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ABSTRACT 

Purification of Anthrax Toxin Protective Antigen 

Component and Characterization of Its 

Binding Interaction With 

Bovine Kidney Cells 

by 

Daniel Dalton Martin, Doctor of Philosophy 

Utah State University, 1986 

Major Professor: Dr. Frederick Post 
Department: Biology (Microbiology) 

Protective antigen component of ~ anthracis toxin 

was produced and purified to the >99% level. Toxin was 

purified from culture supernatant utilizing concentration 

and liquid chromatography techniques. Purity was deter-

mined by sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis. 

The purified protective antigen retained biological 

and antigenic activity as evidenced respectively by leth-

ality in Fischer 344 rats when injected in combination 

with lethal factor, and by positive results on the Ouch-

terlony double diffussion assay. 

Radioiodinated protective antigen was used both in 

the in vivo and the in vitro experiments. 

X 



xi 

In vivo distribution of labelled protective antigen 

was determined in Fischer 344 rats. Assay of organ tissues 

for labelled protective antigen aided in the decision to 

use Maden-Darby bovine kidney cells for the cell cultures 

in the protective antigen binding studies. 

Protective antigen binding studies , all performed at 

37°C, evaluated criteria for receptor existence. Labelled 

protective antigen was found to bind specifically and 

reversibly to Maden-Darby bovine kidney cells. Receptors 

proved to be saturable. Scatchard analysis showed a rela­

tively high dissociation constant (K 
D 

= 17 X 10 
-9 

M) 

compared to other toxins in similar studies. This indi-

cated moderately low affinity for protective antigen. 

The receptor was also partial ly characterized. It 

was shown that cholera toxin subunit B blocked the binding 

of labelled protective antigen to Maden-Darby bovine kid-

ney cells and that the protective antigen receptor was 

insensitive to trypsin treatment. Both of these observa-

tions suggest a ganglioside as the receptor for protec-

tive antigen. 

(90 pages) 



LITERATURE REVIEW AND INTRODUCTION 

The pathological effects of most bacterial diseases 

are related to toxic substances released from the bacter­

ial cell, rather than to the effects of the organism 

itself (Smith and Stoner, 1967). Diseases such as 

diphtheria, cholera, tetanus, and botulism illustrate this 

statement. 

Bacterial Toxins 

Definition. Toxins, or poisonous substances of 

biological origin, are a very diverse group. Consequently 

it is difficult to arrive at an all-encompassing defini­

tion. Bonventre (1970) attempted to define microbial 

toxins more specifically, classifying toxins as high 

molecular weight proteins which are antigenic. This defi­

nition, however, excludes endotoxins which are lipopoly­

saccharides and many fungal toxins such as T-2 which are 

of low molecular weight and presumably not antigenic. In 

general terms then, bacterial toxins can be defined as any 

poisonous substance produced by a bacterium whether it be 

excreted from the cell or released upon cell lysis. 

History. The discovery of bacterial toxins was an 

outgrowth of early work by Pasteur and Koch in isolating 

causative organisms of disease in the late 19th century. 

In the years following, toxins were also demonstrated as 
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the principle cause of symptoms for many diseases. Pro­

phylactic immunization with toxoids (modified toxins) 

proved effective in some cases for disease prevention. By 

the early 20th century, scientific research on bacterial 

toxins was well underway (Stephen and Pietrowski, 1983). 

The pathological effects of several bacterial diseases 

were shown to be a direct result of toxin production (i.e. 

diphtheria, botulism, anthrax, tetanus, cholera, 

shigella, and plague). The study of bacterial toxins 

continued to be a focus of research. Understanding of 

pathogenesis, cellu lar function, and ligand-receptor inter­

action as well as vaccine development are some of the 

benefits derived from toxin research. 

Classification . There exists a variety of toxin 

classification schemes based on location of the toxin with 

regard to the bacterial cell, chemical structure, biolog­

ical effect of toxin, and number and interaction of com­

ponents (Bonventre, 1970). 

The terms endotoxin and exotoxin (i.e. inside the 

cell or in the culture medium), which refer to the loca­

tion of the toxin with respect to the organism which 

produces it, have found wide usage in 'toxinology'. 

Bonventre (1970) suggests, however, that these terms are 

outdated since exotoxins, once thought to be metabolites, 

can be found within the organism in young cultures 

(Bonventre and Kempe, 1960). Endotoxin of a gram-negative 

organism can also be found extracellularly in amounts 



greater than could be accounted for by autolysis 

(Crutchley et al., 1968). 

The chemical composition of toxins is varied. Toxins 

may be lipopolysaccharides as in Yersinia pestis, the 

organism responsible for plague (Hartley et al., 1974). 

Many toxins are proteins, peptides or lipoproteins as are 

those associated with Clostridium botulinum, Coryne­

bacterium diphtheriae, Vibrio c holerae, Escherichia coli, 

Bacillus anthracis, and Pseudomonas aeruginosa (Van 

Heyningen, 1970; Gill, 1978). 

The effect(s), and more particularly the site and 

mode of action as a system of classification, provides 

valuable information as well as a precise means of identi­

fying a given toxin. Unfortunately, the effect(s) and/or 

site of action for many toxins is not known, which pre­

cludes this method of classification for general use. 

For the purpose of this review, the "components" classifi­

cation is useful. There are three classes in this scheme: 

simple, mixed, and complex (Bonventre, 1970). Simple 

toxins are those which exist as monomers, dimers, or 

polymers of a monomeric subunit. Their effects are addi­

tive. The molecule can be active or may require modifica­

tion by cleavage or chemical/physical modification before 

becoming active (Bonventre, 1970). Mixed and complex 

toxins, according to Bonventre (1970) are not readily 

distinguished from each other but both require more than 

one component of different molecular make up in order to 
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become an active toxin. Mixed toxins are composed of more 

than one component which are chemically distinct and do 

not form chemical bonds. The components of a mixed toxin 

are inactive alone. Bacillus anthracis produces a mixed 

toxin (Lincoln and Fish, 1970). Complex toxins are also 

composed of more than one component, but the components 

are chemically bound together. Some complex toxins are 

defined as subunit toxins that can be separated into 

functionally distinct subunits. ~ cholerae toxin (DeWolf 

et al., 1981) and Clostridium tetani toxin (Morris et al., 

1980) for example have been demonstrated to have at least 

two subunits. Other examples of subunit toxins are C. 

diphtheriae, ~ aeruginosa, ~ coli, and C. botulinum 

toxins (Stephen and Pietrowski, 1983). 

Biological effects of toxins. The modes of actions 

of bacterial toxins have been the subject of much research 

since the turn of the century. The advent of cell culture 

allowed research into the action of toxins at a cellular 

level. Toxins require interaction with the cell membrane 

to produce an effect. Middlebrook and Dorland (1984) 

suggested that toxins be classified as either membrane 

damaging or intracellular acting. Toxins may damage mem­

branes by modifying phospholipids, increasing membrane 

permeability, sequestering cholesterol, or acting in a 

detergent-like manner. Other unknown mechanisms may exist 

to damage cell membranes (Stephen and Pietrowski, 1983; 

Alouf, 1977; Craig et al., 1981). Membrane damaging 



toxins include phospholipases (e.g. ~ perfringens, 

toxins) , hemolysins such as those produced by gram­

negative bacteria, and other lysins such as some of the 

toxins of staphylococcal and streptococcal origins (Freer 

and Arbuthnott, 1976). Clostridium perfringens alpha 

toxin was the first toxin for which an enzymatic mode of 

action was shown. In 1941 MacFarlane and Knight, as 

reported by Stephen and Pietrowski (1983), demonstrated 

that this alpha toxin was a phospholipase which cleaves 

and releases phosphorylcholine from phosphatidyl choline. 

In some cases, cell membrane damage was associated with 

receptor binding of the toxin to the membrane. Research 

with staphylococcal leukocidin by Woodin (1970) and Noda 

et al. (1982) has shown that this toxin component binds 

with the GM1 ganglioside. Apparently, without pene­

trating into the cell it exerts its effect of increas­

ing potassium permeability and increasing prostaglandin 

production and release. Bhakdi et al . (1984) demonstrated 

5 

a correlation between toxin binding (perhaps associated with 

channel formation) and the hemolytic membrane damage of 

staphylococca l a l pha toxin. Intracellular-acting toxins 

seem to have a common mechanism of action involving: 

1)toxin binding to ce l l membranes; 2)interna l ization or 

trans l ocation across that membrane; and 3) interaction with 

an intracel l ular target (Middlebrook and Dorland 1984) . 

Toxin binding to cell membranes suggests the presence 

of a receptor. In some cases a specific toxin receptor 



has been identified. Gangliosides are a group of cell 

surface complex glycosphingolipids which serve as recep­

tors for a number of toxins and endogenous mediators 

(Osborne et al., 1982). VanHeyningen (1983) stated that 

the normal physiological function of gangliosides has not 

yet been clearly defined. A number of studies (Van 

Heyningen, 1983; Osborn et al., 1982; Cuatrecasas, 1973; 

Ganser et al., 1983) have shown that ganglioside GMl is 

highly specific for cholera toxin. Other studies with 

cholera toxin and GMl interaction have shown that the 

number of binding sites varies from one cell type to 

another: for example, sites vary from a few thousand in 

erythrocyte cells (Gill and King, 1975) to more than two 

million in some mucosal cells (Holmgren et al., 1975). 

6 

The degree of binding of the toxin per receptor _neverthe­

less seemed to remain constant (VanHeyningen, 1983). It 

appears that an initial toxin-GMl complex is necessary for 

a second component of the cholera toxin to enter the cell 

and exert its effect of activating adenylate cyclase 

(Osborn et al., 1982; DeWolf et al., 1981). 

Mechanisms for internalization of toxin across the 

cell membrane has also been a subject of investigation. 

Research with diphtheria toxin has demonstrated receptor 

mediated endocytosis. Donovan et al. (1982) found that 

diphtheria toxin binds to the cell lipid bilayer and forms 

transmembrane channels. Another study with diphtheria 

toxin also suggested that it could destabilize the 



7 

integrity of the endocytosed vesicle membrane resulting in 

r e l ease of toxin into the cytop lasm (Hudson and Neville, 

1985). Phosphoinositide was found to act as the cell 

membrane binding site for a component of diphtheria toxin 

(Donovan et al., 1982). Insertion of one diphtheria toxin 

fragment into the cell membrane facilitates the entry of 

an enzymatic fragment of the toxin into the cytoplasm 

(Collier, 1975 and Pappe nheimer, 1977). The enzymatic 

fragment alters and renders inactive the elongation 

factor-2 (EF-2) involved in protein synthesis (Middlebrook 

and Dorland, 1981; Moynihan and Pappenheimer, 1981). 

Several peptides have been found to cross the cell mem­

brane in order to elicit an effect , among which are: the 

toxins of ~ diphtheriae, ~ aeruginosa, ~ cholerae, and 

E. coli; colicins; and the plant toxin abrin (Gill, 1978). 

As already indicated, the intracellular action of 

toxins seem to center around interference with protein 

synthesis and/or activation of adenylate cyclase. 

Diphtheria toxin has been one of the major toxins studied 

with regard to interference of protein synthesis. In 1975 

Collier suggested that diphtheria toxicity was due to 

inhibition of protein synthesis and proposed a sequence of 

events including receptor-mediated endocytosis, release 

into the cytosol, and inactivation of EF - 2 by fragment A 

of the diphtheria toxin, which would in turn interrupt pro­

tein synthesis. In 1977 Collier (1977) attributed inhibition 

of protein synthesis to the P. aeruginosa toxin as well. 



Research since 1975 has supported and elaborated upon 

Collier 's model of action for diphtheria toxin (Gill, 

1978; Moynihan and Pappenheimer, 1981; Clemens, 1984). 

Activation of adenylate cyc lase has been attributed 

most specifica lly to cholera toxin (Kabir et al., 1978; 

Holmgren, 1978). Gill and King (1975) reported that NAD 

was required as a cofactor for this action. Recent 

research has demonstrated that cholera toxin acts by ADP­

ribosylating a membrane protein that is a guanine 

nucleotide-binding regulatory component of adenylate 

cyclase (Kaslow et al., 1981; Middlebrook and Dorland, 

1984) . 

Contributing to the pathogenesis of toxins is the 

fact that cells of the immune system are also affected, 

thereby decreasing host resistance. Pertussis toxin was 

shown to inhibit chemotaxis in human polymorphonuclear 

leukocytes (Lad et al., 1985; Goldman et al., 1985). 

Anthrax toxin has been shown to decrease phagocytic activi ­

ty (O'Brien et al., 1985). Friedman and Kohn (1976) demon­

strated that cholera toxin inhibited interferon action. 

Practical applications of toxin research. The study 

of toxins has proven very valuable for development of 

immunization against and treatment of diseases caused by 

toxin-producing organisms. Today, with the study of toxin­

cel l interaction, new and valuable possibilities exist. 

It has been pointed out by Middlebrook and Kohn (1981) 

that the study of binding properties of toxins has and 



will find important relevanc e in medical research in the 

production of hybrid hormones and toxins. Utilizing the 

binding properties of a toxin and/or the physiological 

effects of a toxin component opens up new avenues of 

medical therapy for treatment of tumor cells and reversal 

of certain pathologies. The use of hybrid toxins for 

"target-killing" of tumor cells has been the subject of 

much research in recent years (Gilliland et al., 1980; 

Krolick et al., 1980; Blythman et al., 1981; Olsnes, 1981; 

Moolten et al., 1982; Colombatti, et al, 1983). 

Bacillus anthracis: History 
and Pathogenesis of Disease 

Bacillus anthracis is a rod shaped, Gram-positive, 

spore-forming, facultatively anaerobic bacterium (Buchanan 

and Gibbons, 1974). Although it is pathogenic for man, ~ 

anthracis is zoonotic causing disease primarily in sheep, 

cattle, and other lower animals. The organism was first 

associated with the anthrax disease in animals as early as 

1850, but was conclusively proven to be the source of the 

lethal infection by Koch in 1877. From his work with B. 

anthracis, Koch formulated the postulates which confirm 

the causal relationship between a microorganism and the 

corresponding disease (Freeman, 1979). 

It is extremely difficult to erradicate anthrax 

because the causative organism is a spore - former infecting 

lower animals. The spore is highly resistant to extreme 

environmental conditions. Spores have been isolated from 
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the soil up to sixty years after a natural deposition 

(Wilson and Russell, 1964). This makes contaminated soil 

a source of recurring infection in grazing cattle. Con­

taminated bone meal incorporated into cattle feed has also 

been demonstrated to be a potential source of infection 

for cattle (Davies and Harvey, 1972). 

As noted, B. anthracis is pathogenic for man and can 

be transmitted to man from infected animals. Three routes 

of entry have been observed: 1) percutaneous, 2) pulmon­

ary, and 3) gastric. The disease is not normally trans­

mitted from human to human. Man is most commonly infected 

by handling contaminated animal materials and contracting 

a cutaneous infection. Handling hides and brushes, for 

example, from contaminated animals may be a means of 

infecting humans via the skin (Kendall, 1959). The infec­

tion results in a localized boil or abcess which, if 

treated medically at this point, will not result in septi­

cemia. Although anthrax septicemia is a critical condi­

tion, it does not always result in death if treated 

promptly (Tahernia and Hashemi, 1972; Nalin et al., 1977). 

Infection via the respiratory route is the most serious of 

the three natural routes of infection in man. Its fre­

quency is relatively low compared to infection arising 

from the cutaneous source. Respiratory infection has been 

demonstrated to have greater occurrence among persons who 

sort contaminated sheep's wool, and thus, has come to be 

known as "wool sorters' disease" (Dalldorf et al., 1971). 
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This infec tion can rapidly proceed to a fatal toxemia. 

Intestinal infection of humans is uncommon but can be 

rapidly fatal (Nalin et al., 1977). Spore-contaminated 

meats are the likely source (Sirisanthana et al., 1984). 

Depending on the strain, ~ anthracis may or may not 

be encapsulated. The capsular material of most bacteria 

is composed of polysaccharide whereas that of B. anthracis 

is made of the polypeptide D-glutamic acid (Record and 

Wallis, 1956; Zwartouw and Smith, 1956). The capsule 

seems to enhance the virulence of the organism by acting 

as an "aggressin" (Zwartouw and Smith, 1956), which en­

ables the organism to resist phagocytosis by the host's 

immune response. 

Anthrax Toxin 

As in many bacterial diseases, it appears that the 

anthrax organism itself is not physically responsible for 

the lethal effect of advanced infection . A combination of 

toxic substances released from the bacterial cells under 

specific growth conditions (Smith and Stoner, 1967) is 

responsible. It is also believed that the anthrax toxin 

adds to the virulence of the organism (Smith, 1958; Keppie 

et al.,1963; and Klein et al., 1963). 

In vitro production of anthrax toxin in prepared 

media (Puziss and Wright, 1954; Wright et al., 1954; 

Harris-Smith et al., 1958; and Ristroph and Ivins, 1983) 

has allowed researchers to obtain sufficient quantities of 



crude toxin: to use in studies; to purify (Fish et al., 

1968 and Fish and Lincoln, 1967; Leppla, 1982); and to 

analyze components of the toxin (Thorne, et al., 1960; 

Wilkie and Ward, 1967; Leppla, 1982, 1984). 

12 

Anthrax toxin is a complex consisting of three compo­

nents (Smith and Stoner, 1967; Smith and Stanley, 1962; 

Lincoln and Fish, 1970). The holotoxin, or complete 

toxin, is biologically active causing death accompanied by 

severe pulmonary edema upon injection into test animals 

(Smith and Stoner,1967). The Fisher 344 male rat is 

particularly sensitive to the toxin (Beall et al., 1962; 

Haines et al., 1965) and may succumb within 40-50 min 

after injection of culture filtrates (Haines et al., 1965). 

The three toxin components are protecive antigen (PA), 

lethal factor (LF), and edema factor (EF). The PA is so 

named by virtue of the protective immune response which it 

e licits in the host when injected alone. Thus PA has been 

used as an immunizing agent (Belton and Strange, 1954). 

The LF component is lethal when combined with PA. The EF 

component induces local edema at the site of subcutaneous 

injection when in combination with PA. The components 

have been shown to be neither lethal nor edema-inducing 

separate ly (Haines et al.,1965). Because of this com­

p lexity, the mode of action of the holotoxin is more 

difficult to define than that of a simple toxin. 

Much of the work with anthrax toxin has been con­

ducted at Fort Detrick at Fredrick, Maryland in the U.S. 
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and in Porton, England. Because the research in both 

centers proceeded independently, the nomenclature for 

referring to the toxin components is not consistent. The 

American terms: edema factor (EF), protective antigen 

(PA), and lethal factor (LF) correspond respectively to 

factors I, II, and III in the British literature. The 

three toxin components have a molecular weight of 89,000, 

85,000 and 83,000 daltons, respectively (Leppla, 1984). 

Although~ anthracis was shown to be toxigenic as early 

as 1954 (Smith and Keppie, 1954), interaction of the three 

components of the anthrax toxin and its mode of action 

upon cells has remained mostly undefined. 

Test animals infected with B. anthracis have shown 

many physiological effects. As indicated by its patho-

genesis, anthrax has cutaneous, pulmonary, and intestinal 

effects. Meningo-encephalitic involvement in human anthrax 

(Tahernia and Hashemi, 1972) and kidney pathology has also 

been noted (Nalin et al., 1977; Smith and Keppie, 1954). 

Whether the effects are primary or secondary is unclear, 

but toxin production in vivo is responsible for the effects 

(Fish and Lincoln, 1968). 

Mechanism of Action 
of Anthrax Toxin 

Most early work on the mechanism of action of anthrax 

toxin involved whole animal in vivo studies. With the 

advent and fine-tuning of cell and tissue culture tech-

niques, the study of the effects of toxins at a cellular 
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level has been made possibl e . Spec ies susceptibility can 

be more readily determined through use of tissue culture 

(Solotorovsky and Johnson, 1970; Dorland, 1982). Much of 

the current work with anthrax toxin has been influenced by 

Leppla. Leppla (1982, p. 3162 ) stated that no further 

studies on the mechanism of action of anthrax toxin are 

known to have been performed since 1967. 

Study of the cellular interaction of the anthrax 

toxin components PA and EF by Leppla (1982 and 1984) has 

demonstrated that the EF component is an adenylate cyclase 

and in combination with PA results in a dramatic elevation 

of intracellular cAMP in chinese hamster ovary (CHO) and 

baby hamster kidney (BHK) cells. Elevation of cAMP is 

also observed in polymorphonuc lear neutrophils (PMN's) 

along with decreased phagocytic activity by the PMN 

(O'Brien et al . , 1985). Oddly, PA and EF in tandem were 

shown by Wade et al. (1985) to enhance chemotaxis of PMN's. 

It has been hypothesized by Molnar and Altenbern (1963) 

and Leppla (1984) that PA binds to the cell's surface and 

acts as a mediator to allow EF and LF to enter the cell 

and express themselves in the cytoplasm. 

Gross changes in cultured cells in response to the 

toxin vary with cell line. Leppla (1982) reported elonga­

tion in CHO cells in response to PA and EF. Bonventre 

(1965) reported no visible cytopathic effects in guinea 

pig spleen, mouse embryo primary explant, and buccal car­

cinoma cells. 
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Past research with othe r toxins has elucidated the 

presence of toxin-binding receptors in cultured cells and 

animal host tissue (Critchley et al., 1981; Boquet and 

Duflot, 1981; Dreyfus and Robertson, 1984; Yavin and 

Nathan, 1986). It is therefore likely that receptors for 

one or more components of the anthrax toxin also exist. 

Techniques of Toxin Study 

Toxin purification. In order to clearly identify the 

actions of any mixed or complex toxin it is essential to 

separate and purify the individual toxin components. 

Efforts to purify the PA, EF, and LF toxin components of 

B. anathracis began with Thorne et al. (1960). By util­

izing a fritted glass filter they separated the toxin into 

two components. One component remained adsorbed to the 

filter while the PA component was contained in the fil­

trate. The adsorbed component, referred to as "filter 

factor", was eluted with alkaline buffers. The two com­

ponents were shown to be toxic in combination, but not 

separately. Stanley and Smith (1961) later demonstrated 

that the filter factor described above was actually two 

components, namely EF and LF, which they termed factors 

and III, respectively. Much of the early efforts to 

purify the components of anthrax toxin (see Lincoln and 

Fish, 1970 for review) failed to eliminate cross comtami­

nation and based the levels of purity on serological and 

biological assays alone. 
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More recently Leppla (1982 & 1984) used ammonium 

sulfate precipitation and liquid chromatography methods to 

purify all three anthrax toxin components. The components 

described in Leppla's work (1982), however, were only 80% 

pure for EF and LF, and 90% or greater for PA. Leppla 

acknowledges, for instance, that the term "EF must be 

viewed as describing a functional and not a physical 

entity" (Leppla, 1982, p.3163), indicating that the level 

of purity allows some question as to the conclusions drawn 

from experimental results using those components. 

One of the most promising methods to accomplish puri­

fication is the use of highly specific monoclonal anti­

bodies coupled in affinity chromatography (Machuga et al., 

1986). Initial purification procedures rely on other 

liquid chromatography techniques such as ion exchange 

and gel filtration. Still another method for producing 

pure toxin component has been attempted. Vodkin and 

Leppla (1983) successfully cloned the PA gene in ~ coli 

and induced production of the PA component. Purification 

by this method, however, has not yet yielded PA at greater 

levels of purity than those previously reported. 

Evaluation of toxin-cell interaction. As noted, the 

study of the effects of microbial toxins at a cellular 

level has been advanced by improving cell and tissue 

culture techniques. Recently, these techniques have 

allowed extensive study of the interaction of various 

toxins with cell membranes (Noda et al., 1981; Osborne 



17 

et al., 1982; Moynihan and Pappenheimer, 1981; Lin and 

Taniuchi, 1980; Donta et al., 1982). Studies with v. 

cholerae toxin and E. coli enterotoxin (Donta et al., 

1982), ~ tetani toxin (Lietzke and Unsicker, 1983; 

Critchley et al., 1985), and C. diphtheriae toxin (Mekada 

et al., 1982; Dorland, 1982) have been enhanced by the use 

of ce ll culture. Membrane preparations of animal tissues 

have also served to identify receptor sites for toxins. 

For example, tetanus toxin was found to bind to brain ce ll 

membranes (Rogers and Snyder, 1981) and cholera toxin 

bound to microvillus membranes (Bresson et al., 1984). 

Once a given toxin was determined to be bound to a 

given ce ll type, a specific receptor could be searched 

for. It i s now well establi shed that cholera toxin is 

bound by the GM1 ganglioside (Critchley et al.,1982; 

Ledeen and Mellanby, 1977; Fishman et al., 1984). It has 

been shown that C. botulinum toxin also associates with 

gangliosides (Kitamura et al., 1980) and that diphtheria 

toxin binds to certain phospholipids in liposomes (Alving 

et al., 1980; Donovan et al., 1982). It has been recognized 

through such studies that diffe rent toxins may bind to the 

same or similar receptors (Tsuji et al., 1985; Simpson, 

1984). Toxin processing by ce ll s has also been elucidated 

by cell culture studies such as t hose done with diphtheria 

tox in (Dorland et al., 1979; Middlebrook et al . , 1978) . 

Receptors have been solubilized and removed from cell 

membranes and successfully purified, as with the rat 
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intestinal receptors for ~ co li heat-stable toxin 

(Dreyfus and Robertson, 1984). Identification and subse­

quent isolation and purification of receptors for bac­

terial toxins has allowed more detailed analysis of how 

the toxin interacts with cells to exert their effects. 

Diphtheria toxin has been o ne of the most intensively 

studied in this regard (Donovan e t al., 1982; Zalman and 

Wisnieski, 1984; Kagan and Finkelstein, 1979; Hudson and 

Neville, 1985). Diphtheria toxin acts intracellularly 

which requires that the active portion of the toxin gain 

entry into the cell. In order to gain entry, diphtheria 

toxin interacts with the cell membrane by insertion of 

one toxin fragment into the cell membrane facilitating the 

entry of an enzymatic fragment of the toxin into the 

cytoplasm (Collier, 1975; Pappenheimer, 1977). Studies 

with diphtheria toxin receptor interactions also have 

demonstrated that different cell lines, as well as dif­

ferent species, seem to vary in the number of surface 

receptors for the toxin (Middlebrook et al., 1978). It is 

therefore evident that identification and characterization 

of a toxin receptor is helpful in elucidating the interac­

tion of a toxin with a cell. 

Research in the area of bacterial toxin receptors 

seems to be of great comtemporary interest (for a review 

see Eidels et al., 1983). One of the most utilized 

methods for detecting cell receptors for a given ligand is 



19 
125 

to radiolabel the ligand with and assay for gamma 

radioactivity. This method has been used successfully for 

toxins, hormones, and other biological ligands such as 

ricin, a plant toxin (Nicolson et al., 1978), interferon 

(Aguet et al., 1982; Aguet and Blanchard, 1981), thrombin 

(Stein and Hoak, 1981), insulin (Katzen et al., 1981), 

tetanus toxin (Morris et al., 1980; Critchley et al., 

1985; Rogers and Snyder, 1981; Lazarovici and Yavin, 

1985), diphtheria toxin (Mekada et al., 1982), cholera 

toxin (Nielsen et al., 1984; Fishman, 1980; Bresson et 

al., 1984 ) , botulinum toxin (Kitamra et al., 1980), and 

Staphlococcal leukocidin (Noda e t al., 1981). Visualiza-

tion of receptor activity or binding location has also 

been accomplished by utilizing ferritin (an electron dense 

protein) or colloidal gold. The gold may be either bound 

to the lectin (Loftus and Albrecht, 1983; Gershon et al., 

1981) or conjugated to antibodies against the lectin. 

These conjugates are then visualized by electron micro­

scopy for a qualitative assay. Immunofluorescence has 

also been useful (Lietzke and Unsicker, 1983). 

All the above methods for detecting receptors on cell 

surfaces or membranes are indirect. These methods do, 

however, provide valuable information regarding such 

aspects of toxin-cell interactions as binding affinities, 

constants, saturability, reversibility, location of sur-

face receptors, and receptor number per cell. 



Initial Determination 
of Receptor Existence 
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Receptor research has advanced with the discovery of 

not only toxins but also a wide variety of endogenous 

substances such as hormones, growth factors, interleukins, 

etc. all of which mediate their effects in the body 

through some form of receptor. 

Binding of a given molecular species to a surface is 

not necessarily due to a specific receptor. Nonspecific 

binding can account for what may seem to be specific 

binding (Cuatrecasas and Hollenberg, 1975). 

Cuatrecasas (1974) proposed specific criteria in 

order for the binding of a labelled ligand to be attri-

buted to interaction with a receptor. Among the necessary 

criteria are: chemical specificity, saturability, high 

affinity, and reversibility. 

Chemical specificity means that the ligand is bound 

by a receptor which chemically and/or physically distin-

guishes the ligand. Middlebrook et al. (1978) noted that 

unlabelled diphtheria toxin competes for receptor sites 

with the labelled toxin as does cross reactive mutant- 195 

(a toxin homlogue) and subunit "B" of the diphtheria 

toxin. This data, coupled with the observation that P. 

aeruginosa "exotoxin" A and abrin did not compete for the 

receptor, indicated that Middlebrook et al. (1978) demon-

strated the specificity of the receptor. 
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Saturability of t h e receptor sites by a specific 

ligand can be demonstrated either by treating the receptor 

sites with increasing concentrations of the ligand over a 

specific time period or by treating the receptor sites 

with a set concentration of ligand over a variable period 

of time. At some point all the specific receptor sites 

will be occupied, thus achieving saturation and demon-

strating a limited number of receptor sites. 

Affinity can be demonstrated by calculation of an 

association constant. Scatchard (1949) analysis allows 

determination of an association constant for the receptor-

ligand complex. Great or high affinity is evidence that 

the ligand is capable of maintaining association with the 

receptor of a cell, for example, for a period of time 

sufficiently long enough to elicit the intended response. 

Reversibility can be shown if bound labelled ligand 

is removed by an excess of unlabelled ligand. This response 

indicates competition for the receptor site. 

Binding Studies of 
Anthrax Toxin Components 

The study of toxin binding kinetics looks at the 

quantitative and temporal features of toxin binding to 

receptors. The kinetics of the binding and interaction at 

a cellular level of anthrax toxin components has not been 

studied to the extent that other toxins have been studied. 

Prior to 1980, the work with anthrax toxin was confined 

mostly to in vivo experiments related to the study of how 
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the toxin acts. Gladstone (1946) used the protein­

containing anthrax culture supernatant to invoke a pro­

tective immune response in animals. Smith and Keppie 

(1954) induced edema and lethality in test animals with 

injections of sterile plasma from guinea pigs infected 

with anthrax. With the subsequent identification of three 

distinct components of the anthrax toxin (Stanley and 

Smith, 1963), work was then directed toward purification 

of each component and determination of how each component 

functioned. 

In early work it was shown that EF and LF appeared to 

compete for the available PA after intravenous injection 

into test animals (Stanley and Smith, 1961). Leppla 

(1982) demonstrated that EF acts as an adenylate cyclase 

to elevate cyclic AMP in cultured cells only in the 

presence of PA. Working with the toxin components with 

cultured cells, Leppla (1982) also demonstrated that LF 

blocks the action of EF on CHO cells, BHK-21 cells, and 

fetal Rhesus Lung (FRhL-2) cells, presumably by competing 

for the PA at the cell surface. 

The apparent function of PA as a mediator for the 

passage of other biologically active component(&) is sim­

ilar to the "A"/"B" subunit scheme for other bacterial 

toxins such as in diphtheria and cholera. In these cases, 

however, the subunits are covalently connected, whereas the 

anthrax toxin components are thought to be physically 



23 

independent of each othe r (Le ppla, 1984). This aspect of 

the anthrax toxin has facilitated the separation/purifica­

tion of the components. 

An interesting aspect of Leppla's work (1982) from 

the standpoi nt of receptors is that the peak response of 

CHO cells to EF occurred at concentrations where EF and PA 

were both the same (about 1 ug/ml). This is consistent 

with a binding role for PA. Leppla (1982) also noted that 

the data indicated that the "essential components of the 

uptake system for EF are not consumed during EF action " 

(p. 3165). This observation implies that PA is not rapidly 

internalized and remains bound at the cell surface, at 

least in CHO cells , ready to mediate the binding or pas­

sage of EF or LF. 

The available information points to the existence of 

receptors for PA on susceptible cells. Receptors have 

been identified for certain toxins such as the GM1 -

ganglioside for cholera and heat-labile toxins. It is 

possible , therefore, that PA binds to a similar receptor. 

With regard to characterizing the binding of PA, or any 

other of the anthrax toxin components, to cultured cells 

or tissue samples there is, to the author's knowledge, no 

published work. Any research attempting to characterize 

the binding of PA to cultured cells requires the PA to 

approach levels of purity beyond that reported in the 

literature thus far. 
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Research Proposal 

I t was the aim of this research to purify the anthrax 

toxin protective antigen (PA) component and to character-

ize its binding to a se l ected ce ll line, namely Mad e n-

Darby bovine kidney (MDBK) cells. To accomplish this the 

subsequent outl ine was followed: 

1) A toxigenic strain of Baci llus anthracis was 

cultured in vitro. -- -----

2) Biologically active holotoxin toxin was produced 

and identified. 

3) The Protective Antigen (PA) component was 

purified to l eve ls > 99%. 
125 

4) The PA was labelled with for use in a 

radio binding assay. 

5) Distribution and localization of the labelled PA 

in vivo was determined after injection into a susceptible 

host. 

6) A binding assay with the labelled PA in an 

in vitro ce ll culture system was developed. 

7) The criteria for a receptor as outlined by 

Cuatrecasas (1974) was investigated on a selected cultured 

ce ll type . 

8) It was determined if the receptor for the 

PA is proteinaceous by treatment with trypsin. 

9) It was determined if the binding unit of 

cho lera toxin could block the binding of PA, thus indi-

eating the possibility of a ganglioside receptor. 
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MATERIALS AND METHODS 

Toxin Production 

Bacillus anthracis (Vollum 1B initially then, Sterne 

strain) vegetative cells were streaked on blood agar for 

isolation. Isolated colonies were transferred with a 

sterile inoculating loop to another blood agar plate and 

incubated at 37°C for 15-18 hr. The second plate was 

flooded with a sterile growth medium composed of Casamino 

Acids (Detroit, MI . ) with chemical supplements as de­

scribed by Haines et al. (1965), hereafter referred to as 

growth medium. The surface growth was suspended in liquid 

medium and then placed in a sterile tube for mixing. 

Aliquots were dispensed and frozen for subsequent use as 

inocula. 

A blood agar plate was heavily streaked with cells 

from a thawed inoculum aliquot and incubated for 18 hr at 

37°C. The plate was flooded with sterile growth medium 

and the colonies suspended and mixed to a uniform suspen­

sion. A sufficient volume of this mixture was transferred 

to about 15 ml sterile growth medium to give a reading of 

between 18-26 units on a Klett spectrophotometer. A 0.5 ml 

portion of this suspension was transferred to a Fernbach 

flask containing 460 ml growth medium and 5 ml sterile, 20% 

aqueous, glucose solution and was incubated at 37°C. After 



4 hr incubation, 50 ml of sterile 9% sodium bicarbonate 

solution was added and the flask was returned to 37°C for 

an additional 18-20 h. After the complete incubation 

cycle the bacteria were pelleted by centrifugation at 

10,000 x G for 30 min in sterile centrifuge bottles. 

Subsequently, sterile polyethyleneglycol 6,000 (PEG) 
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(Union Carbide Corp., s. Charleston, W.VA.) was added 

directly to the supernatant to yield 0.01% PEG. The PEG­

supernatant was subsequently filtered through a prefilter 

and a 0.22 pm membrane filter (Millipore, Bedford, MA.). 

Positive pressure was maintained with prepurified nitro­

gen. The sterile filtrate was collected in sterile flasks. 

This filtrate constituted the crude anthrax toxin. One ml 

of the sterile supernatant was plated on agar plates to 

check for contamination. 

The crude toxin was routinely tested for antigenic 

activity by the Ouchterlony double diffusion method 

(Ouchterlony, 1948) and for biological activity by I.V. 

injection into Fisher 344 male rats (Haines et al., 1965) 

weighing between 225 and 300 g. Assay of EF was accom­

plished by subcutaneous injection into shaved backs of 

rabbits and visual observation for edema on the following 

day. The goat antisera to PA, LF, and whole cell B. 

anthracis used in the Ouchterlony assay were gifts from 

Dr. Stephen Leppla (United States Army Medical Research 

Institute of Infectious Disease, Ft. Detrick, MD.). The 

antisera against PA and LF, which contained hemolyzed red 
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blood cells were further "purified" by liquid chromate-

graphy with Affigel-Blue (BIO-RAD, Richmond, CA.). 

The crude toxin was stored at -20°C or was put 

through additional concentration steps. 

Toxin Concentration 

Approximately 2 L of crude toxin were filtered over-

night through a YM 10 or PM 30 Amicon filter (Danvers, 

MA.), with a 10,000 or 30,000 molecular weight exclusion 

limit respectively, utilizing a nitrogen gas positive 

pressure dialysis cell and holding tank. The final volume 

was about 50 ml. This solution constituted the concen-

trated toxin. This was assayed in the same manner as the 

crude toxin. The concentrated toxin was subsequently 

stored at -20°C until dialysis prior to additional purifi-

cation. 

Protective Antigen Purification 

The concentrated toxin was thawed and dialyzed over-

night in 0.002 M KH PO , 2 mM 2-mercaptoethanol (2-ME), 
2 4 

and 0.05 M NaCl buffer pH 7.1 at about 4°C. Depending 

upon the viscosity of the dialyzed toxin (the more con-

centrated, the more viscous) the toxin was diluted so as 

to facilitate passage through the chromatography column. 

Routinely, approximately 40-50 ml of toxin solution was 

loaded onto a column of hydroxylapatite (Bio-Gel HTP, BIO-

RAD, Richmond, CA.). The column was 2.5 em in diameter, 

about 10 em high, and used about 75 em hydrostatic 



pressure to give 0.1 ml /cm / min. After the toxin was 

loaded, the column was wa s hed with starting buffer (2 mM 

KH PO pH 7.1) with 2-3 column bed volumes. The eluent 
2 4 
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was monitored by spectrophotometry (254 nm), and when the 

absorbance returned to the baseline the elution gradient 

was started. 

The toxin components were eluted from the HTP column 

with a buffer gradient of 0.002 M to 0.4 M KH PO at pH 
2 4 

7.1, containing 2 mM 2-ME and 0.05 M NaCl in 500 ml total 

volume. The gradient was developed with a GM-1 gradient 

maker (Pharmacia, Uppsala, Sweden), and ran at the same 

flow rate as above or approximately 0.5 ml/min. The PA 

fractions, identified by Ouchterlony double diffusion 

immunoassay and electrophoresis were dialyzed overnight in 

0.01 M Tris (hydroxymethyl) aminomethane (Tris) with 2 mM 

ethylene diamine tetracetate (EDTA) and 2 mM 2-ME, pH 8.1 

(ion exchange chromatography starting buffer). These dia-

lyzed fractions were then loaded onto an equilibrated DEAE 

(Cellex D, BIO-RAD, Richmond, CA.) column (1.4 em in 

diameter and 6 em high) washed with starting buffer with 

several void volume equivalents. The bound material was 

then eluted with a 0.0-0.3 M NaCl gradient, 500 ml total 

volume in starting buffer. 

Electrophoresis of chromatography column fractions. 

Analysis of fractions from the HTP and DEAE columns was 

performed in the following manner. A sample from each 
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fraction was electrophoresed using sodium dodecyl sulfate­

polyacrylamide gel electrophoresis (SDS-PAGE) according 

to the technique of Laemmli (1970). After electrophoresis 

at 6 watts (constant power mode) , the gel was stained with 

coomassie blue (R-250) for 1 hr and then destained over­

night by diffusion in 40% methanol and 10% acetic acid. 

Silver staining (BIO-RAD) as well as coomassie blue 

staining was employed. 

Determination of purity. A gel with a PA band to be 

assayed for purity was soaked in 1% glycerol and 10% 

acetic acid for 1 hr after destaining. The gel was trans­

ferred to a clean glass plate and an absorbance scan was 

performed on each lane of interest on a DU-8 Beckman 

spectrophotometer. The sensitivity was set at the highest 

setting with a minimum peak value of 0.001. The wave­

length was set at 561 nm and the speed was 2 em/min. 

To determine antigenic purity, an aliquot of DEAE 

column fractions, crude toxin, and concentrated toxin were 

electrophoresed through agarose gel according to the 

Grabar-William's technique (outlined by LKB, Bromma, 

Sweden, application note 249) and then diffused against 

antibodies to PA and antiserum to B. anthracis whole cell. 

To determine if the minor bands present in the PA 

fractions were breakdown products of the PA, the following 

experiment was performed. Protective antigen was run 

parallel in two lanes of a 10% SDS-PAGE gel, 1.5 mm thick­

ness. After completion of the run, the gel was cut 
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lengthwi se between the two lane s and one side was stained 

to determine the location of the PA band. The correspond-

ing area was then cut out of the unstained half and mixed 

with SDS-PAGE dissociatio n mix and allowed to stand at 

room temperature for several days. The unstained PA band 

was then electrophoresed again and stained with coomassie 

blue. 

The pure PA fractions were pooled, dialyzed, lyophil­

ized and stored at -20°C. 

Biological Activity of Pure PA 

Purified toxin was assayed in the same fashion as the 

crude and concentrated toxin. The lyophilized PA was 

reconstituted with sterile triple distilled H 0 and tested 
2 

with aliquots of LF (as identified by Ouchterlony analysis 

and SDS-PAGE) from the HTP fractions which showed no PA 

activity. 

Protective Antigen Labelling 

Lyophilized PA was reconstituted with triple dis-
125 

tilled H 0. The PA was labelled with 
2 

according to 
TM 

the Pierce (Richmond, CA.) procedure using Iodobeads 

The Iodobeads consist of N-chloro-benzene-sulfonamide 

(sodium salt) covalently bound to polystyrene beads. The 
125 

Iodobeads provide the oxidizing power to drive the I 

labelling of tyrosine· residues. 
125 

Briefly, two Iodobeads 
125 

were "loaded" with I in a 0.2 ml volume of I solu-

tion (New England Nuclear, Boston, MA.) containing 200 pCi 
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activity for 10 min. The bead s were transferred to 

another reaction vial conta i n i ng 2.0 ml of PA in solution 

at 160 pg/ml. The pro t e in so lution was allowed to react 

for 10 min, then it was r e moved from the reaction vial and 
12 5 

held in an ice bath. Free I was removed by gel filtra-
TM 

tion in a G-100 Sephadex (Pharmacia, Uppsala, Sweden) 

c olumn. All fractions we r e as sayed for gamma emission in 

a Packard 5650 auto-gamma mac hine , with 80% efficiency, to 
125 

determine separation of free from bound I. Concentra-

tion was adjusted to 30 ug / ml f o r PA. Determination was 

made using the BIO-RAD (Ric hmond, CA.) protein assay kit. 

Specific activity was 128,000 CPM/pg PA. The labelled 

protein (PA*) was stored at about 4°C for 40 hrs. until 

use. 

The labelling of PA f o r use in vivo resulted in low-

level specific activity. In order to obtain greater sen-

sitivity for use in cell c ulture work the following label-
125 

ling technique was employed. One mCi of I was obtained 

from New England Nuclear (Boston, MA.). Bolton-Hunter 

reagent (with sulfo group) and Iodobeads were obtained 

from Pierce Chemical Company (Rockford, IL.). Three Iodo-
125 

beads were added to 1 mCi I in 200 ul of 25 mM NaH PO 
2 4 

buffer pH 7.6 and allowed to "load" for 10-15 min. 

Bolton-Hunter reagent (0.9 ~g in 9 ~1) was added and 

allowed to label for 7-10 min. Then 20-30 ~g of PA in 

approximately 20 pl were added for an additional 50 min. 
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All reactions were carried out at room temperature. After 

reaction time was complete, the reaction mixture was 

placed on a G-50 Sephadex column, the Iodobeads rinsed 

with 100-200 pl buffer and the rinse also placed on the 

column. The column was eluted with about 5-10 ml of 25mM 

NaH PO or 25 mM N-hydroxyethylpiperazine-N'-2-ethanesul-
2 4 

fonic acid (HEPES) buffer. The fractions were collected 

and assayed for gamma emission. The fractions which con-

tained the protein peak were pooled. 

This labelling procedure was performed 8-10 times 

during the course of the study. The specific activity 

ranged from about 1.0 to 1.5 pCi/pg PAusing the Bolton-

Hunter reagent. 
125 

Determination of dissociation of ---I from labelled 
125 

PA. To determine the degree of dissociation of the 

over time from the labelled PA, the following experiment 

was performed: An aliquot of 0.1 ml of previously labelled 
TM 

PA was loaded onto an equilibrated G-50 fine Sephadex 

column (2.5 ml in a 3.5 ml syringe barrel). Equal-volume 

fractions were collected during the filtration until 

several column volumes of buffer had been collected. The 

fractions were then assayed for radioactivity. Before 

injection into test animals, the PA* solution was diluted 

with sterile 0.01 M Tris to achieve desired concentrations 

of PA*. Three amounts of PA* were used: 5 pg, 10 pg, and 

20 pg. 



Cell Line Selec­
tion and Culture 

Prior to injection, each of three rats was anesthe-
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tized with 1 ml of a 10% solution of urethane by injection 

in the leg pouch on the inside of the thigh. Injection of 

the PA* with LF mixture was via the penile vein of the 

Fisher 344 male rats. All subjects were sacrificed within 

a 15-20 min time period and upon opening the chest cavity 

for dissection each was perfused to reduce the volume of 

blood in the organs of interest. As each organ was re-

moved, it was rinsed in a saline solution, weighed, 

minced, and placed in a plastic tube for assay. The 

organs removed for assay were the brain, lungs, liver, 

heart, spleen, and kidney. Blood was also assayed from 

the subjects which received doses of 10 pg and 20 pg of 

PA*. The thyroid tissue was assayed from the animal 

which received 10 pg PA*. 

Madin-Darby bovine kidney (MDBK) cells obtained from 

the American Type Culture Collection (Rockville, MD.) were 
2 

grown as a monolayer to confluency in 75 em flasks in 

Eagle's Minimal Essential Medium (MEM) with 25 mM HEPES 

buffer, 10% fetal bovine serum (FBS), and penicillin/ 

streptomycin (50 units/ml and 50 pg/ml respectively) at 37° 

c, and 5% co 
2 

When the cell sheets reached confluency 

the cells were removed with trypsin and diluted 1:6 with 

growth medium and "seeded" onto 24 or 96-well plates 

(Costar, Cambridge, MA.). They were then incubated for 



use the next day. Dilution s of 1:12 were seeded onto 

plates to be used 2 days after. 

Estimation of 
Cells per Well 

34 

The determination of the number of cel l s per confluent 

monolayer in the tissue culture wells was done in the 

following way. The cell sheets in 3 wells were rinsed 

with MEM and then treated with 100 pl of trypsin/EDTA at 

0.15% and 0.1 respectively to remove the cells from the 

plastic well. The cells from each well were transferred 

to separate tubes and the wells were rinsed with 100 pl 

MEM. Each rinse was transferred to its respective tube. 

The contents of each tube was thoroughly mixed and the 

cell concentration was determined using a hemacytometer. 

Protective Antigen 
Binding Experiments 

PA* binding assay. The PA* was diluted to the 

desired concentration in MEM, 25 mM HEPES with 10% FBS. 

The controls had 100-fold excess of unlabelled PA. 

Confluent MDBK cells in 24-well or 96-well plates 

were rinsed twice with MEM without FBS or antibiotics, 

then PA* (with or without excess unlabelled PA) was added 

to each well and allowed to bind . For the 24-well plates 

300 pl of treatment volume was used . For the 96-well 

plates 50 pl was used. After binding, the PA* solution 

was suctioned off of the monolayer and the well was rinsed 

4 times with MEM. The monolayer was then treated with 
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trypsin/EDTA at 0.15% and 0.1% respectively at 37°C and 

the detached cells transferred to a plastic tube contain­

ing absorbent paper. Each well was then rinsed with 100 pl 

MEM, 25 mM HEPES and the rinse placed into its correspond­

ing tube and all tubes assayed for gamma emission. 

Determination of optimum excess level of cold PA. In 

order to determine the level of unlabelled PA to use 

during the binding experiments and to aid in determining 

the degree of specificity of PA* for the receptor, the 

following experiment was done. Monolayers of MDBK ce ll s 

in 24 well plates were rinsed and treated with PA* at 500 

ng/ml with parallel wells run with 10, 25, 50, 100, and 

500 fold excesses of unlabelled PA for 1 hr at 37°C. The 

cell sheets were rinsed, removed, and counted as described 

above. 

Effect of concentration of PA* on binding to MDBK 

cells . Monolayers of MDBK cells in 24-well or 96-well 

plates were rinsed and treated with increasing concentra­

tions of PA* with parallel wells containing a 100-fold 

excess of unlabelled PA. All wells were incubated for 1 

or 10 hr at 37°C and then removed, rinsed, and assayed. 

Assessment of binding of PA* to MDBK cel l s over time. 

Monolayers of MDBK ce ll s in 96-well plates were rinsed and 

treated with PA* in concentrations of 500 , 1000, 2500, and 

3000 ng/ml with parallel wells containing a 100-fold 

excess of unlabelled PA at 37°C. At timed intervals, one 

set of three wells for each concentration with its corre-
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sponding parallel control series was removed from incuba-

tion and assayed for activity of bound PA*. 

Reversibility of PA* binding. To determine if the 

binding of PA is a reversible event, 3-well sets of MDBK 

cells were treated for 6 hr with PA* at 2187 or 2500 

ng/ml with corresponding controls. One set was assayed 

at this time and termed 100% binding at zero time. The 

treatment volume in the other sets were replaced with 

unlabelled PA at 2000 ng/ml. The cell sheets were then 

rinsed and assayed for bound activity at timed intervals. 

Binding affinity of PA*. Utilizing the law of mass 

action, C~atrecasas and Hollenberg (1976) suggested the 

following equation for determining the dissociation con-

stant (K ) : 
D 

K (H] [R] 
D [HR] 

Where: H hormone or ligand 

R receptor 

HR = ligand-receptor complex 

Another method for deriving the K was presented by 
D 

Scatchard (1949). This is a graphic representation of the 

data which plots the ratio of bound/free ligand on the 

ordinate and the corresponding amount of bound ligand on 

the abscissa, producing a negative slope. The slope of the 

regression-fitted line is equal to -1/K • Westphal (1971) 
D 

favors this method for evaluating binding data of the type 

presented in this research. The Scatchard analysis deter-
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mines the maximum binding sites (abscissa intercept) as 

well as a visual representation of data that may suggest 

information concerning number of different receptors. 

The K for PA* was compared to that of other toxins. 
D 

Partial Characterization 
of the PA Receptor 

Effect of trypsin treatment. Confluent monolayers of 

MDBK cells in 96-well plates were treated with 0.15% 

trypsin plus 0.1% EDTA for 10, 15, and 20 seconds at 25°C. 

The cells were then rinsed 3 times with MEM with 20% FBS 

and incubated for 20 min. The cells were observed micro-

scopically before use. The monolayers were rinsed and 

then treated with PA* at 3000 ng/ml. Untrypsinized cells 

were simultaneously treated with the same PA* with con-

trols. The monolayers were treated 45 min, rinsed, and 

then assayed for bound activity. All experiments were 

performed at 37°C. 

Blocking of PA* binding sites with cholera toxin sub-

unit B. Confluent monolayers of MDBK cells in 96-well 

plates were treated with 0.0-, 0.1-, 1.0-, 10.0-, or 50.0-

fold excesses (on a molar basis) of cholera toxin subunit 

B relative to final PA* concentration, for 105 min. After 

this time the PA* was added directly to the 50 pl cholera 

treatment volume to achieve 2500 ng PA*/ml and allowed to 

react for 2 additional hr. The wells were then assayed. 

All experiments were performed at 37°C. 



Toxin Production 
and Assay 

RESULTS 
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Biologically active culture supernatant (crude toxin) 

was obtained by culturing the anthrax bacillus and the 

crude toxin was concentrated. A 1 ml intravenous injec-

tion of the crude toxin into Fischer 344 rats resulted in 

lethality accompanied by severe pulmonary edema as evi-

denced by increased lung weight, compared to control ani-

mals, and fluid excretion from the nose. Time of death in 

test animals varied with each lot and ranged from about 60 

to 90 min. The crude toxin, which was concentrated approx-

imately 50-fold, also retained lethality when diluted back 

to the crude toxin level. Time to death of test animals 

injected with diluted toxin concentrate ranged from about 

65 to 124 min. Table 1 gives an example of time to death 

with one lot of crude and concentrated toxin produced with 

the Vollum 1B strain. Lethality of toxin produced with 

the Sterne strain was essentially the same. The Ouchter-

lony double diffusion assay of crude and concentrated 

toxin showed lines of precipitation against anti-PA and 

anti-LF. Table 2 shows the Ouchterlony and edema assays 

with the dilute concentrated toxin of the same lot. 



a 

TABLE 1 

TIME TO DEATH OF TEST ANIMALS 
INJECTED WITH CRUDE OR CONCENTRATED TOXIN 

Toxl.n a T1me to 
preparation death (min) 

Crude 
(flasks 1-3) 67 

Crude 
(flasks 4-6) 78 

Concentrate 
diluted 1:50 124 

39 

b 

Injection volume was 1 ml iv. One rat per preparation 
each weighing between 220-246 g. 

b 
Data is from one representative lot of toxin harvest 

produced with B. anthracis Vellum 1B strain. Lethality 
with toxin from-the Sterne strain was essentially the 
same. 

TABLE 2 

OUCHTERLONY AND EDEMA 
ASSAY OF DILUTED TOXIN CONCENTRATE 

Assay 
Dilution 
of toxin 

b 
Test result 

Ouchterlony 
a 

Anti-PA 
a 

Anti-LF 

Edema test ------

a 

1:64 

1:64 

1:32 

1:64 

PA protective antigen. LF = lethal factor. 
b 

Data is from one representative lot of toxin 
harvest from~ anthracis culture supernatant. 

+ 

+ 

+ 
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Liquid chromatography. Fractions eluted from the HTP 

column as analyzed by SDS-PAGE revealed that PA which 

eluted with a peak at 150 ml was well separated from the 

bulk of the LF, which eluted with a peak at 210 ml (Fig. 

1). The spectrophotometric profile at 254 nm also shows 

peaks at 90 and 130 ml. The first peak showed no protein 

with coomassie blue and higher absorbance at 260 nm than 

280. The second peak (at 140 ml) proved to be a low 

molecular weight contaminant in addition to some PA. 

100 

0 60 16 100 126 160 116 200 226 

El.UENT (mi.) 

Fig. 1. Separation of B. anthracis toxin components on 
hydroxylapatite. Dialyzed, concentrated toxin was "loaded" 
onto a column (2.5 em diameter and 10 em high) of hydroxyl­
apatite, then washed with several void volume equivalents 
of starting buffer. The column was eluted with a buffer 
gradient of 0.002 to 0.4 M KH~P04 , 2 mM 2-mercaptoethanol, 
and 0.05 M NaCl at pH 7.1 in a total volume of 500 ml. 
The eluent was monitored by in-line spectrophotometry at 
254 nm and collected in 2 ml fractions. Protective 
antigen eluted primarily in the peak at 150 ml. Lethal 
factor eluted primarily in the smaller peak at 210 ml. 
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Analysis of the pooled PA fractions eluted fr om th e 

subsequent DEAE column revealed that the PA eluted first 

at approximately 0.05 M NaCl. Initial fractions were free 

of contaminants with successive fractions containing two 

lower molecular weight peptides as shown by coomassie blue 

staining (Fig. 2). Silver staining in concert with the 

coomassie blue failed to reveal any additional contam-

inants of the PA fractions (Fig. 3). 

34 35 36 :rr 00 38 39 41 43 45 50_
1 

M 

--------
L 

Fig. 2. SDS-PAGE of purified protective antigen (PA) 
stained with coomassie blue. Fractions eluted from DEAE 
column show PA without contaminating bands in fractions 
36 and 37. Subsequent fractions (38,39, etc.) show addi­
tional minor lower molecular weight bands later shown to 
be breakdown products of PA. The 3 high molecular weight 
markers (HMWM) represent 200 K, 116.3 K, and 92.05 K 
daltons starting from the top. 
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Fig. 3. SDS-PAGE of purified protective antigen (PA) 
stained with coomassie blue and si lver staining. Purified 
PA, bovine serum albumin (BSA), and concentrated toxin 
were electrophoresed and then stained with coomassie blue 
and silver staining technique. Silver staining showed no 
additional contaminating bands in the PA samples. 

Determination of purity. The scanning gel densi-

tometry performed on the PA sample after the purification 

sequence showed only the PA band registering an absorbance 

(Fig. 4). With the sensitivity at the highest (most 

sensitive) setting and the minimum absorbance set at 

0.001, the PA peak accounted for 100% of detectable bands. 

However, it was possible to detect with the eye two very 

faint lower molecular weight bands in the same lane with 

the PA. Taking this into account, the purity level of the 

PA was determined to be > 99%. 
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Fig. 4. Densitometric scan of purified PA preparation 
(approx. 8 ~g protein) on SDS-PAGE stained with coomassie 
blue. An SDS-PAGE gel was mounted on a clean glass plate 
and was kept moist with 1% glycerol/10% acetic acid mix. 
The gel was then scanned at 561 nm in a Beckman DU-8 
spectrophotometer to obtain the absorbance profile shown. 
The sensitivity was set at 1 (greatest sensitivity) with a 
minimum peak value setting of 0.001. The data obtained 
indicated that the PA peak (at about 135 mm) accounted for 
100% of the protein in the purified PA preparation. Two 
very faint bands, however, were visible but failed to be 
detected at the 0.001 absorbance setting. Taking this 
into account, the purity level of the PA was determined to 
be > 99%. 
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Grabar-William's immunoelectrophoresis of purified PA 

showed only one immunoreactive band against both anti-PA 

and anti-B. anthracis antisera (Fig. 4). 

Fig. 5. Grabar-Williams' immunoelectrophoresic analysis 
of B. anthracis toxin and protective antigen (PA) . Puri­
fie~PA was loaded into the center wel l (3), crude toxin 
into we ll s 1 & 4, and concentrated toxin into wells 2 & 5 . 
After electrophoresis , anti-PA was l oaded into channels 1 
& 3 and anti-spore antiserum was loaded into channels 2 & 
4 . PA shows only one immunoreactive band against both 
antisera, whereas both the crude and concentrated toxin 
showed 2 antigenic species against the anti B. anthracis 
antiserum. --

Demonstration of breakdown products. The unstained 

PA band cut f rom an SDS-PAGE gel and left at room tempera-

ture for several days was again electrophoresed by SDS -

PAGE. The stained gel revealed two lower mol ecular weight 

peptides along with the PA band indicating that the two 

lower molecular weight peptides are derived from the PA. 
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Cell Line Selection 

The in vivo distribution of PA* in a susceptible 

host, namely Fischer 344 male rats, upon intravenous in-

jection of a PA*/LF mixture is shown in Figure 6. In the 

subject that received the lowest dose (5 ug PA*), the 

highest concentration of PA* was found in the kidney on a 

per gram tissue basis, followed by the liver, spleen, 

lung, and heart. In the rat dosed with 10 ug PA*, the 

highest concentration of PA* was found in the spleen , 

followed by the kidney, liver, lung , blood, and heart. In 

the anima l receiving the 20 ug dose , the highest concen-

tration of PA* was in the spleen , followed by the liver, 

kidney, lung, blood, heart, and brain. The thyroid showed 

next to the least activity the anima l receiving the 10 ug 

PA* dose. 

From these results and the implication of the kidney 

in the pathology of anthrax disease, it was decided to use 

an established kidney cell line from a susceptible host 

species for the following experiments . 

Protective Antigen 
Binding Experiments 

Labelling of PA for in-vitro binding studies. Upon 
125 

completion of the gel filtration of the I/PA mixture, 

aliquots of the collected fractions were assayed for radio-

activity. Two we ll -defined peaks were observed (Fig. 7) . 

The first peak represented the PA* and the second repre-
125 

sented free I. The PA* had a specific activity of 
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Fig. 6. In vivo distribution of !-labelled protective antigen (PA*). The dif-
ferent amounts of PA* with the amounts of lethal factor (LF) shown were injected iv 
into 3 different Fischer 344 rats. The rats were sacrificed at 15 min, perfused, 
and the organs removed, rinsed, weighed, minced, and then assayed for radioactivity. 
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approximately 1 pCi/ug. The fractions representing the 

PA* were pooled for use in the binding experiments. 
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125 
Fig. 7. Gel filtration of !/labelled protective 
antigen (PA*) mixture. After radio-iodination of PA, 
the radioactive iodine/PA* mixture was chromatographed 
through a G-50 fine sephadex column . Fractions of eluent 
were collected in separate tubes and assayed for radio­
activity. The first peak represents the PA* and the 
second peak represents free radioactive iodine. 

125 
Dissociation of I and PA. Fractions collected 

from the gel filtration of PA* labelled 8 days earlier 

showed gamma activity in two well-separated peaks demon-
125 

strating the dissociation of the I from the PA* (Fig. 

8). During the time from day 0 to day 8 it was determined 
125 

that approximately 20% of the total I had dissociated 

from the PA*. A linear rate of dissociation was assumed 

and subsequently used in calculating specific activity 

for experiments requiring it. 
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Fig. 8. Dissociation of I and protective antigen (PA). 
Eight days after radiolabelling, an aliquot of PA* was gel 
filtered on a G-50 fine sephadex column. Fractions were 
collected in separate tubes and assayed for radioactivity. 
Two well-separated peaks are evidence of dissociation of 
radioiodine from labelled PA. 

Effect of concentration of unlabelled PA on the 

binding of PA*. The total cell-associated radioactivity 

after a 1 hr exposure to PA* at 500 ng/ml was designated 

100%. The same concentration of PA* in the presence of a 

10-fold excess of unlabelled (cold) PA decreased the total 

binding of PA* to nearly 30% (Fig. 9). 

Increasing the cold PA to a 100-fold excess de-

creased the total binding to just under 19%. The decrease 

in total binding reached 83.8% with a 500-fold excess of 

cold PA. A 100-fold excess of cold PA was used in all sub-

sequent experiments to ensure minimal nonspecific binding. 
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Fig. 9. Effect of excess unlabelled protective antigen 
{PA) on binding of PA* to MDBK cells. MDBK cells were 
treated with PA* at 500 ng/ml alone or with excess un­
labelled PA for 1 hr. All treatments were then rinsed 
and assayed for radioactivity. Incubation at 37°C. 
Error bars represent standard error of the mean. 
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Binding of PA* at various concentrations. Initially, 

24-well plates were used to demonstrate saturation by 

varying the concentration of PA*. When saturation was not 

observed at 2500 ng PA*/ml, 96-well plates were substi-

tuted for the 24-well plates since the available PA* was 

limited. Fifty microliters was used as a treatment volume 

rather than the 300 pl required by the 24-well plates. 

This volume reduction corresponded proportionately with 

the reduction in cell monolayer surface area. Saturation 

of binding sites on the MDBK cells was then attempted by 

increasing the high end of the concentration range to 5000 

ng PA*/ml for 1 hr. The same experiment was repeated for 
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Fig. 10. Effect of concentration of labelled protective 
antigen (PA*) on its binding to MDBK cells. MDBK cells in 
triplicate wells were treated with PA* at various concen­
trations with corresponding controls for 5 hr at 37°C 
and 4°C. After this time the cell sheets were rinsed and 
assayed for radioactivity. Variance among wells 
representing total binding averaged 13% at 37°C and 24% at 
4°C. Valiance among control wells averaged 7% at 37°C and 
74% at 4 C. 

The binding experiment at 4°C appeared to give lower 

levels of cell associated radioactivity than that at 37°C. 

At 5000 ng/ml it still did not appear that saturation 

was achieved in 5 hr. The treatment of cells over a 10 hr 

period with PA* concentrations as high as 5300 ng/ml 

demonstrated saturation at about 3752 ng/ml (Fig. 11). 

The number of binding sites was 72,000 per cell. 

Binding of PA* over time. Initial experiments to 

determine binding of PA* at 2500ng/ml (Fig. 12) showed 

that saturation was being approached at about 12 hr. A 

rise in CPM/well occurred at 7 hr which was also noted 

in a subsequent experlment altho ugh less pronounced. 
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Fig. 11. Effect of concentration of labelled PA (PA*) on 
binding to MDBK cells. MDBK cells in triplicate wells 
were treated with PA* at varying concentrations with cor­
responding controls for 10 hr at 37°C . After this time 
the cell sheets were rinsed and assayed for radioactivity . 
Data is from 3 separate experiments (data points at 3550 
and 5300 ng PA*/mL are from 2 experiments) . Error bars 
represent standard error of the mean . 

Fig. 12. Binding of labelled protective antigen (PA*) to 
MDBK cells over time (PA* at 2500 ng/ml). At timed inter­
vals triplicate wells were r insed and assayed for radio­
activity along with 1 set of contro ls. Performed at 37°C. 
Variance in wells re p r esenting tota l binding averaged 5%. 
Variance in control wells averaged 9% . Note outlier at 7 
hr. 
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In the following experiments cell-density-per-well 

counts were made at each assay time to account for the 

possibility that the rise noted in the curve at 7 hr (Fig. 

12) could be due to cell division. Binding of PA* at 3000 

ng/ml over time (Fig. 13) with accompanying cell counts 

failed to manifest the rise and showed saturation after 15 

hr. 
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Fig. 13. Binding of labelled protective antigen (PA*) to 
MOBK cells over time (PA* at 3000 ng/ml). At timed inter­
vals 1 set of 3 wells was rinsed and assayed for radio­
activity along with 1 set of controls. Upper graph shows 
concentration of cells per well at same time intervals. 
Data is from 3 separate experiments at 37°C. Error bars 
represent standard error of the mean. 



53 

Reversibility. Cells treated with unlabelled PA 

after preloading with PA* for 6 hr resulted in an initial 

rapid loss of bound PA* in the first 15 min (Fig. 14) with 

a slower but linear rate of release for the remaining 2 hr 

of the experiment. 
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Fig. 14. Reversibility of labelled protective antigen 
(PA*) binding to MDBK cells over 2 hr. MDBK cells in 
triplicate wells were treated with PA* at 2500 ng/ml for 6 
hr at which time one set of wells was assayed and desig­
nated 100% binding. The treatment volume in the other 
sets of wells was replaced with unlabelled PA at 2000 
ng/ml and the wells were rinsed and assayed in triplicate 
at timed intervals. Incubation was at 37°C. Variance 
among wells representing total binding averaged 9%. 
Variance among controls wells averaged 18%. 

Assays over longer periods of time under the same 

conditions (Fig. 15) demonstrated the same result with 

rapid initial release of PA* and then a slower rate of 

release over a 17 hr period. 

Binding affinity of PA*. The Scatchard analysis of 

binding data of PA* to MBDK cells revealed a dissociation 
-9 

constant (K ) of 17 x 10 
D 

M PA* (Figure 16). 
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Fig. 15. Reversibility of labelled protective antigen 
(PA*) binding to MDBK cells over 17 hr. MDBK cells were 
treated with PA* at 2187 ng/ml for 6 hr at which time 1 
set was rinsed and assayed. This was designated 100% 
binding. The treatment volume in the other sets of wells 
was replaced with unlabelled PA at 2000 ng/ml and the 
wells were rinsed and assayed in triplicate at timed 
intervals. Parallel sets of wells without the treatment 
volume replaced with unlabelled PA were also assayed at 
timed intervals and showed saturation at the 11 hr mark. 
Incubation was at 37°C. Variance among wells representing 
total binding averaged 13%. Variance among control wells 
averaged 17%. 
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Fig. 16. Scatchard analysis. Binding data from 
saturation experiments was used to generate the points 
for the Scatchard analysis. Bound (B) toxin in nanomolar 
values is plotted on the abscissa and the bound/free (B/F) 
ratio is plotted on the ordinate. The line (-0.06 slope) 
was fitted by regression analysis (r = -.7). 

Effect of Trypsin Treat­
ment on Binding of PA* 

Treatment of cells with trypsin at 0.15% and EDTA at 

0.1% for more than 20 sec resulted in severe loss of the 

cell sheet due to detachment of the cells. Trypsin/EDTA 

was therefore limited to 20 sec or less. At 10 sec of 

trypsin/EDTA treatment the cells showed a "rounding-up" of 

the individual cells characteristic of trypsin treatment. 

This indicated that the protein molecules on the surface 

of the membrane responsible for attachment to the plastic 

well had been acted upon by the trypsin. The cell sheets 

utilized in the experiment sustained a loss of about 5-10% 

of the cells in 1 or 2 of the 3 wells in each set. 
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By one-way analysis of variance, the effect of the 

trypsin on the binding of PA* to MBDK cells was shown to 

be insignificant (p>O.OS) (Fig. 17). 
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Fig. 17. Effect of trypsin treatment of MDBK cells on the 
binding of labelled protective antigen (PA*). MDBK cells 
in triplicate wells were treated with a solution of 0.15% 
tr6psin and 0.1% EDTA (pH 7.0) for 10, 15, and 20 sec at 
25 C. The cells were then rinsed twice with MEM con­
taining 20% fetal bovine serum. After 20 min the cells 
were rinsed and treated with PA* at 3000 ng/ml. Parallel 
untrypsinized cells with controls were also treated with 
PA*. All wells were rinsed and assayed after incubation 
for 45 min at 37°C. PA- = unlabelled PA. Error bars 
represent standard error of the mean. 

Blocking of PA* Binding 
with Cholera Toxin Sub­
unit B 

The binding of PA* to MBDK cells was shown to be 

blocked by the cholera toxin subunit B (Fig. 18). The 

degree of blocking appeared to be concentration dependent 

with about 10% binding reduction at a 0.1 molar ratio of 

cholera toxin subunit B and nearly 50% reduction at a 50 

fold excess of subunit B. 
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Fig. 18. Blocking effect of chol e ra toxin subunit B on 
binding of labelled protective an t igen (PA*). MDBK cells 
in triplicate wells were treate d with varying concentra­
tions of cholera toxin subuni t B or medium with or without 
unlabe lled PA for 105 min. PA* was then added to each 
well to achieve 2500 ng/ml and the n incubated for 2 hr. 
All cells were rinsed and assayed . Incubation was at 37°C . 
PA- = unlabelled PA. Error bars represent standard error 
of the mean. 



DISCUSSION 

It is well established that toxins bind to cell 

surface receptors in order to exert their effects. This 

research has attempted to obtain pure protective antigen 

component of the anthrax toxin and to characterize its 

·binding interaction with an estab lished cell line. 

Toxin Production 
and Purification 

58 

The pathogenic B. anthracis Vollum lB strain was used 

for toxin production initially. Biological activities of 

the toxin were successfully demonstrated. Lethality was 

demonstrated by intravenous injection of Fischer 344 male 

rats with sterile crude and concent rated toxin as well as 

purified PA and LF components. Subcutaneous injection of 

crude and concentrated toxin into rabbits was used to 

manifest the edema response. Times to death (TTD) were 

routinely as low as, or lower, than those reported by 

Haines et al. (1965) for crude toxin or by Ezzell et al. 

(1984) for purified components. 

It was subsequently determined that the Sterne vac-

cine strain of B. anthracis produced toxin which possesed 

essentially the same degree of lethality for test animals. 

It is genera lly accepted that the aviru l ence exhibited by 

the Sterne strain is due to the lack of a capsule . For 
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safety considerations, therefore the majority of PA produc­

tion for binding experiments was derived from B. anthracis 

Sterne strain. 

In the early work with anthrax toxin, horse serum was 

added to the culture supernatant to prevent the adsorption 

of anthrax toxin onto the filters used (Haines et al., 

1965). The variety of proteins in the serum would have 

considerably complicated the purification of PA for this 

research. I.G. Resnick of U.S. Army Dugway Proving Ground 

(personal communication) recommended the use of PEG to 

minimize toxin losses due to nonspecific binding. The use 

of PEG to minimize filter adsorption proved effective in 

this research as evidenced by the toxin yield and it did 

not add contaminating proteins to the culture supernatant. 

Subsequent dialysis easily removed the PEG. 

Purification of the PA component beyond the 90% level 

has not been reported in the literature. Greater purity 

levels were considered necessary for the proposed binding 

studies in order to eliminate possible interference from 

contaminants. Efforts in this research succeeded in yield­

ing purified PA at levels > 99% as revealed by SDS-PAGE 

with coomassie blue and silver staining. The purified PA 

maintained biological and antigenic activity as demon­

strated by lethality in combination with LF and by immuno­

electrophoresis against anti-PA antibodies and anti-whole 

cell antiserum. 
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The approach used to accomplish the PA purification 

differed from that used by Leppla (1982 & 1984) whose 

purification sequence involved 1) dilution of crude toxin, 

2) batch adsorption to DEAE-cellulose, 3) elution followed 

by ammonium sulfate precipitation, 4) dialysis, 5) HTP 

chromatography with an elution gradient of 0.002 M to 0.5 M 
TM 

KH PO , 6) dialysis, and 7) DEAE Trisacryl-M (LKB, 
2 4 

Bromma, Sweden) chromatography. In this research the 

sequence for purification was 1 ) concentration of crude 

toxin in an Amicon (Danvers, MA.) stirred concentrator 

cell, 2) dialysis, 3) HTP chromatography with an elution 

gradient of 0.002 M to 0.4 M KH PO , 4) dialysis (or gel 
2 4 

filtration), and 5) DEAE-cellulose with Cellex-D chromato-

graphy. 

The culture volume used also differed. Leppla (1982 

& 1984) used a 20 L fermentor whereas only 1/2 L cultures 

in flasks were used in this research. Use of a smaller 

culture volume without agitation may minimize cell lysis 

which could add contaminating proteins. 

Contamination by proteins contributed by lysis of 

older cells in the culture may also have been minimized by 

harvesting as early as possible during the recommended 

time period (Haines et al. 1965). Elimination of the 

centrifugation step, used to pellet the bacteria before 

filtration, also minimized cell lysis due to manipulation 

of the supernatant. Use of a pre-filter prevented the 

0.22 urn filter from clogging, thereby eliminating the 
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centrifugation step. As noted, this method showed no 

apparent reduction in toxin yield. Elimination of smaller 

molecular weight contaminants was also achieved by the 

concentration step in the Amicon cell ~~th a 30,000 MW 

exclusion limit and by utilizing a 50,000 MW exclusion for 

the dialysis tubing. 

Analysis of the fractions from HTP and DEAE chromato-

graphy consistently revealed 2 contaminants of about 

30,000 and 50,000 MW which proportionately paralleled PA 

in amount in each fraction. Breakdown products of PA were 

suspected. Subsequent experiments demonstrated this sus-

picion to be true. Their combined approximate molecular 

weights and elution pattern were consistent with the assump-

tion that they were derived from PA. This fact made it 

difficult to obtain purified PA without these contamin-

ating bands. Again, shortening the culture time may mini-

mize this problem. 

Quickly processing the crude toxin from one step to 

the next without long intervening periods of storage or 

refrigeration is important in eliminating possible action 

on the toxin components by enzymes that may be present. 

Also, it was noted by Wilkie and Ward (1967) that biolog-

ical activity of their anthrax toxin was lost in PO 
4 

buffers. However, this problem was not observed in the 

present study. Machuga et al. (1986) reported purifica-

tion of the LF to the 99% level by immunosorbent chromato-
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graphy. This technique may prove useful in the future 

purification of all three factors of the anthrax toxin. 

One concern, however, regarding this technique is that if 

the breakdown products of PA retained their antigenicity 

with respect to the antibodies used in the immunosorbent 

chromatography column, they would likely elute with the PA 

and be a continuing source of contamination. 

The level of purity, as demonstrated by SDS-PAGE, 

achieved by Machuga et al. (1986) may be in question. It 

must be pointed out that the amount of LF run on the 

electrophoresis gel by Machuga et al. (1986) appeared to 

be just above the levels of detection by the staining 

method used (silver staining). If the level of detection 

were 0.25 ~g, then 2.5 pg would have to run on the gel and 

be free of contaminants in order to be declared at > 90% 

purity. This was apparently not the case with the gel 

they used to demonstrate purity. 

In this research project the purified PA was electro­

phoresed at high and low concentrations in order to visual­

ize both low level contaminants and masked bands near the 

PA respectively. The LF from the HTP column in this study 

appeared >90% homogeneous on SDS-PAGE and when further 

purified by ion-exchange chromatography,approached the 

same level of purity as the PA (99%). The LF was anti­

genically free of PA and was suitable for use in the 

lethality assay. 



Protective Antigen Labelling 
125 
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The use of I in the labelling of ligands has found 

wide use in binding studies. This technique allowed for a 

more direct assay system with fewer steps and complica-

tions compared to radiologically labelled anti-PA or a 

fluorescence assay for example. The PA failed, however, 

to take up the label to a great enough specific activity 

(CPM/ug protein) for the sensitivity required in the bind-

ing studies. Therefore, it was decided to enhance the 

labelling process by use of the Bolton-Hunter reagent. 

This additional technique has been reported in a number of 

other binding studies (Morris et al., 1980; Kitamura et 

al., 1980; and Rogers and Snyder, 1981). With the Bolton-

Hunter reagent, the PA was labelled to levels above 1 

uCi/ug protein. This corresponded to levels commonly 

found in the literature and was suitable for use in the 

96-well tissue culture dish assay. Higher levels of 

labelling may subject the ligand to deterimental effects 

from the isotope's energy of disintegration. 
125 

Dissociation of I from the PA was observed over 

time. This phenomenon does not seem to be universally 

considered in binding studies utilizing labelled ligand. 

Failing to consider this occurrence could give misleading 

quantitative results. 

The PA* was routinely utilized within 10 days of 

labelling and was kept on ice during that time. 



In Vivo Study and 
Cell Line Selection 

Wider use of cell culture in research has enhanced 

understanding of how toxins exert their effects 

(Solotorovsky and Johnson, 1970). Selection of the ce ll 

line for this study involved an experiment to determine 
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which organs of a susceptible host might serve as targets 

for the anthrax toxin. Cattle and sheep which are 

naturally susceptible hosts to anthrax were impractical 

and too expensive to use. Although the Fischer 344 rat is 

relatively resistant to infection with B. anthracis 

(Stephen and Pietrowski, 1983), it is extremely sensitive 

to the anthrax toxin. This made the Fischer 344 rat a 

suitable choice for the in vivo study. 

The in vivo distribution of PA* directed the decision -- ----
as to what type of cultured cells would be used for the 

binding studies . Although the kidney and lung tissues 

showed less radioactivity after exposure to the labelled 

PA than the spleen or liver at the 20 pg leve l, the kidney 

showed the highest activity at the 5 pg level implying 

that PA may initially be se l ectively adsorbed by kidney 

tissue. The kidney and lung have been implicated in the 

lethality of anthrax infection (Nalin et al., 1977; Smith 

and Stoner , 1967; Smith and Keppie, 1954). Middlebrook et 

al. (1978) in studies with diphtheria toxin noted that of 

seven ce ll lines tested, the three most sensitive in their 

battery were derived from kidney tissue . They (Middlebrook 
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et al., 1978) also cited Solotrovsky and Gabliks' observa­

tion that among the most toxin sensitive cell lines were 

primary kidney cells. In view of these observations and 

the fact that cattle are a susceptible and primary host of 

anthrax, the MDBK cell line was chosen. It is seen in 

this project that receptors for PA are present on MDBK 

cells in significant numbers. This suggests a potential 

susceptibility of MDBK cells to either EF or LF. This 

possibility merits further investigation. 

An interesting point regarding the in vivo study was 

that the blood contained very little of the radioactive 

PA* after 15 min indicating a rapid removal of the PA from 

circulation. This substantiates a similar observation by 

Molnar and Altenbern (1963). 

Binding Assay 

In preparation for performance of the in vitro test­

ing, an assay system to monitor the presence of PA* was 

developed. The assay proved successful for the parameters 

investigated. The specific activity of 1 pCi/ug protein 

allowed rapid and simple quantification of nanogram quan­

tities of PA* with statistical precision in the in vitro 

system. The assay had good reproducibility between trip­

licate wells with generally less than 15% variation and a 

high specific/non-specific ratio of cell-associated radio­

activity. The cost of about $100.00 per 30 pg PA labelled 

is reasonable and provides enough PA* to conduct numerous 



experiments at high concentrations of PA* (2000 - 5000 

ng/ml). 

Evaluation of Experimental 
Results for Receptor Criteria 

The purification of PA to required levels and the 
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development of a reliable assay system were critical steps 

to provide the tools for the binding studies performed. 

The criteria for identifying the receptor(s) for PA* on 

MDBK cells were investigated (i.e. specificity, satur-

ability, reversibility, and affinity). 

Specificity. It has been noted by Middlebrook et al. 

(1978) and Aguet et al. (1982) that competition between 

unlabelled ligand and labelled ligand for a receptor is a 

demonstration of receptor-ligand specificity. The binding 

of PA* was significantly reduced (approximately 70%) by 

the presence of a 10-fold excess of unlabelled PA in 1 hr 

of treatment, in 24-well plates (Fig. 9). These results 

are particularly significant in that the larger 24-well 

plates would accomodate greater numbers of possible non-

specific binding sites for the PA*. It should also be 

noted that the 10% level of FBS in the treatment volumes 

not only aided in stabilizing the PA, but also could have 

blocked possible nonspecific binding. 

Blocking of PA* binding by cholera toxin may also be 

considered evidence of the specificity of the binding of 

PA* to the MDBK cell receptor(s). 
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Saturability. The saturation of binding sites at 37° 

C with labelled PA at 3000 ng/ml over time (Fig. 12) as 

well as during the 10-hr saturation study at varying 

concentrations of PA* (Fig. 11) demonstrated that a lim-

ited number of binding sites are available on the MDBK 

cell surface. This also suggests that the PA remains 
125 

bound and unprocessed or at least that the I is not 

rapidly endocytosed with the PA being cleaved and excreted 
125 

as is the case with !-diphtheria toxin at 37°C 

(Middlebrook et al., 1978). 

Calculations of receptor number per cell based on the 

saturation levels from the 10-hr concentration study (Fig. 

11) and the time study (Fig. 12) showed about 72,000 and 

114,000 receptors for PA per cell respectively. It must 

be borne in mind that the cell surface available for 

binding PA is highly reduced because cells are grown in 

monolayer rather than suspension. Therefore, the actual 

number of receptors per cell may be double the amount 

cited here. This number of binding sites assumes a PA to 

receptor ratio of one. 

Ezzel et al. (1984) noted that the minimum amounts of 

PA and LF for lethality in Fischer 344 rats are 3 pg and 

0.6 pg respectively. They cautiously suggest that a pos­

sible 5:1 ratio may exist between PA and LF with regard to 

pathological and/or receptor function . The prolonged time 

to saturation noted in Figs. 12 and 13 may be partly 

accounted for by the possibility of formation of PA* to 
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PA*-receptor aggregates. Aggregation of this type has 

been reported. Insulin, for example, has been shown to 

display this characteristic (Cuatrecasas and Hollenberg, 

1975) • Internalization of the PA* could also explain the 

apparent prolonged time to saturation particularly at 37° 

C. At this temperature the normal dynamic functions of 

the cell such as endocytosis would be fully operable. 

Middlebrook et al. (1978) have shown that internalization 

occurs with labelled diphtheria toxin. The graphic repre­

sentation of their data shows a rise and then a signifi­

cant fall in cell-associated radioactivity over time. The 

processing and excretion of the labelled A (active) sub­

unit of the diphtheria toxin from cells may explain the 

decrease in cell-associated radioactivity noted as the 

cleaved toxin subunit would likely be incapable of reas­

sociating with the cell. However, no such fall in cell­

associated radioactiviy was noted with the PA* binding 

over time. Leppla (1982) observed that the delivery 

mechanism (presumably the PA-receptor complex) of EF to 

its site of action in the cell did not appear to be used 

up thus indicating the reusability of the bound PA for 

internalization of the EF. Gill (1978) observed that the 

"B" or binding subunits of toxins are probably not inter­

nalized. These observations suggest that internalization 

of PA, which functions as a binding subunit, probably did 

not contribute substantially to the prolonged saturation 

time noted in this research for PA binding to MDBK cells. 



An observation wo rth no t i ng in the 21-hr saturation 

study for PA binding (Fig. 13) is an apparent saturation 

at two stages (9 and 18 hr). The levelling off of 

radioactivity per cell after 9 hr occurs just prior to 
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an increase in the cell count per well. A subsequent 

increase in radioactivity per cell was detected after 15 

hr suggesting an increase in receptors per cell. This 

possible increase in receptors per cell is compatable with 

observations reported by Koulakoff et al. (1983) who noted 

that the ganglioside receptors on neuronal cells for teta­

nus toxin were expressed about 7 hr following the S phase 

of mitotic division. The apparent saturation of PA recep­

tors at about 9 hr and subsequent binding increase may be 

indicative of delayed receptor expression. Delayed 

expression of receptors, then, is a process which must be 

considerecl in quantitative ligand binding studies. 

Reversibility. The binding of PA* to MDBK cells was 

shown to be a reversible event in Figs. 14 and 15 with the 

rapid initial release of bound PA*. The slower rate of 

release that followed the initial drop in cell associated 

radioactivity may be due to a low dissociation rate follow­

ing a time threshold. That is, after a certain amount of 

time, the PA* may be more firmly associated with (or 

perhaps imbedded into) the cell membrane. Another explan­

ation for the slower rate of release of cell-associated 

radioactivity could be the release of internalized PA*. 

However, if this were so, it would seem that a sharper 
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drop in bound PA* should be observed. 

Affinity. Data from the 10-hr saturation study (Fig. 

11) was used to do Scatchard (1949) analysis. The binding 
-9 

constant (K ) for PA* derived therefrom was 17 x 10 M. 
D 

This relatively low constant is consistent with the greater 

length of time and higher concentrations required to 

obtain saturation. The K derived for PA* in this study 
D 

was found to be much higher than that reported for 

diphtheria (Collier, 1975; Middlebrook et al., 1978), 

cholera (Bresson et al., 1984), tetanus (Rogers and 

Snyder, 1981), or enterotoxin of~ coli (Donta et al., 

1982) as shown in Table 3. It should be noted that the 

dissociation constant for toxin binding may be temperature 

dependent (Sandvig et al., 1976). 

TABLE 3 

COMPARISON OF TOXIN DISSOCIATION CONSTANTS 

Toxin Cell type 

Protective antigen MDBK 
a 

Tetanus mammalian brain 

Cholera rabbit intestine 

enterotoxin Y1 adrenal 
E. coli ---

Diphtheria mammalian 
b 

Diphtheria Vero 

~Performed at 0°C 
Performed at 4° C 

Dissociat~on 
constant (KD) 

-9 
17.0 X 10 M 

-9 
1.2 X 10 M 

-9 
1.2 X 10 M 

-9 
0.6 X 10 M 

-9 
10.0 X 10 M 

-9 
1.1 X 10 M 
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It has been reported by Gill (1982) that a greater 

amount of anthrax toxin is required for lethality than 

that of other toxins such as those from ~ botulinum, ~ 

tetani, and Corynebacterium diphtheriae. If the K deter-
0 

mined here for PA* is similar to that found in vivo, it 

could offer a reasonable explanation for this requirement. 

However, it is acknowledged that lethal dose is also 

dependent upon mode of action. For example, a neurotoxin 

such as that produced by C. botulinum will induce more 

life-threatening results than a toxin that causes diarrhea. 

Based on available results, it appears that the bind-

ing of PA* is linear on the Scatchard plot suggesting a 

single receptor model. The fitted line for the Scatchard 

analysis (Fig. 16) had a correlation value (r) of -0.7. 

However, the possibility of a curvilinear relationship 

should not be overlooked which could indicate the exis-

tence of more than one receptor or the aggregation of PA* 

to already bound PA* as noted earlier. It needs to be 

considered that the affinity of PA* for MDBK cells may 

possibly be enhanced by such cofactors as divalent cations 

or perhaps even the presence of LF or EF. This would be a 

possibility for future investigation. 

Other suggestions can be made for further evaluation 

of receptor criteria for PA*. Lin and Taniuchi (1980) 

reported use of chemicals which block receptor internal-

ization and lysosomal processing but which still allow 

binding of cholera toxin. This approach might be of value 
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in assessing the degre e to which internalization, if any, 

of PA* may have taken place. It was felt in this research 

that it was of greater value to conduct experiments at 

physiological temperatures in order tc more closely sim-

ulate the in vivo situation. Although saturation studies 

performed at 4°C could have minimized possible internal-

ization of PA*, the lower temperature may also have given 

misleading results in that the membrane fluidity of cells 

and hence the degree to which receptors may be displayed 

is greatly influenced b y temperature (Sheeler and Bianchi, 

1983) • 

Partial Characterization of 
Protective Antigen Receptor 

It is well established that many toxins bind to 

gangliosides (Kitamura et al., 1980; Morris et al., 1980; 

Rogers and Snyder, 1981; Osborne et al., 1982; and Eidels 

et al., 1983). Cholera is one such toxin and its B sub-

unit is available for purchase in purified form. It 

seemed a logical selection, therefore, for use in a block-

ing experiment against PA*. Cholera toxin subunit B was 

demonstrated to effectively block the binding of PA* to 

MDBK cells. The blocking was shown to be concentration 

dependent. This observation strongly suggests that at 

least one of the PA* receptors is the GM 1 ganglioside. 

It should not be discounted, however, that the cholera 

toxin-receptor complex may be located near the receptor 

for PA* and thereby stearically hinder the binding of PA*. 
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Trypsin treatment was shown to have no effect on the 

ability of the MDBK cells to bind to PA*. This would be 

expected if PA* receptors are gangliosides since ganglia­

sides are not proteins. Cuatrecasas (1973) showed that 

trypsin had no effect on the binding of cholera toxin to 

liver cells. Yavin and Nathan (1986), however, demon­

strated trypsin sensitivity in the binding of tetanus 

toxin to nerve cells, whose receptors are also ganglia­

sides (Kitamura et al., 1980). Yavin and Nathan (1986) 

concluded that the trypsin sensitivity was due to the 

sensitivity of a protein closely associated with the gan­

glioside receptor and which may serve to contribute greater 

specificity to the receptor. The observation that trypsin 

treatment had no effect on PA* binding suggests that there 

is no protein associated with the receptor which is criti­

cal for PA* binding. 

Practical Applications 

The purification of PA beyond the 99% level enhances 

the capability of producing high affinity antibodies, both 

polyclonal and monoclonal. 

Development of the assay system used in this research 

to quantitate the presence of PA* should prove useful in 

future research with the anthrax toxin components. 

Any study which contributes to the understanding of 

the nature of bacterial toxins and how they exert their 

effects is of value. With understanding of how something 
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works comes the potential for making that thing useful. 

Great interest recently has stimulated work in the area of 

hybrid molecules for potential use in medicine or research 

(Colombatti et al., 1983; Blythman et al., 1981; Krolick 

et al., 1980; Moolten et al., 1982; Gilliland et al., 

1980; Olsnes, 1981; and Roth and Maddux, 1983). A hybrid 

molecule might, for example, have the active subunit of a 

toxin coupled to an antibody against a cancer cell for use 

in cancer therapy. Obviously specificity, stability of 

the molecule, and the capability of delivering the toxic 

portion intracellularly are primary considerations. Pro­

tective antigen provides another potential binding subunit 

that, with modification, could deliver toxic molecules to 

specific target cells. 
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CONCLUSIONS 

From the experimental data obta~~=C in this research 

the following conclusions can be mace: 

1) Use of the Sterne strain of B. anthracis yields 

toxin comparable in lethality to that of the Vellum 1 B 

strain and minimizes the biological hazard associated with 

the culturing of~ anthracis 

2) Higher yields of PA can be obtained by use of PEG 

to minimize nonspecific binding of the toxin to the filter 

during filtration. Use of PEG also minimizes contamina­

tion by serum proteins which were previously used 

to block nonspecific binding. 

3) PA can be purified to levels > 99%. 

4) The radioassay system which has been developed is 

suitable for PA* binding studies. 

5) Binding of PA* to MDBK cells exhibits specificity, 

saturation, reversibility and moderate affinity. These 

results verify the presence of a specific receptor(s) for 

PA* on MDBK cells. Specificity was demonstrated by compe­

tition of unlabelled PA, cholera toxin subunit B, and the 

serum proteins in the 10% fetal bovine serum of the treat­

ment medium. Saturation of the potential binding sites 

was shown by two methods: over time at a set concentra­

tion of PA* and by varying the concentration of PA* with a 
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set treatment time . Reversibility was demonstrated by the 

fact that about 25% of bound PA* was removable within 15 

min of treatment with unlabelled PA. Affinity, although 

not as high as that reported for other toxins, was demon­
-9 

strated for PA* with a K of 17 x 10 M. 
D 

6) It is likely that the receptor for PA* on MDBK 

cells is a ganglioside as indicated by cholera toxin 

subunit B blocking in conjunction with lack of trypsin 

sensitivity. 
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