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Abstract

Exploiting Application Behaviors for Resilient Static Random Access Memory Arrays in

the Near-Threshold Computing Regime

by

Dieudonne Manzi Mugisha, Master of Science

Utah State University, 2015

Major Professor: Dr. Sanghamitra Roy
Department: Electrical and Computer Engineering

Near-Threshold Computing embodies an intriguing choice for mobile processors due

to the promise of superior energy efficiency, extending the battery life of these devices while

reducing the peak power draw. However, process, voltage, and temperature variations cause

a significantly high failure rate of Level One cache cells in the near-threshold regime—a stark

contrast to designs in the super-threshold regime, where fault sites are rare.

This thesis work shows that faulty cells in the near-threshold regime are highly clustered

in certain regions of the cache. In addition, popular mobile benchmarks are studied to

investigate the impact of run-time workloads on timing faults manifestation. A technique

to mitigate the run-time faults is proposed. This scheme maps frequently used data to

healthy cache regions by exploiting the application cache behaviors. The results show up

to 78% gain in performance over two other state-of-the-art techniques.

(51 pages)
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Public Abstract

Exploiting Application Behaviors for Resilient Static Random Access Memory Arrays in

the Near-Threshold Computing Regime

by

Dieudonne Manzi Mugisha, Master of Science

Utah State University, 2015

Major Professor: Dr. Sanghamitra Roy
Department: Electrical and Computer Engineering

Historically, the increase of transistor devices per area of chip has been one of the key

drivers of microprocessor performance. While the transistor count per chip keeps increasing,

today’s microprocessor power budget limits the number of devices that can be turned on.

This issue stems from the fact that new device technologies dissipate more power in form

of heat—a problem that can cause circuit breakdown due to excessive temperatures.

Near-Threshold Computing (NTC), where the operating voltage is reduced near the

threshold voltage that turns on a transistor, is a popular research topic. NTC significantly

reduces the power consumption and allows a higher number of devices to be used given

a certain power budget. Although it is energy efficient, NTC suffers from a high rate of

circuit failures induced by both manufacturing imperfections and the operating environ-

ment. Static Random Access Memory (SRAM) arrays are the most affected components of

a microprocessor, and consequently require robust design techniques. This thesis proposes

a technique that exploits the software use of SRAM arrays in order to reduce circuit failure

in NTC.
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Chapter 1

Introduction

Mobile architectures and their applications are growing rapidly as society embraces

ubiquitous computing. One of the characteristics of mobile processors is a limited power

budget due to the battery capacities of mobile devices [1]. Multiple works in this domain

have targeted improving the energy efficiency of the system through a slew of circuit and

architectural techniques. Recently, advances in device engineering have uncovered a new

direction of energy efficient operations through Near-Threshold Computing (NTC) [2–4].

Given the extreme importance of energy efficiency in mobile platforms, it is imperative to

understand the challenges and opportunities to employ NTC processors for mobile comput-

ing.

An NTC processor operates with a supply voltage, Vdd, at or near the threshold voltage,

Vth—an energy optimal operating point with substantially better performance over sub-

threshold computing. NTC offers the promise of superior energy efficiency by extending the

battery life of mobile devices and reducing the peak power draw. While the energy efficiency

benefits can scale up to an order of 10X, there is also a substantial performance degradation.

Recent works [2, 5] have thus focused on recovering such performance degradation of NTC

through parallel computing. Techniques explored in these works are highly applicable for

the mobile application domain. Therefore, it is expected that NTC processors are well

poised to become a viable alternative for mobile platforms.

Another central design challenge for NTC mobile processors stems from Process, Volt-

age, and Temperature (PVT) variations. The delay variation due to PVT in NTC can

be several times larger than that in Super-Threshold Computing (STC) [6, 7]. In particu-

lar, memory components, such as caches and register files, are more susceptible to delay

variation from PVT. These structures, typically built with SRAM arrays, contain a large
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number of parallel paths with shallow logic depths. Therefore, different regions of a cache

designed for NTC will show a wide variability in delay characteristics—significantly more

than seen in caches operating in the super-threshold regime. Consequently, setting delay

margins below worst or near worst delay in caches will have prohibitive design costs in an

NTC mobile processor. On the other hand, a reasonable delay or operating frequency of

these caches will have many more timing errors at run-time—a paradigm shift from current

design practices, where timing errors in the caches are rare. A key research question in this

context is how can one design resilient next generation caches that can operate efficiently

in the presence of several regions with timing faults?

This work pursues this research question and explores the effect of PVT on Level One

(L1) caches in mobile processors. Using an extensive circuit-architectural methodology, this

work shows that in a cache with many faulty lines, the dynamic manifestation of an error is

strongly dependent on the workload and has a predictable occurrence. These findings are

exploited to propose a low overhead technique to minimize the penalty of faulty cache lines.

1.1 Contribution

This work makes the following contributions.

• Using detailed cache models at the 32 nm technology node, this work demonstrates

that NTC caches have substantially higher PVT-induced faults than STC caches

(Chapter 3).

• Chapter 3 investigates the typical cache access patterns of popular mobile applications

[8]. It is found that the dynamic manifestation of timing errors for these applications

in NTC caches is predictable.

• Chapter 4 proposes a low-overhead technique to effectively reduce the occurrence of

timing errors even in the presence of several faulty cache lines.

• Using a rigorous circuit-architectural methodology, the collected data in Chapter 6

shows that the proposed technique is up to 47% and 78% more effective than two

state-of-the-art techniques in reducing PVT-induced performance loss.
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Chapter 2

Background

This chapter discusses the relationship between technology scaling and microprocessor

power consumption in Section 2.1. Section 2.2 presents NTC, an energy efficient comput-

ing domain that promises to solve the power dissipation issue introduced by aggressive

technology scaling. Section 2.2.1 and Section 2.2.2 point out the challenges observed in

NTC design, especially SRAM array functional failures. Section 2.3 ends the chapter by

presenting existing techniques to tackle SRAM functional failures in NTC.

2.1 Technology Scaling and Its Impact on Power

Steady advances in technology have allowed continuous transistor scaling. This scaling

resulted in an increase in the number of transistors packed on a chip area. An associated

effect has been the increase of processor capabilities due not only to the number of transistors

per area but also faster circuits. Smaller transistors generally switch faster because of less

resistance and a smaller number of electrons required to excite the formation of the current

channel.

Table 2.1 shows two types of technology scaling that have been used historically.

Constant-voltage scaling shrunk the physical dimensions but kept the voltage constant,

whereas Dennard scaling [9] scaled both device dimensions and the voltage by the same

factor. From 6 µm to 1 µm technology node, constant-voltage scaling fixed Vdd to 5 V from

one technology to the next, whereas the transistor dimensions were reduced by a factor of

S =
√

2. This boosted the performance as the device delay was quadratically improved.

As the channel length L decreased with newer technologies, the electric field E increased

according to Equation (2.1) where Vds is the potential difference between the drain and the

source. At 1 µm, device breakdown became a potential threat due to very high electric



4

fields.

E =
Vds
L

(2.1)

Dennard scaling law was adopted mainly to reduce the electric field. However, as shown

in Table 2.1, there were other advantages associated with it such as the quadratic reduction

in power consumption. An even more important advantage is power density. Equation (2.2)

illustrates a reduction of up to S3 in power density resulting from scaling of the capacitance

C0, the supply voltage Vdd0 , the frequency f0, transistor width W0, and transistor length L0.

This decrease in power density has been a critical advantage in sub-micron nodes. However,

under 90 nm Dennard scaling started to face serious barriers and the power density of the

chip reached new levels [10].

Table 2.1: Impact of scaling on transistors.

Scaling parameters

Parameter Sensitivity Dennard scaling Constant voltage scaling

Length: L 1/S 1/S
Width: W 1/S 1/S
Supply voltage: VDD 1/S 1
Threshold voltage: Vth 1/S 1/S

Resulting characteristics

Parameter Sensitivity Dennard scaling Constant voltage scaling

Resistance: R VDD/Ids 1/S 1
Capacitance: C WL/tox 1/S 1/S
Delay: τ RC 1/S 1/S2

Frequency: f 1/τ S S2

Switching power dissipation: P CV 2
DDf 1/S2 S

Area per gate: A WL 1/s2 1/S2

Switching power density P/A 1 S3
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P/A =
CV 2

ddf

WL

=
( 1
S × C0)× (S × Vdd0)2 × (S × f0)

( 1
S ×W0)× ( 1

S × L0)

=
(P/A)0
S3

(2.2)

The main problems that increase the power in modern processors are the increased

portion of leakage current in processes with dimension sizes below 90 nm and a very high

transistor per chip ratio. Figure 2.1 shows two main sources of leakage in an n-type device:

sub-threshold leakage (Isub) and gate leakage (Igate). As Vdd decreases from one technology

node to the next, Vth decreases as well. Eventually, a low Vth prevents the gate from turning

the drain-to-source current off—a phenomenon that increases Isub. For Igate, the oxide layer

becomes too thin and increases electrons tunneling through the oxide. As a result, Igate

increases. The sum of these leakages multiplied by millions or billions of transistors per

chip results in an excessive on-chip power density and temperature. Furthermore, the issue

is complicated by the lack of proper cooling systems.

n+
Isub

Igate

n+

Source Gate Drain

Bulk Si

Fig. 2.1: Leakage current paths.
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While the number of transistor per chip keeps increasing, the performance does not

increase at the same rate due to the discussed power barriers. Figure 2.2, adapted from

Hennessy and Patterson [11], shows the frequency increase over the years for a uniprocessor

core. The figure shows that there were almost two decades when the performance increase

per year was 52% on average. However, after 2002, the rate of increase dropped down to

22%. This can be attributed to multiple factors such as the processor-memory speed gap,

high power consumption, and the limit of available instruction level parallelism. However,

even if it were possible to bridge the processor-memory gap and have enough instruction

level parallelism, power density and heat build-up remain formidable challenges for single-

core processors. Therefore, techniques to reduce the power consumption of microprocessors

are needed now more than ever.

Dynamic voltage scaling, where the supply voltage can be reduced to 70% of its nominal

value, has been a popular alternative for reducing the power consumption. The success of

this technique stems from the fact that dynamic energy and static energy, respectively,

reduce quadratically and linearly with the supply voltage [10]. Another alternative is sub-

threshold computing where Vdd is lowered below Vth. While the dynamic energy is the

lowest in the sub-threshold region, the gate delay in this region increases exponentially.

Sub-threshold computing is therefore not useful for mid and high performance applications.

Fig. 2.2: Uniprocessor performance growth.
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Similarly, the leakage in the sub-threshold regime increases exponentially. At a certain

point, the leakage power overshadows all benefits from voltage scaling. The key to harness

voltage scaling benefits is to find the voltage at which the energy per operation is the lowest.

Section 2.2 explores a new regime that harnesses voltage scaling to obtain higher energy

efficiency than super-threshold and sub-threshold computing.

2.2 Near-Threshold Computing

Near-Threshold Computing, where the on-chip supply voltage is slightly higher than

the threshold voltage, promises a near-optimum energy point. This seems counter-intuitive

considering that the dynamic energy is the lowest in the sub-threshold regime. However, as

shown in Figure 2.3, NTC has the lowest energy once both leakage and dynamic energies

are considered. The figure was obtained by using H-Simulation Program with Integrated

Circuit Emphasis (HSPICE) for a chain of 31 Fan-Out of Four (FO4) inverters in a 32 nm

predictive technology [12]. The threshold voltage is 0.28 V while NTC region is defined to

be between 0.3 V and 0.5 V.

Vdd (V)

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

10

100

static

dynamic

total

Fig. 2.3: HSPICE energy breakdown for a chain of 31 FO4 in a 32 nm technology node.
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The high leakage in the sub-threshold regime is due to the considerable increase of the

gate delay. The delay results from the driving current, Ids, that exponentially decreases

with Vdd as shown in Equation (2.3). In contrast, in STC, the driving current is only a linear

function of Vdd. On a microarchitectural level, the net effect is an increased computation

time in NTC, and consequently increased energy consumption. On the other hand, STC

enables less computation times at the cost of high dynamic and total energy consumptions.

IdsαIth(1− e
−Vdd
vth ) (2.3)

Due to its high energy efficiency, many research works have been attracted to the

use of NTC in applications where battery life is a very important design consideration

such as personal and mobile computing [6, 13]. Other works have explored how to fit

more processing cores in a power budget. As NTC reduces energy consumption by 10-50X

while only suffering 5-10X in performance degradation, 2-5X more cores can fit in a power

budget [14–18].

2.2.1 Near-Threshold Computing Challenges

Although NTC is significantly efficient in reducing energy consumption, there are sev-

eral obstacles to its commercial widespread adoption. The main challenges pertaining to

reliability are the increased delay variations and increased circuit failures. When operating

at near-threshold voltage, the gate delay becomes more sensitive to variations. Figure 2.4

and Figure 2.5 show the impact of Vdd and temperature variations on the gate delay in both

STC and NTC. The figures are obtained from Equation (2.4) and Equation (2.5) with the

following parameters: STC access time (TSTC), NTC access time (TNTC), supply voltage

(Vdd), transistor effective length (Leff ), thermal voltage (vt), threshold voltage (Vth), and

mobility (µ). Note that the thermal voltage and mobility are functions of the operating

temperature. As it can be observed from the figures, the gate delay variation is considerably

high in NTC compared with STC. Due to this increased sensitivity to variations, circuits
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of the same type are bound to yield very different performances. One of the existing solu-

tions for multi-core processors is to operate different cores within a chip at different clock

rates [2, 13,19].

0 2% 4% 6% 8% 10%
  0%

 10%

 20%

 30%

 40%

Voltage Droop
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ea

se
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Fig. 2.4: Impact of voltage variation in NTC compared with STC.
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Fig. 2.5: Impact of temperature variation in NTC compared with STC.



10

TSTC ∝
Vdd × Leff
µ(Vdd − Vth)2

(2.4)

TNTC ∝
Vdd

µ× Leff × v2t × ln2(e
Vdd−Vth
2×n×vt + 1)

(2.5)

However, even with frequency relaxation, SRAM cells require careful design considera-

tions as they use miniaturized transistor devices, which are more susceptible to variations.

The next section will discuss in detail how SRAM cells are affected by process variations in

the near-threshold regime.

2.2.2 Static Random Access Memory

SRAM blocks can occupy up to 70% of the chip area [10]. For that reason, they are

built with minimum size transistors for a given technology. The small size of the devices im-

pairs the ability to precisely control the fabrication process [20]. This results in devices with

length, oxide thickness, and Vth values different from nominal ones. These parameter vari-

ations can be divided in two categories—systematic variations and random variations [20].

For systematic variations, the shift in a parameter of one transistor depends on the parame-

ters of neighboring transistors. For random variations, the shift of a transistor parameter is

independent of the parameters of neighboring transistors. The random variations are mainly

due to dopant fluctuations that eventually cause a shift in the threshold voltage [21,22].

The effect of devices with parameters varying from the nominal values is the deviation

from expected device behavior. For instance, a threshold voltage that is higher than the

nominal one will cause the transistor to be slower than expected. As combinational circuits

often have a large number of transistors on their paths, the positive and negative variations

cancel each other out. However, in the case of SRAM cells, if one transistor is weak, the

correct operations can be impaired because of shallow paths in SRAM arrays. In a low
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power regime, such as NTC, the probability of failure increases further as the over-drive

voltage is reduced.

Figure 2.6 illustrates the structure of the standard Six-Transistor (6T) SRAM cell. For

successful operations and robustness, the devices within a cell do not have the same strength.

Pull-up transistors (P1 and P2 ) are stronger than access transistors (A1 and A2 ). At the

same time, access transistors are stronger than pull-down transistors (D1 and D2 ). Due to

process variations, this order of strength can change, which could cause functional failures.

There are four main types of failures induced by process variations—destructive read, write

failure, hold failure, and access time failure [20]. These failures are next discussed in detail.

• Read failure: Figure 2.6 shows a 6T cell storing a value of one. In its steady state,

the logic values at node Q and node Q−b are one and zero respectively. For a read

operation, the bit-lines bit and bit−b are precharged to a high value (≥ VDD/2). Next,

the word-line, WL, is raised high. Consequently, bit−b is pulled down to the ground

through access transistor A2 and driver transistor D2. The current flowing through

node Q−b tends to rise the voltage VQb
. Usually, the driver device (D1 ) is sized to be

VDD

WL

Q

VQ=1
VQ_b = 0

Q_b

bit bit_b

A1
A2

P1 P2

D1 D2

Fig. 2.6: 6T SRAM cell.
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stronger than the access transistor (A2 ) so that node Q−b is held at a voltage, Vread,

less than the flipping threshold of inverter P1/D1. Due to parameter variations, A2

can become stronger or D2 weaker. In this case, the values of Q and Q−b flip, which

corrupts the value stored in the cell.

• Write failure: To write a value of zero in a cell storing a one (Figure 2.6), bit is pulled

down by a write driver while bit−b is precharged high by the bit-line conditioning

circuitry. Next, the word-line is raised high. Consequently, node Q is discharged

through bit. In the same time node Q−b (the output of Q) is flipped to one. The new

stored value remains stable as long as access transistor A1 is stronger than pull-up

transistor P1. In practice, P1, which is originally switched on, will oppose node Q

from being pulled down. To avoid this effect, P1 and A1 are usually sized in a way

that A1 is stronger than P1. However, due to parameter variations, P1 can become

stronger than the access transistor. If, because of variations, P1 is stronger enough to

keep VQ at a voltage higher than the switching voltage of inverter P2/D2, the write

will never be successful.

• Access time failure: The access time failure happens when the time required to

produce a certain differential voltage, Vdiff , between two bit-lines is violated. For

instance in Figure 2.6, if the access transistor A2 and/or pull-down transistor D2

happen to have higher threshold voltages, it takes longer to pull down bit−b.

• Hold failure: During hold time when there is no read or write, the supply voltage

is reduced to decrease the static energy consumption. The reduced voltage is usually

high enough to keep the node (Q in Figure 2.6) storing logic one stable. However,

due to Vth variations, the pull-down transistor D1 can have a much higher threshold

voltage resulting in leakage current. This leakage can bring the voltage in node Q to

a lower value than the switching voltage of the inverter P2/D2. The same undesired

effect can happen if the threshold voltage of transistor P1 is too low.
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As discussed in Section 2.2.1, the gate delay in NTC is more susceptible to PVT varia-

tions than in STC. This implies that the failure rate in NTC is expected to be higher. The

access failure is the most affected due to the reduction in current of the access transistors.

Due to this increase of SRAM fault rates, especially in NTC, it is necessary to find proper

measures to mitigate the effect of process variations. Section 2.3 discusses some of the

existing works studying the impact of PVT in both STC and NTC.

2.3 Related Work

Multiple works have tackled SRAM failures in NTC using alternative device tech-

nologies, circuit, and architectural techniques. This section highlights the advantages and

disadvantages introduced by those techniques.

• Alternative SRAM cells: Due to the read and write conflicting constraints and the

high susceptibility to process variations, the use of conventional 6T SRAM cell in the

sub or near-threshold regime is almost impossible. Many works [23–26] designed alter-

native SRAM cells to tackle different issues encountered in the sub and near-threshold

voltage regime. Chang et al. [25] designed an Eight-Transistor (8T) cell to decouple

the read from the write. As shown in Figure 2.7, two additional transistors D3 and D4

are added. These additional devices are used for the read operation. This increases

the optimization space since read and write devices can be sized independently, which

allows read stability and write operations at low voltages. However, even in the pres-

ence of an 8T transistor, there is no clear way to overcome access delay variation

other than reducing timing constraints—an option that considerably deteriorates the

performance [6]. Calhoun and Chandrakasan [26] proposed a ten-transistor cell. In

addition to maintaining read, write, and hold stability at sub-threshold voltages, this

cell reduces the leakage compared with an 8T cell. However, it requires relaxed timing

constraints because of delay variations.
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Fig. 2.7: 8T SRAM cell.

• Pipelined cache architecture: High performance processors require caches that can

at the same time offer high bandwidth and provide large cache capacity in order to

reduce the miss rate. However, large caches increase the bit-line capacitance. In turn,

the high capacitance deteriorates the access time, which leads to multi-cycle cache

accesses. To improve the performance of L1 caches, Agarwal and Vijaykumar [27]

proposed an architecture that pipelines the cache so that it can be accessed each

cycle.

• Variable latency cache architecture: To mitigate the effect of process variations,

Hong and Kim [28] proposed a technique where cache access is divided into three stages

to decode, access, and output the data. The access to the SRAM array incurs a two-

cycle latency, whereas decoding and outputting the data requires only one cycle each.

The access to the SRAM array has an extended latency in order to hide any timing

violation that might happen; however, this technique is unnecessarily pessimistic since
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it extends the latency even when there are no timing violations.

Mutyam et al. [29] used timing information obtained during memory functional testing

to determine the cache entries that need extended latency during run-time. However,

this technique is difficult to apply in NTC due to high delay variation observed in

NTC. Error status of a bit cell may change due to its high sensitivity to voltage and

temperature fluctuations during run-time.

• Reconfigurable SRAM arrays and redundancy: Several works in STC consider

dynamically reconfiguring SRAM arrays by either disabling the regions of the cache

that are fault prone or by trading off the array size to operate at low voltages. Ozdemir

et al. [30] proposed to disable slow cache ways. However, this requires extra area to

conserve the yield. Otherwise, it would hurt the cache size and increase the miss

rate. In addition, because of clustering of faulty bits, there is a high probability

that physically close ways are all faulty, making the cache unusable. Wilkerson et

al. [31] combined healthy bits of two consecutive cache lines to form one healthy line.

However, this technique can only work with low error rates (≤ 0.001)—a contrast to

NTC design where PVT-induced error rates are higher.
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Chapter 3

L1 Cache Design in NTC

In this chapter, a process variation model for an L1 cache operating in NTC is designed

to investigate the impact of PVT compared with a cache operating in STC. In Section

3.1.2.2, microarchitectural behaviors of popular mobile applications are studied in order to

motivate the design of a robust cache by exploiting cache access patterns.

3.1 L1 Cache Design Challenges in NTC

A high performance L1 cache is typically pipelined in order to overlap its long hit

latency and increase the throughput. The pipeline is configured with three stages following

the design presented by Agarwal and Vijaykumar [27]. Figure 3.1 shows the stages of the

pipeline: 1) Address Decoder (AD), 2) Cache Access (CA) from the word-lines to the sense

amplifier through the bit-lines, and 3) Data Out (DO). In this work, the focus is put on the

CA stage since it has the shallowest logic depth with many parallel paths, and is therefore

more susceptible to PVT than other stages.

Due to the presence of SRAM arrays in the CA stage, four type of failures due to PVT

are observed—SRAM hold failure, read stability, write stability, and access-time failure.

While 8T SRAM cells have been shown to be effective in alleviating write and read stability

issues, existing techniques to deal with timing access failure comes with a drawback of severe

performance degradation [32]. For instance, some cores operate at 10X lower frequency

than the highest achievable frequency in order to avoid timing violations in multi-core

processors [2].

Instead of lowering the frequency to a value that does not cause functional failures, this

project allows the processor to work in a fault-prone environment while adaptive measures

are taken to allow reliable operations. The emphasis is put on L1 cache since it contains
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the majority of critical paths within a processor and is the most susceptible to process

variations [28,33].

3.1.1 Modeling PVT in L1 Cache

To investigate how PVT affects L1 cache, an 8T model proposed in VARIUS-NTV [6]

is used. An 8T cell model is chosen since it decouples the read from the write operation, and

hence increases the read noise margin. As for the write operation, there is a high freedom

to size the transistors associated with writing without worrying about the read stability.

The model considers both random and systematic variations due to lithography irreg-

ularities. For the random component, the die is divided in grids, and each grid is assigned

a value of Vth and Leff obtained from a normal distribution with zero mean. For the sys-

tematic component, a multivariate random distribution with a spherical function is used to

sample the parameter values. As the distance between two grids decreases, their parameter

correlation increases to model the spatial correlation observed between neighboring tran-

sistors [6]. The same coefficient for systematic and random deviations (
σsys
µ ,

σsys
µ ) are used.
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For Vth, the model uses σ
µ = 0.09, while σ

µ = 0.045 for Leff according to empirical data [34].

Subsequently, 2000 cache instances are built using the aforementioned model. Table 3.1

lists the parameter values used for the model where the technology parameters are derived

from the 2012 International Technology Roadmap for Semiconductors (ITRS) [35].

To estimate the minimum operating voltage, Vdd−min, HSPICE level simulation is per-

formed to determine the hold and write stability voltage. The results show that the write

operation requires a higher voltage, which is equal to 0.31 V. Next, a guard-band of 20% is

added to make sure that there is no write failure even in the worst operating conditions. To

ascertain that HSPICE results are correct, analytical results from Karpuzcu et al. [6] are

compared to Vdd−min. At this voltage, the cache instances with write faults are considered

unusable.

Furthermore, a modified version of Cache Access and Cycle Time (CACTI) model [36]

is used to obtain the nominal access delay of a 32-KB cache operating at a 32 nm node. The

CACTI access time is measured against the access time from the PVT model represented by

Equation (2.4) and Equation (2.5). The output of the model is a map of faults for each cache

instance. The cache words whose access time is greater than the sum of the nominal delay

and the guard-band are defined as Fault-Prone (FP) words. Note that faults are modeled

at a four-byte word granularity due to memory limitations on the used system (at a one-bit

granularity, the model exhausts memory resources). This means that any word with a single

faulty cell is pessimistically considered faulty. The highest defect rate is set to 10%. At

a supply voltage of 0.5 V, 74% of the original cache instances satisfy the tolerance threshold.

Table 3.1: Model parameters.

Technology parameters for a 32 nm technology.

Vdd − STC: 0.9 V Vdd −NTC: 0.5 V
Vth − STC: 0.28 V Vth −NTC: 0.40 V

Process variation parameters

Total (σµ)Leff = 0.0045 Total (σµ)V th = 0.09

Cache instances: 2000 Correlation coefficient: 0.1
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Figure 3.2 shows the cumulative distribution function of faulty four-byte words present

in a population of 2000 cache instances for NTC and STC. From this figure, it can be

observed that 80% of the STC instances have a fault rate less than 2%, whereas 80% of

the NTC caches have a fault rate approaching 20%—an order of magnitude increase from

STC. Therefore, it can be concluded that under the same technology node and process

variations, NTC caches have substantially more faulty words compared with STC caches.

Consequently, adequate techniques to deal with faulty cells in NTC are needed.

3.1.2 Opportunities for Resilient Cache Design

This section studies two key characteristics of cache faults that can be exploited to

design a resilient cache: 1) the spatial clustering of defective cells due to PVT, and 2) the

dynamic manifestation of a timing fault resulting from the application cache behavior.
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Fig. 3.2: The cumulative distribution function of faulty words in STC and NTC caches.
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3.1.2.1 Congregation of FP Cells

Figure 3.3 shows the FP word distribution for one of the NTC cache instances generated

in Section 3.1.1. This figure represents a cache with a defective rate of 30% with a granularity

of four bytes. A close look reveals that, even at such high defective rate, FP words are

strongly clustered in some regions of the cache. This clustering of defects is an advantage

because it reduces the number of faulty cache sets compared with a cache with a random

defect distribution.

3.1.2.2 Dynamic Manifestation of Faults

Fault manifestation rate depends on both cache fault sites and the application behavior.

For example, it is possible for one application to heavily access fault sites, while another

only accesses healthy regions. Consequently, a fault manifestation will be correlated with

the spatial and temporal locality of the application. Using gem5 [37], this section studies L1

cache locality by simulating eight AsimBench [8] mobile benchmarks. For each benchmark,

with the exception of Frozenbubble, one billion instructions are simulated. For Frozenbubble,

only 0.68 billion instructions are simulated due to its small size.

Fig. 3.3: FP word distribution under NTC. FP words are shown in black.
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Table 3.2 represents the statistics of the simulated benchmarks. The findings in this

table are to be expected: high load-store ratios (up to 2.3X), low L1 cache miss rates (0.27%

- 3.70%), and smaller working sets compared with SPEC CPU2006 benchmarks [38,39]. The

high load-store ratio means that there are fewer write instructions than read instructions.

This increases spatial locality and reduces conflict misses. At the same time, the smaller

working set helps in reducing misses due to L1 cache capacity.

To further study cache locality, Figure 3.4 represents the portion of all cache read

requests served by the top 1% frequently accessed cache words. It can be observed that

only this 1% portion of the cache serves between 75% and 90% of all access requests.

Chapter 4 explores a technique to reduce fault occurrence by redirecting the most accessed

words to healthy regions of the cache. This can be done by a low-overhead circuit embedded

in the AD stage. Section 6 evaluates the effectiveness of that remapping scheme.

Table 3.2: Benchmark statistics.

Benchmarks
working set
(MB)

L1 data
miss rate

L1 instruction
miss rate

Loads Stores
Conditional
branches

Adobe 67.86 2.60% 0.43% 26.80% 12.60% 12.49%
Baidumap 71.59 3.20% 1.40% 31.10% 16.80% 14.60%
Frozenbubble 38.97 2.00% 1.70% 19.30% 8.46% 12.93%
K9mail 60.28 2.20% 0.30% 19.80% 8.80% 7.80%
Kingsoftoffice 82.07 3.70% 2.60% 27.70% 12.60% 12.20%
Mxplayer 47.92 2.22% 0.27% 23.80% 10.28% 11.91%
Netease 33.01 1.68% 0.35% 29.18% 12.77% 16.30%
Sinaweibo 88.11 2.89% 0.56% 27.01% 13.48% 12.58%
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Fig. 3.4: Read access percentage served by the top 1% frequently used cache words.
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Chapter 4

Adaptive Set Remapping

This chapter presents a cache remapping technique aware of the application cache

behavior and the location of FP sites. Section 4.1 discusses the process of finding the

candidates to be remapped. Section 4.2 describes how the remapping is carried out, while

Section 4.3 gives details of how fault occurrence is detected.

4.1 Detecting a Candidate to Be Remapped

The objective of remapping is to reduce the occurrence of timing violations as much

as possible by redirecting requests from faulty regions to healthy regions. However, it

is necessary to study the application cache behavior in order to find the candidates that

are more likely to maximize the benefit from remapping. This is a necessity that stems

from the fault manifestation locality. From Section 3.1.2.2, it can be observed that the

combined effect of defect clustering and application behavior results in an imbalance of

fault occurrence among the sets of an L1 cache. Hence, it is necessary to find the sets

incurring the highest number of faults for a given period in order to remap them first. The

logic is that rarely active sets will now be mapped to fault sites and highly active sets will

be remapped to healthy sites. This tradeoff will reduce the fault manifestation by allowing

frequently accessed sets to have healthy accesses while defects are hidden in inactive sets.

In order to know how frequently a set incurs timing errors, a three-bit counter for

each cache set is used. Only three bits per counter are used since they achieve significant

accuracy in detecting the top faulty sets while accounting for a minimal overhead. As a

new cache block is filled from a lower level of the memory to serve a processor request, the

corresponding counter is set to 000. The counter is incremented every time a timing error

occurs in the corresponding cache set. Similarly, the counter is decremented whenever the
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same cache set is accessed without a timing error. After a brief warm-up period, the cache

sets with healthy regions that incur very few timing errors have their counters saturate at

000. On the other hand, cache sets that have timing errors and are frequently accessed have

their counters saturate at 111. The indexes of the top eight cache sets that have encountered

the highest number of timing errors are then stored in a small Content Addressable Memory

(CAM) table for remapping.

4.2 Remapping

Set Remapping is based on a simple decoder shown in Figure 4.1. A similar decoder

has been used by Shirvani and McCluskey [40]. Each output can select a single block in

the SRAM array according to the signal (an ... a1 a0) from the set index. Figure 4.1 shows

an example where a2 a1 a0 = 010. In this case, the activated devices (highlighted in the

figure) will form a path that ends up selecting block2. If the last stage signal, a2 a1 a0, were

000, then block0 would be selected.
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Fig. 4.1: Simple decoder.
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When a cache set is being accessed, its index is used to look up the CAM table. If

there is a match, it indicates that a set candidate has been found for remapping. Next,

the set is remapped by flipping a certain bit of its index. Figure 4.2 presents a remapping

example where the last bit of the index is remapped in the last stage of the decoder.

When the control signal a0 of stagen−1 is flipped (e.g., 000⇒001), the set is remapped

to the nearest set. However, there is a possibility that a faulty set might be remapped to

another faulty location, which would yield no benefit. One way to reduce this probability is

by increasing the redirection stride. The reason behind longer redirection stride is based on

the results from Chapter 3, which indicate that the words surrounding a particular faulty

word are also likely to be faulty. To achieve longer strides, one can apply line interleaving to

the decoder as shown in Figure 4.2. In this case, instead of having Block0 and Block1 close,

the two blocks are separated by sixteen other blocks. For a 32-KB, two-way cache with a

10% defect rate, the best stride length is estimated using architectural simulations. Figure

4.3 shows that redirecting a set to 32 lines away results in an 85% chance of remapping to

a healthy set.
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To avoid address aliasing, two opposite set indexes are stored in the CAM. In other

words, both the index of the set that needs to be remapped and the index obtained by

flipping the appropriate bit are pushed in the CAM at the same time. Consequently, it is

always guaranteed that two sets exchange physical locations without resource contention.

Another important step is to invalidate the valid bit of a remapped set to avoid reading

the old data corresponding to the original address. In the gem5 architectural simulator, the

first read access after remapping results in a cache miss as the valid bit is still set to zero.

The remapping process is preceded by the CAM look-up, which adds a delay to the AD

stage. To reduce this additional delay, a small CAM table with only eight entries is used

to hold the indexes of the top erroneous sets. Although the table seems small, it should

be noted that only a small fraction of all sets accounts for most of the cache accesses as

discussed in Section 3.1.2.2. Consequently, taking care of few sets that cause most of cache

errors will significantly reduce the error rate.

To investigate the effect of the CAM on timing constraints, a 9-to-512 decoder with an

embedded eight-entry CAM to control the bit-flip module is designed as shown in Figure 4.2.

The timing information obtained from synthesis suggests that the CAM negligibly affects

the critical path, therefore assuring that the AD stage completes with enough positive slack.



26

4.3 Dynamic Access Failure Detection and Correction

To detect a timing error, two registers (early−data and late−data) are used to latch the

data in the DO stage. The latency from AD stage to early−data is three cycles, whereas

the latency from AD to late−data is four cycles. This extension of latency is due to an

extra cycle padded to the CA stage to guarantee correct data in late−data once a slow cell

is accessed. It is assumed that any cells requiring more than two cycles to complete the

CA stage are disabled. However, in the simulation performed in Chapter 3, CA stages for

all cells were able to complete within two cycles. A comparison between early−data and

late−data, as shown in Figure 4.4 and Figure 4.5, determines if there is a timing error. In

case of a timing failure, all instructions computed after are flushed out of the pipeline and

recomputed. Next, the counterflow pipelining technique adopted from Bull et al. [41] is

used to assure that the correct data is available in the processor pipeline after an error.

Fig. 4.4: Flow of instructions in the cache pipeline.



27

Fig. 4.5: Error detection.

4.3.0.3 Successive Cache Access

Detecting a fault in the DO stage may be problematic. For instance, if there are two

successive accesses, A and B, late−data of A and early−data of B will be accessed through

the same bit-lines and sense amplifier. This will result in both data being corrupted. To

solve this resource contention, interleaved multi-banking is used. The applied banking

scheme does not allow issue of multiple read or write operations in one cycle as done in

conventional high performance processors. At most one load or store instruction can be

issued in each cycle. However, the throughput is regained by exploiting the cache pipeline;

up to three instructions can use the pipeline at the same time.

Since most applications have a good spatial locality (Section 3.1.2.2), using two banks is

good enough. If a certain address, Addressn, is mapped in the first bank, then Addressn+1

will be mapped the second address. Even with the use of multiple banks, bank conflicts

are still a possibility if successive accesses happen to be in the same bank. In this case, a

pipeline stall is initiated. In the methodology detailed in Chapter 5, the number of stalls

due to bank conflicts is incorporated in the performance estimation.
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Chapter 5

Methodology

Figure 5.1 shows the detailed circuit-architectural methodology used in this work. The

whole process can be divided into different parts: PVT modeling, architectural simulation,

power estimation, and area overhead estimation.

5.1 PVT Modeling

The process variation model used in this work is based on the one developed by

Karpuzcu et al. [6]. The model is designed using MATLAB 2011 [42]. The input of the

model is the maximum time access for a given size of L1 cache. As detailed in Section 3.1.1,

the model outputs a fault map. The map is a simple text file with a string of zeros and

ones that represent the fault status for each SRAM cell of the cache.
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Fig. 5.1: Detailed circuit-architectural methodology.
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CACTI tool is used to extract the nominal access time of a cache. Here, the inputs

are cache specifications such as the size, the associativity, and the technology node. Some

technology node parameters have to be first customized for NTC according to HSPICE level

simulations. The main changed parameters are the supply voltage, the threshold voltage,

and the gate delay. In addition, the ITRS low-operating power devices are used to match

NTC specifications.

5.2 Architectural Simulation

Table 5.1 shows all the architectural parameters used for gem5 simulations. Two

slightly different simulation sets are performed. The first simulation is performed in or-

der to study how the benchmarks use L1 cache as well as acquiring performance statistics

for a completely healthy cache. This simulation is performed with the original gem5 code

unadulterated. In the second set of simulations, the gem5 code is modified to interface

with the cache error map generated by the PVT model. Finally, a comparison between

the original code simulation and the simulation in the presence of PVT-induced failures

determines the PVT impact on the performance.

Table 5.1: Architectural parameters.

Architectural parameters

Parameter Value

L1 I-Cache 32 KB, 2 ways, 32-byte line
L1 D-Cache 32 KB, 2 ways, 32-byte line
ISA ARM
Configuration In-order
Frequency 100 MHz
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5.3 Power Consumption Estimation

Due to run-time events, applications exhibit different power profiles. For each bench-

mark, gem5 feeds different statistics, such as instruction types and the use of different

microarchitecture components, to McPAT power simulator [43]. However, because McPAT

was designed for STC processor models, the resulting power values cannot be applied to an

NTC processor. One alternative for accurate power results is to customize the simulator

for NTC from the ground up. However, this is an unrealistic option given the time allotted

for this project. Instead, a step-by-step technique to scale the power results from STC to

NTC is used as described next.

• Circuit level power simulation: a chain of 31 FO4 inverters, which represents a

typical combinational circuit [44], and an SRAM array to represent on-chip memories

are designed using HSPICE. Next, using Vdd and Vth values in NTC, dynamic and

static power consumption for the FO4 chain and the SRAM array are determined.

• Analytical power scaling: Dynamic power scaling is shown in Equation (5.1), where

Pdyn−STC is the dynamic power obtained using McPAT. The ratio, αdyn, between NTC

and STC dynamic power, obtained after HSPICE simulations, is used to scale down

McPAT power results. The same logic applies to Equation (5.2), except that the

target is leakage power rather than dynamic power. Finally, Equation (5.3) adds both

leakage and dynamic parts to obtain the total power consumption in NTC. It should

be noted that power scaling is separately applied to each major component of the

processor, as different microarchitecture blocks do not have the same power profile.

Pdyn−NTC = Pdyn−STC × αdyn (5.1)

Pleak−NTC = Pleak−STC × αleak (5.2)

Ptot−NTC = Pdyn−NTC + Pleak−NTC (5.3)
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5.4 Area Overhead Estimation

For the area overhead of the remapping scheme, the FabScalar toolset [45] is used

to generate a Register Transfer Level (RTL) description for an ARM-like core. The issue

stage parameters of the core are modified to behave in an in-order fashion. The two main

components that are added to the pipeline are the error detection mechanism and the set

remapping modules. The area overhead is estimated by synthesizing the core’s RTL using

the Synopsys Design Compiler (DC) with a 32 nm standard cell library.
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Chapter 6

Results

This chapter presents the performance, power, and area results of the remapping

scheme. Section 6.1 gives details about comparative schemes. Section 6.2 and Section

6.3 compare the remapping scheme to alternative techniques in terms performance and

power consumption.

6.1 Comparative Schemes

The effectiveness of the remapping technique is evaluated by comparing it against two

recent schemes that mitigate timing faults. All the comparative schemes are described

below.

• Round-Robin Remapping and disabling (RRR): This scheme is proposed by

Abella et al. [46]. It consists of disabling the faulty blocks with a fine granularity and

periodically remapping the sets. For block disabling, a granularity of four bytes is

used due to the limitation in the existing gem5 code. Remapping is carried out by

periodically applying the Exclusive OR (XOR) operation between the set index and

a nine-bit counter irrespective of the cache defect map.

• Access time Variation Insensitive L1 Cache Architecture (AVICA): This

scheme is insensitive to access timing violations at the expense of increased latency.

The scheme is modeled simply by increasing the cache access latency by one cycle

inside the gem5 simulator and by configuring the cache with two banks in order to

hide the long access latency as proposed by Hong and Kim [28].

• Adaptive remapping: This is the proposed technique. The set remapping is guided

by the application behavior and the manifestation of faults.
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6.2 Performance

This section evaluates the efficacy of adaptive remapping and provides the results

from the comparison with AVICA and RRR. Figure 6.1 represents the reduction in timing

violations for a cache protected by adaptive remapping compared with a non-protected

cache. For both a defective rate of 5% and a rate 10%, it is observed that more than 80% of

the timing violations are prevented, which reduces a major part of the penalty that would

be otherwise incurred. Another observation is that there is a negative correlation between

the defective rate and the reduction in fault manifestation. This can be simply understood

by recognizing the fact that the number of healthy sets reduces with the defective rate.

Figure 6.2 plots the performance loss induced by PVT across all simulated benchmarks.

All three schemes are compared with a baseline healthy L1 cache in terms of instructions

per cycle. For both defective rates, AVICA scheme performs the same—a contrast to the

rest of the evaluated schemes. This can be explained by revisiting the protection technique

adapted by AVICA—extra latency is used whether or not there is a defect in the accessed

cell. The penalty cost of this protection scheme is understandably high as shown in Figure

6.2.
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Fig. 6.2: Performance loss due to PVT. Lower is better.
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For a defective rate of 5%, adaptive remapping scheme has a performance loss of only

2.7%, which is equivalent to 78% and 47% improvement in tackling PVT faults over AVICA

and RRR respectively. For a defective rate of 10%, the performance loss for adaptive

remapping is 4.2%, while it is 12.7% and 8.3% for AVICA and RRR respectively. RRR may

outperform adaptive remapping for short periods. However, during an extended simulation

time (one billion instructions) RRR performs poorer. A possible reason for this is that

RRR aims at evenly distributing the timing faults among the sets instead of decreasing the

number of faulty accesses. Consequently, there are even chances of improving or degrading

the performance for a remapping event. Another bottleneck for RRR is that disabling a

block results in an L1 cache miss and a high latency penalty of accessing the data in the

Level Two (L2) cache.

The results obtained from Kingsoftoffice show that this benchmark has almost the

same performance loss for all the schemes because of the high miss rate in the L1 cache.

The performance loss due to accessing the L2 cache or the physical memory after an L1

cache miss overshadows the performance loss due to L1 cache timing faults. Therefore, the

obtained results are about the same for all the schemes as the L2 cache has the same latency

for all the schemes.

From the results, one can deduce that AVICA scheme is only suitable for environments

with a very high percentage of PVT errors as its performance loss remains constant even

when all SRAM cells in a cache are affected by process variations. On the other hand,

as seen in Figure 3.2, the majority of the caches in NTC have an error rate less than

10%. Consequently, adaptive remapping is more advantageous since it has a much lower

performance loss compared with the other schemes.

6.3 Power and Overhead Evaluation

Figure 6.3 represents the relative power consumed by each scheme for a defective rate

of 10%. Although, on average, the power consumption is in the same range for all schemes,

there is a small advantage for adaptive remapping over other schemes. This is generally

caused by an increased leakage energy due to longer run-times in case of AVICA and RRR.



36

However, different other factors, such as the dynamic power of support circuits for each of the

schemes, influence the total power consumption. In fact, because of the additional circuitry

for each scheme and the activity factor, for Mxplayer benchmark, adaptive remapping

consumes more power than other schemes.

Adaptive remapping scheme has an area overhead because of the added circuitry to

support reliable memory operations. As described in Section 5, the area is estimated by

synthesizing a modified FabScalar core with Synopsys DC. To accommodate the dynamic

error correction and the set remapping modules, the fetch stage and the load-store unit

are modified. In addition, flushing and stalling control signals are rerouted in order to

communicate with the remapping modules. Including all the additional circuits, such as

the CAM, counters, and the remapping control, the area overhead amounts to 5.43% of the

original core.
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Chapter 7

Conclusion

This thesis work explored the design of a timing error resilient cache in the near-

threshold regime. NTC is a promising computing alternative for mobile platforms as it

reduces the power budget—an essential design consideration for mobile platforms.

A process variation model has been designed in order to evaluate the impact of process

and temporal variations on L1 cache. It has been demonstrated that cache design in NTC

is much more challenging compared with the conventional STC regime due to an enhanced

delay spread from process and temporal variations. Another finding from the model is the

spatial clustering of defective cells in a few regions of the cache. Cycle-accurate architectural

simulations have been performed to gain insight in how popular mobile benchmarks utilize

L1 cache. The simulations showed a high spatial locality in how the applications access the

cache.

To mitigate timing violation challenges in an NTC mobile processor, this project pro-

posed a low-complexity remapping technique to efficiently and dynamically avoid timing

errors during cache access. The proposed technique effectively combines application driven

access patterns with the spatial characteristics of PVT-induced delay variability to boost

the reliability of caches. Using a rigorous circuit-architectural evaluation methodology, this

project demonstrated up to 78% and 47% savings in performance loss over two state-of-the-

art techniques, AVICA [28] and RRR [46] respectively.
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