample

49

colnames(mat) <- c("Day12.P","Day14.P","Day12.NP","Day12.NP","Day12.NP","Day14.P",

"Day14.NP","Day12.P","Day12.P","Day14.NP","Day14.P","Day14.NP")

#Define treatments, fit linear model

Treatment <- as.factor(c("Day12.P","Day14.P","Day12.NP","Day12.NP","Day12.NP","

Day14.P","Day14.NP","Day12.P","Day12.P","Day14.NP","Day14.P","Day14.NP"))

#Define design matrix

design <- model.matrix(~0+Treatment)

colnames(design) <- c(’Day12.NP’,’Day12.P’,’Day14.NP’,’Day14.P’)

#Fit linear model

fit <- lmFit(mat, design)

#Test 1st contrast

contrast1 <- makeContrasts(Day12.P-Day12.NP, levels=design)

fit1 <- contrasts.fit(fit, contrast1)

final.fit1 <- eBayes(fit1)

top1 <- topTableF(final.fit1, adjust.method="BH", n=nrow(mat), sort.by="none")

#Test 2nd contrast

contrast2 <- makeContrasts(Day14.P-Day14.NP, levels=design)

fit2 <- contrasts.fit(fit, contrast2)

final.fit2 <- eBayes(fit2)

top2 <- topTableF(final.fit2, adjust.method="BH", n=nrow(mat),sort.by="none")

#Prepare matrix of p-values

pvals.study1 <- cbind(top1$P.Value, top2$P.Value)

colnames(pvals.study1) <- c("Day12.P-Day12.NP","Day14.P-Day14.NP")

rownames(pvals.study1)<- rownames(top1)

###

#Use mvGST annotation methods to build GO gene set list for example study 1

#Analyse this list with mvGST statistical methods

###

50

#Slightly modify profileTable to not only evaluate the GO gene set list it creates

#but also return it and make it available outside of the function.

profileTable <- function (pvals, gene.names = NULL, contrasts = NULL, list.groups

= NULL,

sig.level = 0.05, gene.ID, organism, affy.chip, ontology = "BP",

method = 2, minsize = 1, maxsize = Inf, mult.adj = "BY")

{

if (is.null(contrasts)) {

contrasts <- colnames(pvals)

}

if (is.null(gene.names)) {

gene.names <- rownames(pvals)

}

if (!is.matrix(pvals)) {

stop("pvals must be a matrix")

}

if (!is.element(mult.adj, c("BY", "SFL"))) {

stop("mult.adj must be one of ’BY’ or ’SFL’")

}

vars <- length(unlist(strsplit(contrasts[1], "[.]")))

if (vars == 1) {

contrasts <- paste(contrasts, ontology, sep = ".")

}

f.one <- 1 - .Machine$double.eps

f.zero <- .Machine$double.eps

pvals <- ifelse(pvals == 1, f.one, pvals)

pvals <- ifelse(pvals == 0, f.zero, pvals)

if (is.null(list.groups)) {

if (any(gene.ID == c("affy", "genbank", "alias", "ensembl",

"entrez", "symbol", "genename", "unigene")) != TRUE) {

old.names <- character()

51

new.names <- character()

for (i in seq.int(from = 0, to = floor(length(gene.names)/1000))) {

low <- i * 1000 + 1

high <- (i + 1) * 1000

if (high > length(gene.names)) {

high <- length(gene.names)

}

gene.names <- toupper(gene.names)

converted1 <- gconvert(gene.names[low:high],

target = "ENTREZGENE_ACC", organism = organism)

old.names <- c(old.names, as.character(converted1$alias))

new.names <- c(new.names, as.character(converted1$target))

}

if (grep("^[[:digit:]]+$", str_trim(gene.names[1])) ==

1) {

all.numeric <- TRUE

}

new.genes <- cbind(old.names, new.names)

new.genes[, 2] <- gsub("ENTREZGENE_ACC:", "", new.genes[,2])

if (all.numeric) {

new.genes[, 1] <- substr(new.genes[, 1], regexpr("[[:digit:]]+$",

new.genes[, 1]), nchar(new.

genes[, 1]))

}

duplicate <- rep(FALSE, length(new.genes[, 1]))

for (i in seq_along(new.genes[, 1])[-1]) {

duplicate[i] <- ifelse(all(new.genes[i,] ==

new.genes[i - 1,]), TRUE, FALSE)

}

new.genes <- new.genes[!duplicate,]

converted <- geneNameConvertRows(pvals, gene.names,

new.genes, method)

52

pvals <- converted$p.mat

gene.names <- converted$genes

gene.ID <- "entrez"

}

list.groups1 <<- generateGeneSets(ontology = ontology,

species = organism, ID = gene.ID, affy.chip)

offspring <- get("as.list", pos = "package:AnnotationDbi")(get(paste("GO",

ontology, "

OFFSPRING",

sep = "")))

list.groups <- sapply(1:length(offspring), function(x) fillInList(list.groups1

[[names(offspring[x])]],

names(offspring)[x

], offspring,

list.groups1))

names(list.groups) <- names(offspring)

size <- sapply(list.groups, length)

list.groups <<- list.groups[(size >= minsize) & (size <=

maxsize)]

}

pmat <- mvGSTObject(gene.names, contrasts, pvals, list.groups)

grouped.pmat <- separate(pmat, list.groups)

if (mult.adj == "SFL") {

adjusted <- grouped.pmat

adjusted$adjusted.group.pvals <- grouped.pmat$grouped.raw

adjusted$adjusted.group.pvals[] <- NA

ncgp <- ncol(grouped.pmat$grouped.raw)

for (i in seq_len(ncgp)) {

pvalues <- grouped.pmat$grouped.raw[, i]

two.sided <- convertPvalues(pvalues, two.sided = FALSE)

names(two.sided) <- grouped.pmat$group.names

new.pvalues <- p.adjust.SFL(two.sided, sig.level = sig.level)

53

relative <- ifelse(pvalues < 0.5, 1, -1)

one.combined <- convertPvalues(new.pvalues, relative)

adjusted$adjusted.group.pvals[, i] <- one.combined

}

}

else if (mult.adj == "BY") {

adjusted <- oneSideBYAdjust(grouped.pmat)

}

one.zero <- changeTO10(adjusted, sig.level = sig.level)

almost.final <- finalResults(one.zero)

near.final <- cut(almost.final)

final <- mvSort(near.final)

return(final)

}

#Generate mvGST analysis results and return the GO gene set list used in the

analysis

results.mvGST <- profileTable(pvals.study1, sig.level = 0.05, gene.ID = "affy",

organism = "btaurus",

affy.chip="bovine.db", ontology = "BP", method = 2,

minsize = 1,

maxsize = Inf, mult.adj = "BY")

#Save matrix of p-values to be used latter in mvGST analysis with different GO

gene set lists

#Rename list.groups to identify list was built for Bos taurus with mvGST

annotation methods

#Save the renamed list

save(pvals.study1, file="/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Thesis/R Code/pvals.study1")

profileTable.btaurus <- list.groups

54

save(profileTable.btaurus,file="/Users/russell/Desktop/USU Student Materials/

Research Summer 2014/Thesis/R Code/profileTable.btaurus")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/pvals.study1")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/profileTable.btaurus")

##

#Create GO gene set list using biomart annotation method for example study 1

#Test the list for DE among GO gene sets using mvGST

##

library(biomaRt)

library(dplyr)

#To access archived databases it’s recommended to set the host to the desired

archived Ensembl website

#A list of archived websites can be found at: http://www.ensembl.org/info/website/

archives/index.html

#80 or may2015 is the most recent

ensembl_80 = useMart(biomart="ENSEMBL_MART_ENSEMBL", host="may2015.archive.ensembl

.org",

path="/biomart/martservice")

#View list of datasets available in this biomart version

#listDatasets(ensembl_80)

#Check number of different species are supported in this biomart version

#dim(ensembl_80)

#Qeury Ensembl database for Bos taurus

ensembl_80_btaurus <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="may2015.

archive.ensembl.org",

55

path="/biomart/martservice", dataset="btaurus_gene_

ensembl")

#Databases are large, check dimension first before exploring attributes

#dim(listAttributes(ensembl_80_btaurus))

#See what what attributes are available for Bos taurus

#This argument is where gnc options can be found

#listAttributes(ensembl_80_btaurus)[1:100,]

#Creates data frame of selected items where rows are different annotation mappings

#For example study 1, the microarray is Affymetrix Bovine. "namespace_1003" is GO

domain

#Query takes less than a minuete.

annotation <- getBM(attributes=c(’affy_bovine’, ’go_id’, ’namespace_1003’),

values=T, mart = ensembl_80_btaurus)

#The resulting data frame has missing values. Each column’s missing values either

#are represented by "" or NA but never both. Missing values can be avoided with

specific

#arguments passed to getBM, but subsetting must be done to include on BP GO so it’

s easier

#to just subset out rows with missing values at the same time.

new.annot <- filter(select(annotation, affy_bovine, go_id, go_domain=namespace_

1003),

affy_bovine != "", go_id != "", go_domain == "biological_process

")

#Create GO gene set lists

listBuilder <- function (annotations) {

x <- annotations$go_id

y <- annotations$affy_bovine #specific to the probeIDs or gnc

56

uniques <- unique(x)

groupList <- setNames(vector("list", length(unique(x))), uniques)

finish <- length(uniques)

for (i in 1:finish)

{

t <- grep(uniques[i], x)

groupList[[i]] <- y[t]

}

#The hierarchical structure of GO necessitates getting the offspring GO terms

and including them in the list

offspring <- get("as.list", pos = "package:AnnotationDbi")(get(paste("GO", "BP",

"OFFSPRING", sep = "")))

groupList1 <- sapply(1:length(offspring), function(x) fillInList(groupList[[

names(offspring[x])]],

names(offspring)[x],

offspring,

groupList))

names(groupList1) <- names(offspring)

#Only include gene sets with at least one gene

final.list <- groupList1[sapply(groupList1, length)!=0]

return(final.list)

}

#Takes about 4 minutes

ptm <- proc.time()

groupList <- listBuilder(new.annot)

proc.time() - ptm

#Check list for any duplicated probeIDs within each GO gene set

sum(unlist(lapply(groupList, function (x) sum(duplicated(x)))))

57

#Save list with name that identifys some of the list’s attributes and also so you

#don’t have to create the list until a new version of biomart is released

biomart.btaurus <- groupList

save(biomart.btaurus,file="/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Thesis/R Code/biomart.btaurus")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/biomart.btaurus")

results.biomart <- profileTable(pvals.study1, list.groups=biomart.btaurus, sig.

level = 0.05, mult.adj = "BY")

##

#Create GO gene set list using affy annotation method for example study 1

#Test the list for DE among GO gene sets using mvGST

##

#This file was downloaded on May 26 2015 from the Affymetrix website

#found here: http://www.affymetrix.com/support/technical/annotationfilesmain.affx

annot <- read.csv(file="/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Data/Bovine/Bovine.na35.annot.csv",head=TRUE,sep=",", skip=19)

sub <- as.matrix(select(annot,

probe_id = Probe.Set.ID,

go_id_bp = Gene.Ontology.Biological.Process))

#Get go_id terms out of column gene.onotology.biological.process with regular

expression

go_id <- list()

finish <- length(sub[,2])

for (i in 1:finish) {

go_id[[i]] <- unlist(strsplit(as.character(sub[,2][i]), "[^0-9]+"))

}

58

#Build GO terms gene set list

#Takes over an hour

gene.set.list <- setNames(vector("list", sum(nchar(unique(unlist(go_id)))==7)),

unique(unlist(go_id))[nchar(unique(unlist(go_id)))==7])

finish <- length(gene.set.list)

for (i in 1:finish) {

t <- grep(names(gene.set.list[i]), go_id)

gene.set.list[[i]] <- sub[t,1]

}

names(gene.set.list) <- paste0("GO:", names(gene.set.list))

#The hierarchical structure of GO necessitates getting the offspring GO terms and

including them in the list

offspring <- get("as.list", pos = "package:AnnotationDbi")(get(paste("GO", "BP", "

OFFSPRING", sep = "")))

full.gene.set.list <- sapply(1:length(offspring), function(x) fillInList(gene.set.

list[[names(offspring[x])]],

names(offspring)

[x],

offspring,

gene.set.list

))

names(full.gene.set.list) <- names(offspring)

#Only include gene sets with at least one gene

final.list <- full.gene.set.list[sapply(full.gene.set.list, length)!=0]

#Check list for any duplicated probeIDs within each GO gene set

sum(unlist(lapply(final.list, function (x) sum(duplicated(x)))))

#Save list with meaningful name

59

#Saving this list is important because it takes over an hour to create!!

affy.btaurus <- final.list

save(affy.btaurus,file="/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Thesis/R Code/affy.btaurus")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/affy.btaurus")

results.affy <- profileTable(pvals.study1, list.groups=affy.btaurus, sig.level =

0.05, mult.adj = "BY")

library(GEOquery)

library(mvGST)

library(GO.db)

library(gProfileR)

library(biomaRt)

library(Biostrings)

library(microbenchmark)

library(matchingMarkets)

library(limma)

library(dplyr)

#select() is masked by the following packages: biomaRt, AnnotationDbi, MASS

#move select() from dplyr to gobal environment so it’s always called first.

select <- dplyr:::select

##

#Annotation for Agilent-019921 Microarray

#Agilent annotation file downloaded from website: https://earray.chem.agilent.com/

earray/

#on Monday, November 10, 2014 at 11:39 AM

60

#Researcher Group’s annotation obtained through Gene Expression Omnibus: GPL14112

##

#Read in data downloaded from Agilent Website

agilent <- read.delim("/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Data/AllAnnotations\\019921_D_AA_20141001.txt"

, stringsAsFactors=F, fill=TRUE, sep=)

#Read in data from Gene Expression Omnibus

research <- Table(getGEO("GPL14112", GSEMatrix=TRUE))

#Some functions to be used later

quickView <- function (data) {

#Function to Get General Info about Annotation from Sources

#Function takes data frame as input

#Make sure all missing data is "" not NAs

data[is.na(data)] <- ""

overview <- matrix(ncol=6)

for (i in 1:length(colnames(data))) {

colVec <- data[,i]

rows <- length(colVec)

annotated <- length(colVec[colVec !=""])

duplicates <- sum(duplicated(colVec[colVec !=""]) | duplicated(colVec[colVec !

=""], fromLast=TRUE))

uniques <- annotated-duplicates

p.annot <- round(annotated/rows,2)

p.un.annot <- round(uniques/rows,2)

p.annot.dup <- round((annotated-uniques)/annotated,2)

overview <- rbind(overview, c(rows,annotated,p.annot, uniques, p.un.annot, p.

annot.dup))

}

overview <- overview[-1,]

61

row.names(overview) <- colnames(data)

colnames(overview) <- c("rows","rows w\annot.","% rows w\annot.","rows w\nd.

annot.","% rows w\nd.annot.","% annot. duplicated")

overview

}

gncTranslate <- function (bimapLeft, bimapRight, gnc.translator, all.probe.ids) {

#Function to merge two bimaps and give info about the merge

#Make sure there are no missing entries ("" or NA) in either bimap

#Make sure merger is a character column name common to both bimaps (gnc to use

as translator)

merged <- distinct(merge(bimapLeft, bimapRight, gnc.translator))

colnames(merged) <- c(’gnc’,’probe_id’,’go_id’,’go_domain’)

#Microarray chip coverage as intersection of unique probe_ids after merge over

all unique probe_ids

common <- intersect(unique(all.probe.ids), unique(merged$probe_id))

chipC <- length(common)/length(unique(all.probe.ids))

sets <- length(unique(merged$go_id))

gncs <- length(unique(merged$gnc))

probes <- length(unique(merged$probe_id))

annotations <- distinct(select(merged, gnc, probe_id))

annots <- dim(annotations)[1]

myList <- list()

myList[[1]] <- merged

myList[[2]] <- annotations

myList[[3]] <- data.frame("GOgncs"=gncs, "probeIDs"=probes, "Annotations"=annots

,

"GO IDs"=sets, "chipCoveragePotential"=chipC)

names(myList) <- c("groupBuilder", "annotations", "performance")

62

myList

}

groupBuilder <- function (groupBuilder) {

x <- groupBuilder$go_id

y <- groupBuilder[,c("gnc","probe_id")]

uniques <- unique(x)

groupList <- setNames(vector("list", length(unique(x))), uniques)

finish <- length(uniques)

for (i in 1:finish)

{

t <- grep(uniques[i], x)

groupList[[i]] <- y[t,]

}

groupList

}

alignments <- function (gnc.seqs, probe.seqs, annotations, gnc, probe_id) {

mergedSeqs <- merge(merge(annotations, gnc.seqs, by=gnc), probe.seqs, by=probe_

id)

typeChoice <- c("global", "local", "overlap", "global-local","local-global")

submat <- nucleotideSubstitutionMatrix(match = 0, mismatch = -1, baseOnly =

FALSE)

mergedSeqs <- data.frame(mergedSeqs,"align_score"=NA)

finish <- dim(mergedSeqs)[1]

for (i in 1:finish) {

mergedSeqs[i, 5] <- pairwiseAlignment(pattern = mergedSeqs$gnc.seq[i], subject

= mergedSeqs$probe_id.seq[i],

substitutionMatrix = submat, gapOpening = 0,

gapExtension = 1,

scoreOnly = TRUE, type=typeChoice[4])

}

63

mergedSeqs[,c(’probe_id’,’gnc’,’align_score’)]

}

annotator <- function(m) {

data.frame(m, "annotations"=apply(m, 1, function(x) paste(x[1],x[2], sep="<MAP>"

)))

}

smp <- function (groupList.annot, m.annot) {

#Each element in groupsList.annot should have three columns "gnc","probe_id","

annotations"

#m.annot should have four columns named "gnc","probe_id","align_score","

annotations"

groups <- list()

finish <- length(names(groupList.annot))

for (k in 1:finish) {

groups[[k]] <- data.frame(groupList.annot[[k]], "score"=NA)

finish1 <- dim(groups[[k]])[1]

for (i in 1:finish1) {

t <- grep(groups[[k]]$annotations[i], m.annot$annotations, fixed=TRUE)

groups[[k]]$score[i] <- max(m.annot$align_score[t])

}

}

#order each gnc type by score

gnc.ordered.groups <- list()

probes.ordered.groups <- list()

for (i in 1:finish) {

gnc.ordered.groups[[i]] <- groups[[i]][order(groups[[i]]$gnc, groups[[i]]$

score, decreasing=T),]

probes.ordered.groups[[i]] <- groups[[i]][order(groups[[i]]$probe_id, groups[[

i]]$score, decreasing=T),]

}

length(gnc.ordered.groups)

64

length(probes.ordered.groups)

gnc.ordered.groups[20]

probes.ordered.groups[20]

list.groups <- list()

for(i in 1:finish) {

n.pro <- length(unique(gnc.ordered.groups[[i]]$probe_id))

n.gnc <- length(unique(gnc.ordered.groups[[i]]$gnc))

u.pro <- unique(gnc.ordered.groups[[i]]$probe_id)

u.gnc <- unique(gnc.ordered.groups[[i]]$gnc)

gnc.ordered <- gnc.ordered.groups[[i]]$gnc

probes.ordered <- probes.ordered.groups[[i]]$probe_id

if (n.pro > 1 & n.gnc > 1) {

gnc.prefs <- vector(,n.pro)

for (k in 1:n.gnc) {

t <- grep(u.gnc[k], gnc.ordered)

gnc.prefs <- cbind(gnc.prefs, c(t, rep(NA,n.pro-length(t))))

}

gnc.prefs <- gnc.prefs[,-1]

probe.prefs <- vector(,n.gnc)

for (a in 1:n.pro) {

t <- grep(u.pro[a], probes.ordered)

probe.prefs <- cbind(probe.prefs, c(t, rep(NA,n.gnc-length(t))))

}

probe.prefs <- probe.prefs[,-1]

result <- daa(s.prefs=gnc.prefs, c.prefs=probe.prefs)$match.mat

colnames(result) <- u.pro

list.groups[[i]] <- rownames(which(t(result)==TRUE, arr.ind = TRUE))

} else {

65

list.groups[[i]] <- as.vector(gnc.ordered.groups[[i]]$probe_id)

}

}

list.groups

}

##

#####SELECT GENE NAMING CONVENTION (GNC) TO USE AS TRANSLATOR

#Get overview info about annotation to find and select ’sensible’ gnc-translator

candidates.

##

quickView(agilent)

quickView(research)

##

#GenbankAccession as gnc-translator (source:agilent)

##

#Select version of biomart (see biomart website for list of available archives)

#host="may20015 portion corresponds to ensembl version 80 (current version)

#Select organism with dataset="" option. To see possible choices use:

#listDatasets(ensembl_80)

ensembl_80_oaries <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="may2015.archive

.ensembl.org",

path="/biomart/martservice", dataset="oaries_gene_

ensembl")

#Query biomart to get gnc-go bimap

#dim(listAttributes(ensembl_80_oaries))

#listAttributes(ensembl_80_oaries)[1:100,]

#listFilters(ensembl_80_oaries)

embl.go <- getBM(attributes=c(’embl’, ’go_id’, ’namespace_1003’),

filters="with_go_id", values=TRUE, mart = ensembl_80_oaries)

66

embl.go <- filter(embl.go, embl != "", go_id != "", namespace_1003 != "",

namespace_1003=="biological_process")

#Get from source probeID-gnc bimap

#Make sure that gnc translator has common character name in both bimaps

probe.embl <- filter(select(agilent, ProbeID, GenbankAccession), ProbeID != "",

GenbankAccession != "")

probe.embl <- select(probe.embl, ProbeID, embl=GenbankAccession)

#Use gncTranslate function to estimate gnc-translator quality

#Larger numbers in GO.IDs and chipCoveragePotential is better.

agilent.gnc.GB_ACC <- gncTranslate(probe.embl,embl.go,"embl",agilent$ProbeID)

#names(agilent.gnc.GB_ACC)

#head(agilent.gnc.GB_ACC$groupBuilder)

#head(agilent.gnc.GB_ACC$annotations)

agilent.gnc.GB_ACC$performance

##

#Unigene as gnc-translator (source:agilent)

##

#Query biomart to get gnc-go bimap

#dim(listAttributes(ensembl_80_oaries))

#listAttributes(ensembl_80_oaries)[1:100,]

#listFilters(ensembl_80_oaries)

unigene.go <- getBM(attributes=c(’unigene’, ’go_id’, ’namespace_1003’),

filters="with_unigene", values=TRUE, mart = ensembl_80_oaries)

#Include distinct rows of row combined queries then filter rows to specified

domain and get rid of missings

unigene.go <- filter(unigene.go, unigene != "", go_id != "", namespace_1003 != "",

namespace_1003=="biological_process")

#Get from source probeID-gnc bimap

67

#Make sure that gnc translator has common character name in both bimaps

probe.unigene <- filter(select(agilent, ProbeID, UniGeneID), ProbeID != "",

UniGeneID != "")

probe.unigene <- select(probe.unigene, ProbeID, unigene=UniGeneID)

#Use gncTranslate function to estimate gnc-translator quality

#Larger numbers in GO.IDs and chipCoveragePotential is better.

agilent.gnc.unigene <- gncTranslate(probe.unigene,unigene.go,"unigene",agilent$

ProbeID)

#names(agilent.gnc.unigene)

#head(agilent.gnc.unigene$groupBuilder)

#head(agilent.gnc.unigene$annotations)

agilent.gnc.unigene$performance

##

#Entrez as gnc-translator (source:agilent)

##

#Query biomart to get gnc-go bimap

#dim(listAttributes(ensembl_80_oaries))

#listAttributes(ensembl_80_oaries)[1:100,]

#listFilters(ensembl_80_oaries)

entrez.go <- getBM(attributes=c(’entrezgene’, ’go_id’, ’namespace_1003’),

filters="with_entrezgene", values=TRUE, mart = ensembl_80_oaries)

#Include distinct rows of row combined queries then filter rows to specified

domain and get rid of missings

entrez.go <- filter(entrez.go, entrezgene != "", go_id != "", namespace_1003 != ""

, namespace_1003=="biological_process")

#Get from source probeID-gnc bimap

#Make sure that gnc translator has common character name in both bimaps

agilent$EntrezGeneID[is.na(agilent$EntrezGeneID)] <- "" #Careful with entrez in

agilent. Missing data are NAs not "".

68

probe.entrez <- filter(select(agilent, ProbeID, EntrezGeneID), ProbeID != "",

EntrezGeneID != "")

#Make sure that gnc translator has common character name in both bimaps

probe.entrez <- select(probe.entrez, ProbeID, entrezgene=EntrezGeneID)

#Use gncTranslate function to estimate gnc-translator quality

#Larger numbers in GO.IDs and chipCoveragePotential is better.

agilent.gnc.entrez <- gncTranslate(probe.entrez,entrez.go,"entrezgene", agilent$

ProbeID)

#names(agilent.gnc.entrez)

#head(agilent.gnc.entrez$groupBuilder)

#head(agilent.gnc.entrez$annotations)

agilent.gnc.entrez$performance

###

#RefSeq as gnc-translator (source:agilent)

#This is an example of multiple types of gncs being classified as one by a

manufactuerer.

#Agilent has refseq as one gnc but biomart has three for refseq.

#To handle this issue, multiple queries to biomart can be made to increase

annotation

#coverage.

###

#Query biomart to get gnc-go bimap

#dim(listAttributes(ensembl_80_oaries))

#listAttributes(ensembl_80_oaries)[1:100,]

#listFilters(ensembl_80_oaries)

refseq_mrna.go <- getBM(attributes=c(’refseq_mrna’, ’go_id’, ’namespace_1003’),

values=TRUE, mart = ensembl_80_oaries)

refseq_mrna_predicted.go <- getBM(attributes=c(’refseq_mrna_predicted’, ’go_id’, ’

namespace_1003’),

values=TRUE, mart = ensembl_80_oaries)

69

refseq_ncrna_predicted.go <- getBM(attributes=c(’refseq_ncrna_predicted’, ’go_id’,

’namespace_1003’),

values=TRUE, mart = ensembl_80_oaries)

#Make the multiple biomart queries one

colnames(refseq_mrna.go) <- c("refseq",’go_id’,’namespace_1003’)

colnames(refseq_mrna_predicted.go) <- c("refseq",’go_id’,’namespace_1003’)

colnames(refseq_ncrna_predicted.go) <- c("refseq",’go_id’,’namespace_1003’)

#Include distinct rows of row combined queries then filter rows to specified

domain and get rid of missing

refseq.go <- distinct(rbind(refseq_mrna.go,refseq_mrna_predicted.go,refseq_ncrna_

predicted.go))

refseq.go <- filter(refseq.go, refseq != "", go_id != "", namespace_1003 != "",

namespace_1003=="biological_process")

#Get from source probeID-gnc bimap

#Make sure that gnc translator has common character name in both bimaps

probe.refseq <- filter(select(agilent, ProbeID, RefSeqAccession), ProbeID != "",

RefSeqAccession != "")

probe.refseq <- select(probe.refseq, ProbeID, refseq=RefSeqAccession)

#Use gncTranslate function to estimate gnc-translator quality

#Larger numbers in GO.IDs and chipCoveragePotential is better.

agilent.gnc.refseq <- gncTranslate(probe.refseq,refseq.go,"refseq", agilent$

ProbeID)

#names(agilent.gnc.refseq)

#head(agilent.gnc.refseq$groupBuilder)

#head(agilent.gnc.refseq$annotations)

agilent.gnc.refseq$performance

###

#The research file has a gnc titled ’Primary Accession. This gnc actually is

#a composite of other gncs in the file, many of which are GB_ACCs.

70

#GB_ACC as gnc-translator (source:research)

###

#Query biomart to get gnc-go bimap has alread been done for emble (genbank) ID

#Get from source probeID-gnc bimap

#Make sure that gnc translator has common character name in both bimaps

probe.embl <- filter(select(research, ID, GB_ACC), ID != "", GB_ACC != "")

probe.embl <- select(probe.embl, ID, embl=GB_ACC)

#Use gncTranslate function to estimate gnc-translator quality

#Larger numbers in GO.IDs and chipCoveragePotential is better.

research.gnc.embl <- gncTranslate(probe.embl,embl.go,"embl", research$ID)

#names(research.gnc.embl)

#head(research.gnc.embl$groupBuilder)

#head(research.gnc.embl$annotations)

research.gnc.embl$performance

##

#ORF as gnc-translator (source:research)

#ORF is not a gnc, but ORF contains majority

#HGNC symbols gnc and this was used.

##

#Query biomart to get gnc-go bimap

#dim(listAttributes(ensembl_80_oaries))

#listAttributes(ensembl_80_oaries)[1:100,]

#listFilters(ensembl_80_oaries)

hgnc_symbol.go <- getBM(attributes=c(’hgnc_symbol’, ’go_id’, ’namespace_1003’),

values=TRUE, mart = ensembl_80_oaries)

#Include distinct rows of row combined queries then filter rows to specified

domain and get rid of missings

hgnc_symbol.go <- filter(hgnc_symbol.go, hgnc_symbol != "", go_id != "", namespace

_1003 != "", namespace_1003=="biological_process")

71

#Get from source probeID-gnc bimap

#Make sure that gnc translator has common character name in both bimaps

probe.hgnc_symbol <- filter(select(research, ID, ORF), ID != "", ORF != "")

probe.hgnc_symbol <- select(probe.hgnc_symbol, ID, hgnc_symbol=ORF)

#Use gncTranslate function to estimate gnc-translator quality

#Larger numbers in GO.IDs and chipCoveragePotential is better.

agilent.hgnc_symbol <- gncTranslate(probe.hgnc_symbol,hgnc_symbol.go,"hgnc_symbol"

,research$ID)

#names(agilent.hgnc_symbol)

#head(agilent.hgnc_symbol$groupBuilder)

#head(agilent.hgnc_symbol$annotations)

agilent.hgnc_symbol$performance

##

#Take best gnc-translator use SMP procedure to build GO Gene Set List

##

#Local-Global Alignments to rank annotations within each unique go term

#First guild gene group sets

#Takes about 3-4 min.

groupList <- groupBuilder(agilent.hgnc_symbol$groupBuilder)

#Get Sequences for unique gnc and unique prob with biomart query

#Takes about 2-3 min.

gnc.seqs <- getBM(attributes=c(’cdna’,’hgnc_symbol’),

filters="hgnc_symbol", values=unique(agilent.hgnc_symbol$

annotations$gnc),

mart = ensembl_80_oaries)

probe.seqs <- read.delim("/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Data/SequenceList\\019921_D_SequenceList_20141001.txt"

72

, stringsAsFactors=F, fill=TRUE, sep=)

#Change column names appropriately (probe identifier and gnc columns should have

same names across bimaps)

colnames(gnc.seqs) <- c("gnc.seq","gnc")

colnames(probe.seqs) <- c("probe_id","probe_id.seq")

colnames(agilent.hgnc_symbol$annotations) <- c("gnc","probe_id")

#Sequence alignments for each unique combination of probe and gnc seqs.

#Some annotations will have different combinations of probe and gnc seqs, but

#they are few and this will be handled later in the smp function by picking the

#max alignment score for duplicate annotations.

#Sequences are used to get align_scores, but are not returned.

#Takes about 3-4 min.

agilent.hgnc_symbol.alignments <- alignments(gnc.seqs, probe.seqs, agilent.hgnc_

symbol$annotations,

colnames(agilent.hgnc_symbol$annotations)[1], colnames(agilent.hgnc_

symbol$annotations)[2])

#dim(agilent.hgnc_symbol.alignments)

#Matrix of containing bimap where rows are annotations with align_scores for each

row

#Be sure to put columns in appropriate order to match annotations in groupList

#(returned by groupBuilder.)

m <- agilent.hgnc_symbol.alignments[,c("gnc", "probe_id", "align_score")]

#The annotator function provides one annotation for each row (through paste

function) and

#will help with computation time when matching later.

m.annot <- annotator(m)

groupList.annot <- lapply(groupList, annotator)

73

#Function to grab preferences, rank them for each element and use them in

#Gale-Shapley’s Deferred Acceptance Algorithm (daa) also known as the stable

#marriage algorithm for the stable marriage problem (smp).

#Takes about #4-5 min.

list.groups <- smp(groupList.annot, m.annot)

#list.groups[1:10]

list.groups.oaries <- list.groups

#Put GO Terms back as names of list

names(list.groups.oaries) <- names(groupList)

#The hierarchical structure of GO necessitates getting the offspring GO terms and

including them in the list

offspring <- get("as.list", pos = "package:AnnotationDbi")(get(paste("GO", "BP", "

OFFSPRING", sep = "")))

full.list.groups.oaries <- sapply(1:length(offspring), function(x) fillInList(list

.groups.oaries[[names(offspring[x])]],

names(offspring)

[x],

offspring,

list.groups.

oaries))

names(full.list.groups.oaries) <- names(offspring)

#Only include gene sets with at least one gene

final.list.groups.oaries <- full.list.groups.oaries[sapply(full.list.groups.oaries

, length)!=0]

#Check list for any duplicated probeIDs within each GO gene set

sum(unlist(lapply(final.list.groups.oaries, function (x) sum(duplicated(x)))))

#Save with meaningful name.

74

#Total procedure takes less than 15 min.

save(final.list.groups.oaries, file="/Users/russell/Desktop/USU Student Materials/

Research Summer 2014/Thesis/R Code/final.list.groups.oaries")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/final.list.groups.oaries")

####################

#mvGST Analysis

####################

#Get the expression data#

EsetGSE52888 <- getGEO("GSE52888",GSEMatrix=TRUE)

#It reads in as a list of length one. Point to the ExpressionSet and save as an

object

#so that it can be used in the global environment.

EsetGSE52888 <- EsetGSE52888$GSE52888_series_matrix.txt.gz

#Get probeIDs associated with GSE52888

probe.ids <- getGEO("GPL10427",GSEMatrix=FALSE)

probe.ids <- Table(probe.ids)[,8]

probe.ids <- as.character(probe.ids)

#Some functions used to explore an expression set object

#class(EsetGSE52888)

featureNames(EsetGSE52888)[1:5]

fvarLabels(EsetGSE52888)

#sampleNames(EsetGSE52888)

#varLabels(EsetGSE52888)

##

#Limma\eBayes to test DE among genes across contrasts of interest

#Results in a matrix of p-values

##

75

#Extract matrix of expression values

mat <- exprs(EsetGSE52888)

#Name columns appropriately where each column identifys a particular sample

#C:Control

#BO:Brachiocephalic Occlusion

#EBO:Estradiol Plus Brachiocephalic Occlusion

#E:Estradiol

colnames(mat) <- c("C","C","C","C",

"BO","BO","BO","BO",

"EBO","EBO","EBO","EBO",

"E","E","E","E")

#Define treatments, fit linear model

Treatment <- as.factor(c("C","C","C","C","BO","BO","BO","BO",

"EBO","EBO","EBO","EBO","E","E","E","E"))

#Define design matrix

design <- model.matrix(~0+Treatment)

colnames(design) <- c(’C’,’BO’,’EBO’,’E’)

#Fit linear model

fit <- lmFit(mat, design)

#Test 1st contrast

contrast1 <- makeContrasts(BO-C, levels=design)

fit1 <- contrasts.fit(fit, contrast1)

final.fit1 <- eBayes(fit1)

top1 <- topTableF(final.fit1, adjust.method="BH", n=nrow(mat), sort.by="none")

#Test 2nd contrast

contrast2 <- makeContrasts(EBO-C, levels=design)

fit2 <- contrasts.fit(fit, contrast2)

final.fit2 <- eBayes(fit2)

top2 <- topTableF(final.fit2, adjust.method="BH", n=nrow(mat),sort.by="none")

76

#Test 3rd contrast

contrast3 <- makeContrasts(E-C, levels=design)

fit3 <- contrasts.fit(fit, contrast3)

final.fit3 <- eBayes(fit3)

top3 <- topTableF(final.fit3, adjust.method="BH", n=nrow(mat),sort.by="none")

#Prepare matrix of p-values

pvals.study2 <- cbind(top1$P.Value, top2$P.Value, top3$P.Value)

colnames(pvals.study2) <- c("BO-C","EBO-C","E-C")

rownames(pvals.study2)<- probe.ids

head(pvals.study2)

save(pvals.study2, file="/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Thesis/R Code/pvals.study2")

######################

#Study 1 Comparisons

######################

library(graphics)

library(Hmisc)

library(mvGST)

library(dplyr)

my.colors <- c("#66c2a5", "#fc8d62", "#8da0cb")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/profileTable.btaurus")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/biomart.btaurus")

77

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/affy.btaurus")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/pvals.study1")

annot <- read.csv(file="/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Data/Bovine/Bovine.na35.annot.csv",head=TRUE,sep=",", skip=19)

total.probes <- length(unique(annot$Probe.Set.ID))

#Unique GO identifiers in each list

y <- list()

y[[1]] <- unique(names(biomart.btaurus))

y[[2]] <- unique(names(affy.btaurus))

y[[3]] <- unique(names(profileTable.btaurus))

#Unique genes in each list

x <- list()

x[[1]] <- unique(unlist(biomart.btaurus))

x[[2]] <- unique(unlist(affy.btaurus))

x[[3]] <- unique(unlist(profileTable.btaurus))

#Unique GO gene sets

w <- list()

w[[1]] <- unique(biomart.btaurus)

w[[2]] <- unique(affy.btaurus)

w[[3]] <- unique(profileTable.btaurus)

##########################

#Compare list performace

##########################

pdf("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/

figures/listPerformancePlot.pdf")

78

plot(y=sapply(y, length), x=sapply(x, length)/total.probes, pch=c(21,22,23),

bg=my.colors, xlab="CHIP COVERAGE", ylab="UNIQUE GO IDS", cex=2)

legend(0.42, 9400, c("Biomart", "Affymetrix", "mvGST"), pt.bg=my.colors,

pch=c(21,22,23), bty="n", cex=1.2, pt.cex=2)

dev.off()

#############################

#Compare lists to each other

#############################

#GO Term Identifiers

ycomp <- vector()

ycomp[1] <- length(intersect(y[[1]], y[[2]]))

ycomp[2] <- length(unique(setdiff(union(y[[1]], y[[2]]), intersect(y[[1]], y[[2]])

)))

ycomp[3] <- length(intersect(y[[1]], y[[3]]))

ycomp[4] <- length(unique(setdiff(union(y[[1]], y[[3]]), intersect(y[[1]], y[[3]])

)))

ycomp[5] <- length(intersect(y[[2]], y[[3]]))

ycomp[6] <- length(unique(setdiff(union(y[[2]], y[[3]]), intersect(y[[2]], y[[3]])

)))

ycomp[7] <- length(intersect(intersect(y[[1]], y[[2]]), y[[3]]))

ycomp[8] <- length(unique(setdiff(union(y[[1]], y[[2]]), y[[3]]),

intersect(intersect(y[[1]], y[[2]]), y[[3]])))

y.inters <- c(ycomp[1],ycomp[3],ycomp[5],ycomp[7])

y.not.inters <- c(ycomp[2],ycomp[4],ycomp[6],ycomp[8])

y.percent.shared <- y.inters/(y.inters+y.not.inters)

#Unique Gene Identifiers

xcomp <- vector()

xcomp[1] <- length(intersect(x[[1]], x[[2]]))

79

xcomp[2] <- length(unique(setdiff(union(x[[1]], x[[2]]), intersect(x[[1]], x[[2]])

)))

xcomp[3] <- length(intersect(x[[1]], x[[3]]))

xcomp[4] <- length(unique(setdiff(union(x[[1]], x[[3]]), intersect(x[[1]], x[[3]])

)))

xcomp[5] <- length(intersect(x[[2]], x[[3]]))

xcomp[6] <- length(unique(setdiff(union(x[[2]], x[[3]]), intersect(x[[2]], x[[3]])

)))

xcomp[7] <- length(intersect(intersect(x[[1]], x[[2]]), x[[3]]))

xcomp[8] <- length(unique(setdiff(union(x[[1]], x[[2]]), x[[3]]),

intersect(intersect(x[[1]], x[[2]]), x[[3]])))

x.inters <- c(xcomp[1],xcomp[3],xcomp[5],xcomp[7])

x.not.inters <- c(xcomp[2],xcomp[4],xcomp[6],xcomp[8])

x.percent.shared <- x.inters/(x.inters+x.not.inters)

#GO Gene Sets

#Takes approx. to run, best to save results

wcomp <- vector()

wcomp[1] <- length(intersect(w[[1]], w[[2]]))

wcomp[2] <- length(unique(setdiff(union(w[[1]], w[[2]]), intersect(w[[1]], w[[2]])

)))

wcomp[3] <- length(intersect(w[[1]], w[[3]]))

wcomp[4] <- length(unique(setdiff(union(w[[1]], w[[3]]), intersect(w[[1]], w[[3]])

)))

wcomp[5] <- length(intersect(w[[2]], w[[3]]))

wcomp[6] <- length(unique(setdiff(union(w[[2]], w[[3]]), intersect(w[[2]], w[[3]])

)))

wcomp[7] <- length(intersect(intersect(w[[1]], w[[2]]), w[[3]]))

wcomp[8] <- length(unique(setdiff(union(w[[1]], w[[2]]), w[[3]]),

intersect(intersect(w[[1]], w[[2]]), w[[3]])))

80

save(wcomp, file="/Users/russell/Desktop/USU Student Materials/Research Summer

2014/Thesis/R Code/wcomp")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/wcomp")

w.inters <- c(wcomp[1],wcomp[3],wcomp[5],wcomp[7])

w.not.inters <- c(wcomp[2],wcomp[4],wcomp[6],wcomp[8])

w.percent.shared <- w.inters/(w.inters+w.not.inters)

concordance <- cbind(y.percent.shared,x.percent.shared, w.percent.shared)

colnames(concordance) <- c("GOID","GeneID","GeneSets")

concordance <- arrange(as.data.frame(concordance), desc(GOID))

pdf("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/

figures/listConcord.pdf")

dotchart2(concordance[,"GOID"], labels= c("Biomart \nAffy ",

"Affy \nmvGST ",

"Biomart \nmvGST ",

"Biomart \nAffy \nmvGST "),

pch=21, xlim=c(0,1), dotsize=1.2,

bg=rep(my.colors[1],4), xaxis=FALSE, cex.lab=1.5)

axis(side = 1, at = c(0,.25,.50,.75,1), labels=c("0",".25",".50",".75","1"),

line=0.5)

title(xlab="Proportion Concordant", line=3, cex=1)

dotchart2(concordance[,"GeneID"], pch=22, dotsize=1.2, add=TRUE,

bg=rep(my.colors[2],4))

dotchart2(concordance[,"GeneSets"], pch=23, dotsize=1.2, add=TRUE,

bg=rep(my.colors[3],4))

legend(.08, 1.5, legend=c("GO IDs", "Gene IDs", "Gene Sets"),

pt.bg=my.colors, pch=c(21,22,23), bty="n", cex=0.8, pt.cex=1)

dev.off()

81

########################

#Compare mvGST Results

########################

results <- list()

results[[1]] <- profileTable(pvals=pvals.study1, list.groups=profileTable.btaurus)

results[[2]] <- profileTable(pvals=pvals.study1, list.groups=affy.btaurus)

results[[3]] <- profileTable(pvals=pvals.study1, list.groups=biomart.btaurus)

#Day 12

p.n.12 <- cbind(results[[1]]$results.table[,"P-Day12.NP"],

results[[2]]$results.table[,"P-Day12.NP"],

results[[3]]$results.table[,"P-Day12.NP"])

percent.pn12 <- cbind(p.n.12[,1]/sum(p.n.12[,1]),

p.n.12[,2]/sum(p.n.12[,2]),

p.n.12[,3]/sum(p.n.12[,3]))

percent.pn12

pdf("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/

figures/resultsDay12.pdf")

dotchart2(percent.pn12[1,], labels= c("mvGST",

"Affy",

"Biomart"),

pch=21, xlim=c(0,1), dotsize=1.2,

bg=rep(my.colors[1],4), xaxis=FALSE)

axis(side = 1, at = c(0,.25,.5,.75,1),

labels=c("0",".25",".5",".75","1"),

line=0.5)

title(xlab="Proportion of GO Gene Sets", line=3, cex=1)

dotchart2(percent.pn12[2,], pch=22, dotsize=1.2, add=TRUE,

bg=rep(my.colors[2],4))

dotchart2(percent.pn12[3,], pch=23, dotsize=1.2, add=TRUE,

bg=rep(my.colors[3],4))

legend(.1, 1.4, legend=c("Not Significant", "More Active", "Less Active"),

82

pt.bg=my.colors, pch=c(21,22,23), bty="n", cex=0.8, pt.cex=1)

dev.off()

#Day 14

p.n.14 <- cbind(results[[1]]$results.table[,"P-Day14.NP"],

results[[2]]$results.table[,"P-Day14.NP"],

results[[3]]$results.table[,"P-Day14.NP"])

percent.pn14 <- cbind(p.n.14[,1]/sum(p.n.14[,1]),

p.n.14[,2]/sum(p.n.14[,2]),

p.n.14[,3]/sum(p.n.14[,3]))

percent.pn14

pdf("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/

figures/resultsDay14.pdf")

dotchart2(percent.pn14[1,], labels= c("mvGST",

"Affy",

"Biomart"),

pch=21, xlim=c(0,1), dotsize=1.2,

bg=rep(my.colors[1],4), xaxis=FALSE)

axis(side = 1, at = c(0,.25,.50, .75, 1),

labels=c("0",".25",".50",".75","1"),

line=0.5)

title(xlab="Proportion of GO Gene Sets", line=3, cex=1)

dotchart2(percent.pn14[2,], pch=22, dotsize=1.2, add=TRUE,

bg=rep(my.colors[2],4))

dotchart2(percent.pn14[3,], pch=23, dotsize=1.2, add=TRUE,

bg=rep(my.colors[3],4))

legend(.1, 1.4, legend=c("Not Significant", "More Active", "Less Active"),

pt.bg=my.colors, pch=c(21,22,23), bty="n", cex=0.8, pt.cex=1)

dev.off()

##################

#Study 2 Results

83

##################

agilent <- read.delim("/Users/russell/Desktop/USU Student Materials/Research

Summer 2014/Data/AllAnnotations\\019921_D_AA_20141001.txt"

, stringsAsFactors=F, fill=TRUE, sep=)

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/pvals.study2")

load("/Users/russell/Desktop/USU Student Materials/Research Summer 2014/Thesis/R

Code/final.list.groups.oaries")

profileTable(pvals.study2, list.groups=final.list.groups.oaries)

	Annotation Tools for Multivariate Gene Set Testing of Non-Model Organisms
	Recommended Citation

	Abstract
	Public Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Background
	Introduction
	Gene Expression and Gene Expression Technology
	Microarray Technology

	Preprocessing Overview
	Expression Set Matrix

	Statistical Tests for Differential Expression of Genes
	Limma/eBayes
	Matrix of P-Values

	Statistical Tests for Differential Expression of Gene Sets
	The GO Consortium
	Multivariate Gene-Set Testing

	Annotation Sources
	Gene Expression Omnibus
	Platform Manufacturer's Annotation
	Ensembl's BioMart
	Annotation Packages in R

	Stable Marriage Problem Algorithm

	Motivation
	Example Study 1
	Example Study 2

	Methods
	Example Study 1
	mvGST Annotation
	Biomart Annotation
	Affymetrix Annotation

	Example Study 2
	ProbeID-to-GOgnc Annotation
	Build GO Gene Sets
	Sequence Alignments as Measures of Annotation Strength
	SMP

	Custom R Annotation Packages

	Discussion
	Study 1 Discussion
	Compare GO Grouped Lists
	Compare mvGST Analysis Results

	Study 2 Discussion
	GO Gene Set List: Ovis aries Microarray
	mvGST Results

	Potential Extensions

	References
	Appendix

