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Abstract

An Online Wear State Monitoring Methodology for Off-the-Shelf Embedded Processors

by

Srinath Arunachalam, Master of Science

Utah State University, 2015

Major Professor: Dr. Tam Chantem
Department: Electrical and Computer Engineering

The continued scaling of transistors has led to an exponential increase in on-chip power

density, which has resulted in increasing temperature. In turn, the increase in temperature

directly leads to the increase in the rate of wear of a processor. Negative-bias temperature

instability (NBTI) is one of the most dominant integrated circuit (IC) failure mechanisms [5,

13] that strongly depends on temperature. NBTI manifests in the form of increased circuit

delays which can lead to timing failures and processor crashes. The ability to monitor the

wear progression of a processor due to NBTI is valuable when designing real-time embedded

systems. While NBTI can be detected using wear state sensors, not all chips are equipped

with these sensors because detecting wear due to NBTI requires modifications to the chip

design and incurs area and power overhead. NBTI sensor data may also not be exposed

to users in software. In addition, wear sensors cannot take into account variations in wear

due to the differences in the wear sensor devices and the other functional devices and their

operating conditions. In this thesis, I propose a lightweight, online methodology to monitor

the wear process due to NBTI for off-the-shelf embedded processors. Our proposed method

requires neither data on the threshold voltage and critical paths nor additional hardware.

Our methodology can also be extended to predict the wear progression due to some other

dominant IC failure mechanisms. Experiments on embedded processors provide insights on
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NBTI wear progression over time. This knowledge can be used to design real-time embedded

systems that explicitly consider runtime wear progression to increase predictability and

maintain lifetime reliability requirements.

(44 pages)
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Public Abstract

An Online Wear State Monitoring Methodology for Off-the-Shelf Embedded Processors

by

Srinath Arunachalam, Master of Science

Utah State University, 2015

Major Professor: Dr. Tam Chantem
Department: Electrical and Computer Engineering

Every year transistors are becoming smaller and smaller. The continued trend of tran-

sistors becoming smaller has led to double amount of transistors being placed in the same

area of space from its previous generation. This has led to an exponential increase in the

amount of power per unit volume on-chip, which has resulted in increasing temperature.

In turn, the increase in temperature directly leads to the increase in the rate of wear of

a processor. Negative-bias temperature instability (NBTI) is one of the most dominant

integrated circuit (IC) failure mechanisms [5, 13] that strongly depends on temperature.

NBTI manifests in the form of increased circuit delays which can lead to the processor not

meeting its timing constraints and result in processor crashes. The ability to monitor the

wear progression of a processor due to NBTI is valuable when designing real-time embed-

ded systems. Real-time embedded systems are systems whose tasks are performed correctly

and in a timely manner and predictable manner. While NBTI can be detected using wear

state sensors, not all chips are equipped with these sensors because detecting wear due to

NBTI requires modifications to the chip design and incurs area and power overhead. NBTI

sensor data may also not be exposed to users in software. In addition, wear sensors cannot

take into account variations in wear due to the differences in the wear sensor devices and

the other functional devices and their operating conditions. In this thesis, we propose a
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lightweight, online methodology to monitor the wear process due to NBTI for off-the-shelf

embedded processors. Our proposed method requires neither difficult-to-find data nor ad-

ditional hardware. Our methodology can also be extended to predict the wear progression

due to other dominant IC failure mechanisms. Experiments on embedded processors pro-

vide insights on NBTI wear progression over time. This knowledge can be used to design

real-time embedded systems that explicitly consider runtime wear progression to increase

predictability and maintain lifetime reliability requirements.
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aham sarvasya prabhavo
mattah sarvam pravartate
iti matva bhajante mam
budha bhava-samanvitah

I am the source of all spiritual and material worlds. Everything emanates from Me. The
wise who know this perfectly engage in My devotional service and worship Me with all their
hearts.
-Sri Krishna - Bhagavad Gita Chapter 10 Verse 8
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Chapter 1

Introduction and Contribution

Increasing device density resulting from process scaling has increased IC power density.

The power wall has changed the way ICs are designed, as transistors have become inex-

pensive while power expensive. In addition to being power hungry, modern ICs have high

power density and hence temperature. High temperature, along with process variations,

exacerbates reliability, as microprocessor failure rate depends exponentially on operating

temperature [20]. Temperature also affects speed; reduction of charge carrier mobility in

transistors and increased interconnect latency resulting from high temperature degrade

performance, potentially resulting in run-time failures. Worse, cooling technology has not

improved at the same rate as transistor technology.

Embedded systems are used in a wide range of applications such as health care mon-

itoring, aviation, and automobiles. Many embedded systems are required to be reliable;

processors running embedded applications are expected to meet performance requirements

for a certain amount of time even when operating under harsh conditions. In fact, an un-

expected failure can lead to a catastrophe. Knowledge of the wear progression of embedded

processors can greatly help in the design of reliable real-time embedded systems since com-

ponents that are close to failure can readily be replaced and/or the activation of backup

components planned.

There are several dominant IC failure mechanisms: electromigration (EM), stress mi-

gration (SM), time-dependent dielectric breakdown (TDDB), thermal cycling (TC), and

NBTI. Of these, NBTI is one of the most dominant IC failure mechanisms [5, 13]. NBTI

occurs when a negative bias is applied to a PMOS transistor, where an increase in temper-

ature causes the threshold voltage to increase. The increase in threshold voltage increases

the delay of the transistor, thereby, increasing the overall delay of the circuit. The increase



2

in delay can cause timing violations, as well as permanent damage which can cause the

processor to fail.

Wear progression due to NBTI can be observed since circuit delays worsen over time.

NBTI manifests as timing faults in a processor. While several researchers have proposed

using wear sensors [11,12] to monitor and predict processor wear state due to NBTI, there

are several drawbacks to this approach. First, many embedded processors do not have

wear sensors. Second, wear sensors cannot account for the variations in wear due to the

differences in the wear sensor devices and the other functional devices and their operating

conditions. Third, wear sensor data may not be readily accessible to users and system

designers.

In this thesis, we present a lightweight, online methodology that can be used to monitor

the wear progression of a processor due to NBTI (and that of other failure mechanisms once

difficult-to-find, model-specific parameters are known). The main idea behind our approach

is to perform crash tests at specific voltage-frequency-temperature (VFT) points to detect

timing violations that occur due to increased circuit delays. The crash tests are performed

periodically to detect wear progression over time and are fully automated. Our proposed

method targets off-the-shelf embedded processors and works without wear state sensors or

knowledge of the threshold voltage and critical paths. More importantly, wear progression

over time can be observed using our methodology without requiring knowledge of the initial

wear state of the system. Experimental results show a clear pattern of wear progression due

to NBTI and that different processors have different initial wear states and age at different

rates.

This thesis is organized as follows. In Chapter 2, we review key existing research on

online wear state monitoring and prediction. We discuss the reliability model in Chapter 3

and present our methodology in Chapter 4. Experimental results are provided and analyzed

in Chapter 5. Chapter 6 concludes the thesis.
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Chapter 2

Related Work

Several techniques have been proposed to monitor wear due to NBTI in recent years

[11, 12, 19]. The majority of these techniques require the addition of wear sensors either as

separate circuitry or as part of the processor to monitor wear due to NBTI. For instance,

an on-chip reliability monitor was proposed to measure NBTI degradation by measuring

the beat frequency of two ring oscillators [12]. A phase comparator can then measure

the difference in frequency between a stress and a reference oscillator to predict NBTI

degradation. Another on-chip sensor uses a delay-locked loop for sensing on-chip NBTI

degradation [11].

Researchers have also designed compensation circuits to negate the effects of NBTI.

These circuits are highly specialized and require precise control during measurements. An

on-chip slew rate monitor circuit was proposed to determine the degradation in the PMOS

threshold by sensing the change in the rise time in a stressed ring oscillator [7]. By using

slew rate instead of frequency, the impacts of NBTI can also be better quantified. An on-

the-fly measurement technique was proposed by Denais et al. where the gate voltage was

kept constant during stress and measurement to avoid recovery before and after charac-

terization [6]. The drain current was measured periodically to monitor degradation. The

underlying assumption in sensor-based techniques is that the circuits under consideration

experience the same process, voltage, temperature, state conditions, and ultimately the

same aging effects, as the target circuit. This is not true in real circuits, which can cause

significant over/under estimation.

Apart from sensor-based techniques, a range of in-situ techniques have also been pro-

posed to monitor wear that is manifested as increased circuit delays. One type of in-situ

technique is to monitor delays during operation. Agarwal et al. proposed a technique to add
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aging sensor to a flip-flop [1]. This sensor consists of a stability checker, delay element, and

a comparator to measure timing degradation. A technique based on shadow registers and

comparators combined with negative skew was also proposed [14]. Built-in self-test may

also be used to detect delay degradation. Ahmed et al. devised a technique that converts a

datapath in a pipeline into a ring oscillator with the help of a multiplexor during testing to

measure the oscillation period [2]. The period is then compared to the initial measurements

to measure aging of a path. A self-test technique, which monitors delay degradation under

environmental variations was also proposed [15]. This technique selects a target path and

reconfigures it into a ring oscillator. The period of the reconfigured oscillator is compared to

the pre-aging value for estimating aging-induced delay degradation. A software-based path

delay fault testing (SPDFT) mechanism was used to select an energy-efficient operating

point for processors that are subject to process variation [18]. SPDFT improves the energy

efficiency of a processor by exploiting the timing slack due to process variations. Potential

critical paths are identified by performing static timing analysis and are tested to ensure

timing safety for the entire design.

The main drawback of existing online wear state monitoring techniques is that they

require additions or changes to the underlying hardware. All of the techniques discussed

above have large area and testing overheads. In addition, existing techniques also require

secret or difficult-to-find design data for the processor under consideration, not to men-

tion precise measurements to predict the wear. To the best of our knowledge, all existing

techniques monitor wear due to NBTI in hardware and not in software.
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Chapter 3

Reliability Model

We now briefly describe NBTI, EM, TDDB, SM, and TC, which are presently the most

dominant device-level failure mechanisms for ICs.

3.1 NBTI

In this thesis, we focus on NBTI, as it has the most dominant long term effect in

sub-90 nm CMOS process technologies [16]. NBTI is also the primary parametric failure

mechanism in modern ICs [4] and a dominant aging mechanism causing PMOS threshold

voltage degradation over time [1] resulting in increased delay. NBTI occurs when a negative

bias is applied to a PMOS transistor. It has two phases: stress and recovery. In the stress

phase, the holes in the channel weaken the Si-H bonds, which result in the generation of

positive interface charges and hydrogen species. During recovery phase, the interface traps

are annealed by hydrogen species and thus, the degradation of the threshold voltage Vth is

partially recovered. According to a comprehensive device-level predictive model covering

both static and dynamic NBTI degradation [17,21], the stress phase can be expressed as

∆Vth =

√
K2
v (t− t0)

1
2 + ∆V 2

th0 + δv, (3.1)

where t and t0 denote the stress and recovery periods, respectively, Vth0 is the initial thresh-

old voltage, δv is a constant for non H-based mechanisms, and

Kv = A · tox
√
Cox (Vgs − Vth) ·

(
1− Vgs

Vgs − Vth

)
e
Eox
E0 e

Ea
κT , (3.2)

where A is a technology-dependent constant, tox is the oxide thickness, Cox is the oxide

capacitance, Vgs is the gate voltage, Eox is the electric field across the gate oxide, E0 is a
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technology dependent parameter, Ea is the activation energy of hydrogen species, κ is the

Boltzmann constant, and T is the temperature.

For the recovery phase, we have

∆Vth = (∆Vth − δv)

(
1−

√
η

(t− t0)
t

)
. (3.3)

where η is the surface charge density.

The delay dependence on the threshold voltage is given by the alpha power law as

delay ∝ Vdd

(Vdd − Vth)β
, (3.4)

where Vdd is the supply voltage and β is a fitting parameter.

The above equation gives the delay of a single transistor. The overall circuit delay

can be obtained by using a timing analysis scheme based on the increased delay of each

transistor. Finally, the path delay degradation can be calculated by analyzing the paths.

NBTI manifests as increased circuit delays which eventually lead to timing failures.

3.2 Other Dominant IC Failure Mechanisms

EM refers to the dislocation of metal atoms caused by momentum imparted by electrical

current in wires and vias [3, 9]. TDDB involves the deterioration of the gate oxide layer.

Gate current due to hot electrons causes defects in the oxide, which eventually form a low-

impedance path and cause the transistor to permanently fail. This effect worsens with the

reduction of gate dielectric thickness and non-ideal supply voltage reduction [9, 20]. SM is

caused by the directionally biased motion of atoms in metal wires due to mechanical stress

caused by thermal mismatch among metal and dielectric materials [9]. TC refers to wear

caused by thermal stress resulting from mismatched coefficients of thermal expansion for

adjacent material layers; run-time temperature variation results in inelastic deformation,

eventually leading to failure [23]. The failure rate for EM, TDDB, SM, and TC can be
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computed as [9]

λ = K1e
−K2

T , (3.5)

where T is the temperature and K1 and K2 are temperature-dependent parameters. All the

failure mechanisms discussed in this section strongly depend on temperature and, in some

cases, on the amplitudes and frequency of the thermal cycles.
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Chapter 4

Methodology

We now present our proposed online wear state monitoring methodology, which can be

used in any embedded processors that allow the control of dynamic voltage and frequency

scaling (DVFS) settings and that are equipped with a hardware watchdog timer (WDT) to

permit self-restart to completely automate the process. As will be discussed in Section 5.1,

we used Embedded Intel Atom N2600 dual core processors to implement our method. As

such, some implementation details given in the next section are processor-specific but the

general methodology is applicable to all embedded processors supporting DVFS. In addition,

we selected Ubuntu as our operating system since it allows the user to take control of the

processor’s DVFS from user space, making it possible for us to set the frequency and the

voltage at which the processor should run.

An overview of our approach is given in Figure 4.1. The characterization script is used

to detect timing violations and, hence, the wear due to NBTI, that occur due to an increase

in circuit delays. The profiler supports the wear state monitoring of other dominant IC

failure mechanisms, as will be discussed in Section 4.2.

4.1 NBTI Wear Progression Monitoring

Our NBTI wear state monitoring process is built on the following observations. First,

different voltage levels lead to different timing slacks in a given critical path. Second, since

a higher temperature leads to a reduction of charge carrier mobility in transistors and

increase in interconnect latency, negative timing slacks are more likely to occur at higher

temperature. Third, NBTI increases circuit delay, which can lead to timing violations.

Fourth, insufficient timing slacks lead to more observable crashes when running programs.

The frequency of a processor is determined by the delay at the slowest corner. This
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Wear Progression Estimation

EM NBTISMTDDBTC

EM 
Model

TC 
Model

TDDB 
Model

SM 
Model

Characterization 
Script

EM 
Parameters

TC 
Parameters

TDDB 
Parameters

SM 
Parameters

Profiler

Fig. 4.1: Overview of the proposed online wear monitoring process.

slowest corner corresponds to the lowest voltage level and the highest temperature at which

the processor can still function within its required timing constraints. Slow corners are

more vulnerable to timing faults as they have less timing slack when compared to voltage

and frequency points operating at lower temperatures. Hence processors are more likely to

fail due to NBTI effects when operating at these slow corners. Note that while the change

in the threshold voltage due to an increase in temperature may improve performance, the

reduction of charge carrier mobility in transistors dominates, making the circuit slower

overall.

We propose performing crash tests at specific VFT points to monitor, and potentially

predict, how wear due to NBTI progresses over time. Figure 4.2 provides an illustration of

the relationship between the VFT points and the wear state of a processor due to NBTI,

which is a fundamental observation in which this work is based on. For a given frequency

level F , there is a discrete number of valid voltage levels ranging from Vlowest to Vhighest ,

which may be different from one frequency level to another and from one processor to an-

other. The values for Tambient and Thighest denote the processor temperature when operating

at the lowest voltage and frequency pair and the highest temperature the processor can run
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without triggering hardware throttling, respectively.

We now explain the intuition behind our approach. If there are 100% crashes at the

slowest corner (Vlowest , Thighest , Fhighest) (Figure 4.2(a)), then the processor has begun to

show signs of wear due to NBTI. As another example, if the processor experiences 100%

crashes at (Vhighest , Tambient , Fhighest) (Figure 4.2(b)), the processor’s performance degra-

dation has become more noticeable. Finally, if the processor cannot function at (Vhighest ,

Tambient , Flowest) (Figure 4.2(c)), the processor has reached the end of its life. The change

in crash conditions shows the progression of wear over time.

To monitor in real-time the wear progression of a processor, we construct a characteri-

zation program, i.e., the characterization script in Figure 4.1, to test the VFT points. Due

to process variations, VFT points may be different from one processor to another. There-

fore, VFT points are built individually for a given processor. This is a one-time process. All

the voltage values that allow the processor to run without crashing with the initial temper-

ature being a controllable ambient temperature are considered valid. The characterization

program executes a series of tests at specific VFT points and collects the corresponding

number of crashes for later analysis.

An overview of our characterization software is provided in Figure 4.3. The objective of

the characterization process for a given processor is to perform periodic crash tests during

a time period when the processor is not in use. The characterization of processor wear is

performed by a user space application. An init script is scheduled to run at specific times

using gnome-schedule, a graphical user interface to manage crontab. It is also run as a

startup task to start several bash scripts that are part of the monitoring process. There

are three main modules in our wear state monitoring software: profiler, watchdog timer

program, and characterization script. We now describe each module and its purpose in

detail.

Profiler

To facilitate the data collection and subsequent analysis, a profiler script is used to

periodically record the temperature, voltage, and frequency of each core. The temperatures
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(a) If there are 100% crashes at the slowest corner, (Vlowest , Thighest , Fhighest), then the
processor has begun to show signs of wear.

(b) If the processor experiences 100% crashes at (Vhighest , Tambient , Fhighest), the pro-
cessor’s performance degradation becomes more noticeable.

(c) Finally, if the processor cannot function at (Vhighest , Tambient , Flowest), the processor
has reached the end of its life.

Fig. 4.2: Relationship between VFT points and the wear state of a processor over time.
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of the cores are read through the coretemp driver which in turn reads the temperatures

from the on-die digital thermal sensors. The profiler also records the frequency and voltage

at which the processor is operating. The current performance state (p-state) value of the

processor can be obtained from the model specific register (MSR) located at address 0x198,

IA32 PERF STATUS. Bits [15:8] of the MSR indicate the frequency while bits [7:0] hold the

voltage. The current VFT point is written to a file and the profiler wakes up again later

to repeat the process. Note that while the specific processor used in our experiments has

a single frequency and voltage setting for all the cores, the script can be readily used to

collect the frequency and voltage information of each individual core.

Watchdog Timer Program

A challenge in performing wear state monitoring arises when a processor crashes during

testing. One solution is to rely on human intervention to restart the system every time it

crashes. Clearly, this is not a viable solution, especially for embedded systems that are

deployed in remote locations and where the testing times may be at odd hours at night. To

fully automate the wear state monitoring process, we propose using a WDT to automatically

restart the system once the latter has become unresponsive for a certain time interval.

The program to control the WDT is written is C and is activated only when the

characterization script (see the next section) is active. The WDT is set for a fixed time

interval. Once the timer expires, the watchdog timer program reads a file to infer if the

characterization script is still alive. If the execution of the script has been frozen, it can be

concluded that the processor has crashed as a result of timing violations. In such a case, the

watchdog timer restarts the system. Otherwise, it deletes the file for the characterization

script to write to again and goes to sleep.

Characterization Script

The characterization script is the backbone of our online wear state monitoring tool.

It tests each VFT point for a given processor and runs periodically. During characteriza-

tion, the temperature is first adjusted to the desired temperature point by increasing or
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decreasing the load on the processor with the help of burnMMX, a program designed to load

x86 CPUs as heavily as possible for system testing. Once the processor has reached the

desired temperature, the voltage and frequency pair to be tested for are written to MSR

0x199, IA32 PERF CTL. Bits [15:0] of the MSR represent the target p-state value, with bits

[15:8] indicating the frequency and bits [7:0] indicating the voltage. MSR Tools [8] are

used to read and write data to the MSR. To ensure that the current p-state is the same

as the target p-state, bits [15:0] of IA32 PERF STATUS is read. That is, the value written

in IA32 PERF CTL will appear in IA32 PERF STATUS only if the scaling governor is changed

from on-demand to user space.

As described in the previous subsection, the characterization script writes to a file for

the watchdog timer program to read and ascertain that the test is running properly and

that the processor has not crashed. Each test run is independent of the previous one in that

it is not influenced by it. Specifically, since a test may raise the temperature of a processor

and change the state of the operating system, the processor is restarted and cooled down

to the ambient temperature before the next test is run. A processor is said to have crashed

if it is frozen and has been restarted by the watchdog timer after a VFT point is set.

Each VFT point is tested n times where n is user-adjustable. We selected 10 to

achieve a balance between having the crash data being statistically significant and keeping

the overhead associated with the tool acceptable. If there are no crashes at a VFT point,

then the wear progression due to NBTI has not yet affected the processor when operating

at that VFT point. As a result, that VFT point can still be reliably used. If the processor

consistently crashes at a certain VFT point, said point can no longer be used for reliable

operation. Otherwise, reliable execution of applications at that VFT point is not fully

guaranteed and the VFT point in question may need to be avoided. In any case, knowledge

on the VFT points can be shared with the users or system designers so that they can make

informed decisions when selecting which VFT point to run their applications.

A pseudocode of the characterization program for online wear state monitoring is shown

in Algorithm 1. There are several inputs. First, we have a set of discrete frequencies sorted
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Hardware Model
Embedded Board

Intel ATOM 
N2600 2GB DDR RAM 32GB SSD Watchdog

Software Model
Ubuntu 12.05

Init Script

Temperature 
Profiler

Characterization 
Script

Watchdog Timer 
Program

Fig. 4.3: A hardware/software architecture for the proposed wear state monitoring tool.

in decreasing order, denoted by F . For each frequency Fi, we have a set of discrete voltage

levels Vi, sorted in increasing order. The temperature points T whose values are between

[Tambient , Thighest ] are sorted in decreasing order. As previously stated, Tambient and Thighest

refer to the ambient and highest temperature values for the processor under consideration,

respectively. All the inputs can be determined offline; this is a one-time process. For each

frequency Fi, we set the processor temperature at Tambient and keep decreasing the voltage.

The lowest voltage at which the processor does not crash is recorded as Vlowest for the

corresponding Fi.

The test starts with the highest frequency and decreases it until the lowest frequency

is reached (Line 2). For each frequency, the voltage to be tested for progresses from the

lowest voltage level to the highest voltage level (Line 3). For a given voltage-frequency

pair, the temperature to be tested against starts from Thighest , which represents the slowest

corner, down to Tambient (Line 7). The test starts with (Fhighest , Thighest , Thighest) because

it has the shortest critical path and timing violations are more likely to occur. The test

progresses through VFT points with critical paths in the increasing order. The temperature

granularity is a user-adjustable parameter. Given a VFT point, crash tests are carried out
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Algorithm 1 Characterization(F , V , T , Thighest , Tambient)

1: crash counti ,j ,k ← 0, ∀i = 1, . . . , |F |, ∀j = 1, . . . |Vi|, ∀k = 1, . . . , |T |
2: for each Fi ∈ F do // Frequency levels are sorted in decreasing order
3: for each Vi,j ∈ Vi do // Vi is the set of increasing voltage levels that can operate at

Fi
4: if crash counti ,j−1 ,|T | = 0 then
5: break
6: else
7: for each Tk ∈ T do // Temperature points are sorted in decreasing order
8: set processor temperature to Tk
9: runs ← 0

10: if crash counti ,j ,k−1 > 0 then
11: while runs < 10 do
12: set processor frequency to Fi
13: set processor voltage to Vi,j
14: delay(wait period)
15: if processor crashes then
16: crash counti ,j ,k ← crash counti ,j ,k + 1
17: end if
18: run ← run + 1
19: restart processor for next test
20: set processor temperature to Tambient

21: end while
22: end if
23: end for
24: end if
25: end for
26: end for
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only if crashes had occurred for the VF pair at a higher temperature (Line 10). Otherwise,

there is no need to continue testing this VF pair since crashes are not likely to occur.

Tests for crashes start after a certain time interval once the processor voltage and frequency

values have been set (Lines 12–14). We experimented with different values for the wait

period (Line 14) and found that, in our case, if a processor will crash, it will do so within

three minutes. Hence, the waiting period is set to 3 minutes.

For every voltage level to be tested, we first determine whether there were crashes

when using the previous (lower) voltage level at the highest temperature (Line 4). If so,

the testing process continues. Otherwise, testing is completed. Since the system’s timing

slack for a higher voltage point is greater than that for a lower voltage point, there is no

need to check for crashes at a higher voltage level when there are none at the lower voltage

level. To obtain the distribution of the crashes, we collect data at every VFT point until

no crash is observed. In practice, a binary search-based approach may be adopted to avoid

testing all VFT points if the distribution of the crashes is known. For clarity, we omitted

some checkpoints from the pseudocode in Algorithm 1.

The crash counts can directly be used to monitor the wear progression due to NBTI

of a processor over time. Specifically, if the crash count for a VFT point is consistently 10,

the use of that VFT point should be avoided. In addition, we can monitor the change in

the crash count for a VFT point over time to determine how close a processor is to failing.

The characterization process is fairly lightweight in that each test does not take much time

to run, as will be discussed in Section 5.3.

4.2 Wear Progression Monitoring of Other IC-Dominant Failure Mechanisms

Failures due to some of the mechanisms discussed in Section 3.2 cannot be predicted

using wear state sensors. We would like to point out that our online wear monitoring tool

naturally supports wear state monitoring for other dominant IC failure mechanisms such

as EM, TDDB, SM, and TC, provided that model-specific parameters are known. That is,

since wear due to these failure mechanisms mainly depends on temperature, we can trivially

use the profiler (Section 4.1) to obtain the thermal profile for a given processor over a certain
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time interval. This thermal profile, along with the operating voltage and frequency values,

which are also collected by the profiler, can be used as inputs to a system-level reliability

modeling and analysis tool [10, 22]. Such a tool would be able to predict wear progression

as long as the constants in equation (3.5) are known.
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Chapter 5

Experiments

We now present our experimental setup, describe how we stressed the processors for

accelerated aging, and discuss the results obtained from our wear state monitoring tool.

5.1 Setup

We acquired five off-the-shelf industrial standard embedded boards. However, we only

discuss the setup and data on three boards, as during the course of our experiments, we

ran into both hardware and operating system issues with two of the boards. Each board

is a single board computer containing an Embedded Intel Atom N2600 dual core processor

with a maximum frequency of 1.6 GHz and is manufactured in the 32 nm silicon-on-insulator

process technology. The processor has Enhanced Intel SpeedStep Technology, Intel’s pro-

prietary DVFS technology, enabled. There are 6 unique frequencies and each frequency has

a discrete set of voltages it can support (Figure 5.1). While the processor voltage can be

regulated at a granularity of 0.005V, the board imposes a granularity constraint of 0.01V.

As can be seen in Figure 5.1, for a given frequency, the supported voltage range may be

different from one processor to another due to process variations.

Each board has 2 GB DDR RAM, a 32 GB SSD and a WDT. We installed Ubuntu

12.05 and our online wear state monitoring tool on all the boards. Each board is connected

to an independent 12 V power source, which is in turn connected to a power strip with

a multi-system timer. The WDT and the power strip with timer are used to completely

automate the characterization of the processor.

We conducted a one-time offline process to determine the values for Tambient and Thighest .

These data are shown in Table 5.1. In order to get the processor temperature to be very

close to the throttling temperature, we removed the heatsink on each board. Consequently,
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Frequency Voltage Number of
(GHz) (V) VF Points

Board 1

1.6 0.987–0.887 12
1.4 0.987–0.837 16
1.2 0.987–0.797 20
1.0 0.987–0.777 22
0.8 0.987–0.777 22
0.6 0.987–0.777 22

Board 2

1.6 0.987–0.886 12
1.4 0.996–0.846 16
1.2 0.996–0.806 20
1.0 0.996–0.776 23
0.8 0.996–0.776 23
0.6 0.996–0.776 23

Board 3

1.6 0.987–0.874 12
1.4 0.984–0.834 16
1.2 0.984–0.774 20
1.0 0.984–0.774 22
0.8 0.984–0.774 22
0.6 0.984–0.774 22

Fig. 5.1: Voltage and frequency information for the Intel Atom N2600 dual core processor.
The voltage level resolution is 0.01 V.

the ambient temperature is higher. Note that the heatsink removal was part of the stress

tests we ran to accelerate the wear on the processors and is not a requirement imposed by

our wear state monitoring tool. In our tests, the temperature step size in Algorithm 1 is

5 ◦C and the wait period was set to 3 minutes.

5.2 CPU Stress Script

To accelerate the wear of the boards for experimental purposes, we made use of a CPU

stress script, which will not be run on real systems. In this work, we ran the CPU stress

script during the day and performed the characterization process at night. The CPU stress

script has two patterns of stress. The first stress pattern is designed to keep a processor

temperature close to the throttling temperature. It keeps running the processor at Thighest

to accelerate wear due to NBTI (as well as EM, TDDB, and SM). In the second stress

pattern, the processor cycles between Tambient and Thighest as often as possible to accelerate

wear due to TC if desired.

5.3 Results

The experiments were conducted over the course of 160 days. Each test takes about 5
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minutes. The total time taken to perform wear monitoring will depend on the number of

VFT points as well as the number of test runs. We set the number of test runs to 10 in

this work. To illustrate the wear progression of processors due to NBTI over time, we plot

the number of crashes as a function of time and include the corresponding least squared

curve fit line. Data are shown in Figure 5.2 when the tests were run at (Fhighest , Vlowest ,

T = Thighest) for the respective boards. This setting corresponds to the slowest corner of a

given processor and is expected to show signs of wear early on. Although the number of

crashes over time does not monotonically increase, a trend can be observed. In addition,

even with noise, it can be seen from the plots the point beyond which a user may no longer

wish to run the processor at a particular VFT point, e.g., around Day 60 for Board 1 in

Figure 5.2. The least squared error, i.e., best fit, line shows a steadily increasing trend in

terms of crash counts over time.

It is not surprising that the slowest corner of a processor would expose wear due to

NBTI over time. We now present experimental data for (Fhighest , Vlowest , T = Thighest − 10)

for the respective processors in Figure 5.3. The number of crash counts over time is still

obvious, though not as dramatic as in the previous case. At around Day 100, it can be seen

that Boards 1 and 3 can still operate at the stated VFT points but that timing violations

are more likely to occur. We expect that if the experiments were run for a period longer

than 160 days, the trends would approach those seen in Figure 5.2.

Figure 5.4 shows the data for when a processor begins to show an early sign of wear

at a VFT point. Here, the frequency and voltage settings are the same as before, but the

initial temperature of the processor was set to its ambient temperature. Wear progression

at this stage is easy to observe. From the data, we can also confirm that different boards

start out at different initial wear state and that, due to process variations, did not age at

the same rate.

Since we have data on the crash counts for different wear stages, i.e., at different

temperature points for a given VF pair, we can plot the distribution of the number of

crashes per crash point. A crash point refers to the number of crashes for each set of 10
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(a) Board 1.

(b) Board 2.

(c) Board 3.

Fig. 5.2: Crash counts over time for the different boards at (Fhighest , Vlowest , T = Thighest).
Even with noise, the increase in wear due to NBTI over time can be observed.
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(a) Board 1.

(b) Board 2.

(c) Board 3.

Fig. 5.3: Crash counts over time for the different boards at (Fhighest , Vlowest ,
T = Thighest − 10). The wear progression over time is still obvious, though not as dra-
matic as in the previous case. The least squared error line shows a steadily increasing trend
in terms of crash counts over time.
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(a) Board 1.

(b) Board 2.

(c) Board 3.

Fig. 5.4: Crash counts over time for the different boards at (Fhighest , Vlowest , T = Tambient).
The processor begins to show early signs of wear.
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Table 5.1: Temperature Constants.
Board Tambient (◦C) Thighest (◦C) Temperature Range (◦C)

Board 1 76 91 15
Board 2 75 95 20
Board 3 77 92 15

test runs. For example, if the crash point is 2, the crash count was 2 out of 10 test runs.

The results are shown in Figure 5.5 for Board 1. The y-axis denotes the number of crashes

that occurs at each crash point over time. The distribution of crash probabilities appear to

have a truncated Gaussian distribution. In the early stage of wear (Figure 5.5(a)), crashes

usually occur at a mean at 10% - 30%. With wear well on its way (Figure 5.5(b)), the mean

shifts to the center at 50%-60%. At this wear stage, it is unreliable for a processor to be

operating at the corresponding VFT point. Finally, when a VFT point can no longer be

used (Figure 5.5(c)), the mean shifts to 100%. We believe that this understanding of how

wear progresses over time will help in the design of reliable real-time embedded systems.

For completeness and to show that the trend we observe is a general one, we include the

distributions for different wear stages for Boards 2 and 3 in Figures 5.6 and 5.7, respectively.
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(a) Early stage of wear (T = Tambient).

(b) Wear well on its way (T = Thighest − 10).

(c) Final stage of wear (T = Thighest − 5).

Fig. 5.5: Distribution of the number of crashes per crash point for different wear stages
for Board 1 when operating at the highest frequency and lowest valid voltage level. The
distribution of crash probabilities appear to have a truncated Gaussian distribution. In the
early stage of wear, crashes usually occur at a mean of 10% - 30%. With wear well on its
way, the mean shifts to the center at 50%-60%. At this wear stage, it is unreliable for a
processor to be operating at the corresponding VFT point. Finally, when a VFT point can
no longer be used, the mean shifts to 100%.
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(a) Early stage of wear (T = Tambient).

(b) Wear well on its way (T = Thighest − 10).

(c) Final stage of wear (T = Thighest − 5).

Fig. 5.6: Distribution of the number of crashes per crash point for different wear stages for
Board 2 when operating at the highest frequency and lowest valid voltage level.
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(a) Early stage of wear (T = Tambient).

(b) Wear well on its way (T = Thighest − 10).

(c) Final stage of wear (T = Thighest − 5).

Fig. 5.7: Distribution of the number of crashes per crash point for different wear stages for
Board 3 when operating at the highest frequency and lowest valid voltage level. The trend
shown here are similar to the ones in Figures 5.5 and 5.6.
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Chapter 6

Conclusion

We presented an online, software-only, methodology for monitoring wear due to NBTI

of off-the-shelf embedded processors. The wear progression of NBTI, which causes increased

circuit delays, can be detected over time by performing crash tests at selective VFT points.

The proposed methodology is able to monitor the wear progression due to EM, SM, TDDB,

and TC as well if and when model-specific parameters are available. The main advantage

of our approach over wear state sensors are that (i) it does not require modifications to

hardware and (ii) it can help to monitor wear due to failure mechanisms that may not be

detected using sensors. Our online monitoring tool only requires a watchdog timer and

software controllable DVFS settings. It is our vision that the said tool can aid in the design

of reliable and predictable real-time embedded systems by providing feedback at runtime

so that the use of unreliable VFT points can be avoided.

This work can be extended in several directions. First, we plan on leveraging our wear

state monitoring technique to include wear and, ultimately, lifetime predictions. Second, it

may be useful to adapt our methodology to monitor the wear progression of server comput-

ers. Third, a mechanism to determine reliability-related parameters for EM, SM, TDDB,

and TC would be of great value.
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