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ABSTRACT

Classification of Five-Dimensional Lie Algebras with
One-Dimensional Subalgebras Acting as

Subalgebras of the Lorentz Algebra

by

Jordan Rozum, Master of Science

Utah State University, 2015

Major Professor: Dr. Ian Anderson
Department: Mathematics and Statistics

Motivated by A. Z. Petrov’s classification of four-dimensional Lorentzian metrics, we provide an
algebraic classification of the isometry-isotropy pairs of four-dimensional pseudo-Riemannian metrics
admitting local slices with five-dimensional isometries contained in the Lorentz algebra. A purely
Lie algebraic approach is applied with emphasis on the use of Lie theoretic invariants to distinguish
invariant algebra-subalgebra pairs. This method yields an algorithm for identifying isometry-isotropy
pairs subject to the aforementioned constraints.

(186 pages)
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CHAPTER 1

INTRODUCTION AND SUMMARY OF RESULTS

1.1. Introduction

A pseudo-Riemannian manifold (M, g) is an n-dimensional manifold equipped with a metric
of signature (p,q). The isometry group G of (M,g) is the group of diffeomorphisms on M that
preserve g with functional composition as the group operation. In the book Einstein Spaces [10], A.
Z. Petrov gives a local classification of four-dimensional Lorentzian metrics according to the algebraic
structure of the isometry algebra and the signature of the metric on the orbits. As such, Petrov’s
results provide a systematic approach to finding exact solutions in general relativity as well as to
the equivalence problem of four-dimensional Lorentzian metrics with symmetry. However, there is
reason to believe that small gaps exist in Petrov’s classification (see for example [4]) and therefore,
an independent verification of these results is desirable. This thesis provides that verification for a
significant portion (to be made precise shortly) of the metrics classified in [10]. Whereas Petrov’s
approach is a combination of geometric, algebraic, and inductive arguments, the approach taken

here is purely algebraic.

From the perspective of the study of group actions on manifolds, the local classification of
isometries and metrics can be subdivided into two branches according to whether or not the group
action admits a local slice. The notion of a slice characterizes in a precise sense when the group
orbits at each point are equivalent as homogeneous spaces (see Chapter 2, Definition 21). If the
group action admits a local slice, the problem of classifying isometries and metrics can be reduced to
the case of transitive isometry, i.e., the study of homogeneous spaces admitting pseudo-Riemannian
metrics in dimensions two, three, and four. The homogeneous case further splits into the cases of
reductive and non-reductive isotropy (see Chapter 2, Definition 40). See Figure 1.1 We pause here
to remark that in the Riemannian case, local slices and reductive complements always exist, so the
complexity of the classification problem is greatly reduced (for a more complete treatment of slices,

see [8]).
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Four-Dimensional
Pseudo-Riemannian

Manifolds
Isometry does not admits Isometry admits local
local slice slice

R

Non- .
Reductive isotropy in OH(I;E(:u[gil\ffsrliz‘:Opy
50(3,1)

homogeneous case)

There exists a

Isometry groups of five-dimensional group Tsometry is dimension less
dimension greater than of isometries; this is than five (see [2] and [6])
five the case we consider
here

F1GURE 1.1. Summary of pseudo-Riemannian manifolds considered in this thesis.

The case of non-reductive isotropy has been studied in [3], which gives an algebraic classification
of non-reductive homogeneous pseudo-Riemannian spaces of dimension four. The reductive case has
been done in dimensions two and three in [2] and [6]. We extend this latter study by considering
four-dimensional homogeneous space-times admitting five-dimensional isometry groups. For com-
pleteness, we also examine the case of five-dimensional isometry on three-dimensional homogeneous
spaces and find one case that seems to have been overlooked in [2]. Also of note is that a similar
algebraic approach to the one undertaken here was applied to the classification of homogeneous

Einstein-Maxwell spaces in [5].

In summary, this thesis examines those space-times for which there is a five-dimensional group
of isometries admitting a local slice and having reductive isotropy. In these cases, there is a direct

correspondence between metrics on the orbit manifold and metrics on the reductive complement
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to the isotropy subalgebra that are isotropy invariant (see Theorem 67). In this way, our problem

reduces to an algebraic classification of Lie algebra-subalgebra pairs (g, ) where

(1) g is five-dimensional
(2) b C g is reductive

(3) the adjoint representation of h on a reductive complement m is a subalgebra of so (3, 1).

Two pairs (g1, h1) and (gs, h2) are considered equivalent if there is a Lie algebra isomorphism ¢ :
g1 — g2 such that ¢ (h1) = bo.

This algebraic classification is achieved by applying the “Schmidt method” outlined in [11]. The
key idea behind this method is to fix the adjoint action of the isotropy to act as a subalgebra of
50 (3,1). The next step of the Schmidt method is to enforce the Jacobi identities and normalize
the structure constants to identify all Lie algebras of this form up to real change of basis using a
standard classification, e.g. [12], as is used here. Finally, the isotropy is placed in some convenient

form via automorphism.

After the imposition of the Jacobi identities, the structure constants may still contain several
parameters and the Lie algebraic classification may depend on these parameters non-trivially. Thus
the straightforward approach of simply trying to find appropriate changes of basis by inspection
becomes unmanageable and cases are easily missed. Therefore, at each stage in the classification,
we determine a Lie theoretic invariant with which to split cases. Not only does this help ensure
the integrity of the classification by providing a robust organizational structure, it also yields an
algorithmic approach for determining to which standard pair an algebra-subalgebra pair belongs.
We believe that the use of Lie theoretic invariants to enhance the Schmidt method is the primary

technical contribution of this thesis.

After performing the Schmidt method to generate the algebra-subalgebra pairs corresponding
to space-times for which there is a group of isometries that admits a local slice, is five-dimensional,
and has reductive isotropy, we compare our results to those obtained by Petrov. All of the reductive,
five-dimensional algebras of Killing fields given by Petrov for Lorentzian metrics are found among

the list we generate. Special care must be taken in determining which isometry-isotropy pairs can
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be realized as the complete isometry-isotropy pair of some Lorentzian metric. While we find many
algebra-subalgebra pairs that are not among the isometry-isotropy pairs in [10] of the appropriate
dimension, all such “missing” isometry algebras in fact correspond to metrics that admit more than

five isometries (see Chapter 8).

Together with [2], the algebraic results presented here make significant progress toward a clas-
sification of isometry-isotropy pairs on homogeneous Lorentzian manifolds of dimension four or less
To complete the classification of homogeneous space-times of dimension four or less, isometries of
dimension greater than five must be considered. The methods used in this thesis are easily applied
to such cases The more difficult problem lies in the case of space-times which do not admit local
slices as these do not lend themselves to purely algebraic considerations. Examples of such spaces

are known to exist in Petrov’s classification ([10]), see for instance Example 34.

1.2. Summary of Results

When the isotropy is of dimension two or greater, the classification is straightforward and these
cases are briefly discussed in Chapter 3. The bulk of this thesis is the classification of five-dimensional
Lie algebras with reductive one-dimensional subalgebras, as pairs. Each isotropy subalgebra is chosen
with a particular adjoint action as a starting point. These are labeled “F'8” for the two-dimensional
isotropy or “F'10” through “F14” for the one-dimensional isotropy; this is reflected in the names
chosen for the pair designations. The algebra-subalgebra pairs found are summarized in Tables 1.1
through 1.4. The invariants distinguishing each pair are summarized in the diagrams in Figures 1.2
through 1.6, which provide a complete algorithm for determining the pair designation of a given
algebra-subalgebra pair of the type considered in this thesis. The algebras given in the tables below
are Lie algebras from the classification given by Snobl and Winternitz in [12], from which the algebra

naming conventions also derive. The structure equations for these algebras can be found in Appendix

A.
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TABLE 1.1. Summary of classified algebra-subalgebra pairs in the F'11 (loxodrome)
case and the cases of two-dimensional isotropy (spanned by a null rotation and a
boost).

Pair Designation Algebra Parameters Isotropy
(F'8,0) $535 a= -1 e4,e5
(F8,1) s5[(2,R) & 2ny 4 e3 + eq, 2 — 2e5
(F11,0) 55,11 a=tanf,y=0, e5
B8 =—tanf

TABLE 1.2. Summary of F'12 (rotation) algebra-subalgebra pairs.

Pair Designation Algebra Parameters Isotropy
(F12, 0) 533 D 52,1 a=0 es

(F12, 1) sl (2, F) D so1 e1 — e3
(F12,2) 50 (3,R) ® 521 el
(F12,3) sl (Q,IF) @2111’1 €1 —e3
(F12, 4) sl (2, F) 5] 2111,1 €] —e3 — 264
<F12, 5) 50 (S,R) D 21‘11,1 e1

(F12, 6) 50 (3,R) D 211171 e1 — eyq
(F12, 7) 533 @ 2nq 1 a=0 €3
(F12,8) S47®Ny €4
(F12,9) §5,45 es
(F12,10) S4,12 DNy 1 e4

(F12, 11) 55,43 a=20 €5

TABLE 1.3. Summary of F'13 (boost) algebra-subalgebra pairs.

Pair Designation Algebra Parameters Isotropy
(F13,0) 531 D 621 a=—1 es
(FlS,l) sl (2,]F) D21 €9

(Fl?), 2) 531 D 211171 a=-—1 €3
(F13,3) 546 DM €4
(F13,4) 5[(2,F) @2111,1 €9
(F'13,5) s[(2,F) @ 2nqy 4 es — 2e4
(F13,6) 65,44 es

(Fl?), 7) 252,1 S5 ni1 €9 — €4
(F13,38) 55,41 a=b €4 — €5

TABLE 1.4. Summary of F'14 (null rotation) algebra-subalgebra pairs.

Pair Designation Algebra Parameters Isotropy
(F14, 0) 55,37 €4




Pair Designation
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Algebra Parameters

55,38

sl (2,F> b 2‘(‘11)1

54,11 DNy

N54

541D N1

N5 2

55,20

N5.6

55,14

55,14

55,30 a#1
$5.30 a#1
55,32

55,31

55,29

55,30 a=1
546D MN11

S46 D MN11

547 ONy

547 Oy

55,16

55,16

55,15

55,15

54,10 D N11

54,10 D N1y

S48 BN

S48 DNy

54,9 DNy

5409 ®OMN1

55,19 a#1
55,19 a#l
$5.17 a#1
$5.17 a#1
5517 a=1
55,18

55,25 B # 2
5525 B # 2

5,22 b#1,b#a+1
$5,22 b#L,b#a+1
55,24 a#1l,a#2
5,24 a#l,a#2

55,23
§5,22 b=1
55,21
55,24 a=1
55,26
55,26
55,28
55,28

Isotropy

€4

es + ey

€5

€9 =+ €3

€5

€5

€1 — €2 — €3
€4

ez +e3+ey
€1 — €3

ex +e3 + ey
ey + e3

ey + es3

es + e3

€2 =+ €3

() =+ €3

€y — 263

ey — 2e3 + 2es
€3

€3 — €5

€3

e3 + eyq

€2 — €3

ez —e3tey
€3

€3 -+ €5

ez —e3+es
€2 — €3

€2

es + e5

€3

€3 — €4

€2 — €3

€2 —€3 — €4
€3 — €3

ez — €3 — 3eq
es + ey

€2

es +e3 + ey
ey + es3

es + ey

€2

€9 =+ €3

() + €3

ey —e3+ey
€2 — €3
ex+e3+eyq
€9 + €3

€3 — €4

€3
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Pair Designation Algebra Parameters Isotropy

(F14, 51) 5597 ey +e3+ ey
( ) 55,27 es +e3

( ) 55,22 b=a+1 ea+e3+ey
( ) 55,22 b=a+1 ey +e3
(F14, 55) 55,25 ﬁ =2« €3 — €4

( ) $5,25 B =2« e3

( ) 55,24 a=2 e +e3+ ey
( ) 55,24 a=2 es + e3
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Killing form has
signature (3,1, 1):
(F12,0)

Killing form has
Center is trivial —  signature (1,1, 3):

\ (F12,1)
Killing form has
signature (1, 3,1):
(F12,2) Isotropy in derived
algebra: (F'12,3)

Di . fii Killing form has
imension of i is two signature (3,1, 1)

Isotropy not in
derived algebra:
(F12,4)
Isotropy in derived
algebra: (F12,5)
c . ivial —» Killing form has
enter is not trivia signature (1,3, 1)
Isotropy not in
derived algebra:
(F12,6)
F12

\

/

\

/

Derived algebra is
two-dimensional:
(F12,7)

Second derived /

algebra is Killing form has
one-dimensional: signature (1,1, 3)
(F12,9)

Derived algebra is not
two-dimensional:
(F12,8)

Dimension of i is not

two
Derived algebra is
two-dimensional:
(F12,10)

/
Second derived
\

/

algebra is trivial

Derived algebra is
three-dimensional:
(F12,11)

FIGURE 1.2. Summary of F12 (rotation) invariants and case-splitting.
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Derived algebra is
three-dimensional:
(F13,0)

\

Center is trivial

Derived algebra is
four-dimensional:
(F13,1)

Dimension of i is two

Derived algebra is

two-dimensional:
(F13,2)

Algebra is solvable

Derived algebra is

three-dimensional:
(F13,3)

Center is not trivial
Isotropy in derived
algebra: (F'13,4)
F13 Algebra is not

/

/N

solvable

Isotropy not in
derived algebra:
(F13,5)

Second derived
algebra is
one-dimensional:

(F13,6)

Dimension of i is not

two
Derived algebra is
two-dimensional:
(F13,7)

/
Second derived
\

algebra is trivial

Derived algebra is
three-dimensional:
(F13,8)

FI1GURE 1.3. Summary of F13 (boost) invariants and case-splitting.



Centralizer of
isotropy is nonabelian

F1

Centralizer of
isotropy is abelian

Derived algebra is
four-dimensional

N

Center is trivial:
(F14,37) - (F14, 58)
Accoring to complent

to nilradical and

isotropy structure.
See Section 7.2.3.2

FIGURE 1.4.

N
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There is a
diagonalizable
compliment to

nilradical within the
centralizer of the
isotropy: (F'14,0)

_

Algebra is not
nilpotent: (F14,3)
There is no
diagonalizable
compliment to
nilradical within the
centralizer of the
isotropy: (F'14,1)

Center is
one-dimensional

\

(F14, 4)
Derived algebra is
two-dimensional

/

Center is
two-dimensional:
(F14,5)

Decomposes with
two-dimensional
abelian part: (F14,2)

_

Derived algebra is
abelian: See Figure
1.5

\

Derived algebra is
three-dimensional

/

Derived algebra is
nonabelian: See

Center is Figure 1.6

one-dimensional:
(F14,31) - (F14, 36)
Accoring to
complement to
nilradical and
isotropy structure.
See Table 7.2

Summary of F14 (null rotation) invariants and case-splitting.

Algebra is nilpotent:

10
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Center is
two-dimensional:
(F14,6)

Second lower central
algebra does not
commute with
isotropy: (F'14,7)
Isotropy in terminal
algebra of upper

Derived algebra is central series:
three-dimensional Center is (F14,10)

abelian (continued one-dimensional
from Figure 1.4)
Fourth lower central
algebra is
one-dimensional
Isotropy not in
terminal algebra of

upper central series:
Second lower central (F14,9)

algebra commutes
with isotropy

N

Fourth lower central
algebra is trivial:
Center is trivial: (F14,8)
(F14,11) - (F14,16)
according to
properties of
compliments to
nilradical. See Table
7.1

FI1GURE 1.5. Summary of F14 (null rotation) invariants and case-splitting. Con-
tinued from Figure 1.4.

11
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Isotropy in derived
algebra: (F'14,17)

__—

Killing form is
positive semidefinite

T~

Isotropy not in
derived algebra:

\

(F14,18)
Center is
two-dimensional:
(F14,6)
Isotropy in derived
algebra: (F'14,19)
Killing form is
negative semidefinite
Isotropy not in
Derived algebra is derived algebra:
three-dimensional (F'14, 20) . .
. Isotropy in derived
nonabelian algebra: (F14,21)
(continued from - . — g : ’
. Killing form is
Figure 1.4) o . .
positive semidefinite .
— Isotropy not in
/ derived algebra:
. (F14,22)
Second center is
two-dimensional
Isotropy in derived
N algebra: (F14,23)
Killing form is
negative semidefinite .
— Isotropy not in
derived algebra:
Center is (F14,24)
one-dimensional:
(F14,6)

Isotropy in derived
algebra: (F14,21)
Killing form is

positive semidefinite Isotropy not in

derived algebra:
(F14,22)

/

Second center is
two-dimensional
Isotropy in derived
algebra: (F14,23)

Killing form is -
negative semidefinite .
— Isotropy not in
derived algebra:
(F14,24)

FIGURE 1.6. Summary of F14 (null rotation) invariants and case-splitting. Con-
tinued from Figure 1.4.

1.3. Organization Overview

Chapter two outlines the fundamental principles of pertinence to the work with an emphasis
on group actions and isometry in Lorentzian space-times. In addition to the introductory prin-
ciples, it contains an overview of the applicability of the results and a summary of the so-called
Schmidt method used to generate them. The Lie algebra classification system used throughout is

also discussed.
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The classification begins in the third chapter with the case of five-dimensional isometry with
isotropy that is not one-dimensional; with the exception of trivial isotropy, only two such cases
exist. The next four chapters are organized according to which subalgebra of the Lorentz algebra
the isotropy belongs. Chapter four gives the classification of type F'11 isotropies, or loxodromes.
Chapter five classifies rotational isotropy, type F'12. In chapter six, type F'13 isotropies, or boosts

are classified. Finally, in chapter seven, type F'14 isotropies, or null rotations, are classified.

Following the classification, the application this work to the study of homogeneous space-times
is explored. Specifically, the relationship between this work and the classification of homogeneous
Lorentzian space-times in [10] is shown explicitly. At the algebraic level, we find exact agreement

between Petrov’s approach and the approach used here.

The appendices include Lie multiplication tables for the algebras generated, Maple worksheets
that follow the classification and basis alignment given in this work, and Maple source for a database

of the algebra-subalgebra pairs generated.
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CHAPTER 2

PRELIMINARIES

In this preliminary chapter, we give definitions and theorems that are of pertinence to the work.
This chapter gives an introduction to the foundational concepts of manifolds and group actions, Lie
algebras, and pseudo-Riemannian manifolds. These topics are covered at an introductory level and
a more detailed exposition can be found in any introductory differential geometry text, such as [1].
Snobl and Winternitz also provide introduction to many Lie theoretic concepts in [12]. The Schmidt
method, first outlined in [11], and is introduced in this chapter and is used later in this thesis to

classify algebra-subalgebra pairs.

2.1. Manifolds

We begin with a brief overview of manifolds such as can be found in any introductory text on
differential geometry. Of particular importance to this thesis are vector fields and their flows, so we

define these and some related concepts now.

DEFINITION 1. A wector at a point p in an n-dimensional manifold M is a derivation on smooth
real-valued functions on M. The set of all such vectors at p forms 7, the tangent space at p. A
vector field is a smooth section of the tangent bundle, denoted T'M. Let X (M) denote the space of
all vector fields on M. The Lie bracket of two vector fields X and Y is written [X,Y] and given by

(X, Y](f) =X (Y (f) =Y (X (f)) for all feC>(M).

DEFINITION 2. Let ¢ : M — A be a smooth map. The pushforward of ¢ at g is the map

Gu : TpgM = Ty()N given by ¢, (X) (f) = X (f o ¢) for all f € C> (N).

DEFINITION 3. An integral curve of the vector field X on a manifold M is a smooth map
a:J — M, where J is an open interval of R, such that o' (t) = X, for all t € J. The integral

curve may be specified uniquely via the initial condition « (0) = p.
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DEFINITION 4. The flow of a vector field X on a manifold M is the one-parameter family of
diffeomorphisms ¢; : M — M with t € (—¢,¢€) such that ¢} (p) = Xg,(p) for any p € M and

b1 0 s = Pyis for t,s,t + s € (—¢,¢).

DEFINITION 5. The Lie derivative of a tensor field T along a vector field X (denoted LxT) is
defined via (LxT), = 4| 1o (#iT),, where ¢ is the flow of X. The Lie derivative measures the rate
of change of T" along the integral curve of X. It follows from the definition that the Lie derivative

Lx ...

(1) of a real scalar function f is X (f).
(2) commutes with the exterior derivative (i.e., LxdT = d (LxT)).
(3) is Leibniz with respect to contraction and tensor product.

(4) of a vector field Y is [X,Y].

2.2. Group Actions on Manifolds

Since the focus of this thesis is on isometry and isotropy, an overview of group actions is appro-

priate. We begin with the definition of a group action.

DEFINITION 6. A (left) group action of a group G on a manifold M is amap pu: G x M — M
such that p (g, p(h,x)) = p(gh,z) and u (e, z) = x where e is the identity element of G. The map
fg : M — M is given by ug () = (g, ). Given a group action p: G x M — M, we say G acts

on M by pu, written G O M.
Orbits, isotropy, and transitive group actions are of particular interest in this work.

DEFINITION 7. Let G act on M by p. The orbit of a point © € M is the image of p restricted

to z, i.e, Og (z) ={p(g,z) : g € G}.

DEFINITION 8. Let G act on M by p. The isotropy G, of a point x € M is the subgroup of G

that fixes « under y, i.e., G, = {9 € G: u(g,x) = z}.
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DEFINITION 9. Let G act on M by u. The linear isotropy representation of G, at x € M is the
group homomorphism Is, : G, — GL (T, M) given by Is, (g) (X) = pg« (X). The representation is

call faithful if Is, (g) (X) = X implies g is the identity in G.

ExaMPLE 10. Consider the orthogonal group SO (n + 1) acting on the n-sphere in R"*!, The
isotropy at a point p is the set of all rotations about the ray from the origin through p and thus
is diffeomorphic to SO (n). If n = 2 and p is on the z-axis, then this isotropy at p is SO (3)p =
10 0 10 0 .
{ (8 2?5’3 ;cs)isnef) ) } The linear isotropy representation is thus given by I's, (8 g?r?g ;cs)isnge ) = ( gfﬁg _0215“99 ),
which acts on vectors in the plane tangent to the north pole of the sphere. Since the linear isotropy

representation takes the same form as the group transformation, it is easy to see that the represen-

tation is faithful.

DEFINITION 11. Let G act on M by pu. If for any =,y € M, there is g € G such that u(g,z) =y
(or, equivalently, O¢ () = M), the p is called transitive and M is homogeneous under the action

of G by p.

EXAMPLE 12. A manifold M may be homogeneous under the action of more than one group.
Consider the 3-sphere, S3. If S? is though of as a subset of R*, then under the usual action of the
orthogonal group O (4), S? is homogeneous. If S? is thought of as a subset of C?, then under the

usual action of the unitary group, U (2), S? is homogeneous.

We now discuss Lie groups and their actions on manifolds. We first define Lie groups, then cite

a well-known and important theorem regarding the geometric structure of Lie subgroups.

DEFINITION 13. A Lie group G is a group that is also a differentiable manifold on which group
multiplication and multiplication composed with inversion are smooth functions from the product
manifold G x G to G. The left invariant vector fields on G are the vector fields X € X (G) such
that for any g, h € G, 14X}, = X, where [, is the map given by left multiplication by g. Note that
the left-invariant vector fields are uniquely specified by their value at the identity element e of G:

X, = lge Xe.
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DEFINITION 14. A Quotient G/H of a Lie group G by a Lie subgroup H is the set of cosets

G/H = {gH : g € G} where two cosets g1 H and g2 H are equal if there is h € H such that g1h = go.

THEOREM 15. (Closed Subgroup Theorem): Let G be a Lie group and H be subgroup of G closed

under the subspace topology. Then H is an embedded Lie subgroup of G.

COROLLARY 16. Let G be a Lie group with H a topologically closed subgroup of G. Then the
natural projection map 7 : G — G/H induces a manifold structure on G/H and is smooth. For each
gH € G/H there is a neighborhood U of gH and a smooth local cross section o : U — G exists such
that m o o is the identity on G/H. Furthermore, G/H is homogeneous under the natural action of

G.
We now give a simple application of this corollary as an example.

ExaMPLE 17. The Grassmannian manifold Gr (n,r) is by definition the manifold of r-subspaces
of an n-dimensional vector space. Since any r-plane can be rotated into any other, O (n) acts
transitively on Gr (n,r). The isotropy of the plane spanned by the first r coordinate vectors is
given by O (r) acting in the plane and O (n —r) acting in the complement space. Therefore the
Grassmannian can be written Gr (n,7) = O (n) /(O (r) x O (n —r)). Since O (r) and O (n — ) are
topologically closed, Corollary 16 ensures that Gr (n,r) is indeed a homogeneous space under the

action of O (n).

Of particular pertinence to this thesis is the structure of G/H when G is a Lie group acting
on a manifold and H is the isotropy at a point. To aid in the study of G/H, we give the following

theorem.

THEOREM 18. If G is a Lie group acting smoothly on a manifold M via u, then the isotropy

Gy, at an arbitrary and fized xo € M is topologically closed in G.

Proor. For arbitrary and fixed z¢p € M, consider the smooth (in particular, continuous) map
Hao : G — M given by iz, (9) = (g, o). The isotropy group G, is given by #;01 (x0). Since Gy,

is the inverse image of a point, it is topologically closed. O
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We now define equivariance then cite the Fundamental Theorem of Homogeneous Spaces.

DEFINITION 19. If G acts on manifolds M and N by p and v respectively, a map ¢ : M — N

is G-equivariant if ¢ (1 (g,2)) = v (g, ¢ (x)).

THEOREM 20. (The Fundamental Theorem of Homogeneous Spaces): Let the Lie group G act
smoothly on M by a transitive group action p and let G act on G/G, by group multiplication where

x € M. Then there exists a G-equivariant diffeomorphism between M and G/G,.

The Fundamental Theorem of Homogeneous Spaces is given with proof in introductory texts
(e.g., Theorem 9.3 of Section IV in [1]), but may be extended when the isotropy structure is in some
sense independent of which point in the manifold is taken as reference. To make this precise, we

define a slice of the manifold at a point.

DEFINITION 21. Let G be a group acting smoothly on a manifold M via u. A local cross-section,
S, is a sub-manifold of M such that for all z € S the equality T,O0¢ (z) ® TS = T, M holds. If
for any fixed zp € S there is a smooth function v : & — G such that u(y(zg),z0) = xo and
Gry =7 (y) Gy (7 (y)) " for all y € S, then S is called a local slice and M is called a simple G space.

If the image of 7y is a subset of G, (i.e., Gz, = Gy), then S is called isotropy preserving.

REMARK 22. If a group G acting smoothly on a manifold M via p admits a local slice, S, then

M admits a local isotropy preserving slice 8’ through an arbitrary point zg € S.

PRrROOF. Fix zg € S and let v : S — G be as given in Definition 21. The isotropy at any y € S
is of the form G, = (v ()" Gy (y). Since p and v are smooth, 8" = {u (v (s),s):s € S} is a

local slice with isotropy at each point given by G, . O

We now give an example of a slice in the familiar case of rotations in R3.

EXAMPLE 23. Let G = SO (3) act on M = R3\ {0} in the standard way via matrix multiplica-
tion. The isotropy at a point z is given by G,, = {4 € G : Azg = zo}. Multiplying by a scalar A,

we see that the isotropy at Az is also G,. Furthermore, at any point xg, the orbit under G is the
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sphere of radius ||zg|| which has its normal direction aligned with the ray given by Azg. Therefore

S ={Azg: A€ (0,00)} is an isotropy-preserving slice through .
The following example demonstrates that not all group actions yield local slices.

ExaMPLE 24. Let G be the matrix group given by {(ég(?) ta,b e R} and let it act on
the z = 1 plane by matrix multiplication. At a point (z,y,1), the isotropy is given by G, ) =
{(é g 7§y) € G}. Note that Gy, 4,) # G(as,y,) Whenever y; # y2 (ie., when the orbits are not
equal). Thus there is no isotropy preserving local slice at any point in the z = 1 plane and by Remark

22, there is no local slice anywhere. This can also be shown by explicitly calculating gG ;) g~ ! for

arbitrary g.

THEOREM 25. (The Fundamental Theorem of Simple G Spaces): Let the Lie group G act
smoothly on a manifold M. Suppose there is a local slice S such that the isotropy at each point
in S is given by the subgroup H. For any fized x¢ € S, there exists a local G-equivariant diffeomor-

phism between a neighborhood U of M containing xo and (SNU) x G/H.

PROOF. Since zy € S, the isotropy group at xg is G, = H. Define ¢ : S x G/H — M by
¢ (s,gH) = gs. Since the isotropies at all points s € S are equal to H, the map ¢ is well-defined.
By Corollary 16, for each g there is a neighborhood V of g and smooth local cross sectiono : V — G
such that ¢ (s,gH) = o (gH)s. Thus, because the group action is assumed smooth, ¢ is smooth.
Note that for any h € G, h¢ (s,gH) = hgs = ¢ (s,hgH), so ¢ is G-equivariant when G acts on
S x V in the natural way (by group multiplication in V C G/H). It suffices to use the fact that
T.,0¢ () N T,,S is trivial for g € S and apply the inverse function theorem to show that the

restriction of ¢ to(SNU) x G/H is a local G-equivariant diffeomorphism. O

This theorem leads to an important result regarding the point-independence of isotropy in

manifolds with group actions admitting slices.

COROLLARY 26. If a manifold M admit a local slice S through xq € M under the smooth action
of the group G, and the isotropy at each point in S is given by the subgroup H. Then there is a

neighborhood U of xo such that the isotropy at any point in U is conjugate to H.
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PrOOF. Choose v € U and recall ¢ : (SNU) x G/H — U from the previous theorem. Since u
is in the image of ¢ and ¢ is invertible, there is (s,gH) € (SNU) x G/H such that u = gs and thus

G.=gHg™ ' O

2.3. Infinitesimal Group Actions

Following the preceding section, we now treat infinitesimal group actions, beginning with a few

fundamental definitions.

DEFINITION 27. An infinitesimal group action I on a manifold M is a real finite-dimensional

vector space of vector fields on M that is closed under the Lie bracket.

DEFINITION 28. Let I' be an infinitesimal group action on M. The isotropy of I' at a point

x € M is the subalgebra I',, of " that vanishes at =x.

DEFINITION 29. Let I' be an infinitesimal group action on M. The linear isotropy representation
of I'; at x € M is the map Is, : I'y — gl (T, M) given by Is, (X) (Y) = [X,Y],. Note that because
X vanishes at x, the derivatives of Y at x need not be known. The representation is called faithful

if Is, (X) (Y) =0 implies X is the zero vector field.

ExaMPLE 30. The conformal algebra for R?® with the Minkowski metric is spanned by the
following [7]:
Oz, Oy, O,
Toy = —Y0z + 0y, ot = 10, + 104 Ty = t0y + yO;

Ou, Ad=1a0;+y0y +10;, vo=ca(z,y,t)0,

i, = (332 — y2 + t2) Oy + 22y0y + 2xt0; — 2U0,
iy = 2xyd, + (y° — 2 + %) 9y + 2ytd; — yud,
i = 2wtd, +2ytdy + (2 +y® +2) 0 — tud,

where « (z,y,t) is an arbitrary solution to the wave equation in two spatial and one time dimen-

sion. Since the algebra includes all four translations, it is transitive with isotropy spanned by
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{ray, Tot, Tyt, bz, Ty, 1, d}. These inversions ¢, for p € {z,y,t} are quadratic in all components.
Therefore, at the origin &, their Lie brackets with any other vectors evaluate to zero and thus
Ise (3,) = O is identically zero. Therefore, the linear isotropy representation is not faithful for this

infinitesimal group action.

DEFINITION 31. Let I" be an infinitesimal group action on M. If at each point x € M, I" evalu-
ated at x spans T, M, then the infinitesimal group action is transitive and M is called homogeneous

under the infinitesimal action of T'.

There is close correspondence between group actions and their infinitesimal counterparts. The

following result summarizes this correspondence.

REMARK 32. Every smooth group action of a Lie group G by p on a manifold M generates an
infinitesimal group action as follows. Let X be a left-invariant vector field on G. Then X has an
integral curve ¢ : (—¢, €) — G with ¢ (0) equal to the identity in G. The curve i (¢, o) has a tangent
vector at xp, Yy,. Varying xp now produces a vector field Y on M. This procedure generates a map
v:T.G — X (M) whose image is an infinitesimal group action I'. If G, is the isotropy subgroup
of G at g and X, € T.G,,, then the image of ¢ is a subset of G,,. Thus u (¢, z9) = ¢ and the

tangent vector here is the zero vector. Therefore v (T.G,,) = [y, .

ExAMPLE 33. Consider the Special Euclidean group SE (2) acting on the plane with coordinates

s0 sin
(w,y,1). The group action is given by matrix multiplication by t 45,6y = <—C(;§n9 2:%9 (1171> Then the
560 sin6 0
pushforward of left multiplication by (a,b,0) is given by (a,b,8), = (—ngne 3059 (1)) Thus the left-

invariant vector fields are spanned by X; = cos 00, — sin 00, X5 = sin 09, + cos 00, and X3 = 0y.

We now find the integral curves with initial position at the identity. For X;, we have the initial

value problem

cosf(t) = d(t)
—sinf(t) = V(¢
0 = 0

(a,b,0)(0) = (0,0,0),
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which has solution (a,b,0) (t) = (¢,0,0). For X5, we have the initial value problem

sinf (t) = d ()

cosf(t) = b (1)

0 = 6@
(a,b,0)(0) = (0,0,0),

which has solution (a,b, ) (t) = (0,¢,0). For X3, we have the initial value problem

0 = d(t)

0 = V()

1 = 0@
(a,b,0)(0) = (0,0,0),

which has solution(a,b,8) (t) = (0,0,t). Applying these three curves to a point (zg,yo) in the
plane via the group action gives curves (z,y), (t) = (¢,0), (z,y),(t) = (0,t), and (z,y);(t) =
(xgcost + yosint, —zgsint + yo cost). The tangent vectors at (zg,yo) are given by (1,0), (0,1), and
(yo, —x0). Thus the translations are infinitesimally generated by the vector fields J, and 9,, while

the rotation is generated by y9, — x0,.

In light of this correspondence, local isotropy preserving slices may be studied in infinitesimal

terms, as in the following example.

ExaMPLE 34. Consider the special case of the metric in (32.26) in [10] , which has Killing
vectors (i.e., infinitesimal group action; see Definition 56) given by
X =0, (i=1,2,3) X4=220 +w (m4) Ogz + A (x4) Ogs
with w and A not identically zero. The only non-zero Lie bracket is [X2, X4] = X;, and the
isotropy at (ag, bo, co, dp) is spanned by h = by X; + w (dp) X2 + A (dp) X3 — X4. The adjoint of a

generic vector x with X5 component o and Xy component 3 is

0 -8 0 «

0 0
0 0
0 0
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and its exponential is

1 =8 0 a
0 1 0 0
AdX)=1 9 o 1 0o
0 0 0 1

Thus Ad(x) (h) differs from h only in the X; component. Therefore, there is no change of basis
such that & is independent of z*. This implies that the action of isometries does not admit a local

slice. !

2.4. Lie Algebras

In this section, we give a review of Lie algebras. For a more in-depth exposition, see [12]. We

begin with the definitions of Lie groups and Lie algebras and the relationship between them.

DEFINITION 35. A (real) Lie algebra g is a (real) vector space endowed with an anti-symmetric
bilinear product [-,-] : g X g — g that obeys the Jacobi identity: [z, [y, z]] + [z, [z, y]] + [¥, [z, 2]] = 0
for all z,y,z € g. The product [-,-] is the Lie bracket and the structure constants C’Z-jk for a basis

{ei} are given by [e;,e;] = C; ey

REMARK 36. As a vector space, a Lie algebra admits a canonical dual space. If, in a given
basis {e;}, the Lie algebra has structure constants C’ijk, then the dual basis, {wz} (subject to

wh (e;) = 6;), obeys dw* = —3C; Fw’ Aw’ and the Jacobi identity becomes d* = 0, where d is the

exterior derivative.

REMARK 37. Every finite-dimensional Lie group G has a corresponding Lie algebra g given
by the left-invariant vector fields on G together with vector field commutation as the Lie bracket.
Similarly, every finite dimensional Lie algebra g has a corresponding simply-connected Lie group G

whose left-invariant vector fields give g.

Now we give some elementary definitions from the study of Lie algebras. Many, but not all, will
find application in the algebra-subalgebra classification given in this thesis. Those that are not used

are included here for the sake of completeness.

LOther such examples of isometry groups in [10] that do not admit slices include equations (30.8), (33.1), and (33.54).
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DEFINITION 38. The adjoint ad (x) of a vector x in a Lie algebra g is the linear map ad () : g — g

given by ad (z) (y) = [z, y]-

DEFINITION 39. The Killing form K on a Lie algebra g is the symmetric bilinear form given by

K (z,y) = tr (ad () ad (y)).

DEFINITION 40. A Lie subalgebra b of a Lie algebra g is a vector subspace of g such that the
Lie bracket on b is the restriction of the Lie bracket on g to h. A Lie algebra-subalgebra pair is an

ordered pair (g, h) such that b is a subalgebra of g. The subalgebra § is called . . .

(1) reductive if there is a vector space complement m to h such that g = m @ bh, where @ is the
vector space direct sum, and [m, ] C m. In this case, m is called a reductive complement.
(2) symmetric if there is a reductive complement m to h such that [m,m] € h. In this case, m

is called a symmetric complement.

DEFINITION 41. An ideal i in a Lie algebra g is a subalgebra such that [i,g] Ci. A Lie algebra

with only the trivial ideals {0} and the algebra itself is called simple.

EXAMPLE 42. Consider the example of the two-dimensional nonabelian Lie algebra with [eq, ea] =
es. Let h be spanned by e;. Then let m; be spanned by es and ms be spanned by e; + e5. Both my
and my are vector space complements to , but only my is a reductive complement. Furthermore,
since m; is abelian, it is also a symmetric complement. Therefore  is a symmetric subalgebra (this
implies also that b is a reductive subalgebra). Note also that m; is an ideal, though in general, the

complement to h need not even be a subalgebra.
DEFINITION 43. The centralizer centgy (h) of a Lie subalgebra b of g is given by
centy (h) ={r €g:Vyeh,[z,y] =0}.
DEFINITION 44. The normalizer normg () of a Lie subalgebra § of g is given by
normg (h) ={z € g: vy €b,[z,y] €b}.
DEFINITION 45. The generalized center GCy () of a Lie subalgebra b of g is given by

GCy(h) ={re€g:Vyeg[r,y €bh}.
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DEFINITION 46. The upper central series of a Lie algebra is the series of ideals 31 (g) C 32 (g) C
-Csk(g) €... C g where
31(9) = C(g) = GGy (0)
is the center of g and for k£ > 1, the ideal 341 (g) is defined via 3x41(g) = GCy (5% (g)). A Lie

algebra g is called abelian if C'(g) = g.

DEFINITION 47. The derived series of a Lie algebra is the series of ideals g = g(® D g > ... D

g*) O ... defined recursively via g*+1) = [g(k),g(k)]. The Lie algebra g(!) is called the derived

algebra of g. A Lie algebra g is called solvable if there is k € N such that g*) = 0.

DEFINITION 48. The lower central series of a Lie algebra is the series of ideals g = g° 2 g D
... 2 gk D ... defined recursively via g"*t! = [g¥, g]. A Lie algebra g is called nilpotent if there is

k € N such that g* = 0.

ExXAMPLE 49. Consider again the simple example of the two-dimensional nonabelian Lie algebra
with [e1,ea] = ea. The upper central series is given by 35 (g) = span {e;} for all k. The derived
series is given by g(") = span {es} and g*) trivial for all k£ > 1. The lower central series is given by

g* = span {e,} for all k > 1.
DEFINITION 50. The radical R (g) of a Lie algebra g is the maximal solvable ideal in g.

REMARK 51. The radical for a given Lie algebra is unique because the sum of solvable ideals is

a solvable ideal.
DEFINITION 52. The nilradical NR (g) of a Lie algebra g is the maximal nilpotent ideal in g.

REMARK 53. The nilradical for a given Lie algebra is unique because the sum of nilpotent ideals
is a nilpotent ideal.
2.5. Space-Times, Isometry, and Killing Vectors

The following definitions are fundamental to the study of manifolds with metrics and serve to

connect the algebraic and group nature of this work to larger geometric concerns. In particular, we
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consider the action of an isometry group (defined below) on a manifold together with its isotropy at

a point.

DEFINITION 54. A metric g on an n-dimensional manifold M is a real, non-degenerate, sym-
metric, type (0,2) tensor. A metric has signature (p,q) if at each point x € M, there are vector
subspaces P and @ of T, M, of dimension p and g respectively, such that T,M = P & @, the metric
is positive-definite on P, and the metric is negative-definite on Q. A metric is Riemannian if the
metric is positive-definite. A metric is Lorentzian if the metric has signature (1,n — 1) or (n — 1,1).
A pseudo-Riemannian manifold (M, g) is an n-dimensional manifold equipped with a metric of sig-
nature (p, q). A space-time (M, g) is a manifold M equipped with a Lorentzian metric g. (Typically,

the dimension of M is four, but this need not always be the case.)

DEFINITION 55. The isometry group G of a space-time (M, g) is the set of all diffeomorphisms

on M which preserve g, i.e., G={p: M > M:g(X,)Y) =g (¢:X,0.Y)}.

DEFINITION 56. The isometry algebra T' of a pseudo-Riemannian manifold (M, g) is the set
of all vector fields on M such that the Lie derivative of ¢ vanishes along the vector field, i.e.,

P={XeTM:Lxg=0} If X €T, then X is called a Killing vector.

THEOREM 57. The isometry group of any n-dimensional space-time is a Lie group of dimension

at most % and the corresponding Lie algebra is isomorphic to the isometry algebra.

EXAMPLE 58. In two dimensions, the maximal dimension of the isometry group is three. In
the plane, this is realized as two translations and a rotation. On the n-sphere, the isometry group
is O (n+ 1), which is also of maximal dimension. In four-dimensions, the maximal dimension is
realized (not uniquely) by the Minkowski metric and its isometry group, the Poincaré group, which

consists of three rotations, three boosts, and four translations.

DEFINITION 59. The isotropy algebra T';, of at a point xg in pseudo-Riemannian manifold(M, g)

is the subalgebra of the isometry algebra formed by the vector fields that vanish at .

THEOREM 60. If G is the isometry group of a pseudo-Riemannian manifold, then the isotropy

algebra is the Lie algebra of the isotropy group G, at xo.
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THEOREM 61. The linear isotropy representations for the isotropy subgroup of the isometry group

and the isotropy subalgebra of the isometry algebra for a pseudo-Riemannian manifold are faithful.

THEOREM 62. The isotropy group at xy for a pseudo-Riemannian manifold (M, g) with metric

of signature (p,q) is isomorphic to a subgroup of SO (p,q).

Proor. Let I';, be the isotropy algebra at zo and let G, be the isotropy group. Then any
¢ € G, has the property that gy o) (0xXwo, PxYzo) = oo (Xao, Ya,) for any pair X, , Y, € Ty M,
i.e., the metric is preserved by ¢. Since g4(»,) = gz, for any ¢ € G, the isotropy group preserves

Jzo, @ quadratic form of signature (p,q). Therefore, G, is a subgroup of SO (p, q). |

In a space-time, the orbits through a point under the action of the isometry group can be placed
in three broad types according to the signature of the metric on the orbit. This finds application
in, for example, Petrov’s classification of space-times [10]. The following definition describes these

three types.

DEFINITION 63. Let V be a p-dimensional subspace of an n-dimensional space-time such that

the metric on V' has constant signature. The subspace type of V is given by the following;:

(1) The subspace type is space-like if the signature of the metric on the subspace is (p, 0).
(2) The subspace type is time-like if the signature of the metric on the subspace is (p — 1,1).

(3) The subspace type is null if the metric on the subspace is degenerate.

Given a group acting on a manifold, the orbit type of an orbit through a point is the subspace type

of the orbit.

EXAMPLE 64. In Minkowski space with Cartesian coordinates (z,y, z,t), the surface defined by
t = 0 is R? and is space-like. The surface defined by z = 0 is the Minkowski plane and is time-like.

The light cone at the origin, defined by t? = 2% 4+ y? + 22 is null.

We now consider sufficient conditions under which a pseudo-Riemannian manifold (M, g) admits

a local slice.
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THEOREM 65. If g is a Riemannian metric on M with isometry group G, then at any point

x9 € M, the action of G admits a local slice.

THEOREM 66. If g is a Riemannian metric on M the isotropy algebra is a reductive subalgebra

of the isometry algebra.

If the isometry group acts transitively on a manifold, the Fundamental Theorem of Homoge-
neous Spaces (Theorem 20) gives a diffeomorphism between the manifold and the quotient of the
isometry group by the isotropy group. We now demonstrate that if the isotropy is reductive, this
diffeomorphism guarantees a correspondence between metrics on the manifold and metrics on the

reductive complement to the isotropy algebra.

THEOREM 67. Let (M, g) be a pseudo-Riemannian manifold with transitive isometry group G
(with identity e) and isotropy group H = G, at p. Let the Lie algebra of G be g and the Lie algebra
of H be b with g = h@m. Then the metric g on T, M induces a metric § of the same signature on the

vector space m. If b is reductive and m is a reductive complement, ad () preserves § infinitesimally.

Proor. Let ¢ : G/H — M be the G-equivariant diffeomorphism between G/H and M such
that ¢ (eH) = p. Further let 7 : G — G/H be the natural projection map and 7 : G — M be given
by 7 = ¢ o w. Since the kernel of 7 is H, the pushforward of 7 at the identity, 7. : g — T, M, has

kernel b and thus 7, is bijective when restricted to m. This generates a metric g : m x m — R given

by g=go (ﬁ-* m Xfr*’m)'
Consider = € h and the Killing vector X € TM with X, = 7, (z). If y,z € m with Y, = 7, (v)

and Z, = 7. (z), then the Lie bracket at p of X with Y or Z can be calculated in coordinates &' as

[X,Y], = %g ]prja ; = [Xp, Ypl; in particular, ¥ need only be given at p. Thus,

Lxg(V2) | = X (g, 2)) |, — 9 (X, Vil Zp) — 9 (Ve [X. 7).

Since X is a Killing vector, this implies g ([X,,Y}], Z,) + g (Yy, [Xp, Zp]) = 0. If m is a reductive
complement to §, then 7, o ad () acting on m induces a family of linear transformations on 7, M
with 7, ([h,m]) = [7. (h), 7 (m)]. Therefore g ([X,, Y], Zp) + 9 (Y, [Xp, Zp]) = 0 is equivalent to

g (ad(z) (y),2) + g (y,ad () (2)) = 0 and thus ad (h) preserves § infinitesimally. O
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2.6. Overview of the Schmidt Method

Given a Lie subalgebra, b, of the Lorentz algebra, so(p,1), it is possible to construct a Lie
algebra g such that g has a realization as a Lie algebra of Killing vectors on a pseudo-Riemannian
manifold such that those vector fields corresponding to § vanish at a point. Note that this Lie algebra
of Killing vectors is not necessarily the full isometry algebra (see Section 2.7 for more detail). This

procedure and the relevant theorems are derived in [11] and summarized here.

Fix h C so(p,1). Then b consists of linear maps o; on Minkowski space with matrix elements

amﬁ and commutators [o;,0;] = cijkcrk. Choose Fy, € h and X, € m to be a basis for g with

commutators

[Fi,Fj] = cij"Fx
[Fi. Xa] = 0i"Xp
[Xa, Xg] = pap? Xy + Aas" Fi

where 4,5 and )\a’g are arbitrary insofar as the Jacobi identities are satisfied. The relevant Jacobi

identities are

C[abkcc]kr =0

Ubaﬁoa[ﬂ—Uaaﬁabﬁwfcabkamy = 0
2aa[apuﬂﬂ7 + 20a[ap)‘ﬁ}kp + 'uagaap T+ )‘agcar F=0
M[ﬁpvﬂa];i + )‘[/6’kwg<3t]7;i =0

where square brackets around indicies indicate anti-symmetrization. Thus b has basis given by {F}}
and is reductive in g. It is shown in [11] that g will have a realization as a Lie algebra of Killing
vectors on a homogeneous space of dimension dimg — dimf. This process allows for the classification
of all (abstract) Lie algebra-subalgebra pairs (g, h) arising from reductive isometry-isotropy pairs on
homogeneous spaces. In particular, we perform this classification for the case in which g is dimension

five and b is dimension one (for the non-reductive case, see [3]).
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Let R denote the set of nondegenerate linear transformations r : g — g such that [F;, 7 (X4)] =
[F;, X,] and 7 (F;) = F;. Then R is given by computing the matrix centralizers for the adjoint
of each F; € b and taking the intersection. of The crux of the Schmidt method, therefore, is to
impose the Jacobi identities on uag and )\a’é, giving a set of quadratic equations, then to select
a representation for R-orbits. As a practical matter, however, it is better to follow the procedure

below:

(1) Eliminate parameters by imposing the Jacobi identities.

(2) Introduce Lie theoretic branching.

(3) Use R transformations to eliminate further parameters.

(4) Apply transformations to align the algebras with a standard reference, e.g. [12], in order
to ensure all inequivalent algebra pairs are found.

(5) Repeat the above steps until no more parameters can be eliminated and all inequivalent

algebra pairs are found.

Since we classify (g,5) without respect to the reductive complement chosen, we may compose the

transformations in steps 3 and 4 without loss of generality.

We find that with the exception of two cases, five-dimensional isometry implies either trivial
isotropy or one-dimensional isotropy. Thus, the procedure followed here need not be as general as
the one outlined in [11]. We first fix a one-dimensional subgroup of the Lorentz group and identify
the infinitesimal generator in the standard representation, yielding a linear transformation from R*
to itself. This transformation, in some convenient basis, is taken to be the adjoint of a particular
vector in the isotropy (designated es) in a five-dimensional Lie algebra, thus fixing the isotropy and
four of the ten Lie brackets. The Jacobi identity is then imposed. Generally, a relatively large family
of Lie algebras with many parameters remains. By considering algebraic invariants and choosing
appropriate bases, this family is reduced to a list of those Lie algebras that are unique up to real
change of basis, as classified by [12]. Throughout any changes of basis, the isotropy, as a vector
subspace, is noted. The algebra and the isotropy are given in the basis recorded in [12]. These
results are tabulated in Tables 1.1 through 1.4, while the distinguishing invariants are summarized

in Figures 1.2 through 1.6.
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2.7. Applicability of the Schmidt Method

Given a pseudo-Riemannian manifold (M,g), it is of interest to know whether or not its
isometry-isotropy algebra-subalgebra pair is discoverable via the Schmidt method. If M is ho-
mogeneous under the action of its isometry group G and the isotropy subalgebra is reductive, then
the Schmidt method applies since the isotropy subalgebra is everywhere the same. The difficulty
occurs for spaces that are not homogeneous and therefore may or may not have point-dependent
isotropy. Corollary 26 shows that isotropy groups conjugate in a neighborhood U of an isotropy
preserving slice S. By Remark 22, if a local slice exists through a point x¢y € M, then an isotropy
preserving local slice through xg can be found. In this neighborhood of conjugate isotropies, the
isometry-isotropy algebra-subalgebra pair is the same. Furthermore, the manifold is diffeomorphic
to the Cartesian product of the slice with a homogeneous space, i.e., M = (SNU) x G/G,,. The
Schmidt method then applies to the homogeneous space G/G,, if the isotropy is reductive. Since by
Theorem 25 G/G,, is diffeomorphic to the orbit O¢ (xg), the isometry-isotropy algebra-subalgebra
pair on G/G,, is the same as that on M. The problem then is to determine under what conditions
a local slice can be found. Theorems 65-77 give some sufficient conditions for the existence of a slice

and reductive isotropy.

An important limitation of the Schmidt method is that it only guarantees that the algebra-
subalgebra pair (g, h) is realizable as Killing vectors on a pseudo-Riemannian manifold (M, g). It
does not guarantee that there exists a pseudo-Riemannian manifold for which the isometry-isotropy
algebra is identically (g, b), nor does it fix the signature of g, though this may be done “by hand” when
generating invariant metrics on the reductive complement to . The following examples illustrate

this limitation.

ExaMPLE 68. Among the Lie algebras of Killing vectors given by Petrov in [10], none has
isotropy acting (in any basis) as B(0) = span{cos6 (y9; — x0,) —sinf (td, + 20;)} on a four-
dimensional space-time (see Section 2.8 for a discussion of possible isotropy types). The following
algebra, however, can be obtained via application of the Schmidt method using the isotropy B (6)

(in fact, as is shown in Chapter 4, this is the only such algebra).
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[es,e1] = cosfes [es,e2] = —cosbey [es,e3] =sinfey [es, eq] = sinfes
The structure equations indicate the existence of four independent and commuting Killing fields.
Therefore, the corresponding four-dimensional pseudo-Riemannian manifold must be flat, implying
that there are in fact ten Killing vectors. That is, B (#) manifests as a Killing vector in the isotropy
algebra only when there are additional isotropy Killing vectors. The Schmidt method makes no

attempt to account for these additional symmetries.

2.8. Subalgebras of the Lorentz Algebra

Except for two cases, all algebra-subalgebra pairs with isometry dimension five have one-
dimensional isotropy. Such algebra-subalgebra pairs are associated with four-dimensional space-
times, and the isometry algebra of any such space-time must be a subalgebra of so (3,1). Therefore
it becomes useful to classify the inequivalent subalgebras of so (3,1), as has been done in [9]. Three
basis elements can be thought of as infinitesimal generators for rotations about a spatial axis, Ry,
R,, and R., and three basis elements can be thought of as infinitesimal generators for boosts in
each spatial direction, K,, K,, and K, and are referenced as such throughout this thesis. The
inequivalent subalgebras of so (3,1) are given in Table 2.1 alongside the matrix representation used
in this thesis.

The one-dimensional subalgebras of so (3,1), F'11 — F'14, are of particular pertinence to this
thesis; the only case of isotropy not among these is the two-dimensional isotropy case, which belongs
to F'8 (as a subgroup of s0(2,1)). In the standard action of so (3, 1), each one-dimensional subal-
gebra has a geometric interpretation: the F'11 family of subalgebras gives, for each value of 8, an
infinitesimal generator for a loxodromic transformation; the F'12 and F'13 algebras are infinitesimal
generators for rotations and boosts, respectively; and the F'14 algebra generates a null-rotation.
For the case of one-dimensional isotropy, the classification begins with the isotropy type, and the

chapters of this thesis are likewise arranged.

2.9. Classification of Lie Algebras and Subalgebras

Much of this work relies on the complete classification of real Lie algebras up to dimension six

presented in [12]. The classification is organized to facilitate identification of a given Lie algebra by
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Fl: {B17325B37347B57B6} Fg {B17BQ}

F2: {Bl, BQ, Bg, B4} F10: {Bg, B4}
F3: {R.,R,, R.} F11: {B(6)}
F4: {R., K, K,} F12: {R.}
F5: {B(#),Bs, Bs} F13: {K.}
F6: {Bi,Bs, By} Fl14: {R, + K.}
F7: {B,,Bs, By} F15: {0}
F8: {BQ,Bg}
By =2R, By = 2K, By =—-R, - K,
By,=R,-K, Bs=R,—K, Bs=R,+K, B(0)=cos(d)R.—sin(0)K,
0 0 0 O 0 0 00 0 0 00
00 0 O 0 0 01 0 0 1 0
B = 0 0 0 1 Ry = 0 0 00 . = 0 -1 0 0
0 0 -1 0 0 -1 0 0 0 0 00
01 00 0 010 0 0 01
1 000 0 0 0O 0 0 0 O
Ke = 0 00O Ky = 10 00 K. = 0 00O
0 000 0 00O 1.0 00

TABLE 2.1. Inequivalent subalgebras of so(3,1), labeled F'1 — F'15.

computation of its nilradical and three central series: the upper central series, lower central series,
and derived series. It is derived, however, through consideration of the Jordan normal form of the
nonnilpotent elements on the nilradical and indeed, this is often a necessary computation for the
proper identification of a Lie algebra. Where possible, this work aims to carry out the classification
through consideration of the three central series as this is computationally simpler. Typically, only
the dimensions of the algebras in these series are needed. Another useful invariant is the signature of
the Killing form, which is invariant under real change of basis. Unfortunately, there are distinct real
algebras which cannot be distinguished by these invariants and we must return to the consideration

of the Jordan normal form of the nonnilpotent elements’ adjoint action on the nilradical.

In addition to distinguishing real Lie algebras, we must also distinguish isotropy subalgebras
of a given Lie algebra. Most frequently this is accomplished by considering whether or not the
isotropy falls within an invariant, easily identified subalgebra such as the derived algebra. In some
cases, however, this is insufficient and we calculate special subalgebras containing the isotropy. For

example, the largest ideal in the nilradical containing the isotropy is used to distinguish certain
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isotropies of types F'12 and F'13, while the existence or nonexistence of a four-dimensional algebra

other than the nilradical that contains the isotropy distinguishes several isotropies of type F'14.
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CHAPTER 3

ISOTROPY OF DIMENSION OTHER THAN ONE

The problem of classifying, as pairs, five-dimensional isometry algebras with zero dimensional
isotropies is equivalent to classifying five-dimensional Lie algebras, which has been done by [12]. If
the isotropy is three-dimensional or four dimensional, the isometry must act on a (homogeneous)
space of dimension two or one, but these spaces admit maximal isometries of dimension three and
one, respectively. In either case, the isometry must be of dimension strictly less than five and thus

these cases do not yield algebra-subalgebra pairs of appropriate dimensions.

Consider the case of a five-dimensional isometry algebra with reductive two-dimensional isotropy
subalgebra. We follow the general procedure in [2] deviating only in notation and the Lie algebra
classification used. An algebra-subalgebra pair not found in [2] is presented for this case, as the

Jacobi identities are not as restrictive as claimed there.

Not all two-dimensional subalgebras of so(2,1) can generate algebras of the form required for
execution of the Schmidt method. That is, given a subalgebra of so (2,1) spanned by {F}, F5} with
commutator [F}, Fj] = cl-ijk, there is not necessarily choice of structure constants Gial s Bap”, and

)\(wk such that

[Fi Fj] = cij"F
[Fi,Xo] = 0i’Xp
[Xo, Xg] = pap? Xy + Aas" Fi

is a Lie algebra (in particular, the Jacobi identities might not be satisfied). We therefore begin by
determining which two-dimensional subalgebras of so0 (2, 1) are possible choices for isotropy algebras.
Choose a basis {e;} and let the isotropy be spanned by basis vectors e4 and es. The only two-
dimensional subalgebras of s0 (2, 1) are non-abelian, and so we may take [e4, e5] = e4. If e4 represents
a boost or rotation, then we may take [eq, e1] = deo and [e4, €3] = €1 with all other brackets with ey

giving zero (except [eq, e5] = e4 from earlier). In this case, the Jacobi identities on ey, e5, and each
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of e; and ey give the following:

(3.1) 0 = [64, [617 65]] + [65, i@g} + e5

(3.2)

o
|

= [ea,[e2, e5]] + [e5,€1] — €1

The ey component of Equation 3.2 [e1, 5], + [es,€2],, + 1 = 0 and the e;component of Equation
3.2 gives [eq, e5],, + [es,e1],, — 1 = 0. These are mutually exclusive, and so the Jacobi Identities
cannot be satisfied if e4 represents a rotation or a boost. Therefore, e, must represent a null rotation
and we may take [eq, e5] = eg,[eq,e3] = —e3 and [ey, e1] = e5. Since the adjoint of es restricted to
the span of the first three basis vectors is an element of so0(2,1), it is traceless. This requirement,

together with the Jacobi identities, forces the structure equations to take the following form:

le1,e2] = aje; —aidzes
le1,e3] = —ares

[61, 64] = —€2

le1,e5] = —e1+ daea + dses
[e2,e3] = aies

[e2,e4] = 3

[e2,e5] = —daes

les,e5] = e3

lea,e5] = eq

The eigenvalues of the adjoint of e5 restricted to the span of the first three basis vectors has real,
distinct eigenvalues and therefore acts as a boost. Therefore, we execute the Schmidt method using
as isotropy the subalgebra of so (2,1) spanned by a boost and a null rotation. For consistency, we
denote this isotropy type F'8, though here the isotropy is to be thought of as a subgroup of so (2,1)
rather than of so0(3,1). We have already imposed the Jacobi identities, and so we now consider
invariant characteristics in order to eliminate parameters and identify unique algebra-subalgebra

pairs. We find two distinct pairs.
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The derived algebra is spanned by {e1, s, e3,e4}, and so the second derived algebra is spanned
by {aie1,ea,e3}. Thus the second derived algebra is two-dimensional if and only if a; = 0, and in
this case, the change of basis (eg, €2, —€1 + ‘2—363, eq, —doey — 65) gives the algebra and its isotropy in
standard form with identification (F'8,0); this is the case found in [2]. If a; # 0, the second derived
algebra is three-dimensional and the change of basis
(261 — dses, a%eg, ;1%63, —éeg + ie% a—lleg + dses + 65) gives the isotropy in standard form with

identification (F'8,1).
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CHAPTER 4

F11: LOXODROMES

The F11 family of subalgebras of so(3,1) in standard coordinates and basis is given by the

loxodrome {B (#)} where

0 cos 0 0
| —cos# 0 0 0

B(9) = 0 0 0 —sin@
0 0 —siné 0

and 6 € (0,%). Let gp11 be a generic five-dimensional Lie algebra with basis {e;} and ad (e5) =

B (0) @ (0) so that {es} is a subalgebra of isotropy type F11. This determines all Lie brackets

involving the isotropy, e;. The Lie brackets are thus of the form

[es,e1] = —cosfesy

[es,ea] = cosfeq

[es,e3] = —sinfey

[es,eq] = —sinfes

[ases] = pas’ey + Aages

where Greek indices run from 1 to 4. The structure constants 11,3” and A, are subject to the Jacobi

identities, which require that u.3” and A\, are identically zero (see Appendix B.2 for details).

The change of basis (e3 + e4, €3 — €4, €1, €2,seces) gives the algebra pair (F11,0) in standard

form.
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CHAPTER 5

F12: ROTATIONS

The F12 subalgebra of so (3,1) in standard coordinates and basis is given by the rotation {R,}

where

Let gr12 be a generic five-dimensional

0 1 .00
| -1 0 0 o0
“1 o 0 o0 o0

0 0 0 0

Lie algebra with basis {e;} and ad (e5) = R, @ (0) so that

{es} is a subalgebra of isotropy type F'12. Immediately, the Jacobi identity with basis vectors ey, e,

and e5 gives 0 = [es, [e1, €2]] s0 [e1, e2] has no ey or ez component. Thus, let the structure constants,

C;;* be given by the following:

le1,e2] =
le1,e3] =
[e2,e3] =
ler,e5] =
le1,e4] =
lea,e4] =
[e2,e5] =

(5.1) [63, 64] =

ases + ageq + ases

bie1 + boeg + byes + byey + bses
c1e1 + coeg + c3es3 + cpeq4 + Cxe5
e

die1 + does + dzes + dyey + dses
g1e1 + gae2 + gzez + gaey + gses
—e;

hie1 + hoes + hses + hyeyq + hses

To enforce the remainder of the Jacobi identities, consider the Maurer Cartan forms, {wl} (where

(Wi ej) = 8%). The exterior derivative on the Maurer Cartan forms is given by dwh = —%Cijkwi Aw’

and the Jacobi identities on the Lie algebra are equivalent to the integrability condition d? = 0.

Immediately, this condition requires that the structure equations take the following form:
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le1,e2] = aszes +ases + ases
le1,e3] = bier + boez
[e2,e3] = —baer +bien
[61, 65] = €2
le1,e4] = dier +daes
[e2,e4] = —daer +diey
[ea,e5] = —ei
(5.2) [es,eq] = hses+ haeq + hses

Applying the change of basis (e, €2, e3 — baes, €4 — daes, e5), we can take by = dy = 0 without loss

of generality. Then d?w’ = 0 forces hs = 0 as well, yielding the following Lie brackets:

le1,e2] = agzes+aseq +ases
le1,e3] = bies

[e2,e3] = biea

le1,e5] = e

[61, 64] = dieg

le2,e4] = diea

[62, 65] = —€

(5.3) [es,eq] = hses + hqey

Let n be the centralizer of the isotropy subalgebra (note from the structure constants that n
always forms a subalgebra). We seek the largest subalgebra i of n that is also an ideal in gp15. Let

T = aej + fes be an arbitrary linear combination of e; and es and let y = pes + Aey + ves be a fixed
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vector in n. The Lie bracket is given by

(5.4) [z,y] = <,ub1 + A\d1 — iu) ael + (/Lbl + Ady + gl/> Bes.

If [z,y] € n, then Sv + av = 0. Since « and f are arbitrary, we require v = 0. Thus, i must take
the form i = {pes + Aeq : uby = —Ady}. If by = d; = 0, then i is a two-dimensional subalgebra of n,
and furthermore is an ideal in gp1o. If either by or d; is non-zero, then i is at most one-dimensional
and n has no two-dimensional subalgebra that is also an ideal in gp12. Therefore, b; = d; = 0 if and

only if dimi = 2.

5.1. The Dimension of i is Two

If dimi = 2, then b; = d; = 0 the Jacobi identity requires that either a3 = a4 = 0 or h3 = hy = 0;
this requirement ensures that the Jacobi identity is completely satisfied. These can be distinguished

by the dimension of the center.

5.1.1. The Center is Trivial. If the center is trivial, then either h3 or h4 is non-zero and
az = a4 = 0. Since the span of ez and ey completely decomposes from the rest of the algebra as
the two-dimensional non-abelian algebra, there is a basis in which the structure constants take the

following form, with the Jacobi identity completely satisfied (see B.3 for details):

le1,e2] = ases

le1,e5] = e

[62, 65] = —€
(5.5) [es, ea] €3

By scaling e; and e by |a5|_1/2, we may take a5 € {—1,0,1}. The Killing form is given by

2as 0 0 0 O
0 2a 0 0 O
0 0 0 0 O
0 0 01 0

0O 0 00 -2

and thus the sign of a5 determines its signature, giving three distinct real Lie algebras. For a5 = 0,
the change of basis (—e1, —ea, €5, €3, —e4) gives the algebra pair in standard form with identification

(F12,0). For as = 1, the change of basis (—es + e5,2¢e1, —es — €5, €3, e4) gives the algebra pair in
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standard form with identification (F'12,1). For a5 = —1, the change of basis (es5, €2, €1, €3,€4) gives

the algebra pair (F'12,2) in standard form.

5.1.2. The Center is not Trivial. If the center is not trivial, then it is two dimensional and

hs = hy = 0. The Killing form is given by

2as 0 0 0 0
0 25 0 0 0
o o0 00 0 |,
0 0 01 0
0 0 0 0 -2

and thus the sign of as determines its signature. If a5 = 0, the derived algebra is two-dimensional
if and only if ag = a4 = 0. If a5 # 0, then the isotropy is in the derived algebra if and only if a3 =
ay = 0. If either a3 or a4 is non-zero then with either the change of basis (e1, ea, ases + aqeq, €3, es5)
or (e1, ez, azes + aseyq, ey, e5), we can take ag = 1 and aq = 0 without loss of generality. Thus, there
are six inequivalent algebra-subalgebra pairs in this case. The changes of basis are summarized in

Table 5.1.

as as Change of Basis Pair Designation
1 0 (—es + e5,2e1, —eg — e5,€3,€4) (F12,3)
1 1 (—ex+e3+es,2e,—es—e3—es,e3,eq) (F12,4)
-1 0 (e5,€2,€1,€3,€4) (F12,5)
-1 1 (es — e5,—ea, €1, €3,€4) (F'12,6)
0 o0 (—e1, —ea,e5,€3,€4) (F12,7)
1 (—e3, —e1, €2, —€5,€4) (F12,8)

TABLE 5.1. Summary of changes of basis to standard form for g1, when dimi > 2
and the center is non-empty.

5.2. The Dimension of i is Less than Two

If the dimension of i is less than two, than at least one of b; and d;y is non-zero. We apply the
change of basis (el, €2, %63, €4 — %637 65) if by # 0, and the change of basis (el, e, %164, e3 — %64, 65)

if b = 0 (and dy # 0). The Jacobi identities then require that the structure equations take on the
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following form, with appropriate relabeling of arbitrary constants (see B.3 for details):

le1,e2] = aseq
le1,e3] = e
[62, 63] = €2
le1,e5] = e
lea,e5] = —ei
(5.6) lez,eq] = haey
The Jacobi identities are fully satisfied if either a4, = 0 or hy = —2. The derived series is given by

ggfz = span {ey, €2, aseq, haes}, then ggg = span {ases}, and finally, gg’fz = {0}. Thus as = 0 if

and only if dimggiQ = 0 and in that case, hy = 0 if and only if dimggiQ = 2. The changes of basis

are summarized in Table 5.2.

G4 ha Change of Basis Pair Designation
as #0 —2 (—aqeq,€1,—€o, —€3 — €4, €5) (F12,9)
0 0 (61, €g, —€3, —€5, 64) (F12, 10)

0 hy 7é 0 (64, —e1 — e, —€1 + €2, —e3, —65) (F12, 11), B =hy

TABLE 5.2. Summary of changes of basis to standard form for gp12 when dimi < 2.
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CHAPTER 6

F13: BOOSTS

The F13 subalgebra of so (3,1) in standard coordinates and basis is given by the rotation {K,}

where

o o= O
oo o
o O oo
o o oo

Let gri13 be a generic five-dimensional Lie algebra with basis {e;} and ad (e5) = K, @ (0) so that

{es} is a subalgebra of isotropy type F'13. Immediately, the Jacobi identity with basis vectors ey, e,

and ej gives 0 = [es, [e1, €2]] s0 [e1, e2] has no ey or ez component. Thus, let the structure constants,

C;;* be given by the following:

[e1; ea]
[e1 €3]
[e2, €3]
[e1, es]
[e1, €]
[e2; ea]
[e2, €s]

(6.1) [e3, e4]

ases + ageq + ases

bie1 + boeg + byes + byey + bses
c1e1 + coeg + c3es3 + cpeq4 + Cxe5
—ey

die1 + does + dzes + dyey + dses
g1e1 + gae2 + gzez + gaes + gses
—e;

hie1 + hoes + hses + hyeyq + hses

To enforce the remainder of the Jacobi identities, consider the Maurer Cartan forms, {wl} (where

(Wi ej) = 8%). The exterior derivative on the Maurer Cartan forms is given by dwh = —%Cijkwi Aw’

and the Jacobi identities on the Lie algebra are equivalent to the integrability condition d? = 0.

Immediately, this condition requires that the structure equations take the following form:
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le1,e2] = aszes +ases + ases
le1,e3] = bier + boez
[e2,e3] = baer +biey
[61, 65] = —€2
le1,e4] = dier +daes
le2,e4] = daer +diey
[ea,e5] = —ei
(6.2) [es,eq] = hses+ haeq + hses

Applying the change of basis (e1, e, e3 + baes, 4 + daes, e5), we can take by = dy = 0 without loss

of generality. Then d?w' = 0 forces hs = 0 as well, yielding the following Lie brackets:

le1,e2] = ages +aseq +ases
le1,e3] = bies
[e2,e3] = biea
le1,e5] = —e2
[61, 64] = dieg
le2,e4] = diea
[62, 65] = —€
(6.3) [es,eq] = hsesz + hyey

Let n be the centralizer of the isotropy subalgebra (note from the structure constants that n
always forms a subalgebra). We seek the largest subalgebra i of n that is also an ideal in gp13. Let

T = aej + Bes be an arbitrary linear combination of e; and es and let y = pes + Aey + ves be a fixed
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vector in n. The Lie bracket is given by

(6.4) [z,y] = (ubl + \d; — §V> aer + (,ubl 4+ Mdp — ;V) Bes.

If [z,y] € n, then v — av = 0. Since a and § are arbitrary, we require ¥ = 0. Thus, i must take
the form i = {pes + Aeq : uby = —Adi}. If by = d; = 0, then i is a two-dimensional subalgebra of n,
and furthermore is an ideal in gp13. If either by or d; is non-zero, then i is at most one-dimensional
and n has no two-dimensional subalgebra that is also an ideal in gg12. Therefore, by = d; = 0 if and

only if dimi = 2.
6.1. The Dimension of i is Two

If dimi = 2, then b; = d; = 0 the Jacobi identity requires that either a3 = a4 = 0 or h3 = hy = 0;
this requirement ensures that the Jacobi identity is completely satisfied. These can be distinguished

by the dimension of the center.

6.1.1. The Center is Trivial. If the center is trivial, then either hz or h4 is non-zero and
a3z = a4 = 0 and there is a basis in which the structure constants take the following form, with the

Jacobi identity completely satisfied:

[61, 62] = G5€5

le1,es] = —e2

le2,e5] = —e1
(6.5) [es,eq] = e3

By scaling e; and ey by |a5|_1/2, then interchanging if necessary, we may take a5 € {0,1}. The
derived algebra is three-dimensional if and only if a5 = 0. For a5 = 0, the change of basis
(—e1 + e2,e1 + ea,e5,€3,€4) gives the algebra pair (F'13,0) in standard form. For as = 1, the

change of basis (e; — e2,2e5, —e1 — g, €3, €4) gives the algebra pair (F'13,1) in standard form.

6.1.2. The Center is not Trivial. If the center is not trivial, then it is two dimensional and
hs = hy = 0. By considering the derived series, we find that a5 = 0 if and only if ggi3 is solvable.
Furthermore, when as = 0, the derived algebra is two-dimensional if and only if a3 = a4 = 0. If

as # 0, scaling e; and es by |a5|_1/2, scaling ez by é, and interchanging e; and e if necessary
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allow us to take a5 = 1. In this case, the isotropy is in the derived algebra if and only if a3 = a4 = 0.
If either ag or a4 is non-zero then with either the change of basis (ey,eq, azes + aqeq, e3,€5) or
(e1,e2,a3e3 + aseq, eq,e5), we can take ag = 1 and ay = 0 without loss of generality. Thus, there

are four inequivalent algebra-subalgebra pairs in this case. The changes of basis are summarized in

Table 6.1.
as as Change of Basis Pair Designation
0 O (—e1 + e2,—e1 —ea,e5,€3,€4) (F13,2)
0 1 (63,61 —62,561 + %62,—65764) (F13,3)
1 0 (eqr — e9,2e5, —€1 — €3, €3,€4) (F13,4)
1 1 (e;—eg,2e3+ 2e5,—e1 — ea,e3,€4) (F13,5)

TABLE 6.1. Summary of changes of basis to standard form for g3 when dimi > 2
and the center is non-empty.

6.2. The Dimension of i is Less than Two

If the dimension of i is less than two, than at least one of b; and d; is non-zero. Applying the
change of basis (617 €2, %63, €4 — %63, 65) when b # 0, and the change of basis <el, e, %164, €3 — %64, e5>
when b; = 0 (and d; # 0) eliminates d; and sets by to one. The Jacobi identities then require that the

structure equations take on the following form, with appropriate relabeling of arbitrary constants:

le1,e2] = ageq
le1,e3] = e
[62, 63] = €2
[61, 65] = €2
[e2,e5] = —e
(6.6) [es,eq] = haey

The Jacobi identities are fully satisfied if either a4 = 0 or hy = —2. The derived series is given by
9%3 = span {ej, €2, aseq, hyes}, then 9%223 = span {age4 }, and finally, gg;??, = {0}. Thus a4 = 0 if
and only if dimggig = 0 and in that case, hy = 0 if and only if dimg(Fli3 = 2. The changes of basis

are summarized in Table 6.2.
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a4 ha Change of Basis Pair Designation
as #0 -2 (—2aseq,e1 + €2,€1 — €2, —2es — 2es, —e5) (F13,6)
0 0 (2e1 —2e2, 3e3 + es,2e1 + 2ea, 563 — Se5,€4) (F13,7)

0 ha#0 (e1+es —er —e2,—2es, —3e3— Se5,—Se3+ 5e5) P(F13,8) (a=b= 1)

TABLE 6.2. Summary of changes of basis to standard form for gp13 when dimi < 2.
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CHAPTER 7

F14: NULL ROTATIONS

The F14 subalgebra of so (3,1) in standard coordinates and basis is given by the null rotation

{Ry + K.} where

0 10 0

| =101 0
By+ K= g 1 o 0
0 00 0

Let gr14 be a generic five-dimensional Lie algebra with basis {e;} and ad (e5) = (R, + K.) & (0) so
that {es} is a subalgebra of isotropy type F14. The basis given by (e1,e2,e1 + €3, €4, €5) is more

convenient than the standard basis and yields

0 0000
100 0 0
ad(es)=] 0 1 0 0 0
0 0000
0 0000

Note that the centralizer of the isotropy, centg,.,, (€5), is three-dimensional and spanned by {es, e4, €5}.
Since [eq, 5] = [e3, e5] = 0, the Jacobi identity on these three basis elements reduces to [es, [e3, e4]] =
0 and thus, [es3, e4] € centy,.,, (e5). Furthermore, since [es, e2] = e3, the Jacobi identity on {e, e4, €5}
reduces to [es, e4] = [es, [e2, e4]]. Since [es, [e2, e4]] cannot have any e component, neither can [es, e4],
and thus {es,es} forms a two-dimensional subalgebra. There are only two two-dimensional alge-
bras: the abelian algebra and the non-abelian algebra. This yields two cases: either centg,.,, (e5) is

abelian, or centg,.,, (e5) is non-abelian.

7.1. The Centralizer of the Isotropy is Non-Abelian

If the centralizer of the isotropy is non-abelian, then there is a basis in which [es, e4] = e3 with

the adjoint of ej left unchanged. The Jacobi identities then require that the structure constants are
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of the form

[e1,ea] =
[e1,e3] =
le1,ea] =
ler,es] =
[ea,ea] =
lea,e5] =

[637 64] =

ases + ases

az€3

e1 + dses + dses + aseq — (a2d2 + a3) es

€2

eg — daes

—e3

€3

50

with all other Lie brackets giving zero. The change of basis (e; — ases, €2, €3, e4 — daes, e5) eliminates

some extraneous structure constants and produces the following:

[e1; ea]
[e1 €3]
[e1, e4]
[e1, es]
[e2; e4]
[e2; es]

[637 64]

ageo

a2€3

e1 + dses + asey
e

€2

—e3

€3

Suppose as # 0. Then the change of basis (éel + €4, €2, a2€3, €4, age5) together with the relabeling

ds

a

2
2

— d3 gives structure equations
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le1,e4] = e1+dzes
le1,e5] = e

[e2,e4] = e

[e2,e5] = —e3

[63, 64] = €3

and thus we may take ao = 0 without loss of generality. Consider the adjoint of any vector that is
not in the nilradical, but is in the centralizer of the isotropy. In this basis, that is any vector with
an e4 component, but no e; or e; components. Restricted to the nilradical, the adjoint takes the

form

a 0 0 0

_ v a 0 0
A= dsae v a 0
0 0 0 O

where «, and v correspond to the components of e4, and esrespectively (so that « # 0). Note that
A can be chosen diagonalizable if and only if ds = 0 (by choosing v = 0). If d3 = 0, the change of
basis (—es, e, e1,e5,e4) gives the algebra pair (F14,0) in standard form. If d3 # 0, the change of
basis

(— |ds| es, \/|dslez, e1, /|ds]es, 64) gives the algebra pair (F'14,1) in standard form (where the sign

of ¢ is the sign of d3).

7.2. The Centralizer of the Isotropy is Abelian

If the centralizer of the isotropy is abelian, then [e3,es] = 0. If a; # 0, the Jacobi identities

require that as = d3 = d4 = d5 = 0 and the structure equations are of the following form:
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le1,e2] = aier + azes + aseq + ases
le1,e3] = ares

le1,e4] = daes

[61, 65] = €2

le2,e3] = aies

le2,e4] = —daes

[ea,e5] = —e3

The change of basis

—e1 es + ,—es ,———e3 —
ay V2a? a3 a? a1 ay ay

2 azar + asds + a asV2 asv2 2 2 :
<\[ 4 G T dady 5 4\[644_ 5\2[65 7£e3 V2 ﬁe5,e4—dze5>

gives the algebra pair (F'14,2) in standard form. This is the only F'14 algebra pair with a two-
dimensional abelian algebra that fully decomposes from the rest of the algebra. In all other cases,

the Jacobi identities require that the structure constants are of the form

le1,e2] = ages + azez + aseq + ases
[e1,e3] = ages

[e1,e4] = daes + dses + dyey — dadges
[61, 65] = €2

le2,e4] = —daes

[ea,e5] = —es

with all other Lie brackets giving zero. The change of basis (e; — ages, €2, e3, e4 — daes, e5) together
with the relabeling a4ds + a5 — a5, eliminates some extraneous structure constants and produces

the following:
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[e1,e2] = agez +aseq +ases
le1,e3] = ages
[e1,e4] = dses+ dyey
[61, 65] = €2
(7-1) [627 65] = —€3

with all other Lie brackets giving zero. The derived algebra must contain e, and es, and so its
dimension is given by two plus the rank of the matrix (32 © ) That is, the derived algebra is of

two, three, or four dimensions, and the remaining algebra pairs are organized accordingly.

7.2.1. Derived Algebra is Two-Dimensional. If the derived algebra of gz14 is two-dimensional,
then ay = a5 = dy = 0. The center, C (gr14), cannot contain e, e, or es, but may contain es or eyq
(or both), depending on the values of ay and ds, respectively. Note that if the center does not contain
e3, then as is non-zero and |eq,eq — Z—zeg] = 0. Thus, the center must be either one-dimensional or

two-dimensional.

If the center is one-dimensional, then either ez is in the center (and as # 0) or it is (and
as = 0). These can be distinguished by the second algebra in the lower central series, given by
0%, = lor14, [0F14, 9714]]), which contains azes and ages. The dimension of g%, is two if and only
if as # 0 (in which case g%,, = gk, and gr14 is not nilpotent). In this case, the change of basis
(—éeg, a—teg, —;—262 + es, —éel, —ey — %e;;) gives the algebra pair (F'14, 3) in standard form. The

dimension of g%, is zero if and only if az = 0 (in which case gr14 is nilpotent). The change of basis

(—63, es + e3, é&;, e1 — e, 65) gives the algebra pair (F'14,4) in standard form.

If, on the other hand, the center is two-dimensional, then the change of basis

(—es3,ea + e3,e1 — ea, eq, €5) gives the algebra pair (F'14,5) in standard form.

7.2.2. Derived Algebra is Three-Dimensional. If the derived algebra of gpi4 is three-
dimensional, then the rank of (gj aos) is one and either a5 = 0 and at least one of as and dy4

is non-zero or a; # 0 and dgy = 0. If a5 = 0, then the derived algebra of ggr14 is spanned by
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{ea, e3,e4}, which is abelian (see Equation 7.1). If a5 # 0, then the derived algebra is spanned
by {e2, e3,ases + ases}, which is non-abelian because [ases + ases, ea] = —ases. Thus, the derived

algebra is abelian if and only if a5 = 0.

7.2.2.1. Derived Algebra is Abelian. If the derived algebra is abelian, a5 = 0 and the structure

equations are given by

[e1,e2] = ages + asey
le1,e3] = ages
le1,ea] = dzes+ dsey
[e1,e5] = e

(7.2) [ea,e5] = —e3

where one or both of a4 and dy is nonzero. The center, C (gri14), cannot contain e, es, or es
and may be two-dimensional, one-dimensional, or trivial. If e3 and e4 are both in the center, then
as = d3 = d4 = 0 and a4 is necessarily nonzero, so scaling es by a4 gives the following structure

equations

le1,e2] = e4
le1,e5] = e
lea,e5] = —e3

The change of basis (e3, —e4q, —ea, —e1, €5) then gives the algebra pair (F'14,6) in standard form.

If the center is one-dimensional, then we consider the lower central series: The second and third
algebras in the lower central series are g%,, = [gr14, [9F14,0r14]] = span {ases + asey, e3,dsey}.

This algebra commutes with the isotropy if and only if as = 0.

Consider first the case in which the center is one-dimensional and g%, does not commute with
the isotropy (i.e., ag # 0). Since the center is one-dimensional, there is a one-dimensional subspace,

Ses+Tey, that commutes with ey, i.e., (Sas + Td3) e3+Tdges = 0, so that S = — 437 and Tdy = 0.

az
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Thus, if dy # 0, then the center is trivial, a case considered elsewhere. Therefore, here we require
dy = 0 (and then a4 # 0 since the derived algebra is three-dimensional and abelian). In this case,

the change of basis

1 1 aqds aq 1 agds — a% aq 1 ayds
——e3,—€y — —3-€3+ 5€4, ——€+ ——F3 €3~ e+ e5 —€ — —€— —5 €5
a9 a9 as as a9 Ay as as a9 as

gives the algebra pair (F'14,7) in standard form.

If the center is one-dimensional and g2, commutes with the isotropy, g3, is given by the span
of {dses + dses} (since az = 0 in this case). Then ghy, = [gF14,g%14} = span {d3d4e3 +die4}
and g}, is trivial if and only if d4 = 0, and one-dimensional otherwise (and again, a4 # 0 since
the derived algebra is three-dimensional and abelian). If g}.,, is trivial, then d3 is nonzero; oth-
erwise we have the case of two-dimensional center treated earlier. Applying the change of basis
(ﬁeg, —ée;;, —ﬁeg, es, ﬁel) for a4ds positive or (ﬁe& —ée;;, ﬁeg, —es, ﬁel)
for auds negative gives the algebra in standard form. In both cases, the algebra pair has identifica-
tion (F'14,8). If, on the other hand, g}, is one-dimensional, then d4 # 0. The parameter a4 may
be zero or non-zero, which determines whether or not the isotropy is in the terminal algebra of the

upper central series. First consider the case in which a4 # 0. The change of basis

1 1 a4d3 a4 1 n a4d3 + a4 1 + a4d3
—€3,——€3 — —5—€3 — —5€4,——€ €5, —=—€ —5€4, —€ —F5€
d4 35 d4 2 di 3 di 4, d4 2 55 di 3 dZ 4, d4 1 dZ 5

gives the algebra pair (F'14,9) in standard form. If a4 = 0, the algebra pair can be written in standard

form with identification (F'14, 10) using the change of basis (ieg, ieg, ieg + es, 3%63 + éeél7 iel).
4

Next, if the center is trivial, d4 and as are both nonzero and we consider vectors not in the
nilradical. In the basis given by the structure equations in Equations 7.2 these vectors, X («, 3,7),

have adjoint matrices restricted to the nilradical of the form

aao 0 0 «
v aay ady —f

aas 0 ady O
0 0 0 0

where «, 8, and v are parameters determined choice of vector (« is the e; component and may not

ad (X (a, B,7)) =

be zero). The eigenvalues of ad (X («, 8,7)) are zero with multiplicity one, aas with multiplicity
two, and ady with multiplicity one. We classify the algebra pair according to properties of this

family of matrices, as summarized in Table 7.1.
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Pair Designation Properties of ad (X (o, 5,7)) Parameters

(F14,11) Two distinct nonzero eigenvalues. X can be as # dy, ag #0
chosen such that ad (X) on the isotropy is an
eigenvector of ad (X («, 8,7))

(F14,12) Two distinct nonzero eigenvalues. X cannot as # dy, as =0
be chosen such that ad (X) on the isotropy
is an eigenvector of ad (X («, 8,7))

(F14,13) One nonzero eigenvalue, cas. Rank of ag = dy, ag,ds #0
ad (X) — aasl is three, regardless of («, 3,7).

(F14,14) One nonzero eigenvalue, cas. Rank of as =dg, a4 =0,d3 #0
ad (X) — aasl is two or three, depending on
choice of (o, 3,7).

(F14,15) One nonzero eigenvalue, cas. Rank of as =dg, a4 #0,d3 =0
ad (X) — aasl is two, regardless of (a, 8,7).

(F'14,16) One nonzero eigenvalue, cas. Rank of as =dg, a4 =d3 =0

Pair Designation

ad (X) — aasl is one or two, depending on

choice of («, 8,7).

Change of Basis

Ll Lo, — d74 dsg 4. Lo, — —ads
(F114,11) ( 253 g2 — Grfa, —goea+ et es, by, e — MR 65)
~ asds a4
€1 = dy(az—dy)? €3 — dy(az—da) €4
Loy Lo, L 1 ds 1
(F14) 12) <_ €3, as 2. €25 62 + €5, d4(a2_d4) <a2 —dy €3 — ) ) as el)
42
(£114,13) (% e3, —€3 + 4 365 és, d3 ey — €3, e — g 65)
2
~ asd d2a (a2+1) a?ds
€3 = “3tep + ez — —irey
2 2 2
1,1 1 as 1, 1
(F14,14) (7563,662,7?2624*65,?363 — e 561)
1 1 a a 1
(£114,15) (—563 —ase2 + Gheates, e — ey, e, 561)
(F14,16) -Le ie —Les+es,eq, e
) az 937 a5 820 T g, 02 5,64y 5 61

TABLE 7.1. Summary of invariants and changes of basis to standard form for gp14
when the derived algebra is three-dimensional abelian with trivial center.
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7.2.2.2. Derived Algebra is Non-Abelian. If the derived algebra is three-dimensional and abelian,

as # 0 and dy = 0. The structure equations are given by

le1,e2] = azes +aseq +ases
le1,e3] = azes
le1,eq] = dzes
[e1,e5] = e
(7.3) [e2,e5] = —es.

In this case, the center, C (gr14), cannot contain e, e, or e5. The vector Sesz + T'ey commutes
with all basis vectors except perhaps e; and [e1, Sez + Tey] = (Sag + Tds) e3. Note that if ay =

ds = 0, the center is two-dimensional, and otherwise is one-dimensional.
If the center is two-dimensional, the change of basis
—1/2 —-1/2 3/2
(Ias\ e1,as las| " ez, as|" " 3, ea, aseq + ases

yields the following structure constants:

[er,ea] = =es
le1,e5] = e
(7.4) lea,e5] = —es

with the £ corresponding to the sign of as.

CraiM 69. The sign of a5 is essential (i.e., the positive branch cannot be related to the negative

branch by a real isomorphism).

ProOF. Note that gr14 = gr1a®span {e4} where gr14 = span {e1, €2, €3, e5}. The center of gr14
is spanned by {e3} and the quotient of gr14 by § = span {e3} is spanned by {e; + b, e2 + b, e5 + b}.

For convenience, let (e1,€2,€3) = (e1 + b, e2 + b, e5 + ) so that the only non-zero Lie brackets are
[€1, €2] = *e3 and [e1, €3] = €2. In this basis, the Killing form is given by B = (#32 § §) and thus the

signature of B is determined by the sign of as. O
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In the basis given with structure equations given by Equations 7.4, the isotropy subalgebra is
spanned by —ases + e5 and is a subalgebra of the derived algebra if and only if a4, = 0, in which
case the isotropy subalgebra is given by e5. Otherwise, the automorphism (eq, ez, e3, —ageq, €5) —
(e1, €2, €3, €4, 5) is non-degenerate and leaves the structure equations unchanged, yielding the isotropy
es + e5. For the case where a5 is positive, the change of basis (—e3, —e2 + €5, —3€2 — Se5, —e1, €4)
(on the basis given in Equations 7.4) gives gr14 and the isotropy in standard form with identifica-
tion (F'14,17) if the isotropy is in the derived algebra and (F'14,18) otherwise. For the case where
as is negative, the change of basis (es, ea, —e5, —e1,€4) (on the basis given in Equations 7.4) gives
gr14 and the isotropy in standard form with identification (F'14,19) if the isotropy is in the derived

algebra and (F'14, 20) otherwise.

If the center of gg14 is one-dimensional, then at least one of as and d3 is non-zero. The center is
spanned by Sez+Tes where (Sag + T'd3) = 0. Suppose az = 0. Then T' = 0 and the center spanned
by es, and the second algebra in the upper central series is spanned by e3 and e4. If as # 0, then
the center has an e, component and the upper central series terminates with the center. Therefore,
the second algebra in the upper central series is two-dimensional (spanned by es and e,4) if and only

if ag = 0, (requiring ds # 0), and the change of basis

1 1 ay 1 1 . ayds
€3, —F/—=€2, ——€4 — €5, 7 €4, €1 €2
Vias|  /las| as ds " /las] as/|as|

gives structure equations

[e2,e3] = e
[e2,e5] = Zes
[63, 65] = €2
[ea,e5] = e

with the £+ corresponding to the sign of a5 and isotropy now spanned by es + “3‘;3 e4. Note that

the isotropy is in the derived algebra if and only if a4 = 0, in which case the isotropy is spanned by

e3. If a4 # 0, then the isotropy to be taken to be e3z + e4 via the automorphism given by the change
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as

of basis ((‘1;41?3’)2 e1, %62, %eg, (“4d3>2 €4, 65>. The sign of a5 determines the signature of the
Killing form, which has only one non-zero eigenvalue. If as < 0, the algebra is in standard form
with identification (F'14,21) if the isotropy is in the derived algebra, and (F'14,22) otherwise. If
as > 0, then the change of basis (—2e1, es + e3,e2 — e3, —2e4, e5) gives the algebra pair in standard

form with identification (F'14,23) if the isotropy is in the derived algebra, and (F'14,24) otherwise.

If the second term in the upper central series is not two-dimensional, then as # 0. The isotropy is
in the derived algebra if and only if a4, = 0, in which case the change of basis (—el, ;2 €2, ?263, iz es — ey, 65)
applied to the basis given by Equations 7.3 together with relabeling %3 — a4 and 25 —> as gives the

structure equations presented in Equations 7.5. Otherwise, the Change of basis

1., ds 9q 1, 1
(aZ €1 €5, as €2, a2637 azas

a4 14— Z;i; e3 + —64 + e5> yields the same structure equations

with isotropy e4 + e5.

le1,ea] = e+ ases
le1,e3] = e3
[e1,e5] = e

(7.5) [e2,e5] = —es.

The nilradical is spanned by {es, e3, €4, €5} so any vector not in the nilradical has an e; component
of magnitude A and its adjoint restricted to the nilradical has eigenvalues zero, A\, and A (117 V12+4a5),

each with multiplicity one, since as # 0 in this case. Note that if a5 = —1, then 2 5 is an eigen-

value of multiplicity two. In this case, the change of basis (—63,\/562 — ?es, %65,261, %64)
gives the algebra pair in standard form with identification (F'14,25) if the isotropy is in the derived

algebra and (F'14,26) otherwise. If the eigenvalues are real and distinct, then a5 > —% and the

. 1 1— .
change of basis (‘er €3,€2 — T4a€5,€2 — 15465 (1+a)eq, 1?364)’ with a5 = (1+ )2, gives the alge-

bra pair in standard form with identification (F'14,27) if the isotropy is in the derived algebra and

(F'14,28) otherwise. Finally, if A (ﬁi V12+4“5> are non-real, then a5 < —i and the change of basis

1
(o +1)* a?41, a’+1 a +1 o241 . 1 . .
- ey — es,2ae, — 5 ey | with a = T gives the algebra pair

203 €3, — 202 )
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in standard form with identification (F'14,29) if the isotropy is in the derived algebra and (F'14, 30)

otherwise.

7.2.3. Derived Algebra is Four-Dimensional. If the derived algebra of gp14 is four-dimensional,
then the rank of (g} G ) is two, so as and d4 are both non-zero. From Equations 7.1, it is clear that
e3 is the only basis vector that could be in the center of gr14, depending on the value of as. That

is, the center is trivial if and only if as # 0.

7.2.3.1. The Center is One-Dimensional. If the center is one-dimensional, then as = 0 and the

structure equations are given by

[e1,e2] = aseq + ases
le1,ea] = daes + daey
[e1,e5] = e2

(7.6) [e2,e5] = —e3

where again, a5 and d4 are non-zero. Consider an arbitrary vector X not in the nilradical (which is

spanned by es through ey). Its adjoint on the nilradical is of the form

0 0 0 A
0 XMy -
ad (X (O‘aﬁ77)) = )\14 0 )\di 06

Aas 0 O 0

where A, 8, and v are the components in the eg, e, and e5 directions respectively. Then [X, [X, e5]] =
A (ves + Aageq + Aases). Thus there is a choice for X such that its bracket with the isotropy is an
eigenvector of its adjoint if and only if ay = 0 (i.e., choose v = 0). The eigenvalues of its adjoint are

independent of 3 and 7 and are 0,Ad4, and £,/as.

7.2.3.2. The Center is Trivial. If the center is trivial, then the structure equations are given by
Equations 7.1 with as, d4, and a5 non-zero. Using the change of basis (aiel, %62, %63, %64, ie5)
2 as as as as

together with the relabeling of constants 3 — as, Z—z — d3, and Z—‘; — dy4, the parameter as, without
2
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Pair Designation Properties of ad (X (), 3,7)) Parameters
, as two imaginary eigenvalues. X can be ag =0, a5 <
F14,31 H imagi ig 1 X b 0 0
chosen such that its bracket with the isotropy
gives an eigenvector of ad (X).
, as two imaginary eigenvalues. X cannot be ay , a5 <
F14,32 H imagi ig 1 X b 0 0
chosen such that its bracket with the isotropy
gives an eigenvector of ad (X).
, as four real distinct eigenvalues. X can be ayg =0, a5 >
F14,33 Has f 1 disti ig 1 X b 0 0
chosen such that its bracket with the isotropy
gives an eigenvector of ad (X).
(F14,34) Has four real distinct eigenvalues. X cannot be a4 # 0, a5 >0
chosen such that its bracket with the isotropy
gives an eigenvector of ad (X).
(F14,35) Has repeated eigenvalues. X can be as=0,a5=0
chosen such that its bracket with the isotropy
gives an eigenvector of ad (X).
F14,36 Has repeated eigenvalues. X cannot be a4 #0,a5 =0
g
chosen such that its bracket with the isotropy
gives an eigenvector of ad (X).
Pair Designation Change of Basis
4 2 2
(F'14,31) (— as\c/l“_Tses» %62, \/%657 —dzes — dyey, \/%%61)7 a= \/%IT:)
(F14,32) (— G o Ble, Az, 5,4 Biies 1e—|—’“d36)
) a5\/77a53’a52 \/Tas4’4 \/Tas5747\/77a51 d4\/fa55a
b1 = G (daca + i) o =
dj d3 d; d3 d3
(£114,33) (af\fage& as€2 T a=es, gtea — a-es, —dzez — dyey, \/%—561)7 a=Ji
(F14,34) (J%eg, e+ afs + €5, —ea + (0 — 1) & — €5,61, =e1 + di‘i‘/%eg,),
5 2a _d
€4 = (adpya, (Do + daea), 0 = 7
(F'14,35) (2d463, ez + days, €2 — days, —dzes — dyeq, iel)
(£714,36) (*d4€3, ey — €4 — days, ea + dyys, €4, 3-€1 + a§§3 65);

€4

= ;T“i (dses + daeq)

TABLE 7.2. Summary of invariants and changes of basis to standard form for gpi4
when the derived algebra is four-dimensional with one-dimensional center.
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loss of generality, can be set to one, giving the following structure equations:

le1,e2] = e2+aseq +ases
le1,e3] = e
le1,ea] = dszes+dsey
[61, 65] = €2
(7.7) [e2,e5] = —es.

The nilradical is spanned by {es, €3, €4, e5}. The parameter a4 may or may not affect the algebra
classification, depending on other parameter values, but it does determine an invariant of the isotropy
subalgebra. Consider the isotropy, spanned by es, together with any vector not in the nilradical,
wi. Then wy = [e5, w1] is necessarily in the nilradical and has an e; component (possibly also an e3
component, but no others); therefore it is not in the span of w; and es. Since [e5, w2] is proportional
to es, any subalgebra containing the isotropy that is not a subalgebra of the nilradical must contain
span {es, w1, ws, e3}. Since [wy,e3] is always proportional to es, this vector space forms an algebra
if and only if [wy, es] stays within span {es, w1, ws, e3}, which requires a4 = 0. Therefore, there is
a four-dimensional subalgebra containing the isotropy and not equal to the nilradical if and only if

CL4:0.

Let A be the adjoint matrix of any vector not in the nilradical restricted to the nilradical itself.

This matrix is necessarily similar to

1 0 0 1

B 0 1 dg 0
A_)\ aq 0 d4 0
as 0 0 O

where )\ is a proportionality parameter determined by the e; component. (The inclusion of com-
ponents other than e; produce non-zero entries in the first and fourth columns of the second row,
but these can be removed via a straightforward similarity transformation, see Appendix B.5 for
details.) Note that A has eigenvalues in {)\, Adg, A\ (@) } First note that there are non-real

eigenvalues of A if and only if a5 < -1

7> we shall use this fact to identify invariant algebra pairs.

The eigenvalues are distinct only if dy # 1, a5 # —1/4, and a5 # d3 — d4. There are two distinct

and two repeated eigenvalues when one of the following holds:
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(1) d4 7& ]-7 %7 as = _%
(2) a5 =di —ds # —5 (ie, ds # 3).
(3) d4 = 17 as 7é _i

In the second case, the repeated eigenvalue is ps = % and has associated with it only one eigenvector,

2eo + ;jff‘*l e3 — %64 —e5. In the second case, the repeated eigenvalue is pu3 = Adsand %63 +ey
is always an eigenvector associated with pz. In the case when ay = 0 (as determined above),
ea+(dy — 1) e5 is also an eigenvector associated with 3. In the third case, let the repeated eigenvalue
be 1 = A. The vector e3 is always an eigenvector associated with p, and in the case when ds = 0,

e4 is also an eigenvector associated with pq. Note especially that the derived algebra of the nilradical

(spanned by e3) is always in the eigenspace.

Since a5 is nonzero, the only case in which and eigenvalue has algebraic multiplicity three is when
dy = % and a5 = —1/4 and there are two eigenvalues of multiplicity two only if dy = 1 and a5 = —%.
In the latter case, the eigenspace is three-dimensional if d3 = 0 and two-dimensional otherwise.
When the eigenspace is three dimensional, it contains the center of the nilradical, otherwise, it does
not. In both cases, the eigenspace contains the derived algebra of the center. It is not possible
for all eigenvalues to be equal. We summarize the invariants in Table 7.3 with @ = span{e3}
and ¢ = span {e3,e4} being the derived algebra of the nilradical and the center of the nilradical

respectively, for conciseness.

TABLE 7.3. Summary of invariant characteristics for the F'14 algebra-subalgebra
pairs with four-dimensional derived algebras and trivial centers.

Case ID  Invariant Characteristics Parameter Values

(F14,37) Two non-real eigenvalues, two distinct, a4 # 0 di#1, a5 < —i, as #0
(F14,38) Two non-real eigenvalues, two distinct, as = 0 di#1, a5 < fi, as =0
(F14,39) Four distinct real eigenvalues, as # 0 ds #1, a5 > —i, as # d? —dy, ay #0
(F14,40) Four distinct real eigenvalues, as = 0 das # 1, a5 > —i, as #d3 —ds, as =0

(F14,41) One eigenvalue p with algebraic multiplicity two and
geometric multiplicity one. The eigenspace corresponding di#1,%3,a5=—13 ,as#0

to p is not in ¢ or 9. a4 # 0. (case 1)
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Case ID Invariant Characteristics Parameter Values
(F14,42) One eigenvalue p with algebraic multiplicity two and
geometric multiplicity one. The eigenspace corresponding di#1,%,a5=—1% ,as=0
to p is not in ¢ or 9. as = 0. (case 1)
(F14,43) One eigenvalue p with algebraic multiplicity two and
geometric multiplicity one. The eigenspace corresponding di#1,a5 =dj —ds, as #0
to u is in ¢ but not 9. a4 # 0.
(F14,44) One eigenvalue p with algebraic multiplicity two and
geometric multiplicity two. The eigenspace corresponding di#1, a5 =d?—ds,as =0
to p does not contain ?.
(F'14,45) Three repeated eigenvalues, as # 0 di=%a5=—7,a1#0
(F14,46) Three repeated eigenvalues, a4 = 0 di=%,a5=—% as=0
(F14,47) One eigenvalue p with algebraic multiplicity two and
d4=1, a5>—%,d37$0, a47£()
eigenspace given by 0. No non-real eigenvalues. a4 # 0.
(F14,48) One eigenvalue p with algebraic multiplicity two and
d4:1, a5>*%,d3750, as =0
eigenspace given by 9. No non-real eigenvalues. a4 = 0.
(F14,49) One eigenvalue p with algebraic multiplicity two and
d4:1, a5<7%,d3§£0, CL4§£O
eigenspace given by 9. Non-real eigenvalues. a4 # 0.
(F14,50) One eigenvalue p with algebraic multiplicity two and
d4=1,a5<—%,d37$0, as =0
eigenspace given by 9. Non-real eigenvalues. a4 = 0.
(F14,51) Two sets of repeated eigenvalues p1 and p2. The
d4=1, asz—%,dg;ﬁo, a47$()
eigenspace of 1 and p2 does not contain c. aq # 0.
(F14,52) Two sets of repeated eigenvalues p1 and p2. The
d4:1, aszfi,dg#o, as =0
eigenspace of 1 and po does not contain ¢. as = 0.
(F14,53) One eigenvalue p with algebraic multiplicity two and
d4:1, a5>—%,d3:0, a47é0
eigenspace given by ¢. No non-real eigenvalues. a4 # 0.
(F14,54) One eigenvalue p with algebraic multiplicity two and
d4:1,a5>—i,d3:0, as =0
eigenspace given by c¢. No non-real eigenvalues. a4 = 0.
(F14,55) One eigenvalue p with algebraic multiplicity two and

eigenspace given by c¢. Non-real eigenvalues. a4 # 0.

d4:1,a5<—%,d320,a4750
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Case ID Invariant Characteristics Parameter Values

(F14,56) One eigenvalue p with algebraic multiplicity two and
d4:1,a5<—%,d3:0, as =0
eigenspace given by c. Non-real eigenvalues. as = 0.

(F14,57) Two sets of repeated eigenvalues pq1 and p2. The
d4=1, asz—%,dgzo, a47£()
eigenspace of 1 and po contains c¢. aq # 0.

(F14,58) Two sets of repeated eigenvalues p1 and p2. The
d4:1, aszfl,dgzo, as =0
eigenspace of p1 and po contains ¢. as = 0.

To construct changes of basis for each of these cases, we begin with the structure equations
given by Equation 7.7. First, consider the cases in which dy # 1 and a; # d? —d4 ((F14,37) through

(F'14,42)). In these cases, the change of basis <61 + ;f—fsleg,, es —ay (dy — 1) €4,€3,84,—a4éy + 65)

where é4 = = déi P es + - dlr% produces structure equations as follows:
le1,e2] = ases
le1,e3] = e
le1,e4] = dyey
[e1,es] = ea+tes
(7.8) [ea,e5] = —es.

The isotropy in this basis is given by a4e4 + €5, but since scaling e, does not change the structure
equations, the isotropy is spanned by either e; + e5 or e;. In cases (F14,37) and (F14,38), the
change of basis (—2aes, e5, —2aes — aes, eq, 2cee1) where o = \/_1%4% gives the algebra pairs with
B = 2dsc. Note that in these two cases, 8§ = 2« is not possible since dy # 1. In cases (F'14,39)

and (F'14,40), the change of basis (—40463, 2aes + (1 + @) es, —2aes + (1 — @) es, ey, %61) with

o= \/ﬁ gives the algebra pairs in standard form with a = Z—ﬁ and b = idj‘f. Note that in these
2d4

o= = L implying a5 = d? — dy, which is

cases b = 1 is not possible since this would require

excluded here. Furthermore, a+1 = b is excluded since this would require dy = 1. In cases (F'14,41)
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and (F'14,42), the change of basis (%63, %65, ez + %65, %(24, 261) gives the algebra pairs in standard
form with a = 2d,. Note that a # 1 and a # 2 in these cases.

dzaqg

For case (F'14,43), applying the change of basis (el + g4hes, e2 — es, €3, jff‘*l e3 + aseq, 65) to

the basis given by Equations 7.7 and applying the relationship a5 = d3 —d, eliminates all parameters

except dy4 and gives structure equations as follows:

le1,ea] = es+ (di —dy) es
[er,e3] = e
[61, 64] = dseq
le1,e5] = extes
(7.9) [e2,e5] = —es.

Applying (—a3637 aes + eq + adyes, —aes — ey + (oﬂ + d4) es, (%464, d%el) with a = 2ds — 1
then gives the algebra pair in standard form with ¢ = i — 1.

For case (F'14,44), applying the change of basis (61762 — es, €3, %63 + 64,65) to the basis
given by Equations 7.7 and applying the relationship a5 = d3 — d4 eliminates all parameters except

d4 and gives structure equations as follows:

le1,e2] = (di - d4) es

ler,es] = e3

le1,ea] = daeq

le1,e5] = extes
(7.10) [e2,e5] = —es.

Applying (—a363, aes + adges, —aes + (a2 + d4) es, %64, iq) with @ = 2d4 — 1 then gives

the algebra pair in standard form with a = d% -1

For case (F'14,45), applying the change of basis (%63, €a,e2 + €4 — %65, €4,2e1 — 4a4d365) with

€4 = —4daydses + 2a4e4t0 the basis given by Equations 7.7 gives the algebra pair in standard form.
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For case (F'14,46), applying the change of basis (%63, %65, ex — %65, —4dszes + 2eq, 261) to the basis

given by Equations 7.7 gives the algebra pair in standard form.

Now consider the cases for which dy =1 and dz # 0 ((F'14,47) through (F'14,52)). The change

of basis (61 + ag‘:a (e2 —e5),ea — e5, €3, ieél, 3—264 + 65) applied to the basis given by Equations 7.7

gives the following structure equations with isotropy — a‘;ég e4 + e5:
le1,e2] = ases
le1,e3] = e3
[e1,e4] = e3+ey
[er,e5] = ea+tes
(7.11) [ea,e5] = —es.

2
If ay # 0, the automorphism given by (el, ﬁeg, (ﬁ) €3, ey, a;l?l365> allows us to take the
isotropy to be —e4 + e5 without loss of generality. For (F'14,47) and (F'14,48), having eliminated

all parameters except as, we now apply the change of basis

((a*—1)es,(a+1)ea+e5,— (a+1)es —aes, (a—1)es, (a+ 1) e)

where a = 7W (and a5 = ﬁ) This gives the algebra pairs in standard form. For
(F'14,49) and (F'14,50), the change of basis (2aes, —2aes — aes, €5, €4, 2ae1) with a = \/ﬁ

applied to the basis given by the structure equations in Equations 7.11 gives the algebra pairs in
standard form. In cases (F'14,51) and (F14,52), the change of basis (2e3,2es, —2e5 — €5, €4, 2€1)

applied to the basis given by Equations 7.11 gives the algebra pairs in standard form.

Now consider the cases for which dy =1 and d3 = 0 ((F'14, 53) through (F'14,58)). The change
of basis (el, ey — €5, €3, ey, 2—‘5‘64 + 65) applied to the basis given by Equations 7.7 gives the following

structure equations with isotropy —3—264 + ex:
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[e1,ea] = ases

le1,e3] = e

[61, 64] = €&

le1,es] = ex+es
(7.12) [ea,e5] = —es.

If a4 # 0, the automorphism given by scaling e4 allows us to take the isotropy to be —e4 +e5 without
loss of generality. For (F'14,53) and (F'14,54), having eliminated all parameters except a5, we now

apply the change of basis
((a*—1)es,(a+1)es +e5,— (a+ 1) es —aes, (a— 1) es, (a+ 1) e1)

where a = %m € (—1,1). This gives the algebra pairs in standard form. For (F'14,55) and

(F'14,56), the change of basis (2aes, —2aes — aes, es, 4, 2aeq) with a = \/%4@5 applied to the basis

given by the structure equations in Equations 7.12 gives the algebra pairs in standard form. In cases
(F14,57) and (F'14,58), the change of basis (2e3,2ea, —2e5 — €5, €4, 2e1) applied to the basis given

by Equations 7.12 gives the algebra pairs in standard form.
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CHAPTER 8

Application: Verification of Space-Time Classifications

A. Z. Petrov [10], provides a classification of Lorentzian metrics of dimension four according to
isometry dimension and orbit type. In particular, the Killing vectors are given, allowing straightfor-
ward comparison to the isometry-isotropy subalgebra pair lists generated in previous chapters. Any
entry in [10] with five-dimensional isometry admitting a slice and having reductive isotropy should
have an isometry-isotropy algebra-subalgebra pair corresponding to one of the algebra-subalgebra
pairs in this thesis. For the case of degenerate orbits, an explicit reductive complement must either
be found or shown not to exist, and a local slice at an arbitrary point must also be found. In
principle, this can be difficult, but in practice, the bases chosen by Petrov are well-adapted to the

calculation or exclusion of local slices (see for instance Example 34).

The Schmidt method only guarantees that the algebra-subalgebra pairs we have constructed are
realizable as Killing vectors on a pseudo-Riemannian manifold (M, ¢g) where the isotropy contains a
subgroup generated by the isotropy we have designated. In most cases, the metrics that realize an
algebra pair (g, h) as Killing vectors necessarily admit additional Killing vectors which act reductively
on g. In this situation, (g,h) would be present among Petrov’s vector fields only as a reductive
subalgebra of a system of vector fields of dimension six or greater (e.g., Example 68). Therefore, our

list of algebra-subalgebra pairs is inherently more inclusive than the vector fields given by Petrov.

By building the most general h-invariant metric on a reductive complement in g for each algebra
pair we have generated and directly calculating the isometries, we can determine whether or not
these extra symmetries arise. We find that in all but eleven of the one-dimensional isotropy cases,
additional symmetries must exist (see Appendix B.6). For the eleven cases which capture the entire
isometry algebra, we have found a change of basis matching Petrov’s Killing fields to our algebra-
subalgebra pairs (Table 8.1). All of the reductive simple-G spaces in Petrov’s classification with
five-dimensional isometry and one-dimensional isotropy are accounted for in this list (simple-G for

these dimensions reduces to homogeneous).
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TABLE 8.1. Algebra pairs and the corresponding Petrov vector fields. Unless
otherwise specified, the isotropy for these vector fields is computed at the origin and
generic, non-zero parameters are used. The change of basis given, when applied to
the Killing fields in the indicated equation of Petrov’s classification [10], aligns the
Killing fields with the algebra pair given in the leftmost column. The absence of an
algebra pair among Petrov’s Killing fields is indicative of the presence of necessary
extra symmetries.

Pair ID  Petrov Eq. Parameters Change of Basis (on Petrov System)

(F12.4)  (317)  e=-1 (- fxl,zxg,\fxg, P2X1, X5 )

(F12,6)  (33.19) (X;5 — X2, X4, —X5)

(F12,6)  (33.20) (XQ, Xl,X37X4,X5)

(F12,8)  (33.23) (—X1, Xo, = X3, — X4, X5)

(F12,9) (33.22) (X1, X, X3, —X5,—X4)

(F12,11) (33.31) (= X3, —Xa, — X1, —+ X5, —X4)

(F13,3) (33.21) c=0 (—X1, Xo, X3, — Xy, X5)

(F13,5)  (33.17) e=1 (X2t s X X, Xd2%edXs Ly, X))
(F13,6)  (33.21) c#0 (X1, Xs,Xz, X4—;X5,—X4)

(F13,8)  (33,28)  h+eA0 (X0, X, X5, b Xo, —Xs — 11 X5)
(F14,1)  (33.14)2 |k|X1,\/|?X2,X57 \/WXQ—\/WXB,,X4—X5)
(F14,2)  (33.16) (—X2, —2X3, — X5, X1, Xy)

1Isotropy computed at ( ,0,0 0)
2When k < 0, this isometry algebra includes (33.18) as a special case.
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B.1. F8 MAPLE WORKSHEET

Y Maple Worksheet
Two-Dimensional Isotropy:

[ This worksheet steps through Chapter 3, serving to help
validate the results. This chapter covers the only isotropies
of dimension greater than one.

;We begin by loading the packages needed.

> with(DifferentialGeometry):
with(LieAlgebras):

As outlined in Chapter, in the case of isotropy dimension
greater than one, we need only consider two-dimensional,
nonabelian subalgebras of the Lorentz algebra, and may
take the derived algebra of the isotropy, e4, to be a

boost, rotation, or null rotation. We initialize these

three possibilities in generic form:

> LD_Boost:=LieAlgebraData([
'[el,e2]=al*el+a2*e2+a3*e3+ad*ed+ab*eb’,
'[el,e3]=bl*el+b2*e2+b3*e3+b4*e4+b5*e5’,
'[e2,e3]=cl*el+c2*e2+c3*e3+c4*ed+c5*e5’,
'[el,e5]=d1l*el+d2*e2+d3*e3’,
'[e2,e5]=fl*el+f2*e2+f3*e3",
'[e3,e5]=gl*el+g2*e2+g3*e3’,
'[ed,el]=e2",

'[ed,e2]=el",

'[ed,e5]=e4’
].[el,e2,e3,e4,e5],alg_boost);

LD_Rotation:=LieAlgebraData(]
'[el,e2]=al*el+a2*e2+a3*e3+ad*ed+ab*e5’,
'[el,e3]=bl*el+b2*e2+b3*e3+b4*e4+b5*e5’,
'[e2,e3]=cl*el+c2*e2+c3*e3+c4*ed+c5*e5’,
'[el,e5]=d1*el+d2*e2+d3*e3’,
'[e2,e5]=fl*el+f2*e2+f3*e3’,
'[e3,e5]=gl*el+g2*e2+g3*e3’,
'[ed,el]=-e2",

'[ed,e2]=el",

'[ed4,e5]=e4’
].[el,e2,e3,e4,e5],alg_rotation);

LD_Null:=LieAlgebraData([
'[el,e2]=al*el+a2*e2+a3*e3+ad*ed+ab*eb’,
'[el,e3]=bl*el+b2*e2+b3*e3+b4*e4+b5*e5’,
'[e2,e3]=cl*el+c2*e2+c3*e3+c4*ed+c5*eb’,
'[el,e5]=d1l*el+d2*e2+d3*e3’,
'[e2,e5]=fl*el+f2*e2+f3%e3",
'[e3,e5]=gl*el+g2*e2+g3*e3’,
'[ed,el]=e2",

'[ed,e2]=-e3",

'[ed4,e5]=e4’
],[el,e2,e3,e4,e5],alg_null);

LD_Boost:= [el,e2] = al el + a2 e2+ a3 e3+ad ed + a5 e5, [ el, e3] = bl el + b2 e2
+b3e3+bded+b5e5 [el ed] = —e2 el e5]=dl el +d2e2+d3e3 [e2 e3
|=clel+c2e2+c3e3+c4ded+c5e5 [e2ed] = —el, [e2 e5|=flel +[2e2
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+f3e3 [e3,e4] =0, [e3,e5] = gl el +g2e2+g3e3, [ed, e5] = e4

LD_Rotation:= [el, e2] = al el + a2 e2+ a3 e3+ a4 e4 + a5 e5, [ el, e3] = bl el + b2 e2
+b3e3+bded+b5e5 el ed] =e2 el e5]=dl el +d2e2+d3e3 [e2 e3
|=clel+c2e2+c3e3+cded+c5e5 [e2 ed] = —el, [e2 e5] = flel +[f2e2
+f3e3 [e3,e4] =0, [e3,e5] = gl el +g2e2+g3e3, [ed, e5] = e4

LD_Null = [el,e2] = al el +a2e2+ a3 e3+ a4 e4+a5e5, [el, e3] = bl el + b2 e2
+b3e3+bded+b5e5 (el ed] = —e2 [el, e5]=dl el +d2e2+d3e3 [e2 e3
| =clel+c2e2+c3e3+cded+c5e5 [e2 ed] = e3, [e2 e5] = flel +f2e2+f3e3,
[e3,e4] =0, [e3,e5] = gl el +g2e2+g3e3 [e4, e5] = e4

> DGsetup(LD_Boost,[x],[0]);
DGsetup(LD_Rotation,[y],[p]);
DGsetup(LD_Null,[z],[q]);

Lie algebra: alg_boost

Lie algebra: alg_rotation
Lie algebra: alg_null

[We now demonstrate that the boost and rotation cases
cannot satisfy the Jacobi identities.

| First, the boost case.

> evalDG(
LieBracket(x4,LieBracket(x5,x1))+
LieBracket(x1l,LieBracket(x4,x5))+
LieBracket(x5,LieBracket(x1,x4)));

evalDG(
LieBracket(x4,LieBracket(x5,x2))+
LieBracket(x2,LieBracket(x4,x5))+
LieBracket(x5,LieBracket(x2,x4)));

—(d2—f1) x1-(d1+1-f2) x2+3x3
(-f2=1+d1) x1+(d2—f1) x2+d3x3
[ Note that d1-f2 = -1 and d1-f2 = 1 are both required -- a contradiction.

| Now, the rotation case.

> evalDG(
LieBracket(y4,LieBracket(y5,y1))+
LieBracket(yl,LieBracket(y4,y5))+
LieBracket(y5,LieBracket(yl,y4)));

evalDG(
LieBracket(y4,LieBracket(y5,y2))+
LieBracket(y2,LieBracket(y4,y5))+
LieBracket(y5,LieBracket(y2,y4)));

—(d2+f1) y1+(d1+1-12) y2—f3y3
(-f2=1+4d1) y1+(d2+f1) y2+d3y3
[ Note that d1-f2 = -1 and d1-f2 = 1 are both required -- a contradiction.

Thus, only the null case remains. We apply the Jacobi
| identities in terms of the Maurer-Cartan forms.

85

(1.1)

(1.2)

(1.3)

(1.4)



B.1. F8 MAPLE WORKSHEET 86

> ddgl:=ExteriorDerivative(ExteriorDerivative(gl));
ddq2:=ExteriorDerivative(ExteriorDerivative(q2));
ddq3:=ExteriorDerivative(ExteriorDerivative(q3));
ddq4:=ExteriorDerivative(ExteriorDerivative(q4));
ddqg5:=ExteriorDerivative(ExteriorDerivative(q5));

ddql =-(c2al —a2cl+a5gl +c3bl —b3cl—b5fl+c5dl) gl Aqg2Ag3 —bl gl Ag2
Agd-(f2al —a2fl—a3gl+f3bl—d3cl) glng2Aq5+clqlAg3ngd - (g2al
+9g3bl —b2fl-b3gl+d2cl) qglAqg3Ag5—flqlngdng5+(glal —flbl
+cldl—f2cl—g3cl+c2fl+c3g1) g2Aq3Aa5+4gl G2Ang4nqg5

ddq2 = (al b2 —bl a2 —a5 g2 —c3b2+b3 c2+b5f2—c5d2+c4) glng2rq3 - (al
+b2) qing2rgd+(al d2—dl a2 +a3g2—f3b2+d3c2) gl ng2rng5—- (bl —c2
) gl Ang3Ag4-(g2a2—bld2+dl b2—b2f2+g3b2—b3g2+d2c2) gl AG3AG5
+(d1+1-12) qglrngd4ng5—clq2rnqg3ngd+(gl a2 —b2fl+d2cl—g3c2+c3g2
) a2Aa3Aq5+(fl+g2) g2Aq4Aq5+ gl g3Ag4AG5

ddq3:=(al b3 +a2c3—bla3—c2a3—a5g3+b5f3—c5d3+b4) qi ng2rq3+ (a2
—b3) qing2rgd+(al d3+a2f3—dla3—f2a3+a3g3—f3b3+d3c3) ql Ag2
AG5+(b2+c3) ging3ngd—(a3g2—bld3—b2f3+b3dl+c3d2) ql Ag3Aq5—
(f3+d2) ging4Ang5+c2g2nq3Aq4+(a3gl —b3fl+cld3+c2f3—c3f2) g2
ANG3AG5-(f2—g3+1) g2Aq4Aq5—g2 a3 Ang4Aq5

ddg4:=(al b4 +a2c4—bl a4 —c2a4+ b3 c4—c3b4) gl Ag2Aq3 - (b4 +a5) ql g2
AG4—(dl a4 +f2a4+[3b4—d3cd—a4) qlAG2Ag5 - (-c4+Db5) gl Ag3Ag4 -
(g2a4+dl b4+g3b4+d2cd—b4) gl AG3AG5—c592Nq3Aq4 +(gl a4 — f1 b4
—f2c4—g3cd+cd) G2Anq3nq5

ddqs = (al b5+ a2 c5-bl a5—c2a5+b3c5—-c3b5) gl AG2AG3 —b5ql AG2 A g4 - (1.5)
(dia5+f2a5+f3b5—d3c5) qlng2Aq5+c5q1 Aq3Ag4 - (g2 a5+dl b5+ g3 b5
+d2c¢5) ging3ng5+(gl a5 —f1b5—f2c5—g3c5) G2Aq3AG5

_Now, recall that, in addition to the Jacobi identities,
ad(z5) acting on the first three vectors must be
traceless.

We first examine the linear parts together with the requirement that
| ad(z5) be traceless on the first three basis vectors.
> Eql:={
Hook(Hook(Hook(ddqg1l,z1),z2),z4),
Hook(Hook(Hook(ddqg1,z1),z3),z4),
Hook(Hook(Hook(ddqg1l,z1),z4),z5),
Hook(Hook(Hook(ddqgl,z2),z4),z5),

Hook(Hook(Hook(ddq2,z1),z2),z4),
Hook(Hook(Hook(ddqg2,z1),z3),z4),
Hook(Hook(Hook(ddqg2,z1),z4),z5),
Hook(Hook(Hook(ddqg2,z2),z4),z5),

Hook(Hook(Hook(ddqg3,z1),z2),z4),
Hook(Hook(Hook(ddqg3,z1),z3),z4),
Hook(Hook(Hook(ddqg3,z1),z4),z5),
Hook(Hook(Hook(ddqg3,z2),z3),z4),
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Hook(Hook(Hook(ddqg3,z2),z4),z5),
Hook(Hook(Hook(ddqg3,z3),z4),z5),

Hook(Hook(Hook(ddqg4,z1),z2),z4),
Hook(Hook(Hook(ddqg4,z1),z3),z4),
Hook(Hook(Hook(ddqg4,z2),z3),z4),

Hook(Hook(Hook(ddg5,z1),z2),z4),
Hook(Hook(Hook(ddg5,z1),z3),z4),

LinearAlgebra:-Trace(eval(Adjoint(z5,[z1,z2,z3])))

I
Eql:= {cl, c2 c5gl, -bl, -b5, -c5, -1, -g2, -al — b2, a2 — b3, -bl + c2, b2 + c3, -b4 — a5, (1.6)
c4—Db5,f1+g2,-f3—d2,-dl — f2—g3,dl +1 — (2 -f2+g3—1}

=> Eq2:=solve(Eql,{b1,b2,b3,b4,b5,c1,c2,c3,c4,c5,d1,f1,f2,f3,01,92,93});
Eq2:= {b1 =0,b2 = -al,b3=a2,b4=-a5b5=0,c1=0,c2=0,c3=al,c4=0,c5=0,d1 (1.7)

=—1,f1=0,f2=0,f3=-d2,gl =0,g2=0,93=1)

Evaluating the Jacobi identity with this solution

simlifies the quadratic parts. We extract these

| equations and solve them.

> ddgl_s:=Tools:-DGsimplify(eval(ddgql,Eq2));
ddg2_s:=Tools:-DGsimplify(eval(ddq2,Eq2));
ddg3_s:=Tools:-DGsimplify(eval(ddqg3,Eq2));
ddg4_s:=Tools:-DGsimplify(eval(ddg4,Eq2));
ddg5_s:=Tools:-DGsimplify(eval(ddg5,Eq2));

ddql_s:=0qgl Ag2Ng3

ddq2_s= a2 ql Nq2ANqg5
ddg3_s=(2 al a2-2 a5) qlAng2Anq3+(2 al d3+2 a3) gl AG2Aq5+ a2 ql AG3 NG5
ddgd_s:==(-d2a5+2 a4) gl AGg2Ag5 — a5 ql AGg3 NG5
ddq5_s:==a5ql Aq2Nq5 (1.8)

> Eq3:={

Hook(Hook(Hook(ddq2_s,z1),z2),z5),
Hook(Hook(Hook(ddq3_s,z1),z2),z3),
Hook(Hook(Hook(ddq3_s,z1),z2),z5),
Hook(Hook(Hook(ddq4_s,z1),z2),z5),
Hook(Hook(Hook(ddq4_s,z1),z3),z5),
Hook(Hook(Hook(ddqg5_s,z1),z2),z5)

b
Eq3:={a2 a5, -a52 al a2 -2 a5,2 al d3+2 a3, -d2 a5+ 2 a4} (1.9)
> Eq4:=solve(EQq3);
Eq4:={al =al,a2=0,a3 =-al d3,a4 =0, a5 =0, d2 = d2,d3 = d3} (1.10)

=We now combine the equations and

confirm that the Jacobi identities

| are fully satisfied.

> Eq5:={op(eval(Eq2,Eq4)),0p(Eq4)};

Eq5:={al =al,a2=0,a3=-al d3,a4=0,a5=0,b1 =0,b2 = -al, b3 =0,b4 =0, b5 (1.11)
=0,c1=0,c2=0,c3=al,c4=0,c5=0,dl = —-1,d2=d2,d3=d3,f1=0,2=0, 3=
-d2,g1 =0,g2=0,g3=1}

> Tools:-DGsimplify(eval(ddgl,Eq5));

Tools:-DGsimplify(eval(ddq2,Eq5));
Tools:-DGsimplify(eval(ddg3,Eq5));
Tools:-DGsimplify(eval(ddqg4,Eq5));
Tools:-DGsimplify(eval(ddg5,Eq5));
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0glng2Ag3
0glng2nq3
0glng2nqg3
0glng2nqg3
0glAng2ng3 (1.12)

:Thus, the structure equations are:
> LD_Null2:=eval(LieAlgebraData([z1,z2,2z3,z4,z5],alg_null2),Eq5);
LD_Null2 = [el,e2] = al el —al d3e3,[el,e3] = —al e2, [el,e4] = —e2, [el, e5] = —el (1.13)

+d2e2+d3e3 [e2 e3] =al e3 [e2 ed] = e3, [e2 e5] = —d2e3 [e3,e4] =0, [e3, e5
1=e3[e4,e5] = e4

We now initialize the algebra and calculate the derived
| series for al nonzero and al zero.
> DGsetup(LD_Null2,[w],[r]);
Lie algebra: alg_null2 (1.14)

> LD_Null2_0:=eval(LieAlgebraData([wl,w2,w3,w4,w5],alg_null2_0),al1=0):
| DGsetup(LD_Null2_0,[v],[r]):
> Tools:-DGsimplify(Series(alg_null2,"Derived")[3]);
Tools:-DGsimplify(Series(alg_null2_0,"Derived")[3]);

[ —aBBwl, —al3w2, —al3w3]

[ —v3,v2+d2v3] (1.15)

[ The second derived algebra is either two-dimensional (a1=0)
or three-dimensional (al nonzero).

If al is nonzero, then we have sl(2,R)+s_2,1
with isotropy spanned by e3+e4 and e2-2*e5.
Note that e3+e4 is null and e2-2*e5 has
eigenvalues 0, 1, and -1; thus
| e5 is a boost and the isotropy is of type F8.

> LieAlgebraData(

[
2*w1-d3*w3,
2lal*w?2,
1/al”2*w3,
-1/a1r2*w3+1/al*w4,
1l/al*w2+d2*w4+w5
1)
[el,e2] =2 el, [el,e3] = —e2, [el,e4] =0, [el,e5] =0, [e2 e3] =2 e3, [e2,e4] = 0, [e2, (1.16)
e5]1=0,[e3,e4]=0,[e3,e5] =0, [e4, e5] = e4

If al is zero, then we have s_5,35 with a=-1

and isotropy spanned by e4 and e5.

Note that e5 has eigenvalues 0, 1, and -1; thus
| e5 is a boost and the isotropy is of type F8.

> eval(LieAlgebraData([w3,w2,-w1+d3/2*w3,w4,-d2*w4-w5]),al=0);
[el,e2]=0,[el,e3]=0,[el,e4d] =0, [el,e5]= —el, [e2,e3] =0, [e2, e4] =el, [e2,e5 (1.17)

1=0,[e3,e4d] =e2, [e3,e5] =e3,[e4,e5] = —e4
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¥ Maple Worksheet
Type F11 Isotropy:

[ This worksheet steps through Chapter 4, serving to help
validate the results. This chapters cover the isotropies
of type F11, the loxodromes.

:We begin by loading the packages needed.
> with(DifferentialGeometry):
with(LieAlgebras):

We now initialize the most generic five-dimensional
algebra with the subalgebra spanned by e5 of type F11.
| Note that theta is between 0 and pi/2 (not inclusive).
> LD_Loxodrome:=LieAlgebraData([
'[el,e2]=al*el+a2*e2+a3*e3+ad*ed+ab*e5’,
'[el,e3]=bl*el+b2*e2+b3*e3+b4*e4+b5*e5’,
'[el,ed4]=cl*el+c2*e2+c3*e3+c4*ed+c5*e5’,
'[e2,e3]=d1*el+d2*e2+d3*e3+d4*ed+d5*e5’,
'[e2,e4]=fl*el+f2*e2+f3*e3+f4*ed+f5*e5",
'[e3,ed4]=gl*el+g2*e2+g3*e3+g4*ed+g5*eb’,
'[e5,el]=-cos(theta)*e2’,
'[e5,e2]=cos(theta)*el’,
'[e5,e3]=-sin(theta)*ed’,
'[e5,e4]=-sin(theta)*e3"
]1.[el,e2,e3,e4,e5],alg_lox);

+g5e5,[e3 e5] =sin(0) e4, [e4, e5] = sin(0) e3

> DGsetup(LD_Loxodrome);

Lie algebra: alg_lox

We give the Jacobi identity with el, e2, and e5,

| and also with e3, e4, and eb5:

> 0*el=evalDG(
LieBracket(e2,LieBracket(e5,el))+
LieBracket(el,LieBracket(e2,e5))+
LieBracket(e5,LieBracket(el,e2)));

O*el=evalDG(
LieBracket(e3,LieBracket(e4,eb))+
LieBracket(e5,LieBracket(e3,e4))+
LieBracket(e4,LieBracket(e5,e3)));

0=a2cos(0) el —al cos(8) e2 —a4sin(0) e3 — a3 sin(0) e4
0=g2cos(0) el —glcos(0) e2—g4sin(0) e3—g3sin(0) e4

[ Since cos(theta) and sin(theta) are nonzero, these
| imply the following:
> Eql:=[al=0,a2=0,a3=0,a4=0,91=0,92=0,93=0,94=0];

[ Now consider the remaining Jacobi identities

Eql:=[al =0,a2=0,a3=0,a4=0,g91 =0,g2=0,g3=0,94=0]

LD_Loxodrome = | el, e2] = al el + a2 e2 + a3 e3 + a4 e4 + a5 e5, [el, e3] = bl el +b2e2 (1.1)
+b3e3+bded+b5e5 el ed] =clel +c2e2+c3e3+cded+c5e5, el e5
| =cos(0) e2 [e2,e3] = dl el +d2e2+d3 e3+d4 ed+d5e5, [ e2,ed] = flel +f2e2
+f3e3+fded+f5e5 [e2 e5] = —cos(0) el, [e3, e4] = gl el + g2 e2+ g3 e3 + g4 e4

(1.2)

(1.3)

(1.4)
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on the basis vectors involving e5. The items in

| the lists below are all zero.

> |d1l:=GetComponents(eval(
LieBracket(e5,LieBracket(el,e3))+
LieBracket(e3,LieBracket(e5,el))+
LieBracket(el,LieBracket(e3,eb)),
Egl),[el,e2,e3,e4,e5]);

Id2:=GetComponents(eval(
LieBracket(e5,LieBracket(e2,e3))+
LieBracket(e3,LieBracket(e5,e2))+
LieBracket(e2,LieBracket(e3,eb)),
Eql),[el,e2,e3,e4,e5]);

Id3:=GetComponents(eval(
LieBracket(e5,LieBracket(e2,e4))+
LieBracket(e4,LieBracket(e5,e2))+
LieBracket(e2,LieBracket(e4,eb)),
Eqgl),[el,e2,e3,e4,e5]);

Id4:=GetComponents(eval(
LieBracket(e5,LieBracket(el,ed))+
LieBracket(e4,LieBracket(e5,el))+
LieBracket(el,LieBracket(e4,eb)),
Eql),[el,e2,e3,e4,e5]);

Id1 = [sin(0) cI+ b2 cos(8) +cos(0) dI,sin(8) c2— bl cos(8) +cos(8) d2, -b4 sin(9)
+co0s(0) d3+sin(6) c3, -b3sin(0) + cos(0) d4 +sin(8) c4, cos(0) d5 +sin(6) c5]
1d2 = [sin(0) f1— b1 cos(8) +cos(6) d2,sin(0) f2— b2 cos(6) —cos(0) dI, -d4 sin(6)
—cos(8) b3 +sin(0) f3, -d3sin(6) —cos(8) b4 +sin(6) f4, -cos(8) b5 +sin(8) 5]
Id3:= [sin(0) dI — cos(8) c1+ f2cos(0), sin(8) d2 — cos(8) c2— fIcos(0), -sin(0) f4
—cos(0) c3+d3sin(8), -sin(0) f3—cos(8) c4+ d4 sin(8), -cos(0) ¢5+sin(0) d5]
Id4 = [cos(8) c2+ f1cos(0) +sin(8) b1, -cos(8) cl1+ f2cos(0) +sin(6) b2, -sin(6) c4 (1.5)
i +cos(0) f3+ b3sin(0), -sin(0) c3+ cos(0) f4+ b4 sin(), cos(0) f5+sin(e) b5]
;The following linear combinations yield b5=c5=d5=f5=0.
> simplify(ld1[5]*sin(theta)-1d3[5]*cos(theta));
simplify(ld1[5]*cos(theta)+Id3[5]*sin(theta));
simplify(ld2[5]*sin(theta)+ld4[5]*cos(theta));

simplify(-l1d2[5]*cos(theta)+ld4[5]*sin(theta));
c5

d5
f5
b5 (1.6)
_By forming linear combinations of the above, we find that
| f2=-c1, f1=c2, d1=b2, and d2=-b2:
> simplify(ld1[1]+1d2[2]);
simplify(ld1[2]-1d2[1]);
simplify(-1d3[1]+1d4[2]);
simplify(ld3[2]+1d4[1]);
sin(0) (cl+ [2)
sin(0) (c2- 1)
sin(8) (b2 —dl)

sin(6) (b1 +d2) (1.7
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Using another linear combination and the information above,
| we find b2=0 and then bl=b2=cl=c2=d1=d2=f1=f2=0.

> simplify(eval(
Id1[1]*2*cos(theta)+Id3[1]*sin(theta),
{f2=-c1,f1=c2,d1=b2,d2=-b1}));

eval(ld1[1],{b2=0,d1=0});
eval(1d2[2],{b2=0,d1=0});

b2 (3 cos(e)z—i- 1)
sin(0) c1
sin(8) f2

=Continuing in the same vein, b4=-c3, b3=-c4, f4=-d3, f3=-d4:
> simplify(1d2[4]+1d3[3]);
simplify(1d1[4]+1d4[3]);
simplify(1d2[3]+1d3[4]);
simplify(1d1[3]+1d4[4]);
-cos(0) (b4 +c3)

cos(0) (d4+[3)
-cos(8) (b3 + c4)
cos(0) (d3+f4)

| We also find b3=b4=c3=c4=d3=d4=f3=f4=0

> simplify(eval(
Id1[3]*2*sin(theta)+ld2[4]*cos(theta),
{b4=-c3, b3=-c4, f4=-d3, f3=-d4}));

simplify(eval(
Id1[4]*2*sin(theta)-1d3[4]*cos(theta),
{b4=-c3, b3=-c4, f4=-d3, f3=-d4}));

eval(1d1[3],{c3=0,b4=0,c4=0,b3=0});
eval(ld1[4],{c3=0,b4=0,c4=0,b3=0});

-c3(3 cos(e)2—4)
-c4 (3 cos(e)2—4)
cos(0) d3
cos(0) d4

Thus far, we have that all parameters except a5 and g5 are
| zero.
> Eq2:={
al=0,a2=0,a3=0,a4=0,
b1=0,b2=0,b3=0,b4=0,b5=0,
c1=0,c2=0,c3=0,c4=0,c5=0,
d1=0,d2=0,d3=0,d4=0,d5=0,
f1=0,f2=0,f3=0,f4=0,f5=0,
g1=0,92=0,93=0,94=0
}:

| We now show that a5 and g5 are also zero.

> |d5:=GetComponents(eval(
LieBracket(e3,LieBracket(el,e4))+
LieBracket(e4,LieBracket(e3,el))+
LieBracket(el,LieBracket(e4,e3)),
Eq2),[el,e2,e3,e4,e5]);

Id6:=GetComponents(eval(

(1.8)

(1.9)

(1.10)
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LieBracket(el,LieBracket(e2,e4))+
LieBracket(e4,LieBracket(el,e2))+
LieBracket(e2,LieBracket(e4,el)),
Eg2),[el,e2,e3,e4,e5]);

1d5:= [0, -g5cos(0),0,0,0]
1d6:= 10,0, a5 sin(6),0,0]

;> Eq3:={op(Eq2),a5=0,g5=0}:

Therefore, the structure equations are given by

| the following:

> LD2:=eval(LieAlgebraData([el,e2,e3,e4,e5],alg_lox2),Eq3);

LD2:=[el, e2] =0, [el,e3] =0, [el, e4] =0, [el,e5] = cos(8) e2, [e2, e3] =0, [e2, e4

1=0,[e2 e5] = —cos(0) el, [e3,e4] =0, [e3,e5] = sin(0) e4, [ e4, e5] = sin(0) e3

> DGsetup(LD2,[x].[0]):
Lie algebra: alg_lox2

[ This change of basis gives the algebra in standard form as s_5,11
with alpha = -tan(theta), beta = tan(theta), and gamma = 0.

| The isotropy is still spanned by e5.

> LieAlgebraData([x3+x4,x3-x4,x1,x2,sec(theta)*x5]);
sin(0) .

[el,e2] =0,[el,e3] =0, [el,e4] =0,
cos(8)

el,e5 1,[e2,e3]=0,[e2,ed] =0,

sin(0)
cos(0) ¢

e, e5 2,[e3,ed4]=0,[e3,e5] =e4,[ed,e5] = —e3

(1.11)

(1.12)

(1.13)

(1.14)
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¥ Maple Worksheet

Isotropy Type F12: Rotations

[ This worksheet steps through Chapter 5, serving to help
validate the results. This chapters cover the isotropies
of type F12, the rotations.

| We begin by loading the packages needed.

> with(DifferentialGeometry):

| with(LieAlgebras):

We now initialize the most generic five-dimensional

| algebra with the subalgebra spanned by e5 of type F12.

> LD_Rotation:=LieAlgebraData([
'[el,e2]=a3*e3+ad*ed+ab5*e5’,
'[el,e3]=bl*el+b2*e2+b3*e3+b4*e4+b5*e5’,
'[e2,e3]=cl*el+c2*e2+c3*e3+c4*ed+c5*e5’,
'[el,e4]=d1l*el+d2*e2+d3*e3+d4*ed+d5*e5’,
'[e2,e4]=gl*el+g2*e2+g3*e3+g4d*ed+g5*eb’,
'[e3,e4]=h1*el+h2*e2+h3*e3+h4*ed4+h5*e5’,
'[e5,el]=-e2",
'[e5,e2]=el’
]1.[el,e2,e3,e4,e5],alg_rot);

LD_Rotation:= [el, e2| = a3 e3 + a4 e4 + a5 e5, [ el, e3] = bl el + b2 e2 + b3 e3 + b4 e4 (1.1)

+b5e5, (el e4] = dl el +d2e2+d3e3+d4e4+d5e5, [el, e5] = e2 [e2 e3
| =clel +c2e2+c3e3+cded+c5e5 [e2 e4] =glel +g2e2+g3e3+g4ed

+g5e5,[e2e5] = —el, [e3 e4] = hl el +h2e2+h3e3+ h4 e4+ h5e5,[e3,e5
1=0,[e4,e5]=0

=> DGsetup(LD_Rotation,[e],[theta]);
Lie algebra: alg_rot (1.2)

;Now, we examine the Jacobi identities.

> ddthetal:=ExteriorDerivative(ExteriorDerivative(thetal));
ddtheta2:=ExteriorDerivative(ExteriorDerivative(theta?2));
ddtheta3:=ExteriorDerivative(ExteriorDerivative(theta3));
ddthetad4:=ExteriorDerivative(ExteriorDerivative(theta4));
ddtheta5:=ExteriorDerivative(ExteriorDerivative(theta5b));

ddthetal = - (a4 hl1 + c3bl — b3 cl— b4 gl + c4dl + b5) 61 62763+ (a3 hl — g3 bl
+d3cl—g4dl+ddgl—ds5) 61A02A04 - (h3bl —b2 gl —b3 hl+d2cl+h4dl
—d4 hl) 1 A03A604— (b2 +cl) 01A63A05—(d2+gl) 01 A64A65— (gl bl
—cldl+g2cl+h3cl—c2gl —c3hl+h4dgl—g4hl—h5) 62A03A64+(bl —c2
) 02703705+ (dl —g2) 6204 A65— h203A64A05

ddtheta2:= - (a4 h2 + c3b2 — b3 c2— b4 g2+ c4d2 + c5) 01 AN62A63 +(a3 h2 - g3 b2
+d3c2—g4d2+d4g2—g5) 01 N02A04 + (bl d2—dI b2+ b2 g2 — h3b2+ b3 h2
—d2c2—h4d2+d4h2—h5) 01 N03N04 + (b1 —c2) 61 AO3A05+(dl —g2) 61 A64
ANO5—(b2gl —d2cl+h3c2—c3h2+h4g2—g4h2) 027N03A04+(b2+cl) 62163
ANO5 +(d2+gl) 62A04 705+ hl 63A04 A 05

ddtheta3:=- (bl a3+ c2a3+a4 h3—b4 g3 +c4d3) 61 A62703 - (dl a3+ g2 a3 — a3 h3
+9g3b3—-d3c3+g4d3—d4g3) 01A62A64 - (a3 h2— bl d3—g3b2+dl b3
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+d2c3+h4d3—d4 h3) 61 AN03A64—c301 A63AO5—g3 61 A04A05+ (a3 hl
—glb3+d3cl+c2g3—g2c3—h4g3+g4h3) 62A03A604+b362A03A65+ d362
A 64 A5

ddtheta4:=— (bl a4 + c2a4 + a4 h4 — b3 c4+ c3b4 — b4 g4 + c4d4) 01 N62A03 + (a3 h4
—dla4—g2a4d—b4g3+c4d3) 01A02A04 - (a4 h2 — bl d4 — b2 g4 — b3 h4
+dl b4 +h3b4+c4d2) 61 NO3A64 — c461 A63A65— g4 61 A64 A 65+ (a4 hl
—b4gl+cldd+c2g4+c3hd—g2c4d—h3cd) 02AN03A04 + b4 02 N03 A05 + d4 62
A 64 A 65

ddtheta5:=- (a4 h5+ bl a5+ c2a5—b3 c5— b4 g5+ c3b5+c4d5) 01 A62A603 +(a3 h5 (1.3)
—dl a5—-g2a5—g3b5+d3c5+d4g5—g4ds5) 0102764 (h2a5— bl d5
—b2g5—b3h5+dl b5+ h3b5+d2c5—d4h5+h4d5) 61 A03A64 —c561 AO3A6O5
—g501A04 705+ (hla5—gl b5+ cld5+c2g5+c3h5—g2c5—h3c5+g4h5
— h4 g5) 02N03A64 + b5 02 AO3A05 +d5 62 N\64 A65

We now examine the linear parts of the equations
| given by the Jacobi identities:
> Eql:={
Hook(Hook(Hook(ddthetal,el),e3),e5),
Hook(Hook(Hook(ddthetal,el),e4),e5),
Hook(Hook(Hook(ddthetal,e2),e3),e5),
Hook(Hook(Hook(ddthetal,e2),e4),e5),
Hook(Hook(Hook(ddthetal,e3),e4),e5),
Hook(Hook(Hook(ddtheta2,e1),e3),e5),
Hook(Hook(Hook(ddtheta2,el),e4),e5),
Hook(Hook(Hook(ddtheta2,e2),e3),e5),
Hook(Hook(Hook(ddtheta2,e2),e4),e5),
Hook(Hook(Hook(ddtheta2,e3),e4),e5),

Hook(Hook(Hook(ddtheta3,el),e3),e5),
Hook(Hook(Hook(ddtheta3,el),e4),e5),
Hook(Hook(Hook(ddtheta3,e2),e3),e5),
Hook(Hook(Hook(ddtheta3,e2),e4),e5),

Hook(Hook(Hook(ddtheta4,el),e3),e5),
Hook(Hook(Hook(ddtheta4,el),e4),e5),
Hook(Hook(Hook(ddtheta4,e2),e3),e5),
Hook(Hook(Hook(ddtheta4,e2),e4),e5),

Hook(Hook(Hook(ddtheta5,el),e3),e5),
Hook(Hook(Hook(ddtheta5,el),e4),e5),
Hook(Hook(Hook(ddtheta5,e2),e3),e5),
Hook(Hook(Hook(ddtheta5,e2),e4),eb)

Eq}l - {b3, b4, b5, d3, d4, d5, h1, -c3, -c4, -¢5,-g3, -g4, -g5, -h2, bl — c2, -b2 —c1, b2 +cl, (1.4)
dl —g2,-d2—-gl,d2+gl}

=> Eq2:=solve(Eql,{b3,b4,b5,c1,c2,c3,c4,c5,d3,d4,d5,91,92,93,04,

Eq2:= {b3=0,b4=0,b5=0,cl=-b2,c2=b1,c3=0,c4=0,c5=0,d3=0,d
gl=-d2,g2=d1,g3=0,94=0,9g5=0,hl1 =0,h2=0}

_Evaluating the Jacobi identity with this solution

simlifies the quadratic parts. We extract these
| equations and solve them.

g5,h1,h2});
-0,d5=0, (1.5)
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> ddthetal _s:=Tools:-DGsimplify(eval(ddthetal,Eq2));
ddtheta2_s:=Tools:-DGsimplify(eval(ddtheta2,Eq2));
ddtheta3_s:=Tools:-DGsimplify(eval(ddtheta3,Eq2));
ddtheta4_s:=Tools:-DGsimplify(eval(ddtheta4,Eq2));
ddtheta5_s:=Tools:-DGsimplify(eval(ddtheta5,Eq2));

ddthetal_s==— (h3 bl +h4dl) 61 A63A64 +(h3 b2+ h4 d2+ h5) 62603 A64
ddtheta2_s==— (h3 b2 + h4 d2 + h5) 61 N63A64 — (h3 bl +h4dl) 6263 A64
ddtheta3_s==— (2 bl a3+ a4 h3) 61 A62A63— (2 dl a3 — a3 h3) 61 A62 A 64
ddthetad_s==— (2 bl a4 + a4 h4) 01 A02703 +(a3 h4—2 dl a4) 61 A62 A 64
ddthetas_s==— (a4 h5+2 bl a5) 61 A62A03+(a3 h5—2 dl a5) 61 A62 A 64

Applying the change of basis below further eliminates
without changing the isotropy. We also relable constants
for convenience; the combination b2*h3+d2*h4 plays the
role of h5 and is therefore zero by the Jacobi identities,
and a3*b2+a4*d2+a5 plays the role of a5, so we relable it
as such. Using b2*h3+d2*h4+h5=0 from ddthetal_s, we
find we may take h5=0 in this basis. This change of basis
| also gives b2=d2=0.
> LD_R2:=
eval(eval(LieAlgebraData([el,e2,e3-b2*e5,e4-d2*e5,e5],alg_R2),Eq2),
{a3*b2+a4*d2+a5=a5,b2*h3+d2*h4+h5=0});

LD_R2:=|el, e2] = a3e3+aded+a5e5, [el, e3] = bl el, [el, e4] = dl el, [el, e5] = e2,

[e2 e3] = bl e2 [e2 e4] =dle2 [e2 e5]=—el, [e3 ed] = h3e3+ hded, [e3, e5
1=0,[e4,e5]1=0
[We initialize the simplified algebra and examine
| the Jacobi identities again:
> DGsetup(LD_R2,[e],[theta]);
Lie algebra: alg_R2

> ddthetal:=ExteriorDerivative(ExteriorDerivative(thetal));
ddtheta2:=ExteriorDerivative(ExteriorDerivative(theta?2));
ddtheta3:=ExteriorDerivative(ExteriorDerivative(theta3));
ddthetad4:=ExteriorDerivative(ExteriorDerivative(theta4));
ddtheta5:=ExteriorDerivative(ExteriorDerivative(thetab));

ddthetal = - (h3 bl + h4 d1) 61 A63 A 64
ddtheta2:= - (h3 bl + h4 dl) 6263 A 64
ddtheta3:=- (2 bl a3+ a4 h3) 01 A62A63 - (2 dl a3 — a3 h3) 61 A62A064
ddtheta4:==— (2 bl a4 + a4 h4) 61 AN62A63+(a3 h4 —2 dl a4) 61 A62 A 64
ddtheta5:=—2 bl a5 01 ANO2AN83 —2 d1 a5 01 AN62 N 64

:For reference, here are the structure equations again:

> LieAlgebraData([el,e2,e3,e4,e5]);

[el,e2] =a3e3+aded+a5e5, (el e3] = blel, [el, e4] = dl el, [el, e5] = e2, [e2, e3
| = ble2 [e2 e4]=dle2 [e2e5]=—el,[e3,ed4] = h3e3+hded, [e3,e5] =0, [e4,
e5]1=0

We consider two cases by constructing the

largest subalgebra, i, of the center, n,

of the isotropy that is also an ideal in the
algebra.

_Any vector in n has the form of y below and any vector
| in the span of el and e2 has the form of x below:

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)
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> y:=evalDG(mu*e3+lambda*e4+nu*eb);
x:=evalDG(alpha*el+beta*e2);

y=pe3+red4+ves>
x=oael +pe2 (1.11)

:The Lie bracket is:
> LieBracket(x,y);
(opubl+ordl—Bv) el +(Bubl+BArdl+av) e2 (1.12)

[If y is in i, then [x,y] is in n, so
opbl + oAdl - Bv = 0

Bubl + BAdL + v =0

for all « and B.

This requires v = 0 and so i takes the
form i={pe3+Ae4 | pb1=-Ad1}.

Note that i is two-dimensional if and only
| if b1=d1=0. We case split on this.

\ 4 Section 5.1: i is Two-Dimensional
In this case, b1=d1=0. We initialize
_this algebra.
> LD_R51:=eval(
LieAlgebraData(
[el,e2,e3,e4,eb],
alg_R51),
{b1=0,d1=0});
LD_R51:=[el,e2] = a3e3+a4 ed +ase5,[el,e3] =0, [el,e4] =0, [el, e5] = e2, (1.1.1)

[e2,e3]=0,[e2 e4] =0, [e2 e5] = —el, [e3, e4] = h3e3+ h4 e4, [e3,e5] = 0,
[e4,e5]1=0
> DGsetup(LD_R51,['x"],[0]);
Lie algebra: alg_R51 (1.1.2)

;We examine the Jacobi identities in this algebra.

> ExteriorDerivative(ExteriorDerivative(ol));
ExteriorDerivative(ExteriorDerivative(o2));
ExteriorDerivative(ExteriorDerivative(03));
ExteriorDerivative(ExteriorDerivative(o4));
ExteriorDerivative(ExteriorDerivative(05));

0olANO02N03
0olAN02N03
— a4 h3o0lNo02AN03+ a3 h3 0l Ao2A o4
—a4 h4 01 No2N03+ a3 h4 01 ANo2 N o4
00lAn02N03 (1.1.3)
=We see that a4*h3=a3*h3=a4*h4=a4*h3=0, so
either a3=a4=0 or h3=h4=0.

To distinguish these, we consider the center. The
center is trivial if and only if one or both of h3 and
h4 is nonzero, in which case a3=a4=0. Otherwise,
| h3=h4=0 and the center contains e3 and e4.

5.1.1: The Center is Trivial

In this case, a3=a4=0. The subalgebra spanned
by e3 and e4 decomposes and is nonabelian. Thus
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there is a basis in which h3=1 and h4=0. We
_initialize the algebra in this basis:
> LD_R511:=eval(
LieAlgebraData(
[x1,x2,x3,x4,x5],
alg_R511),
{a3=0,a4=0,h3=1,h4=0});
LD_R511:=[el,e2] = a5e5,[el, e3] =0, [el,e4] =0, [el, e5] = e2,[e2,e3] =0, (1.1.1.1)
[e2,e4] =0,[e2,e5] = —el, [e3,e4] =e3,[e3,e5]1 =0, [e4,e5]=0

> DGsetup(LD_R511,['y'].[p]):

Lie algebra: alg_R511 (1.1.1.2)
:Consider the Killing form:
> Killing();
2a5 0 0 0 O
0 2a5 0 0 O
0 0O 00 O (1.1.1.3)
0 0O 01 O
0 0 00 -2

[ The sign of a5 determines the signature of the
Killing form by its sign.

If a5 is not zero, the following scales a5 to +/-1.
| We may thus take a5 in {-1,0,1}:
> LieAlgebraData([

yl/sqrt(abs(ab)),
y2/sqrt(abs(ab)),
y3,
y4,
y5
1) .
a
el, e?| = a5 e5 [el,e3]1=0,[el,e4] =0, [el,e5] =e2 [e2,e3]=0,[e2 e4 (1.1.1.4)

1=0,[e2 e5]=—cel, [e3, e4] =e3,[e3,e5]=0,[e4,e5]=0

=If a5 = 0, the change of basis below gives
| s_3,3+s_2,1 with a=0 and isotropy e3
> eval(LieAlgebraData([-y1,-y2,y5,y3,-y4]),a5=0);
[el,e2]=0,[el,e3] =e2 [el,e4d] =0, [el,e5] =0, [e2,e3] = —el, [e2,e4] =0, (1.1.1.5)
[e2,e51=0,[e3,ed4] =0,[e3,e5]1=0,[e4,e5] = —ed

If a5 = 1, the change of basis below gives
| sI(2,F)+s_2,1 with isotropy el-e3
> eval(LieAlgebraData([
-y2+y5,
2*y1,
-y2-y5,
y3,
y4
1),a5=1);
[el,e2] =2 el, [el,e3] = —e2 [el, e4] =0, [el,e5] =0, [e2 e3] =2 e3,[e2,e4 (1.1.1.6)
1=0,[e2e5]1=0,[e3,e4d] =0,[e3,e5] =0, [e4,e5] = e4d

=If a5 = -1, the change of basis below gives
| so(3,R)+s_2,1 with isotropy el
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> eval(LieAlgebraData([y5,y2,y1,y3,y4]),a5=-1);
[el,e2] =e3,[el,e3] = —e2, [el,ed] =0, [el,e5] =0, [e2, e3] =el, [e2, e4d

1=0,[e2,e5]=0,[e3,e4d] =0,[e3,e5] =0, [e4,e5] = e4

5.1.2: The Center is Two-Dimensional
If the center is two-dimensional, then h3=h4=0. We initialize
| this algebra:

> LD_R512:=eval(

LieAlgebraData([x1,x2,x3,x4,x5],alg_R512),
{h3=0,h4=0});

LD_R512:=[el,e2] = a3 e3+a4 e4+a5e5, [el,e3] =0, [el,e4] =0, [el, e5
l=e2, [e2,e3]=0,[e2,e4]=0,[e2, e5]= —el, [e3,e4] =0, [e3,e5] =0,
[e4,e5]1=0

> DGsetup(LD_R512,['y'].[p]);

Lie algebra: alg_R512

;Now consider the Killing form.

> Killing();
2a5 0 0 0 O
0 2a5 0 0 O
0 0O 00 O
0 0O 00 O
0 0O 00 -2
=The sign of a5 determines the signature of the
Killing form by its sign.
If a5 is not zero, the following scales a5 to +/-1.
| We may thus take a5 in {-1,0,1}:
> LieAlgebraData(]
yl/sqrt(abs(ab)),
y2/sqrt(abs(ab)),
y3,
y4,
y5
1)
5 a3 a4 4 as 1 o 5
el,e2| = a5] e3+ a5] e4d + EE e5 [el,e3]=0,[el,e4] =0, [el,e5] =e2,
[e2,e3]=0,[e2,ed4] =0,[e2,e5]= —el,[e3,e4] =0,[e3,e5] =0, [e4, e5
1=0

:Consider also the derived algebra:
> Series(alg_R512,"Derived")[2];
[a3y3+a4y4+a5y5y2 —yl|

_First, suppose a5=0. Then the of the derived algebra is two if
a3=a4=0 and three otherwise.

If a5 is nonzero, then the isotropy is in the derived algebra if
and only if a3=a4=0.

If a3 or a4 is nonzero, we may take a3=1 and a4=0 via one of
| the following changes of basis (whichever is nondegenerate):

> LieAlgebraData([yl,y2,a3*y3+ad*y4,y3,y5]);

(1.1.1.7)

(1.1.2.1)

(1.1.2.2)

(1.1.2.3)

(1.1.2.4)

(1.1.2.5)
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LieAlgebraData([yl,y2,a3*y3+a4*y4,y4,y5]);
[el,e2] =e3+a5e5, [el,e3]=0,[el, ed] =0, [el,e5] = e2 [e2, e3] =0, [e2, e4
1=0,[e2 e5] = —el, [e3,e4] =0,[e3,e5] =0, [e4,e5]=0
[el,e2] = e3+a5e5, [el,e3] =0, [el, e4] =0, [el,e5] = e2, [e2,e3] = 0, [e2, e4 (1.1.2.6)
1=0,[e2 e5] = —el, [e3,e4] =0,[e3,e5]=0,[e4,e5]=0

[We thus have six possibilities:

ab5=1, a3=0:
The change of basis below gives
| sl(2,F)+2n_1,1 with isotropy el-e3
> eval(LieAlgebraData([
-y2+y5,
2*y1,
-y2-y5,
y3,
ya
1).{a5=1,a3=0,a4=0});
[el,e2] =2 el, [el,e3] = —e2 [el, e4] =0, [el,e5] =0, [e2 e3] =2 e3,[e2,e4 (1.1.2.7)
1=0,[e2,e5]1=0,[e3,e4d] =0,[e3,e5]=0,[e4,e5]=0

ab=1, a3=1:
The change of basis below gives
| sl(2,F)+2n_1,1 with isotropy el-e3-2e4
> eval(LieAlgebraData([
-y2+y3+y5,
2*y1,
-y2-y3-y5,
y3,

y4
1).{a5=1,a3=1,a4=0});
lel,e2] =2 el, [el,e3] = —e2 [el, e4] =0, [el,e5] =0, [e2 e3] =2 e3,[e2,e4 (1.1.2.8)
1=0,[e2,e5]1=0,[e3,e4d] =0,[e3,e5]=0,[e4,e5]=0

ab5=-1, a3=0:

The change of basis below gives
| S0(3,R)+2n_1,1 with isotropy el
> eval(LieAlgebraData([

y4
1).{a5=-1,a3=0,a4=0});
[el,e2] = e3,[el,e3] = —e2, [el,e4d] =0, [el, e5] =0, [e2,e3] = el, [e2, e4 (1.1.2.9)

1=0,[e2,e5]1=0,[e3,e4d] =0,[e3,e5]=0,[e4,e5]=0

ab=-1, a3=1:
The change of basis below gives
| s0(3,R)+2n_1,1 with isotropy el-e4
> eval(LieAlgebraData([
y3-y5,
-y 2,
yl,
y3,
y4
1),{a5=-1,a3=1,a4=0});
[el,e2] = e3,[el,e3] = —e2, [el,e4] =0, [el,e5] =0, [e2, e3] = el, [e2, ed (1.1.2.10)

1=0,[e2,e5]1=0,[e3,e4d] =0, [e3,e5]=0,[e4,e5]=0
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a5=0, a3=0:

The change of basis below gives

| s_3,3+2n_1,1 with a=0 and isotropy e3
> eval(LieAlgebraData(]

ya
1).{a5=0,a3=0,a4=0});
[el,e2] =0, [el,e3] =e2 [el,ed] =0, [el,e5]=0,[e2,e3] = —el, [e2 e4

1=0,[e2,e5]1=0,[e3,e4d] =0, [e3,e5]=0,[e4,e5]=0

a5=0, a3=1:
The change of basis below gives
| s_4,7+n_1,1 with isotropy e4
> eval(LieAlgebraData(]
-y 3,
-y1,
y2,
-y5,
y4
1).{a5=0,a3=1,a4=0});

[e2,e5]=0,[e3,ed] = —e2, [e3,e5] =0, [e4,e5]=0

\ 4 Section 5.2: The Dimension of i is
Less Than Two

[In this case, at least either or both of bl and d1 is nonzero.

;Recall the Jacobi identities:

> ddthetal;
ddtheta?2;
ddtheta3;
ddtheta4;
ddtheta5;

— (b1 h3+d1 h4) 61 A63 64
— (bl h3+dl1 h4) 6263164
—(2a3bl+a4h3) 61A02A03-(2 a3 dl —a3 h3) 61 A62A64
- (2 a4 bl +a4 h4) 01002703 +(a3h4—2 a4 dl) 61 A62 64
—2bla501N02N03—2dl a5601N62AN64

[If b1 is nonzero, we apply the following change of basis and
| relabel constants, using b1*h3+d1*h4=0 from ddthetal=0.

> LD_Rb52:=eval(LieAlgebraData([
el,e2,1/b1*e3,-d1/b1l*e3+e4,e5
],alg_R52),
{b1*h3+d1*h4=0,a3*b1l+ad*d1=a3,h4/bl=h4});

LD_R52:=[el,e2] =a3e3+aded4+as5e5, [el, e3] =el, [el, ed] =0, [el, e5] = e2,
[e2 e3] = e2 [e2,e4] =0, [e2 e5] = —el,[e3, e4] = h4 e4, [e3,e5] =0, [e4, e5
1=0

[If d1 is nonzero, we apply the following change of basis and
| relabel constants, using b1*h3+d1*h4=0 from ddthetal=0.

> LD_R52:=eval(LieAlgebraData([

(1.1.2.11)

[el,e2]=0,[el,e3]=0,[el,e4] =0, [el,e5]1=0,[e2e3]=cel, [e2e4] =e3 (1.1.2.12)

(1.2.1)

(1.2.2)
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el,e2,1/d1*e4,-b1/d1*ed4+e3,eb
],alg_R52),
{b1*h3+d1*h4=0,a3=a4,a3*b1l+ad4*d1=a3,h3/d1=-h4});

LD_R52:=[el, e2] = a3e3+aded+as5e5, [el, e3] =el, [el, ed] =0, [el, e5] = e2,

[e2 e3] = e2 [e2,ed] =0, [e2 e5] = —el, [e3,e4] = hde4, [e3,e5] = 0, [e4, e5
1=0

In either case, we can take b1=1, d1=0, and h3=0. We now
_initialize the algebra and impose the Jacobi identities.

> DGsetup(LD_R52,['x'],[0]);

Lie algebra: alg_R52

> ExteriorDerivative(ExteriorDerivative(ol));
ExteriorDerivative(ExteriorDerivative(02));
ExteriorDerivative(ExteriorDerivative(03));
ExteriorDerivative(ExteriorDerivative(o4));
ExteriorDerivative(ExteriorDerivative(o5));

0olAN02N03
0olAN02N03
—2a3o0lN02N03
—(a4 h4+2 a4) o1 A02N03+ a3 h4d 01 Ao2 A 04
—2a50lAN02N03

[We thus find a3=a5=0, so we initialize this algebra. Note
that we also will require either a4 = 0 or h4 = -2 to completely
| satisfy the Jacobi identities.

> DGsetup(eval(LD_R52,{a3=0,a5=0}),['y'].[p]);
Lie algebra: alg_R52
;The structure equations are as follows:
> LieAlgebraData([yl,y2,y3,y4,y5]);
[el,e2] = a4 e4, [el, e3] = el, [el,e4] = 0, [el, e5] = e2, [e2, e3] = e2, [e2, e4] = 0,

[e2,e5] = —el, [e3, e4] = hd e4, [e3,e5] =0, [e4,e5] =0

=Consider the derived series. It is spanned by
{ad*y4, y1, y2, hd*y4}.

| The structure Lie brackets given by these vectors are:
> LieDerivative(

[ad*y4, y1, y2, hd*y4],

[ad*y4, y1, y2, hd*y4]);
[[0y1,0y1,0y1,0y1],[0y1,0y1,a4y40y1],[0yl, —a4y4,0y1,0y1],[0y1,0yI,

0y1,0y1]]

Thus, a4 is nonzero if and only if the second derived algebra is
one-dimensional, in which case h4 = -2 to satisfy the Jacobi
identities and the following change of basis gives s_5,45 with
| isotropy spanned by e5.
> eval(LieAlgebraData([-a4*y4,y1,-y2,-y3-y4,y5]),h4=-2);

[e2,e5] = —e3,[e3,e4] = —e3,[e3,e5] =e2, [ed,e5]=0

[ Given a4 = 0, the derived algebra is two-dimensional for h4 = 0,
in which case the following change of basis gives s_4,12+n_1,1
| with isotropy spanned by e4.

> eval(LieAlgebraData([yl,y2,-y3,-y5,y4]),{h4=0,a4=0});

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)

[el,e2] =0, [el,e3]1=0,|el,e4]| = —2el, [el,e5] =0, [e2, e3] = el, [e2,e4] = —e2, (1.2.9)

12 1N\
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[el,e2] =0, [el,e3] = —el,[el,ed] = —e2, [el,e5] =0, [e2,e3] = —e2, [e2, e4d
]=-el [e2e5]=0,[e3,e4d] =0,[e3,e5]=0,[e4,e5]=0

[ Given a4 = 0, the derived algebra is three-dimensional for h4
nonzero,in which case the following change of basis gives
s_5,43 with isotropy spanned by e5. We identify our parameter
h4 with the parameter B in the algebra classification tables.
> eval(
LieAlgebraData([y4,-yl-y2,-yl+y2,-y3,-y5]),
{h4=beta,a4=0});
[el,e2] =0, [el,e3] =0, [el,e4] = Bel, [el,e5] =0, [e2, e3] =0, [e2, ed] = —e2,

[e2, e5] =e3,[e3,ed] = —e3,[e3,e5] = —e2, [ed,e5]=0

(1.2.10)

(1.2.11)
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¥ Maple Worksheet

Isotropy Type F13: Boosts

[ This worksheet steps through Chapter 6, serving to help
validate the results. This chapters cover the isotropies
of type F13, the boosts.

| We begin by loading the packages needed.
> with(DifferentialGeometry):
| with(LieAlgebras):

We now initialize the most generic five-dimensional
| algebra with the subalgebra spanned by e5 of type F13.
> LD_Boost:=LieAlgebraData([

'[el,e2]=a3*e3+ad*ed+ab5*e5’,

'[el,e3]=bl*el+b2*e2+b3*e3+b4*e4+b5*e5’,
'[e2,e3]=cl*el+c2*e2+c3*e3+c4*ed+c5*e5’,
'[el,e4]=d1*el+d2*e2+d3*e3+d4*ed4+d5*e5’,
'[e2,e4]=gl*el+g2*e2+g3*e3+g4d*ed+g5*eb’,
'[e3,e4]=h1*el+h2*e2+h3*e3+h4*ed4+h5*e5’,

'[e5,el]=e2",
'[e5,e2]=el’
].[el,e2,e3,e4,e5],alg_bst);
LD_Boost:= [el,e2] = a3 e3+ a4 e4 + a5 e5, [ el, e3] = bl el + b2 e2 + b3 e3 + b4 e4 (1.1)

+b5e5,[el,e4]) =dl el +d2e2+d3e3+dded+d5e5, [el, e5] = —e2, [e2 e3
| =clel +c2e2+c3e3+cded+c5e5 [e2 e4] =glel +g2e2+g3e3+g4ed

+g5e5,[e2e5] = —el, [e3 e4] = hl el +h2e2+h3e3+ h4 e4+ h5e5,[e3,e5
1=0,[e4,e5]=0

=> DGsetup(LD_Boost,[e],[theta]);
Lie algebra: alg_bst (1.2)

;Now, we examine the Jacobi identities.

> ddthetal:=ExteriorDerivative(ExteriorDerivative(thetal));
ddtheta2:=ExteriorDerivative(ExteriorDerivative(theta?2));
ddtheta3:=ExteriorDerivative(ExteriorDerivative(theta3));
ddthetad4:=ExteriorDerivative(ExteriorDerivative(theta4));
ddtheta5:=ExteriorDerivative(ExteriorDerivative(theta5b));

ddthetal = - (a4 hl1 + c3bl — b3 cl— b4 gl + c4dl + b5) 61 62763+ (a3 hl — g3 bl
+d3cl—g4dl+ddgl—ds5) 61A02A04 - (h3bl —b2 gl —b3 hl+d2cl+h4dl
—d4 hl) 1 A03A604— (b2 —cl) 01A63A65—(d2—gl) 01 A64A65— (gl bl
—cldl+g2cl+h3cl—c2gl —c3hl+h4dgl—g4hl—h5) 62A03A64+(bl —c2
) 02703705+ (dl —g2) 6204 A65— h203A64A05

ddtheta2:= - (a4 h2 + c3b2 — b3 c2— b4 g2+ c4d2 — c5) 61 A62A63 +(a3 h2 - g3 b2
+d3c2—g4d2+d4g2+g5) 01 AN02A04 +(bl d2—dI b2+ b2 g2 — h3b2+ b3 h2
—d2c2—h4d2+d4 h2+h5) 01 N03704 — (b1 —c2) 01 AO3A05—(dl —g2) 61 A64
ANO5—(b2gl —d2cl+h3c2—c3h2+h4g2—g4 h2) 02/N03A04+(b2—cl) 62163
AB5+(d2—gl) 62764 A65— hl 63 A64 65

ddtheta3:=- (bl a3+ c2a3+a4 h3—b4 g3 +c4d3) 61 A62703 - (dl a3+ g2 a3 — a3 h3
+9g3b3—-d3c3+g4d3—d4g3) 01A62A64 - (a3 h2— bl d3—g3b2+dl b3
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+d2c3+h4d3—d4h3) 01 ANO3A64+c301 A63AO5+g3 61 A04A05+ (a3 hl
—glb3+d3cl+c2g3—g2c3—h4g3+g4h3) 62A03A604+b362A03A65+ d362
A 64 A5

ddtheta4:=— (bl a4 + c2a4 + a4 h4 — b3 c4+ c3b4 — b4 g4 + c4d4) 01 N62A03 + (a3 h4
—dla4—g2a4d—b4g3+c4d3) 01A02A04 - (a4 h2 — bl d4 — b2 g4 — b3 h4
+dl b4 +h3b4+c4d2) 61 ANO3A64 + c461 A63A65+ g4 61 A64 A 65+ (a4 hl
—b4gl+cldd+c2g4+c3hd—g2c4d—h3cd) 02AN03A04 + b4 02 N03 A05 + d4 62
A 64 A 65

ddtheta5:=- (a4 h5+ bl a5+ c2a5—b3 c5— b4 g5+ c3b5+c4d5) 01 A62A603 +(a3 h5 (1.3)
—dl a5—-g2a5—g3b5+d3c5+d4g5—g4ds5) 0102764 (h2a5— bl d5
—b2g5—b3h5+dl b5+ h3b5+d2c5—d4 h5+h4d5) 61 A03A604 +c561 AO3A6O5
+ 9501 A04 705+ (hla5—glb5+cld5+c2g5+c3h5—g2c5—h3c5+g4h5
— h4 g5) 02N03A64 + b5 02 AO3A05 +d5 62 N\64 A65

We now examine the linear parts of the equations
| given by the Jacobi identities:
> Eql:={
Hook(Hook(Hook(ddthetal,el),e3),e5),
Hook(Hook(Hook(ddthetal,el),e4),e5),
Hook(Hook(Hook(ddthetal,e2),e3),e5),
Hook(Hook(Hook(ddthetal,e2),e4),e5),
Hook(Hook(Hook(ddthetal,e3),e4),e5),
Hook(Hook(Hook(ddtheta2,e1),e3),e5),
Hook(Hook(Hook(ddtheta2,el),e4),e5),
Hook(Hook(Hook(ddtheta2,e2),e3),e5),
Hook(Hook(Hook(ddtheta2,e2),e4),e5),
Hook(Hook(Hook(ddtheta2,e3),e4),e5),

Hook(Hook(Hook(ddtheta3,el),e3),e5),
Hook(Hook(Hook(ddtheta3,el),e4),e5),
Hook(Hook(Hook(ddtheta3,e2),e3),e5),
Hook(Hook(Hook(ddtheta3,e2),e4),e5),

Hook(Hook(Hook(ddtheta4,el),e3),e5),
Hook(Hook(Hook(ddtheta4,el),e4),e5),
Hook(Hook(Hook(ddtheta4,e2),e3),e5),
Hook(Hook(Hook(ddtheta4,e2),e4),e5),

Hook(Hook(Hook(ddtheta5,el),e3),e5),
Hook(Hook(Hook(ddtheta5,el),e4),e5),
Hook(Hook(Hook(ddtheta5,e2),e3),e5),
Hook(Hook(Hook(ddtheta5,e2),e4),eb)

Eq}l = {b3, b4, b5, c3, c4, c5,d3, d4,d5, g3, g4, g5, -hl, -h2, -b1 + c2, bl — c2, -b2 + cl, b2 (1.4)
—cl,-dl +g2,dl —g2,-d2+gl,d2 —gl}

=> Eq2:=solve(Eql,{b3,b4,b5,c1,c2,c3,c4,c5,d3,d4,d5,91,92,93,94,95,h1,h2});

Eq2:= {b3=0,b4=0,b5=0,cl=b2,c2=b1,c3=0,c4=0,c5=0,d3=0,d4=0,d5=0, (1.5)
gl=d2,g2=d1,g3=0,94=0,9g5=0,h1 =0,h2=0}

_Evaluating the Jacobi identity with this solution

simlifies the quadratic parts. We extract these
| equations and solve them.
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> ddthetal _s:=Tools:-DGsimplify(eval(ddthetal,Eq2));
ddtheta2_s:=Tools:-DGsimplify(eval(ddtheta2,Eq2));
ddtheta3_s:=Tools:-DGsimplify(eval(ddtheta3,Eq2));
ddtheta4_s:=Tools:-DGsimplify(eval(ddtheta4,Eq2));
ddtheta5_s:=Tools:-DGsimplify(eval(ddtheta5,Eq2));

ddthetal_s==— (h3 bl +h4dl) 61 A63A64 - (h3 b2+ h4 d2 — h5) 62603 A 64
ddtheta2_s==— (h3 b2 + h4 d2 — h5) 61 AN63A64 - (h3 bl +h4dl) 6263 A64
ddtheta3_s==— (2 bl a3+ a4 h3) 61 A62A63— (2 dl a3 — a3 h3) 61 A62 A 64
ddthetad_s==— (2 bl a4 + a4 h4) 01 A02703 +(a3 h4—2 dl a4) 61 A62 A 64
ddthetas_s==— (a4 h5+2 bl a5) 61 A62A03+(a3 h5—2 dl a5) 61 A62 A 64 (1.6)

Applying the change of basis below further eliminates

without changing the isotropy. We also relable constants

for convenience; the combination b2*h3+d2*h4 plays the

role of h5 and is therefore zero by the Jacobi identities,

and -a3*b2-a4*d2+a5 plays the role of a5, so we relable it

as such. Using b2*h3+d2*h4-h5=0 from ddthetal_s, we

find we may take h5=0 in this basis. This change of basis

| also gives b2=d2=0.

> LD_B2:=
eval(eval(LieAlgebraData([el,e2,e3+b2*e5,e4+d2*e5,e5],alg_B2),Eq2),
{-b2*h3-d2*h4+h5=0,-a3*b2-a4*d2+a5=a5});

LD_B2:=[el,e2] = a3e3+aded+as5e5, [el,e3] = bl el, [el, e4]| = dl el, [el, e5] = (1.7)
—e2 [e2 e3] =ble2 [e2 ed] =dle2 [e2 e5]= —el, [e3 e4] = h3e3+ hd e4, [e3,
e5]1=0,[e4,e5]1=0

We initialize the simplified algebra and examine
| the Jacobi identities again:
> DGsetup(LD_B2,[e],[theta]);
Lie algebra: alg_B2 (1.8)

> ddthetal:=ExteriorDerivative(ExteriorDerivative(thetal));
ddtheta2:=ExteriorDerivative(ExteriorDerivative(theta?2));
ddtheta3:=ExteriorDerivative(ExteriorDerivative(theta3));
ddthetad4:=ExteriorDerivative(ExteriorDerivative(theta4));
ddtheta5:=ExteriorDerivative(ExteriorDerivative(thetab));

ddthetal = - (h3 bl + h4 d1) 61 A63 A 64
ddtheta2:= - (h3 bl + h4 dl) 6263 A 64
ddtheta3:=- (2 bl a3+ a4 h3) 01 A62A63 - (2 dl a3 — a3 h3) 61 A62A064
ddtheta4:==— (2 bl a4 + a4 h4) 61 AN62A63+(a3 h4 —2 dl a4) 61 A62 A 64
ddtheta5:=—2 bl a5 61 A02A03 —2 d1 a5 61 A62 A 64 (1.9)

:For reference, here are the structure equations again:

> LieAlgebraData([el,e2,e3,e4,e5]);

[el,e2] = a3e3+ a4 ed+a5e5,[el, e3] = bl el,[el,e4] = dlel, [el,e5] = —e2, [e2,e3 (1.10)
| = ble2 [e2 e4]=dle2 [e2e5]=—el,[e3,ed4] = h3e3+hded, [e3,e5] =0, [e4,
e5]1=0

We consider two cases by constructing the

largest subalgebra, i, of the center, n,

of the isotropy that is also an ideal in the
algebra.

_Any vector in n has the form of y below and any vector
| in the span of el and e2 has the form of x below:
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> y:=evalDG(mu*e3+lambda*e4+nu*eb);
x:=evalDG(alpha*el+beta*e2);

y=pe3+red4+ves>
x=oael +pe2 (1.11)

;The Lie bracket is:
> LieBracket(x,y);

(oubl +ordl —Bv) el —(-publ —Brdl+av) e2 (1.12)
[If y is in i, then [x,y] is in n, so
opbl + @Adl - Bv =10
Bubl + BAdL + v =0
for all « and B.

This requires v = 0 and so i takes the
form i={pe3+Ae4 | pb1=-Ad1}.

Note that i is two-dimensional if and only
| if b1=d1=0. We case split on this.

\ 4 Section 6.1: i is Two-Dimensional
In this case, b1=d1=0. We initialize
_this algebra.
> LD_B61:=eval(
LieAlgebraData(
[el,e2,e3,e4,eb],
alg_B61),
{b1=0,d1=0});
LD_B61:= [el,e2] = a3e3+aded4+a5e5, [el, e3] =0, [el,e4] =0, [el, e5] = —e2, (1.1.1)

[e2,e3]=0,[e2 e4] =0, [e2 e5] = —el, [e3, e4] = h3e3+ h4 e4, [e3,e5] = 0,
[e4,e5]1=0
> DGsetup(LD_B61,['x"],[0]);
Lie algebra: alg_B61 (1.1.2)
;We examine the Jacobi identities in this algebra.
> ExteriorDerivative(ExteriorDerivative(ol));
ExteriorDerivative(ExteriorDerivative(o2));
ExteriorDerivative(ExteriorDerivative(03));
)
)

ExteriorDerivative(ExteriorDerivative(o4)
ExteriorDerivative(ExteriorDerivative(o5));

0olANO02N03
0olAN02N03
— a4 h3o0lNo02AN03+ a3 h3 0l Ao2A o4
—a4 h4 01 No2N03+ a3 h4 01 ANo2 N o4
00lAn02N03 (1.1.3)
=We see that a4*h3=a3*h3=a4*h4=a4*h3=0, so
either a3=a4=0 or h3=h4=0.

To distinguish these, we consider the center. The
center is trivial if and only if one or both of h3 and
h4 is nonzero, in which case a3=a4=0. Otherwise,
| h3=h4=0 and the center contains e3 and e4.

6.1.1: The Center is Trivial

In this case, a3=a4=0. The subalgebra spanned
by e3 and e4 decomposes and is nonabelian. Thus
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there is a basis in which h3=1 and h4=0. We
_initialize the algebra in this basis:
> LD_B611:=eval(
LieAlgebraData(
[x1,x2,x3,x4,x5],
alg_B611),
{a3=0,a4=0,h3=1,h4=0});
LD_B611:=[el, e2] = a5e5,[el,e3] =0, [el,e4] =0, [el,e5] = —e2, [e2, e3 (1.1.1.1)
1=0,[e2,ed4]=0,[e2, e5]= —el, [e3,e4d] =e3,[e3,e5]1=0,[e4,e5]=0

> DGsetup(LD_B611,['y'],[p]);
Lie algebra: alg_B611 (1.1.1.2)

:Consider the derived algebra:
> Series(alg_B611,"Derived")[2];
la5y5, —y2, —y1,y3] (1.1.1.3)

[ The dimension of the derived algebra is determined by
whether or not a5=0. If a5=0, the drived algebra is
three-dimensional, and it is four-dimensional otherwise.

:If a5 is positive, the following scales a5 to 1.
> LieAlgebraData([
yl/sqrt(a5b),
y2/sqrt(ab),
y3,
y4,
y5
1)
[el,e2] =e5, [el,e3]=0,[el,e4d] =0, [el,e5] = —e2, [e2,e3]=0,[e2,e4] =0, (1.1.1.4)
[e2,e5] = —el, [e3,ed] =e3,[e3,e5] =0, [e4,e5] =0

_If a5 is negative, the following scales a5 to 1.
> LieAlgebraData(]

y2/sqrt(-ab),

yl/sqrt(-ab),

y3,

y4,

y5

1)

[el,e2] = e5, [el,e3]=0,[el,ed] =0, [el,e5] = —e2, [e2,e3]=0,[e2,e4] =0, (1.1.1.5)
[e2,e5]= —el, [e3,ed] =e3,[e3,e5]=0,[e4,e5]1=0

We may thus take a5 to be zero or one.

=If ab = 0, the change of basis below gives

| s_3,1+s_2,1 with a=-1 and isotropy €3

> eval(LieAlgebraData([-yl1+y2,yl+y2,y5,y3,y4]),a5=0);

[el,e2] =0, [el,e3] =el, [el,e4] =0, [el,e5]=0,[e2, e3] = —e2, [e2,e4] =0, (1.1.1.6)
[e2,e5]1=0,[e3,e4d] =0,[e3,e5] =0, [e4,e5] = e4

If a5 = 1, the change of basis below gives
| sl(2,F)+s_2,1 with isotropy e2
> eval(LieAlgebraData([
yl-y2,
2*y5,
-yl-y2,
y3,
y4
1),a5=1);
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[el,e2] =2 el, [el,e3] = —e2 [el, e4] =0, [el,e5] =0, [e2 e3] =2 e3,[e2,e4 (1.1.1.7)
1=0,[e2,e5]1=0,[e3,e4d] =0,[e3,e5] =0, [e4,e5] = e4

6.1.2: The Center is Two-Dimensional
If the center is two-dimensional, then h3=h4=0. We initialize
| this algebra:
> LD_B612:=eval(
LieAlgebraData([x1,x2,x3,x4,x5],alg_B612),
{h3=0,h4=0});
LD_B612:= [el,e2] = a3 e3+ a4 e4 +a5e5,[el,e3] =0, [el,e4] =0, [el,e5] = (1.1.2.1)
—e2, [e2,e3]=0,[e2,e4] =0,[e2, e5] = —el, [e3,e4] =0,[e3,e5] =0, [ e4,
e51=0
[> DGsetup(LD_B612,['y'],[p]);
Lie algebra: alg_B612 (1.1.2.2)
;Now consider the derived series.
> Series(alg_B612,"Derived");
[[¥L,y2y3 4 y5), [a3y3+adyd+a5y5 —y2 —yll|,[ —a5yl, —a5y2, (1.1.2.3)

—a3y3—a4y4—as5y5]]

[If a5 is zero, the last term above is spanned by a3*y3+a4*y4
and the derived series necessarily terminates in the zero algebra.
Thus a5 determines whether or not the algebra is solvable.

| If a5 is positive, the following scales a5 to 1.
> LieAlgebraData(]

yl/sqrt(ab),

y2/sqrt(ab),

y3,
y4,
y5
1)
a3 a4
el e?| = 5 e3+ e e4+e5,[el,e3]=0,[el,ed] =0, [el,e5] = —e2 [e2,e3 (1.1.2.4)

1=0,[e2,e4] =0,[e2, e5]= —el, [e3,e4d] =0,[e3,e5]=0,[e4,e5]=0

I a5 is negative, the following scales a5 to 1.
> LieAlgebraData(]

y2/sqrt(-ab),

yl/sqrt(-ab),

y3,
y4,
y5
1)
as a4
el, e?| = 5 e3+ v ed+e5 [el,e3]1=0,[el,ed] =0, [el,e5] = —e2 [e2,e3 (1.1.2.5)

1=0,[e2,ed4] =0,[e2,e5] = —el,[e3,e4d] =0,[e3,e5]=0,[e4,e5]=0
[We may thus take a5 in {0,1}.
| Recall the derived series:

> Series(alg_B612,"Derived");
[[vLy2y3 y4y5], [a3y3+ad4y4+as5y5 —y2 —yl|,[ —a5yl, —a5y2, (1.1.2.6)

—a3y3—a4y4—a5y5]]
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In the case that a5 = 0, the second derived algebra is trivial if
and only if a3=a4=0. As an alternate invariant, a3=a4=0 if
and only if the isotropy is in the derived algebra.

If a3 or a4 is nonzero, we may take a3=1 and a4=0 via one of

| the following changes of basis (whichever is nondegenerate):

> LieAlgebraData([yl,y2,a3*y3+ad*y4,y3,y5]);
LieAlgebraData([yl,y2,a3*y3+ad*y4,y4,y5]);

[el, e2] = e3+a5e5, [el,e3] =0, [el, e4] 0,[el,e5] = —e2 [e2,e3] =0, [e2,

1=
ed]=0,[e2,e5]1= —el, [e3,e4] =0,[e3,e5]1=0,[e4,e5] =0
[el,e2] = e3+a5e5, [el,e3]=0,[el,e4] =0, [el, e5] = —e2, [e2,e3] =0, [e2, (1.1.2.7)
ed]=0,[e2,e5]= —el, [e3,e4] =0,[e3,e5]1=0,[e4,e5] =0

[We thus have four possibilities:

a5=0, a3=0:
The change of basis below gives
| s_3,1+2n_1,1 with a=-1 and isotropy e3
> eval(LieAlgebraData(]
-yl+y2,
-yl-y2,
y5,
y3,
y4
1).{a5=0,a3=0,a4=0});
[el,e2] =0, [el,e3] =el, [el,e4] =0, [el,e5]=0,[e2, e3] = —e2, [e2,e4] =0, (1.1.2.8)
[e2,e5]1=0,[e3,e4] =0, [e3,e5]=0,[e4,e5]=0
a5=0, a3=1:
The change of basis below gives
| s_4,6+n_1,1 with isotropy e4
> eval(LieAlgebraData(]

_y3l
yl-y2,
1/2*y1+1/2*y2,
_y5,
y4
1).{a5=0,a3=1,a4=0});
[el,e2] =0,[el,e3]=0,[el,ed4] =0, [el,e5]=0,[e2,e3] = —el,[e2 ed] = (1.1.2.9)
—e2, [e2,e5]=0,[e3,e4] =e3,[e3,e5] =0, [e4,e5] =
[a5=1, a3=0:

The change of basis below gives
| sI(2,F)+2n_1,1 with isotropy e2
> eval(LieAlgebraData([
yl-y2,
2*y5,
-yl-y2,
y3,
y4
1).{a5=1,a3=0,a4=0});
[el,e2] =2 el, [el,e3] = —e2 [el, e4] = 0, [el,e5] = 0, [e2 e3] = 2 e3, [e2, e4 (1.1.2.10)
1=0,[e2,e5]1=0,[e3,e4d] =0,[e3,e5] =0, [e4,e5] =
[a5=1, a3=1:
The change of basis below gives
| sl(2,F)+2n_1,1 with isotropy e2-2e4
> eval(LieAlgebraData(]
yl-y2,
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2*y3+2*y5,

-yl-y2,

y3,

ya
1).{a5=1,a3=1,a4=0});

1=0,[e2,e5]1=0,[e3,e4d] =0,[e3,e5]=0,[e4,e5]=0

\ 4 Section 6.2: The Dimension of i is

Less Than Two
In this case, at least either or both of bl and d1 is nonzero.

;Recall the Jacobi identities:

> ddthetal;
ddtheta?2;
ddthetas3;
ddtheta4;
ddthetab;

(b1 h3+dI h4) 61 AO3 A 64

(b1 h3+dI h4) 6263 A64

- (2 a3bl+a4h3) 61A62763 (2 a3dl —a3h3) 61 A62 A 64

—(2a4bl+a4hd) 61n02A03+(a3h4—2 a4 dl) 61 A62 A 64
—2bla561A62A603—2dla56lA62A64

=If bl is nonzero, we apply the following change of basis and

| relabel constants, using b1*h3+d1*h4=0 from ddthetal=0.

> LD_B62:=eval(LieAlgebraData(]
el,e2,1/b1*e3,-d1/b1*e3+e4,e5
]l,alg_B62),
{b1*h3+d1*h4=0,a3*b1l+ad4*d1=a3,h4/b1l=h4});

LD_B62:=[el, e2] = a3e3+aded+as5e5, [el,e3] =el, [el, ed] =0, [el, e5] = —e2,
[e2 e3] = e2 [e2, ed] =0, [e2 e5] = —el, [e3,e4] = hde4, [e3,e5] = 0, [e4, e5
1=0

=If d1 is nonzero, we apply the following change of basis and

| relabel constants, using b1*h3+d1*h4=0 from ddthetal=0.

> LD_B62:=eval(LieAlgebraData([
el,e2,1/d1*e4,-bl/d1*ed4+e3,e5
],alg_B62),
{b1*h3+d1*h4=0,a3=a4,a3*bl+a4*d1=a3,h3/d1=-h4});

LD_B62:=[el,e2] = a3e3+aded+as5e5, [el,e3] =el, [el, ed] =0, [el, e5] = —e2,
[e2,e3] = e2 [e2,e4] =0, [e2 e5] = —el, [e3, e4] = h4 e4, [e3,e5] =0, [e4, 5
1=0

In either case, we can take b1=1, d1=0, and h3=0. We now
_initialize the algebra and impose the Jacobi identities.

> DGsetup(LD_B62,['x'],[0]);
Lie algebra: alg_B62

> ExteriorDerivative(ExteriorDerivative(ol));

ExteriorDerivative(ExteriorDerivative(02));
ExteriorDerivative(ExteriorDerivative(03));
ExteriorDerivative(ExteriorDerivative(o4));

[el,e2] =2 el, [el,e3] = —e2 [el, e4] =0, [el,e5] =0, [e2 e3] = 2 e3, [e2, e4 (1.1.2.11)

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

113



B.4. F13 MAPLE WORKSHEET

ExteriorDerivative(ExteriorDerivative(o5));
0olAN02N03

0olN02AN03
—2a3o0lN02N03
—(a4 h4+2 a4) o1 A02N03+ a3 h4d 01 Ao2 A 04
—2a50lN02N03

We thus find a3=a5=0, so we initialize this algebra. Note
that we also will require either a4 = 0 or h4 = -2 to completely
| satisfy the Jacobi identities.
> DGsetup(eval(LD_B62,{a3=0,a5=0}),['y'].[p]);
Lie algebra: alg_B62

;The structure equations are as follows:
> LieAlgebraData([yl,y2,y3,y4,y5]);

[el,e2] = a4 e4, [el, e3] = el, [el,e4] = 0, [el, e5] = —e2, [e2, e3] = e2, [e2, e4] = 0,

[e2,e5] = —el, [e3,e4] = hd e4, [e3,e5] =0, [e4,e5] = 0

=Consider the derived series. It is spanned by
{ad*y4, y1, y2, h4*y4}.

| The structure Lie brackets given by these vectors are:
> LieDerivative(

[ad4*y4, y1, y2, hd*y4],

[ad4*y4, y1, y2, hd*y4d]);
[[0y1,0y1,0y1,0y1],[0y1,0y1,a4y40y1],[0yl, —a4y4,0y1,0y1],[0y1,0yI,

0y1,0y1]]

Thus, a4 is nonzero if and only if the second derived algebra is
one-dimensional, in which case h4 = -2 to satisfy the Jacobi
identities and the following change of basis gives s_5,44 with
| isotropy spanned by e5.
> eval(
LieAlgebraData([-2*a4*y4,yl+y2,yl-y2,-1/2*y3-1/2*y5,-y5]),
{ha4=-2});

[el,e2] =0,[el,e3]=0,[el,ed] = —el,[el,e5]=0,[e2, e3] =el, [e2,ed] =0, [e2,

eS5]=e2 [e3,e4d] = —e3,[e3,e5] = —e3,[e4,e5]=0

=Given a4 = 0, the derived algebra is two-dimensional for h4 = 0,
in which case the following change of basis gives 2s_2,1+n_1,1
| with isotropy spanned by e2-e4.

> eval(

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)

(1.2.9)

LieAlgebraData([2*y1-2*y2,1/2*y3+1/2*y5,2*y1+2*y2,1/2*y3-1/2*y5,y4]),

{a4=0,h4=0});
[el,e2] =el, [el,e3]=0,[el,e4] =0,[el,e5]=0,[e2,e3] =0,[e2,ed4] =0, [e2 e5

1=0,[e3,e4] =e3,[e3,e5]=0,[e4,e5]=0

=Given a4 = 0, the derived algebra is three-dimensional for h4
nonzero,in which case the following change of basis gives
s_5,41 with a=p isotropy spanned by e5. We identify our parameter
h4 with the parameter a in the algebra classification tables via h4=-2q.
> eval(
LieAlgebraData([yl+y2,yl-y2,-2*y4,-1/2*y3-1/2*y5,-1/2*y3+1/2*y5]),
{a4=0,h4=-2*alpha});
[el,e2] =0,[el,e3] =0, [el,e4d] =0, [el,e5] = —el,[e2,e3]=0,[e2, ed] = —e2,

[e2,e5]1=0,[e3 e4] = —ae3 [e3 e5] = —ae3 [ed,e5]=0

(1.2.10)

(1.2.11)
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¥ Maple Worksheet

Isotropy Type F14: Null Rotations

[ This worksheet steps through Chapter 7, serving to help
validate the results. This chapters cover the isotropies
of type F14, the null rotations.

| We begin by loading the packages needed.
> with(DifferentialGeometry):
| with(LieAlgebras):

We now initialize the most generic five-dimensional
| algebra with the subalgebra spanned by e5 of type F14.
> LD_Null:=LieAlgebraData(]

'[el,e2]=al*el+a2*e2+a3*e3+ad*ed+ab*e5’,
'[el,e3]=bl*el+b2*e2+b3*e3+b4*e4+b5*e5’,
'[e2,e3]=cl*el+c2*e2+c3*e3+c4*ed+c5*e5’,
'[el,e4]=d1l*el+d2*e2+d3*e3+d4*ed+d5*e5’,
'[e2,e4]=gl*el+g2*e2+g3*e3+g4d*ed+g5*eb’,
'[e3,e4]=h1*el+h2*e2+h3*e3+h4*ed4+h5*e5’,
'[e5,el]=-e2",

'[e5,e2]=e3'
].[el,e2,e3,e4,e5],alg_nul);

e5]1=0,[e4,e5]1=0

> DGsetup(LD_Null,[e],[theta]);
Lie algebra: alg_nul

=Note that the isotropy, spanned by e5, centralizes a
| three-dimensional space spanned by {e3,e4,e5}.:
> LieDerivative([e5],[el,e2,e3,e4,e5]);
[[ —e2e30el,0el,0ell]

| Consider span{e3,e4,e5} and the following Jacobi identities:
> O=evalDG(
LieBracket(e3,LieBracket(e4,eb))+
LieBracket(e5,LieBracket(e3,e4))+
LieBracket(e4,LieBracket(e5,e3))
)

O=evalDG(
LieBracket(e2,LieBracket(e4,eb))+
LieBracket(e5,LieBracket(e2,e4))+
LieBracket(e4,LieBracket(e5,e2))
)

0= —hle2+h2e3

0= —hlel-(gl+h2)e2+(g2—h3) e3—hde4—h5e5

[ Thus h1=h2=h4=h5=0 (g1=0 also, but this is unimportant for now).
We see that [e3,e4] = h3*e3 and that span{e3,e4,e5} forms a Lie
| algebra that is either abelian if h3=0, or nonabelian if h3 is nonzero.

LD_Null = [el,e2] = al el +a2e2+ a3 e3+ a4 e4+a5e5, [el, e3] = bl el + b2 e2
+b3e3+Dbded+b5e5 el ed] = dl el +d2e2+d3e3+d4ed+d5e5, [el, e5
J=e2le2e3]=clel+c2e2+c3e3+cded+c5e5 [e2 ed] = glel +g2e2+g3e3
+g4ed+g5e5 [e2e5]= —e3 [e3 e4] = hlel +h2e2+ h3e3+ h4 e4+ h5 e5, [e3,

(1.1)

(1.2)

(1.3)

(1.4)
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¥V Section 7.1: The Centralizer of the Isotropy is Non-Abelian

[In this case, h3 is nonzero. There is a basis in which [e3,e4]=e3 and
the adjoint of e5 is unchanged, so we take h3=1 and examine the
Jacobi identities.

| First recall that h1=h2=h4=h5=g1=0 from above.
> Eql:={h1=0,h2=0,h3=1,h4=0,h5=0,91=0};
Eql:={gl=0,h1=0,h2=0,h3=1,h4=0,h5=0} (1.1.1)

> ddthetal:=ExteriorDerivative(ExteriorDerivative(thetal)):
ddtheta2:=ExteriorDerivative(ExteriorDerivative(theta2)):
ddtheta3:=ExteriorDerivative(ExteriorDerivative(theta3)):
ddtheta4:=ExteriorDerivative(ExteriorDerivative(theta4)):
ddtheta5:=ExteriorDerivative(ExteriorDerivative(theta5)):

> ddthetal:=Tools:-DGsimplify(eval(ddthetal,Eql));
ddtheta2:=Tools:-DGsimplify(eval(ddtheta2,Eql));
ddtheta3:=Tools:-DGsimplify(eval(ddtheta3,Eql));
ddtheta4:=Tools:-DGsimplify(eval(ddtheta4,Eql));
ddtheta5:=Tools:-DGsimplify(eval(ddtheta5,Eql));

ddthetal == - (c2al —a2cl+c3bl —b3cl+c4dl) 6162703 -(g2al +g3 bl
—d3cl+g4dl) 01 N02N04+ b1 01 AN62A65—(d2cl+Dbl) 61 AO3A64 — cl 61
AO3A605+(cldl —g2cl—cl) 620364

ddtheta2:=(al b2 — bl a2 — c3b2 + b3 c2+ b4 g2 — c4d2 — c5) 01 N62A603 +(al d2
—dla2—-g3b2+d3c2—g4d2+d4g2—g5) 01 A62N04+(al +b2) 61 A62A05
+(b1d2—-dl1b2+b2g2—-d2c2—b2) 01A03A04+(bl —c2) 61 A03A05+(dl
—g2) 01 A04A05+(d2cl—c2) 62A03A64 +clO2N03N05

ddtheta3:=(al b3 +a2c3—bl a3 —c2a3+b4 g3 —c4d3—ad—b5) 01 AO2A03 +
(ald3+a2g3—dla3—g2a3—g3b3+d3c3—g4d3+d4g3+a3—d5) 61162
A04—(a2—b3) 61 N62A65+ (bl d3+g3b2—dl b3 —d2c3+d4) 61 AO3A64 -
(b2+c3) 01703705 (d2+g3) 0104705+ (d3cl+c2g3—g2c3+g4) 62
AO3A04—c202N03N05—(g2—1) 62704 N05

ddtheta4:= (al b4 + a2 c4—bl a4 — c2a4 + b3 c4— c3b4 + b4 g4 — c4d4) 01 A62 A 63
+(al d4+a2g4—dl ad — g2 a4 — b4 g3+ c4d3) 01 ANO2 64 + b4 01 AO2 A5 +
(b1d4+b2g4—dlb4—cdd2—b4) 01 A63N04—c401 ANO3IAB5 — g4 01 A64 A 65
+(cl1d4+c2g4—g2c4d—c4) 62N03A04

ddtheta5:=(al b5 + a2 c5— bl a5— c2a5+ b3 c5+ b4 g5 — c3b5—c4d5) 61 A62A63 (1.1.2)
+(ald5+a2g5-dla5—g2a5—g3b5+d3c5+d4g5—g4ds5) 61 A62A64
+b561A62A65+ (bl d5+b2g5—dl b5—d2c5—b5) 61 A63A64—c561A63
AB5—g5601 A04 A5 +(cld5+c2g5—g2c5—c5) 62N03 64

| We consider the linear terms:

> Eq2:={
Hook(Hook(Hook(ddthetal,el),e2),eb),
Hook(Hook(Hook(ddthetal,el),e3),e5),

Hook(Hook(Hook(ddtheta2,el),e2),e5),
Hook(Hook(Hook(ddtheta2,el),e3),e5),
Hook(Hook(Hook(ddtheta2,el),e4),eb),
Hook(Hook(Hook(ddtheta2,e2),e3),e5),
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Hook(Hook(Hook(ddtheta3,el),e2),eb),
Hook(Hook(Hook(ddtheta3,el),e3),e5),
Hook(Hook(Hook(ddtheta3,el),e4),eb),
Hook(Hook(Hook(ddtheta3,e2),e3),eb),
Hook(Hook(Hook(ddtheta3,e2),e4),eb),

Hook(Hook(Hook(ddtheta4,el),e2),eb),
Hook(Hook(Hook(ddtheta4,el),e3),e5),
Hook(Hook(Hook(ddtheta4,el),e4),eb),

Hook(Hook(Hook(ddtheta5,el),e2),eb),
Hook(Hook(Hook(ddtheta5,el),e4),e5)

Eq}2:'= (b1, b4, b5, cl, -cl, -c2, -c4, -g4, -g5, al + b2, -a2 + b3, bl — c2, -b2 — ¢3, dI (1.1.3)
—g2,-d2—g3,-g2+1}

> Eq3:=solve(Eq2,{b1,b2,b3,b4,b5,c1,c2,c3,c4,d1,92,93,94,95});

Eq3:= {bl1 =0,b2=-al,b3=0a2,b4=0,b5=0,c1=0,c2=0,c3=al,c4=0,d1 =1,92(1.1.4)
=1,93=-d2,g4=0,g5=0}

:Now we reexamine the Jacobi identities using this partial solution:

> ddthetal_s:=Tools:-DGsimplify(eval(ddthetal,Eq3));
ddtheta2_s:=Tools:-DGsimplify(eval(ddtheta2,Eq3));
ddtheta3_s:=Tools:-DGsimplify(eval(ddtheta3,Eq3));
ddtheta4_s:=Tools:-DGsimplify(eval(ddtheta4,Eq3));
ddtheta5_s:=Tools:-DGsimplify(eval(ddtheta5,Eq3));

ddthetal_s:=—al 61 ANO2 N 64
ddtheta2_s==—c501 N02A03 - (a2 —d4) 61 A62A64 + al 01 A3 A 64
ddtheta3_s=—= (2 al a2 — a4) 01 N62703 +(2 al d3 —d4 d2 — a3 —d5) 01 NO2 64 —
(a2—d4) 61 A63A64 —al 62 A\03 A 64
ddtheta4_s = (al d4 —2 a4) 61 A62 A 64
ddtheta5_s=2 a2 c501 N62 63 +(al d5+c5d3 -2 a5) 61 N62N64 —c5d2601A63 (1.1.5)
AO4— 561 AN63AB5—2 c562N03 64

;We again examine the linear parts:
> Eq4:={
Hook(Hook(Hook(ddthetal s,el),e2),e4),

Hook(Hook(Hook(ddtheta2_s,el),e2),e3),
Hook(Hook(Hook(ddtheta2_s,el),e2),ed),
Hook(Hook(Hook(ddtheta2_s,el),e3),e4),

Hook(Hook(Hook(ddtheta3_s,el),e3),e4),
Hook(Hook(Hook(ddtheta3_s,e2),e3),e4),

Hook(Hook(Hook(ddtheta5_s,el),e3),e5),
Hook(Hook(Hook(ddtheta5_s,e2),e3),e4)

b
Eq4:={al, -al, -2 ¢5, -¢5, -a2 + d4} (1.1.6)
B Eg5:=solve(Eq4,{al,d4,c5});
Eq5:= {al =0,¢5=0,d4 = a2} (1.1.7)

:We examine the Jacobi identites one more time:
> ddthetal_s2:=Tools:-DGsimplify(eval(ddthetal_ s,Eq5));

ddtheta2_32:=TooIs:-DGsimpIify(eval(ddtheta2_s,Eq5));
ddtheta3_s2:=Tools:-DGsimplify(eval(ddtheta3_s,Eq5));

ddthetad4_s2:=Tools:-DGsimplify(eval(ddtheta4_s,Eq5));
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ddtheta5_s2:=Tools:-DGsimplify(eval(ddtheta5_s,Eq5));
ddthetal_s2:=0 01 AO2N03
ddtheta2_s2:=0 601 ANO2N03
ddtheta3_s2 = — a4 61 A62 A63 - (a2 d2 + a3 + d5) 61 A62 A 64
ddtheta4_s2:=—2 a4 61 AN62 N 64
ddtheta5_s2:=—2 a5 61 A62 N\ 64 (1.1.8)
;We now have the following restrictions on the structure constants:
> EQ6:={
op(Eql),
eval(op(Eq3),EqQ5),
op(EQg5),

op(solve({
Hook(Hook(Hook(ddtheta3_s2,el),e2),e4),
Hook(Hook(Hook(ddtheta4_s2,el),e2),e4),
Hook(Hook(Hook(ddtheta5_s2,el),e2),e4)
},{d5,a4,a5}))

b
Eq6:={al =0,a4=0,a5=0,bl =0,b2=0,b3=0a2,b4=0,b5=0,c1=0,c2=0,c3 (1.1.9)

=0,c4=0,c5=0,dl =1,d4=a2,d5=-a2d2—-a3,gl =0,g2=1,9g3=-d2, g4
=0,95=0,h1=0,h2=0,h3=1,h4=0,h5=0}
;The structure equations thus take the following form:

> eval(LieAlgebraData([el,e2,e3,e4,e5],alg_N1),Eq6);
[el,e2] = a2e2+a3e3, [el,e3] = a2 e3, [el, e4] = el +d2e2 +d3 e3 + a2 e4 - (1.1.10)

(a2d2+a3) e5,[el,e5] = e2 [e2,e3] =0, [e2 e4] = e2 —d2 e3, [e2, e5] =
—e3,[e3,ed] =e3,[e3,e5]1=0,[e4,e5]=0

:The following change of basis simplifies the algebra:
> eval(LieAlgebraData(
[el-a3*e5,e2,e3,e4-d2*e5,e5],
alg_N1),Eq6);
lel,e2] = a2e2 [el,e3] = a2e3 [el, e4] = el + d3 e3+ a2 e4, [el, e5] = e2, [e2,e3 (1.1.11)
1=0,[e2, ed] =e2, [e2, e5] = —e3,[e3,ed] =e3,[e3,e5] =0, [e4,e5]=0
_Suppose a2 is nonzero. Then the following change of basis and
| relabeling of constants gives:
> eval(eval(LieAlgebraData([
(1/a2)*(el-a3*e5)+e4-d2*e5,
e2,
a2*e3,
e4-d2*eb,
a2*eb
],alg_N1),Eq6),d3/a2"2=d3);
[el,e2]=0,[el, e3] =0, [el,e4] = el +d3e3 [el, e5] = e2 [e2,e3] =0, [e2, e4 (1.1.12)
]=e2 [e2,e5]= —e3 [e3,ed] =e3,[e3,e5]=0,[ed,e5]=0

:Thus we may take a2=0 without loss of generality:
> Eq7:={op(eval(Eq6,{a2=0})),a2=0};
Eq7:= {al =0,a2=0,a4=0,a5=0,b1 =0,b2=0,b3=0,b4=0,b5=0,c1=0,c2 (1.1.13)

=0,c3=0,c4=0,c5=0,d1=1,d4=0,d5=-a3,g1 =0,g2=1,g3 =-d2, g4
=0,95=0,h1=0,h2=0,h3=1,h4=0,h5=0}
:We initialize this algebra now:
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> LD_N1l:=eval(LieAlgebraData(
[el-a3*e5,e2,e3,e4-d2*e5,e5],
alg N1),Eq7);
LD_NI:=[el,e2] =0, [el,e3] =0, [el,e4] = el +d3e3,[el,e5] = e2, [e2,e3] =0, (1.1.14)
[e2,ed] =e2 [e2,e5] = —e3, [e3,e4] =e3,[e3,e5] =0, [e4,e5] =0
> DGsetup(LD_N1,[x],[0]);
Lie algebra: alg_N1 (1.1.15)
;We find the nilradical:
> Nilradical();
[xI, x2, x3, x5] (1.1.16)

Consider an arbitrary vector not in the nilradical
(i.e., any vector with an x4 component). By requiring
that it also be in the centralizer of the isotropy, we may
| take the x1 and x2 components to be zero.
> X:=evalDG(alpha*x4+beta*x3+gamma*x5);
X:=Bx3+oax4d+yx5 (1.1.17)

;We find its adjoint restricted to the nilradical:
> AX:=Adjoint(X,[x1,x2,x3,x5]);

- 0 0 0
-y -oo 0 0
AX:= (1.1.18)
-od3 y -o O
0 0 0 0

[ The matrix AX is diagonalizable if and only if d3=y=0. Thus,
within the centalizer of the isotropy, there is a diagonalizable
complement to the nilradical if and only if d3=0.

In the d3=0 case, the following change of basis gives
| the algebra s_5,37 with isotropy spanned by e4:
> eval(LieAlgebraData([-x3,x2,x1,x5,x4]),d3=0);
[el,e2] =0, [el,e3]=0,[el,e4] =0, [el,e5] =el, [e2,e3]=0,[e2 e4] =el, [e2e5(1.1.19)
]=e2, [e3,ed] =e2 [e3,e5] =e3,[ed,e5]=0

In the d3 nonzero case, the following change of basis gives

| the algebra s_5,38 with isotropy spanned by e4:

> eval(LieAlgebraData([
-abs(d3)*x3,
sqrt(abs(d3))*x2,
x1,
sqrt(abs(d3))*x5,
x4

]1),d3/abs(d3)=epsilon);
[el,e2] =0, [el,e3]=0,[el,e4] =0, [el,e5]=el, [e2,e3]=0,[e2 ed] =el, [e2 e5(1.1.20)

]=e2[e3 e4] =e2 [e3 e5]=—cel+e3 [ed,e5]=0

\ 4 Section 7.2: The Centralizer of the Isotropy is Abelian

In this case, h3 is zero. We examine the
Jacobi identities.

First recall that given h3=0, h1=h2=h4=h5=g1=g2=0 from the following:
|_> O=evalDG(
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LieBracket(e2,LieBracket(e4,e5))+
LieBracket(e5,LieBracket(e2,e4))+
LieBracket(e4,LieBracket(e5,e2))

)

0= —hlel-(gl+h2)e2+(g2—h3) e3—h4ed4—h5e5 (1.2.1)
> Eq1:={h1=0,h2=0,h3=0,h4=0,h5=0,91=0,92=0};
Eql:={gl=0,92=0,h1=0,h2=0,h3=0,h4=0,h5=0} (122)

> ddthetal:=ExteriorDerivative(ExteriorDerivative(thetal)):
ddtheta2:=ExteriorDerivative(ExteriorDerivative(theta?2)):
ddtheta3:=ExteriorDerivative(ExteriorDerivative(theta3)):
ddthetad:=ExteriorDerivative(ExteriorDerivative(theta4)):
ddthetab:=ExteriorDerivative(ExteriorDerivative(thetab)):

> ddthetal:=Tools:-DGsimplify(eval(ddthetal,Eql));
ddtheta2:=Tools:-DGsimplify(eval(ddtheta2,Eql));
ddtheta3:=Tools:-DGsimplify(eval(ddtheta3,Eql));
ddtheta4:=Tools:-DGsimplify(eval(ddtheta4,Eql));
ddtheta5:=Tools:-DGsimplify(eval(ddtheta5,Eql));

ddthetal := - (c2al —a2cl+c3bl —b3cl+c4dl) 6162703 - (g3 bl —d3cl
+g4dl) 61 N62N64+ Dbl 61 A62A65—d2 cl 01 AO3AO4 —cl 61 AO3ABS
+c1dl 62A03N64

ddtheta2:=(al b2 — bl a2 — c3b2 + b3 c2—c4d2 —c5) 01 A62A03 +(al d2—dl a2
—g3b2+d3c2—g4d2—g5) 01 N02704+(al +b2) 01 A62705+ (b1 d2
—dl b2 —d2c2) 01 N03N04+ (b1 —c2) 61 AO3AO5 +dI 61 A64A65 +d2 cl 62
AO3A 64+ cl 62 N03A65

ddtheta3:=(al b3 +a2c3—bl a3 —c2a3+b4 g3 —c4d3 —b5) 01602703 +(al d3
+a2g3—dla3—g3b3+d3c3—g4d3+d4g3—ds5) 60162704 - (a2 - b3) 61
AO2A605+ (bl d3+g3b2—dl b3—d2c3) 01 AN63A04— (b2 +c3) 61 AO3AB5 -
(d2+g3) 61 A04705+(d3 cl+c2g3) 62A03A04— c262AN03A05

ddtheta4:=(al b4 + a2 c4— bl a4 — c2a4 + b3 c4— c3b4 + b4 g4 — c4d4) 61 A62 A 63
+(ald4+a2g4—dlad —b4 g3+ c4d3) 61 N62A04 + b4 01 ANO2A65 + (b1 d4
+b2g4—dl b4 —c4d2) 61 NO3ANO4 — c401 ANO3NO5 — g4 61 A4 A05 +(cld4
+c2g4) 62AN03 N64

ddtheta5:=(al b5+ a2 c5— bl a5— c2a5+ b3 c5+ b4 g5 — c3b5 —c4d5) 61 A62A63 (1.2.3)
+(ald5+a2g5—-dla5-g3b5+d3c5+d4g5—g4d5) 61 A62A64 + b5 61 A62
A65+(bl d5+b2g5—dl b5—c5d2) 01 A63A04—c561 NO3IAO5 — g5 01 A64
A5 +(c1d5+c2g5) 62N03A04

| We consider the linear terms:

> Eq2:={
Hook(Hook(Hook(ddthetal,el),e2),e5),
Hook(Hook(Hook(ddthetal,el),e3),e5),

Hook(Hook(Hook(ddtheta2,el),e2),e5b),
Hook(Hook(Hook(ddtheta2,el),e3),eb),
Hook(Hook(Hook(ddtheta2,el),e4),eb),
Hook(Hook(Hook(ddtheta2,e2),e3),e5),

Hook(Hook(Hook(ddtheta3,el),e2),e5b),
Hook(Hook(Hook(ddtheta3,el),e3),eb),
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Hook(Hook(Hook(ddtheta3,el),e4),eb),
Hook(Hook(Hook(ddtheta3,e2),e3),e5),

Hook(Hook(Hook(ddtheta4,el),e2),eb),
Hook(Hook(Hook(ddtheta4,el),e3),eb),
Hook(Hook(Hook(ddtheta4,el),e4),eb),

Hook(Hook(Hook(ddtheta5,el),e2),eb),
Hook(Hook(Hook(ddtheta5,el),e3),e5),
Hook(Hook(Hook(ddtheta5,el),e4),eb)

Eq}:Z:’= {bl, b4, b5, c1,d1, -cl, -c2, -c4, -¢5, -g4, -g5, al + b2, -a2 + b3, bl — c2, -b2 (1.2.4)
—c3,-d2—g3}

E Eq3:=solve(Eq2,{b1,b2,b3,b4,b5,c1,c2,c3,c4,c5,d1,93,94,95});

Eq3:= {bl =0,b2 =-al,b3=a2,b4=0,b5=0,c1=0,c2=0,c3=al,c4=0,c5=0,d1 (1.2.5)
=0,93=-d2,g4=0,g5=0}

| Now we reexamine the Jacobi identities using this partial solution:

> ddthetal_s:=Tools:-DGsimplify(eval(ddthetal,Eq3));
ddtheta2_s:=Tools:-DGsimplify(eval(ddtheta2,Eq3));
ddtheta3_s:=Tools:-DGsimplify(eval(ddtheta3,Eq3));
ddtheta4_s:=Tools:-DGsimplify(eval(ddtheta4,Eq3));
ddtheta5_s:=Tools:-DGsimplify(eval(ddtheta5,Eq3));

ddthetal_s:= 0 61 AO2N63
ddtheta2_s:=0 601 AN62A63
ddtheta3_s=2 al a2 01 N62A03 +(2 al d3 — d4 d2 — d5) 61 A62 A 64
ddthetad_s:= al d4 61 N62 N 64
ddtheta5_s = al d5 01 A 62 N 64 (1.2.6)

When al is nonzero, a2=d3=d4=d5=0 and the Jacobi identities are fully
satisfied. This is the only case in which the algebra decomposes into the
direct sum of a three-dimensional algebra and the two-dimensional
|_abelian algebra, as we shall see below.
> eval(eval(LieAlgebraData([
el,e2,e3,e4,e5
1).{op(Eql),0p(EQq3)}),{d3=0,d4=0,d5=0,a2=0});
lel,e2] = al el +a3e3+aded+a5e5, [el,e3] = —al e2, [el,e4] =d2e2 [el,e5 (1.2.7)

1=e2[e2e3] =ale3 [e2e4] = —d2e3 [e2 e5] = —e3, [e3,e4] =0, [e3, e5
1=0,[e4,e5]=0

Under the following change of basis, we find that the algebra is given by

| sl(2,F)+2n,1,1 with isotropy spanned by e3+e4.

> eval(eval(LieAlgebraData([
(el*al+(a3/2+(ad4*d2+ab)/(2*al))*e3+ad*ed+ab*eb5)*sqrt(2)/al”2,
2*e2/al,
sqrt(2)*e3/al,
-sqrt(2)*e5-sqrt(2)*e3/al,
e4-d2*eb
1),{op(Egl),0p(Eq3)}),{d4=0,d5=0,d3=0,a2=0,-(al”2*a3-al*ad*d2-al*a5)
/lal”3=a3});

[el,e2] =2 el, [el,e3] = —e2 [el, e4] = 0,[el,e5] =0, [e2 e3] =2 e3,[e2,e4] =0, (1.2.8)

[e2,e5]=0,[e3,e4]=0,[e3,e5] =0, [e4,e5]=0

=Otherwise, al=0 and the Jacobi identities are fully satisfied if and
=only if d5=-d2*d4, as follows:
> eval(eval(LieAlgebraData([el,e2,e3,e4,e5]),
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[el,e2] = a2 e2+a3e3+ a4 ed4+a5e5, [el, e3] = a2e3 [el, e4] = d2e2 +d3 e3 (1.2.9)
+dded—d2ddes, (el e5] =e2 [e2,e3]=0,[e2 e4] = —d2e3, [e2 e5] = —e3,
[e3,e4] =0,[e3,e5]1=0,[e4,e5] =0

:The following change of basis and relabeling of a5 simplifies the algebra:
> LD_N1l:=eval(eval(eval(
LieAlgebraData([el-a3*e5,e2,e3,e4-d2*e5,e5],alg_N1),
{op(Eql),0p(EQq3)}),{al=0,d5=-d2*d4}),a4*d2+a5=a5);
LD_NI:= [el,e2] = a2 e2 + a4 e4 + a5 e5, [el, e3] = a2 e3,[el, e4| = d3 e3+d4 e4, (1.2.10)
[el,e5]=e2 [e2,e3]=0,[e2 e4] =0,[e2, e5] = —e3,[e3,e4d] =0,[e3,e5] =0,
[e4,e5]1=0

:We initialize this algebra:
> DGsetup(LD_N1,[x],[0]);
Lie algebra: alg_N1 (1.2.11)

[To identify the unique algebras in this family, we consider the derived algebra.
The following Lie brackets demonstrate that the derived algebra necessarily
| contains x2 and x3:

> LieBracket(x1,x5);
LieBracket(x5,x2);
x2

x3 (1.2.12)

;The derived algebra is therefore entirely determined by the following vectors:

> evalDG(LieBracket(x1,x2)-a2*x2);
evalDG(LieBracket(x1,x4)-d3*x3);

ad x4 + a5 x5
d4 x4 (1.2.13)

_Specifically, the dimension of the derived algebra is two plus the rank of the
=following matrix, A:
> A:=Matrix([[a4,a5],[d4,0]]);

ad a5

A= 1.2.14
d4 0 ( )

\ 4 Section 7.2.1: The Derived Algebra is Two-Dimensional

In this case, the matrix A from above is the zero matrix, i.e. a4=a5=d4=0.

| We initialize the algebra under this assumption:

> LD_N21:=eval(
LieAlgebraData([x1,x2,x3,x4,x5],alg_N21),
{a4=0,a5=0,d4=0});

LD_N21:=[el,e2] = a2e2 [el,e3] = a2e3, [el, e4]| = d3e3 [el, e5] = e2,[e2, (1.2.1.1)

e3]=0,[e2,e4]=0,[e2, e5]= —e3,[e3,e4] =0,[e3,e5]=0,[e4,e5]=0
> DGsetup(LD_N21,[y],[p]);
Lie algebra: alg_N21 (1.2.1.2)

We begin by considering the center. The following Lie brackets demonstrate
| that the center cannot contain y1, y2, or y5:
> LieBracket(yl,y5);
LieBracket(y2,y5);
y2
—y3 (1.2.1.3)

:We consider the adjoints of y3 and y4.
> Adjoint(y3);
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Adjoint(y4);
0 00O0O
0 00O0O
-a2 0 0 00
0000
0000
0000
0000
-d3 00 00 (1.2.1.4)
0 00O0O
0 00O0O
=If the center is one-dimensional, then at least one of a2 and d3 is nonzero.
B%/ gogsidering the lower central series, we may determine whether or not
=i Series("Lower")[Z];
[a2y2 a2 y3] (1.2.1.5)

If a2 is non-zero (i.e., the second term in the lower central series is
two-dimensional), then the following change of basis gives n_5,4
| with isotropy spanned by e2+e3.
> LieAlgebraData(]
-1/a2*y3,
l/a2*y2,
-1/a2*y2+y5,
-1/a2*y1,
d3/a2*y3-y4]);
[el,e2]=0,[el,e3]=0,[el,ed] =el, [el,e5]=0,[e2 e3] =el, [e2 ed] =e2 (1.2.1.6)
[e2,e5]1=0,[e3,e4d] =0,[e3,e5]=0,[e4,e5]=0

If a2 is zero, then d3 is non-zero, and the following change of basis
| gives s_4,11+n_1,1 with isotropy spanned by e5.
> eval(LieAlgebraData([
-y 3,
y2+y3,
1/d3*y4,
yl-y2,
y5]),a2=0);
[el,e2]=0,[el,e3]=0,[el,e4] =0, [el,e5]1=0,[e2,e3]=0,[e2,e4] =0, [e2 (1.2.1.7)

eS5]=el, [e3,ed] =el, [e3,e5] =0, [e4, e5] =e2

The center is two-dimensional if a2=d3=0, in which case the following

| change of basis gives s_4,1+n_1,1 with isotropy spanned by e5.

> eval(LieAlgebraData([
-y 3,
y2+y3,
yl-y2,
y4,
y5]),{a2=0,d3=0});

[el,e2] =0, [el,e3]=0,[el,e4] =0, [el,e5]=0,[e2,e3]=0,[e2,e4] =0, [e2 (1.2.1.8)

eS| =el, [e3,e4] =0,[e3,e5] =e2, [e4,e5] =0

Section 7.2.2: The Derived Algebrais Three-Dimensional
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=Recall A from above; its rank is one in this case:
> A;
ad as5
(1.2.2.1)
d4 0

A is rank one if A is not the zero matrix and either a5=0 or d4 = 0.

| Recall also the structure equations below:
> LieAlgebraData([x1,x2,x3,x4,x5]);
lel,e2] = a2e2+a4ed4+a5e5, [el, e3) =a2e3, [el,e4] = d3 e3+dd e4, [el, e5(1.2.2.2)
]=e2, [e2e3]=0,[e2,ed] =0,[e2, e5] = —e3,[e3,e4] =0,[e3,e5] =0,
[e4,e5]1=0
:As shown above, the derived algebra contains the following vectors:
> Derl:=[x2,x3,ad4*x4+a5*x5,d4*x4];
Derl == [x2, x3, a4 x4 + a5 x5, d4 x4] (1.2.2.3)
:Consider the Lie brackets of these:
E LieDerivative(Derl1,Derl);
[[0x1,0xI, —a5x3,0x1],[0xI,0x1,0xI,0xI],[a5x3,0xI,0x1,0xI],[0x1, (1.2.2.4)

0x1,0x1,0x1]]

:Notice that the derived algebra is abelian if and only if a5=0.
\ 4 Section 7.2.2.1: The Derived Algebra is Abelian
In this case, a5=0 and a4, d4, or both are nonzero.

| The structure equations are as follows:
> eval(LieAlgebraData([x1,x2,x3,x4,x5]),a5=0);
lel,e2] = a2e2+aded, [el, e3] = a2e3, [el,e4| = d3e3+dde4,[el,e5 (1.2.2.1.1)
]=e2 [e2,e3]=0,[e2,e4d] =0,[e2, e5]= —e3,[e3,e4] =0, [e3,e5
1=0,[e4,e5]=0

[ Consider the center by examining the adjoint of an
| arbitrary vector:

> Adjoint(R*x1+S*x2+T*x3+U*x4+V*x5);
0 0 0 0 0

-Sa2-V Ra2 O 0 R
-Ta2—Ud3 V Ra2 Rd3 -S (1.2.2.1.2)
-Sa4-Ud4 Ra4 0 Rd4 O

-Sa> Ra5 O 0 0

[For this matrix to be the zero matrix, R=S=V=0, so any
vector in the center is necessarily a linear combination of
| X3 and x4:

> Adjoint(T*x3+U*x4);

0 0000
0 0000
-Ta2-Ud3 0 0 0 0 (1.2.2.1.3)
-Ud4 0000
0 0000
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The center is two-dimensional if and only if a2=d3=d4=0, and since

A is nonzero, a4 is nonzero. In this case, the following change of

| basis gives n_5,2 with isotropy spanned by e5.

> eval(
LieAlgebraData([x3,-a4*x4,-x2,-x1,x5]),
{a2=0,a5=0,d3=0,d4=0});

[el,e2] =0,[el,e3] =0, [el,e4] =0,[el,e5]=0,[e2,e3] =0, [e2 e4

1=0,[e2,e5]=0,[e3,ed] =e2, [e3,e5] =el, [e4,e5] =e3

[If the center is one-dimensional, then either d4=0 and a2 and a4 are

nonzero, or a2=0 and at least one of d3 and d4 is nonzero.

We consider the lower central series.

| Begin by recalling the structure equations.

> eval(LieAlgebraData([x1,x2,x3,x4,x5]),a5=0);

[el,e2] =a2e2+aded, [el, e3] = a2e3, [el, e4] = d3e3+d4 e4, [el, e5
]=e2 [e2,e3]=0,[e2,e4d] =0,[e2, e5]=—e3,[e3,e4] =0, [e3,e5
1=0,[e4,e5]=0

:The derived algebra is spanned by:
> Der2:=[x2,x3,x4];
Der?2:= [x2, X3, x4]

=The Lie bracket of this span with the original algebra gives the
| second algebra in the lower central series:

> LCS2a:=eval(LieDerivative([x1,x2,x3,x4,x5],Der2),a5=0);
LCS2a:= [[a2x2 + a4 x4 + 0 x5, a2 x3,d3 x3 + d4 x4], [0 x1,0 x1,0 x1],

[0x1,0xI,0x1],[0x1,0x1,0xI],[x30xI,0x1]]

We consider the span of these vectors by constructing a matrix with
rows corresponding to vectors and columns corresponding to basis
| vectors. We delete the zero rows manually.
> LCSMatZ:=

Matrix([seq(seq(
GetComponents(LCS2ali][j],[x1,x2,x3,x4,x5]),
| i=1..5),j=1..3)]):
> LCSMat:=LinearAlgebra:-DeleteRow(LCSMatZ,
[2..4,7..10,12..15]);

0 a2 0 a4 O

0O 0 1 0 O
LCSMat :=

0 0 a2 0 O

0 0 d3 d4 0

[ From this matrix, we see that the lower central series' second term
|is spanned by:
> LCS2b:=evalDG([a2*x2+a4*x4,x3,d4*x4]);

LCS2b = [ a2 x2 + a4 x4, x3, d4 x4]

;Now, we build the next term in the lower central series.
> LCS3a:=eval(LieDerivative([x1,x2,x3,x4,x5],LCS2b),a5=0);

+d42x4],[0x1,0x1,0 x1],[0x1,0x1,0x1],[0x1,0x1,0 x1],
[a2x3,0x1,0x1]]

> LCSMatZ2:=

Matrix([seq(seq(
GetComponents(LCS3ali][j].[x1,x2,x3,x4,x5]),
i=1..5),j=1..3)]):

(1.2.2.1.4)

(1.2.2.1.5)

(1.2.2.1.6)

(1.2.2.1.7)

(1.2.2.1.8)

(1.2.2.1.9)

LCS3a=[[a22x2 + a4 d3x3 +(a2 a4 + a4 d4) x4 +0 x5,a2 x3,d4 d3x3 (1.2.2.1.10)
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> LCSMat2:=LinearAlgebra:-DeleteRow(LCSMatZ2,
[2..4,5,7..10,12..15]);

0 a2’ a4d3 a2a4+a4d4 0
LCSMat2:=| 0 O a2 0 0 (1.2.2.1.11)

0 0 d4d3 d42 0

[If a2 is nonzero, then d4=0 and a4 is nonzero. The third algebra
in the lower central series is then two-dimensional and equal to the
second algebra; both are spanned by x3 and a2/a4*x3+x4.

Suppose a2=0. Then since a4 and d4 are not both zero, and the case
in which a2=d3=d4=0 has been done, the third algebra in the lower
central series is one-dimensional and spanned by d3*x3+d4*x4. In
this case, the second algebra in the lower central series is spanned
by x3 and x4.

An alternative way to distinguish these cases is by whether or not
the second algebra in the lower central series commutes with the
| isotropy:
> LieDerivative(LCS2b,[x5]);
[[ —a2x3],[0x1],[0x1]] (1.2.2.1.12)

Consider the a2 nonzero case first, in which d4=0 and a4 is nonzero.
The following change of basis gives s_5,20 with isotropy spanned by
| el-e2-e3
> eval(LieAlgebraData([
-1/a2*x3,
1/a2*x2-a4*d3/a2”3*x3+a4d/a2"2*x4,
-1/a2*x2+(ad4*d3/a2”3-1/a2)*x3-a4/a2”2*x4+x5,
-a4*d3/a2"3*x3+x4*a4/a2" 2,
1/a2*x1-1/a2*x2-a4*d3/a2”2*x5
1).{a5=0,d4=0});

[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5] = —el, [e2,e3] =el, [e2, (1.2.2.1.13)

ed]=0,[e2, e5]= —e2, [e3,e4d] =0,[e3,e5] =e4,[e4,e5] =0
[ Now consider the a2=0 case. The first terms in the lower central
| series are spanned by:
> [x2,x3,x4];

[x3,x4];
[d3*x3+d4*x4];
[x2, X3, x4]
[ X3, x4]
[d3 x3 + d4 x4] (1.2.2.1.14)

:We calculate the next term:
> eval(LieDerivative([d3*x3+d4*x4],[x1,x2,x3,x4,x5]),a2=0);
[[ —d4d3x3—d4?x4,0x1,0 x1,0 x1,0 xI]] (1.2.2.1.15)

[In this case, the lower central series terminates in the trivial algebra if
and only if d4=0.

In the case where d4=0, d3 is nonzero (since a2=d3=d4=0 is the case of
two-dimensional center). Furthermore, a4 is nonzero since we are considering
the case of three-dimensional derived algebra. The following change of basis
| gives n_5,6 with isotropy spanned by e4 for a4*d3 > 0
> eval(LieAlgebraData([
1/sqrt(ad4*d3)*x3,
-1/d3*x4,
-1/sqrt(ad*d3)*x2,
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x5,
1/sqrt(a4*d3)*x1
1),{d4=0,a5=0,a2=0});
[el,e2] =0,[el,e3] =0, [el,e4] =0,[el,e5]=0,[e2,e3] =0, [e2 e4

1=0,[e2 e5]=el,[e3,ed] =el, [e3,e5] = —e2, [ed,e5] =e3

If a4*d3 < 0, the following change of basis gives the same algebra-
| subalgebra pair.
> eval(LieAlgebraData([
1/sqrt(-a4*d3)*x3,
-1/d3*x4,
1/sqrt(-a4*d3)*x2,
-X5,
1/sqrt(-a4*d3)*x1
1),{d4=0,a5=0,a2=0});
[el,e2] =0,[el,e3] =0, [el,e4] =0,[el,e5]=0,[e2,e3] =0, [e2 e4
1=0,[e2, e5] =el, [e3,ed] =el,[e3,e5] = —e2, [e4,e5] = e3

In the case where d4 is nonzero, we must consider whether or not
| a4 is zero. Consider the center:

> eval(Adjoint(T*x3+U*x4),a2=0);
0 0

0

0 0 0
-ud3 0 0
-Ud4 0 0
0 000

S o o o O

[With d4 nonzero, the center is spanned by x3. Consider the
| structure equations:

> eval(LieAlgebraData([x1,x2,x3,x4,x5]),{a2=0,a5=0});

1=0

We consider the upper central series. We consider the adjoint
of an aribtrary vector and ignore the third row, which corresponds
| to the center:

> LinearAlgebra:-DeleteRow(eval(
Adjoint(R*x1+S*x2+T*x3+U*x4+V*x5),
{a2=0,a5=0}),[3]);

0 0O 0 0 O
-V 0 0 O R

-Sa4—-Ud4 Ra4 0 Rd4 O
0 0 0 0 O

;We require R=V=0.

> LinearAlgebra:-DeleteRow(eval(
Adjoint(S*x2+T*x3+U*x4),
{a2=0,a5=0}),[3]);

[el,e2] =aded [el,e3]=0,]el, ed] = d3e3+dded, [el, e5] =e2 [e2
e3]=0,[e2,e4]=0,[e2, e5] = —e3,[e3,e4] =0, [e3,e5] =0, [e4, e5

(1.2.2.1.16)

(1.2.2.1.17)

(1.2.2.1.18)

(1.2.2.1.19)

(1.2.2.1.20)

(1.2.2.1.21)
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0 0

0
0 0 0
(1.2.2.1.21)

-Sa4-Ud4 0 0

0 0

S o o o

0
0
0
00

[ Since d4 is nonzero, the second term in the upper central
| series is spanned by

[> UCS2:=evalDG([x3,x2-a4/d4*x4]);

a4
UCS2:= [x3, X2 — 7 x4 (1.2.2.1.22)
We build the next term in the series by consider the adjoint
| of an arbitrary vector in a basis adapted to UCS2.
> LinearAlgebra:-DeleteRow(eval(
Adjoint(R*x1+S*(x2-a4/d4*x4)+T*x3+U*x4+V*x5,
[x1,x2-a4/d4*x4,x3,x4,x5]),
{a2=0,a5=0}),[2,3]);

0 00 O 0

Ud4?+ Va4 Ra4
UdEaVad g gag Rad (1.2.2.1.23)

0 00 O 0

Since d4 is nonzero, we require R=0. If a4=0, we also require U=0,
giving the algebra spanned by UCS2 together with x5. If a4 is
nonzero, we require V = -U*d4/a4 and he algebra is spanned by
UCS?2 together with x4-d4/a4*x5. Thus a4 determines whether or
not the isotropy is in the third upper central series algebra
(which happens to be the terminal algebra in either case).

If a4 is nonzero, the following change of basis gives s_5,14 with
| isotropy spanned by e2+e3+e4:
> simplify(eval(LieAlgebraData([
x3/d4,
x2/d4-x3*d3*ad4/d4"3-a4/d4"2*x4,
-x2/d4+x5,
x3*a4*d3/d4”3+ad/d4n2*x4,
x1/d4+x5*a4*d3/d4"2
1).{a2=0,a5=0}));
[el,e2]=0,[el,e3]=0,[el,e4d] =0,[el,e5]=0,[e2 e3]= —el, [e2,e4 (1.2.2.1.24)

1=0,[e2,e5]1=0,[e3,ed] =0,[e3,e5] = —e2, [e4,e5] = —ed

If a4 = 0, then the following change of basis gives s_5,14 with

| isotropy spanned by el-e3:

> simplify(eval(LieAlgebraData([
x3/d4,
x2/d4,
x3/d4+x5,
d3/d4nr2*x3+1/d4*x4,
x1/d4
1).{a2=0,a4=0,a5=0}));

[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5]=0,[e2 e3] = —el, [e2 e4 (1.2.2.1.25)

1=0,[e2,e5]=0,[e3,e4] =0, [e3,e5] = —e2, [e4,e5] = —e4

[We now consider the case in which the center is trivial, i.e., a5=0,

| but a2 and d4 are nonzero. The structure equations, again, are:

> LD_N221:=eval(LieAlgebraData([x1,x2,x3,x4,x5],alg_N221),a5=0);
(1.2.2.1.26)
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LD_N221:=[el,e2] = a2 e2 + a4 e4, [ el,e3] = a2 e3, [el, e4| = d3 e3 (1.2.2.1.26)
+d4e4,[el,e5] =e2 [e2,e3]=0,[e2,e4] =0,[e2, e5]= —e3,[e3,
ed4]1=0,[e3,e5]1=0,[e4,e5]=0

;We initialize this and consider the nilradical:

> DGsetup(LD_N221,[y],[p]);
Lie algebra: alg_N221 (1.2.2.1.27)

> Nilradical();
[¥2 y3,y4,¥5] (1.2.2.1.28)

;The only nonzero Lie bracket of these basis vectors for the nilradical is
> LieBracket(y5,y2);
y3 (1.2.2.1.29)

:Consider an arbitrary vector non in the nilradical, and its adjoint:

> X:=evalDG(alpha*yl+beta*y2+gamma*y3+delta*y4+epsilon*y5);
X=oyl+By2+yy3+38yd+ey5 (1.2.2.1.30)

[> AX:=Adjoint(X,[X,y2,y3,y4,y5]);

0 o0 0 0 0

0 aoa2 O 0 o

AX:=|0 & oa2 od3 -B (1.2.2.1.31)

0 aoa4d O od4 O
0 o0 0 0 0

:We find the eigenvalues of this matrix (recall that a2 and d4 are nonzero):
> factor(LinearAlgebra:-CharacteristicPolynomial(AX,lambda));
22 (0az—2)% (odd—2) (1.2.2.1.32)

[ Thus if a2 is not equal to d4, the eigenvalues are zero and 1 with algebraic
multiplicity two and d4/a2 with algebraic multiplicty one. Otherwise, 1 is an
eigenvalue of algebraic multiplicity three.

If there are three distinct eigenvalues, then the following change of basis gives
| s_5,30 with a not equal to one and isotropy e2+e3+e4 for a4 nonzero:
> chi4:=(a4*d3/(a2-d4)"2/d4)*y3-a4/d4/(a2-d4)*y4:
eval(LieAlgebraData(]
-1/a2*y3,
(1/a2*y2-d4/a2*chid),
(-1/a2*y2+(d4/a2-1)*chid+y5),
chi4,
(1/a2*yl-a4*d3/(a2”"2-a2*d4)*y5)
]1),d4/a2=a);
[el,e2]=0,[el,e3]=0,[el,e4] =0, [el,e5]= —el, [e2,e3] =el, [e2, (1.2.2.1.33)

ed] =0, [e2 e5] = —e2 [e3,e4]=0,[e3,e5]=0, | e4,e5] = —ae4

[If a4 = 0, the following change of basis gives the same algebra,
| but with isotropy e2+e3:

> eval(LieAlgebraData([
-1/a2*y 3,
1/la2*y2,
-1/a2*y2+y5,
1/(d4*(a2-d4))*(d3/(a2-d4)*y3-y4),
1/a2*yl+(a4*d3)/(a2*d4-a272)*y5
1).{a4=0,d4/a2=a});
[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5] = —el, [e2,e3] =el, [e2, (1.2.2.1.34)
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ed]=0,[e2 e5] = —e2 [e3,e4] =0,[e3,e5] =0, [e4, e5| = —ae4

[ These two isotropies, h, are distinguished by whether or not there is
a complement to the nilradical, X such that, such that [X,h] is an
eigenvalue of ad(X).

If there are only two distinct eigenvalues (one of which is zero), then
| a2=d4. Consider AX-a2*al:

> eval(AX,d4=a2)-a2*alpha*LinearAlgebra:-ldentityMatrix(5);
-aa2 0 0 O 0
0 0 0 O o
0 e 0 ad3 -B (1.2.2.1.35)
0 oa4 0 O 0
0 0 0 0 -oa2

When a4 is nonzero, the rank is independent of choice of X and is
given by three if d3=0 and four otherwise.

Therefore, given a2=d4, a4 is zero if and only if there are two vectors
X and Y not in the nilradical such that ad(X)-a2*al and ad(Y)-a2*al
are of distinct rank. If the ranks are two and three, then d3=0. If the
ranks are three and four, then d3 is nonzero.

We now find changes of basis for these cases:

If a4 and d3 are nonzero, the following change of basis gives
| s_5,32 with isotropy spanned by e2+e3
> chi3:=evalDG(
a4*d3/a2"3*y2+
2*d3"2*a4”2/a2” 5%y 3-
ad4n2*d3/a2”4*y4):

eval(LieAlgebraData(]
a4nr2*d312/a2"5*y 3,
-chi3+a4*d3/a2”2*y5,
chi3,
ad4*d3/a2”3*y2-chi3,
(1/a2*y1-a4*d3/a2”2*y5)
1).{d4=a2});
[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5] = —el, [e2,e3] =el, [e2, (1.2.2.1.36)

e4]1=0,[e2,e5]1=0,[e3,e4] =0, [e3,e5] = —e3—e4, [ed,e5] = —el
—e4

If a4=0 and d3 is nonzero, the following change of basis gives
| s_5,31 with isotropy spanned by e2+e3
> eval(LieAlgebraData([
-1/a2*y3,
1/la2*y2,
-1/a2*y2+y5,
a2/d3*y3-1/d3*y4,
1/a2*y1
1).,{d4=a2,a4=0});
[el,e2] =0, [el,e3]=0,[el,e4] =0, [el,e5] = —el, [e2,e3] =el, [e2, (1.2.2.1.37)

ed]=0,[e2 e5]= —e2 [e3,e4] =0,[e3,e5] =0, [e4,e5] = —el — e4

[If a4 is nonzero and d3=0, the following change of basis gives
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| s_5,29 with isotropy spanned by e2+e3
> lprint(%);

_DG([["LieAlgebra™", "L1", [5, table( [ ]1)]1], [[[1, 5, 1], -11], [
[2, 3, 17, 1], [[2, 5, 1], O], [[2, 5, 2], -11, [[2, 5, 4], 0], [
437 5, l]v 0]7 [[37 5, 4]1 0]1 [[41 5, l], _1]1 [[41 5, 4]! _1]]])

> eval(LieAlgebraData([
-1/a2*y3,
-1/a2*y2+ad/a2”2*y4+y5,
1/a2*y2-adla2”2*y4,
adla2”2*y4,
1/a2*y1
1),{d4=a2,d3=0});
[el,e2] =0,[el,e3]=0,[el,ed] =0,[el, e5] = —el, [e2,e3] = —el, (1.2.2.1.38)
[e2,e4] =0,[e2,e5]=0,[e3,e4d] =0,[e3,e5] = —e3—e4, [e4,e5] =
—e4

If a4=d3=0, the following change of basis gives

| s_5,30 with a=1 and isotropy spanned by e2+e3

> eval(LieAlgebraData([
-1/a2*y3,
1/a2*y2,
-1/a2*y2+y5,
y4,
1/a2*y1
1),{d4=a2,a4=0,d3=0});

[el,e2]=0,[el,e3]=0,[el,e4] =0, [el,e5]= —el, [e2,e3] =el, [e2, (1.2.2.1.39)

ed]1=0,[e2 e5] = —e2 [e3,e4] =0,[e3,e5] =0, [e4,e5] = —e4

Section 7.2.2.2: The Derived Algebra is Non-Ableian

If the derived algebra is not abelian, a5 is nonzero, d4=0, and the
| structure equations are as follows:

> eval(LieAlgebraData([x1,x2,x3,x4,x5]),d4=0);

lel,e2] = a2e2+aded4+a5e5, el e3] = a2e3, [el, e4] =d3e3, [el,e5 (1.2.2.2.1)
]=e2 [e2,e3]=0,[e2,e4d] =0,[e2, e5]= —e3,[e3,e4] =0, [e3,e5
1=0,[e4,e5]=0

:The center cannot contain x1, x2, or x5:

> LieBracket(x1,x5); LieBracket(x5,x2);
x2

X3 (1.2.2.2.2)

[ Thus every vector in the center is of the form S*x3+T*x4. Examine
| the adjoint of an arbitrary vector in the center:

> eval(Adjoint(S*x3+T*x4),d4=0);

0 0000
0 0000

-Sa2-Td3 0 0 0 0 (1.2.2.2.3)
0 0000
0 0000

[ The center is thus one-dimensional or two-dimensional and is two-
dimensional if and only if a2=d3=0, in which case the following
change of basis simplifies the structure equations, which we will
initialize:

> LD_N222:=simplify(eval(LieAlgebraData([
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1/sqgrt(abs(ab))*x1,
a5/sqrt(abs(ab))*x2,
(abs(ab))"(3/2)*x3,

x4,

ad*x4+a5*x5
]l,alg_N222),{a2=0,d3=0,d4=0}))
assuming ab5::real;

5
el e?| = |275| e5 [el,e3]=0,[el,e4] =0, [el, e5] =e2 [e2, (1.2.2.2.4)

e3]=0,[e2,e4]=0,[e2, e5] = —e3,[e3,e4] =0,[e3,e5] =0, [e4, e5

1=0

[> DGsetup(LD_N222,[y],[p]);

Lie algebra: alg_N222 (1.2.2.2.5)

[The sign of a5 is essential and determines the signature of the
| Killing form:
> Killing();

LD_N222 :=

0000

000
0 000 (1.2.2.2.6)
000

oS O O

0 00O0O

Further, note taht the isotropy is spanned by a4*y4-y5. This is
| a sub algebra of the derived algebra if and only if a4=0:
> DerivedAlgebra();
[y2,y3,¥5] (1.2.2.2.7)

[If a4 is nonzero, then scaling y4 is an automorphism that allows us
| to take a4 =1 (i.e., take the isotropy to be y4+y5):

> LieAlgebraData([yl,y2,y3,-a4*y4,y5]);

as
= a5 e5,[el,e3]1=0,[el,e4] =0, [el,e5] = e2, [e2,e3] =0, [e2 (1.2.2.2.8)
ed]=0,[e2, e5] = —e3,[e3,e4]=0,[e3,e5]1=0,[e4,e5]=0

Now, if a5 > 0, the following change of basis yields s_4,6+n_1,1
| with isotropy spanned by e2-2*e3 or e2-2*e3+e5.
> eval(LieAlgebraData([
-y3,-y2+y5,-1/2*y2-1/2*y5,-yl,y4
1).{abs(a5)=a5});
[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5]=0,[e2 e3]=el, [e2e4] = (1.2.2.2.9)
—e2, [e2,e5]1=0,[e3,ed] =e3,[e3,e5]=0,[e4,e5]=0

If ab < 0, the following change of basis yields s_4,7+n_1,1
[ with isotropy spanned by e3 or e3-e5
> eval(LieAlgebraData([
y3,y2,-y5,-yl,y4
1).{abs(a5)=-a5});
[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5]=0,[e2,e3] =el, [e2 e4 (1.2.2.2.10)
1=e3[e2e5]=0,[e3,ed] = —e2, [e3,e5]=0,[e4,e5]=0

[This concludes the case of two-dimensional center. If the center is
one-dimensional, that a2 and d3 cannot both be zero. Recall the
| structure equations:

> eval(LieAlgebraData([x1,x2,x3,x4,x5]),d4=0);

el,e2

(1.2.2.211
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[el,e2] = a2e2+aded4+a5e5, el e3] = a2e3, [el, e4] = d3e3, [el,e5 (1.2.2.2.11)
]=e2,[e2,e3]=0,[e2,e4d] =0,[e2, e5]= —e3,[e3,e4] =0, [e3,e5
1=0,[e4,e5]=0

Suppose a2 is zero. Then the center is spanned by x3, and the second
algebra in the upper central series is spanned by x3 and x4. We show
this by considering the adjoint of a generic vector and deleting the
| third row:
> LinearAlgebra:-DeleteRow(eval(

Adjoint(R*x1+S*x2+T*x3+U*x4+V*x5),
{d4=0,a2=0}),[3]);

0 0O 00O
-V 0 0 O0R

(1.2.2.2.12)
-Sa4 Ra4 0 0 O

-Sa5 Ra5 0 0 O
[We thus see V=R=S=0, leaving a vector of the form T*x3+U*x4.

If, however, a2 is nonzero, the center is spanned by d3/a2*x3-x4

By the same process, we see that the upper central series terminates at

| the center:

> LinearAlgebra:-DeleteRow(eval(
Adjoint(R*x1+S*x2+T*x3+U*x4+V*x5,[x1,x2,x3,d3/a2*x3-x4,x5]),
{d4=0}),[4]);

0 0 0 0 0
Sa2-v Ra2 0 0 R
Sadd3+TaR+Ud3a2 d3Rad+Va?2 (1.2.2.2.13)
_ Ra2 0 -S§
a2 a2
-Sas Ra5 0 0 O

[We find that R=S=V=0 and T=-U*d3/a2, i.e., the algebra contains only
the center.

Therefore, a2 is zero if and only if the upper central series has two distinct
algebras. Otherwise, it terminates at the center.

Consider the a2=0 case first. We perform the following change of basis and
_initialize the algebra:
> LD _N222b:=eval(LieAlgebraData(][
1/sqgrt(abs(a5))*x3,
1/sqgrt(abs(ab))*x2,
-ad4/a5*x4-x5,
1/d3*x 4,
1/sqrt(abs(ab))*x1+a4*d3/(a5*sqrt(abs(ab)))*x2
]l,alg_N222b),{d4=0,a2=0});
LD_N222b:= [el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5]=0,[e2,e3 (1.2.2.2.14)

a
l=el [e2,ed] =0, [22, eS] = H e3, [e3,e4] =0, [e3,e5] = e2, | e4,
e5] = —el
[> DGsetup(LD_N222b,[w],[q]);

Lie algebra: alg_N222b (1.2.2.2.15)

:The signature of the Killing form is determined by the sign of a5:
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> Killing();
00 00O 0
00 00O 0
00O0O0 0
(1.2.2.2.16)

0000 0

2a5
0000 25|

Furthermore, the isotropy is spanned by w3+d3*a4/a5*w4 and is a
subalgebra of the derived algebra if and only if a4=0. If a4 is nonzero,
the following automorphism allows us to take the isotropy to be spanned
| by w3+w4:
> LieAlgebraData(]

(a4*d3/ab)"2*w1l,
a4*d3/a5*w2,
a4*d3/a5*w3,
(a4*d3/ab)"2*w4,
w5

1)
[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5]=0,[e2,e3]=el, [e2 e4 (1.2.2.2.17)

3,[e3,e4] =0,[e3,e5] =e2 [ed, e5] = —el

]—O,[eZ,eS a5] e
If a5 < 0, then the algebra is already given as s_5,16 with isotropy

spanned by w3 or w3+w4 depending on whether or not the isotropy is in

| the derived algebra:

> eval(LieAlgebraData([wl,w2,w3,w4,w5]),{abs(ab)=-a5});

[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5]=0,[e2,e3]=el, [e2 e4 (1.2.2.2.18)

1=0,[e2 e5]= —e3,[e3,e4] =0,[e3,e5] =e2, [ed, e5] = —el

If a5 > 0, the following change of basis gives s_5,15 with isotropy spanned by
| e2-e3 or e2-e3-e4.
> eval(LieAlgebraData([
-2*wl,w2+w3,w2-w3,-2*w4,w5
1).{abs(a5)=a5});
[el,e2] =0, [el,e3]=0,[el,e4] =0,[el,e5]=0,[e2 e3]=el, [e2e4 (1.2.2.2.19)
1=0,[e2 e5]=e2 [e3,e4] =0,[e3,e5] = —e3,[ed, e5] = —el

Now we treat the case when the upper central series terminates at the center,
i.e., when a2 is nonzero. Again, the isotropy is in the derived algebra if and
only if a4=0. When a4=0, we apply the following change of basis and relabel
| a5/a2”2 as ab:

> eval(LieAlgebraData([

1/a2*x1,1/a2*x2,1/a2*x3,d3/a2*x3-x4,x5
1),{d4=0,a4=0,a5/a2”"2=ab});

[el,e2] = e2+a5e5, [el,e3] = e3,[el,e4] = 0, [el, e5] = e2, [e2, e3 (1.2.2.2.20)

1=0,[e2ed] =0,[e2,e5] = —e3,[e3,ed] =0,[e3,e5] =0, [e4, e5
1=0

This yields isotropy spanned by the fifth basis vector. When a4 is nonzero, the

following change of basis yields the same structure equations and isotropy
| spanned by the sum of the fourth and fifth basis vectors:

> LD_N222c:=eval(LieAlgebraData(][

1/a2*x1-d3*a4/a2”2*x5,
1/a2*x2,

1/a2*x3,
a4*d3/(a2*ab5)*x3-a4/a5*x4,
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-a4*d3/(a2*ab)*x3+ad4/a5*x4+x5
],alg_N222c),{d4=0,a5/a2”2=a5});

LD_N222c:= |el, e2] = e2 +a5e5, [el, e3] = e3, [el, e4] = 0, [el, e5 (1.2.2.2.21)
]=e2,[e2,e3]=0,[e2,e4] =0,[e2,e5]= —e3,[e3,e4] =0, [e3,e5
1=0,[e4,e5]=0

;We initialize the algebra:

> DGsetup(LD_N222c,[f],[r]);

Lie algebra: alg_N222c (1.2.2.2.22)
;The nilradical is as follows:

> Nilradical();

(12, £3, 14 5] (1.2.2.2.23)
;Consider the adjoint of an arbitrary vector not in the nilradical:
> F:=evalDG(alpha*fl+beta*f2+gamma*f3+delta*f4+epsilon*f5);

i F=ofl+Bf2+yf3+3fd+ef5 (1.2.2.2.24)
> AF:=Adjoint(F,[F,f2,f3,f4,5]);
0 0 00 0
0 o 00 «
AF=|0 ¢ a 0 -B (1.2.2.2.25)
0 0 000
0 a5 0 0 0

| We examine its eigenvalues:

> factor(LinearAlgebra:-
CharacteristicPolynomial(AF,lambda));

(a—2) 22 (o? a5+ ar—2%) (1.2.2.2.26)

:The quadratic factor has the following roots:
> solve(ab*alpha”2+alpha*lambda-lambda”2,lambda);

1 J1+4a5 I J1+4a5
5+ || 5 "5 |a (1.2.2.2.27)
2 2 2 2
[Since a5 is nonzero, neither of these roots can be & or zero. Thus, there is a

nonzero eigenvalue of multiplicity two if and only if these roots are equal,

i.e., ab =-1/4. If a5 > -1/4, all eigenvalues are real, and if a5 < -1/4, there

are nonreal eigenvalues. We find changes of basis for these cases:

:If a5 = -1/4, then we have s_4,10+n_1,1 with isotropy e2 or e2+e5.

> eval(LieAlgebraData([
-f3,
sqrt(2)*f2-sqrt(2)/2*f5,
sqrt(2)/2*f5,
2*f1,
sqrt(2)/2*f4
1).{a5=-1/4});

[el,e2] =0, [el,e3] =0, el e4] = —2el, [el,e5] =0, [e2 e3] = el, [e2, (1.2.2.2.28)
ed] = —e2 [e2,e5]1=0,[e3,e4] = —e2—e3,[e3,e5]=0,[e4,e5]=0

;If a5 > -1/4, then we have s_4,8+n_1,1 with isotropy e2-e3 or e2-e3+e5

> simplify(eval(LieAlgebraData([
(a-1)/(1+a)*f3.f2-al(1+a)*f5,f2-1/(1+a)*i5,(1+a)*f1,(1-a)/(1+a)*f4
1).{ab=-a/(1+a)"2}));

[el,e2] =0, [el,e3] =0, |el,e4] = —(1+a) el,[el,e5]=0,[e2e3] = (1.2.2.2.29)
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—el, [e2 ed] = —e2 [e2, e5] =0, [e3 e4] = —ae3 [e3 e5] =0, [e4,
e5]1=0

| If a5 < -1/4, then we have s_4,9+n_1,1 with isotropy e2 or e2+eb5
> simplify(eval(LieAlgebraData(eval(][
-(alphanr2+1)~2/(2*alpha”3)*f3,
-(alphan2+1)/(2*alpha”2)*f5,
(alphanr2+1)/alpha*f2-(alphanr2+1)/(2*alpha)*f5,
2*alpha*fl,
-(alphar2+1)/(2*alphan2)*f4
].{alpha=1/sqrt(-1-4*ab5)})),{a5=(1/alphanr2+1)/(-4)}))
assuming alpha::positive;
[el,e2] =0, [el,e3] =0, el e4] = —2ael, [el, e5]=0,[e2e3] =el, (1.2.2.2.30)

[e2,e4] = —ae2+e3 [e2e5]=0,[e3 ed] = —e2—ae3 [e3 e5
1=0,[e4,e5]=0

Section 7.2.3: The Derived Algebra is Four-Dimensional
| Recall A from above; its rank is two in this case:

> A;

ad as5

o (1.2.3.1)

[ This requires that d4 and a5 be nonzero.

Now, recall the structure equations and consider the center of the
| algebra; it is either spanned by x3 or it is trivial:

> LieAlgebraData([x1,x2,x3,x4,x5]);

lel,e2] = a2 e2+ a4 e4 + a5 e5,[el, e3] = a2 e3, [el,e4] = d3 e3 +d4 e4, [el, e5 (1.2.3.2)
]=e2, [e2e3]=0,[e2,ed] =0,[e2, e5]= —e3,[e3,e4] =0,[e3,e5] =0,
[e4,e5]1=0

[ This becomes more clear upon examination of the adjoint of an
| arbitrary vector:

> Adjoint(R*x1+S*x2+T*x3+U*x4+V*x5);
0 0 0 0 0

-Sa2—-V Ra2 O 0 R
-Ta2-Ud3 V Ra2 Rd3 -S (1.2.3.3)
-Sa4—-Ud4 Ra4 0 Rd4 0

-Sa5 Ra5 O 0 0

We quickly see that if this matrix is the zero matrix, then
R=S=V=0, which implies (since d4 is nonzero) that U=0
as well. The matrix is the zero matrix if and only if T*a2=0.
Thus, the dimension of the center is one if a2=0 and the

| center is trivial otherwise.

Section 7.2.3.1: The Center is One-Dimensional
I:Let the center be one-dimensional so that a2=0. We
initialize this algebra:
> LD_N231:=eval(LieAlgebraData(
[x1,x2,x3,x4,x5],alg_N231),a2=0);
LD_N231:= [el,e2] = a4 e4 +a5e5,[el,e3] =0, [el, e4] = d3e3 +d4e4, (1.2.3.1.1)
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[el,e5] =e2, [e2,e3] =0,[e2,e4] =0, [e2, e5] = —e3,[e3,e4] =0,
[e3,e5]=0,[e4,e5]=0

[> DGsetup(LD_N231,[y],[0]);

Lie algebra: alg_N231

;We calculate the nilradical:

> Nilradical();

i [¥2 Y3, y4 y5]

[ Consider a generic vector not in the nilradical and its

| adjoint:

> X:=evalDG(yl+beta*y2+gamma*y3+delta*y4+epsilon*y5);
X=yl+By2+yy3+dy4+ey5

> AX:=Adjoint(X,[X,y2,y3,y4,y5]);

000 0 0
000 0 1
=0 ¢ 0 d3 -B
0 ad 0 d4 0
0 a5 0 0 0

| We examin its eigenvalues:

> factor(LinearAlgebra:-
CharacteristicPolynomial(AX,lambda));

W (-A+d4) (-22+a5)
[Tts eigenvalues are proportional to zero, d4, and +sqrt(a5).

Thus, if there are any imaginary eigenvalues, a5 is negative.
and a5 is not equal to d472. Furthermore, the isotropy is in
the derived algebra if and only if a4=0, in which case, the
following change of basis gives s_5,19 with alpha not equal
| to one and isotropy spanned by e3.
> eval(LieAlgebraData([
-d4~4/(a5*sqrt(-ab))*y3,
d4anr2/ab*y2,
d4nr2/sqgrt(-ab5)*y5,
-d3*y3-d4*y4,
(1/sqgrt(-a5)*y1)
1).{a4=0,d4/sqrt(-a5)=alpha});
[el,e2] =0,[el,e3] =0, [el,e4]=0,[el,e5]=0,[e2,e3] =el,[e2 e4

1=0,[e2 e5]=—e3 [e3,e4] =0, [e3,e5] =e2 [ed, e5] = —o e4

If the isotropy is not in the derived algebra, then a4 is nonzero and
the following change of basis gives the same algebra with isotropy
| spanned by e3-e4.

> chid4:=a4*d4/((d4"~2-a5)*sqrt(-a5))*(-d3*y3-d4*y4):

eval(LieAlgebraData((
-d4~4/(ab*sqrt(-a5))*y3,
d4nr2/a5*y2-d4/sqrt(-a5)*chi4,
chi4+d4nr2/sqrt(-a5)*y5,
chi4,
(1/sqrt(-ab)*yl+a4*d3/(d4*sqrt(-a5))*y5)
1).{d4/sqrt(-ab)=alpha});
[el,e2] =0,[el,e3] =0, [el,e4] =0,[el,e5]=0,[e2,e3] =el, [e2 e4

1=0,[e2e5]=—e3 [e3,ed] =0, [e3 e5] = e2 [ed, e5] = —o e

(1.2.3.1.2)

(1.2.3.1.3)

(1.2.3.1.4)

(1.2.3.1.5)

(1.2.3.1.6)

(1.2.3.1.7)

(1.2.3.1.8)
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Note also by scaling e2, e3, and e5 by +, we may take o« > 0.
Furthermore, since d4”2 is not equal to a5, alpha is not one in
this case.

If there are four distinct, real eigenvalues, then a5 > 0 and

a5 is not equal to d4”2. As before, a4 determines whether or
not the isotropy is in the derived algebra. If it is, then a4=0 and
the following change of basis gives s_5,17 with a not equal to

| and one isotropy spanned by e2-e3.

> eval(LieAlgebraData([
2*d4~4/(a5*sqrt(ab))*y3,
d4nr2/a5*y2+d4nr2/sqrt(ab)*y5,
d4nr2/ab5*y2-d4n2/sqrt(ab)*y5,
-d3*y3-d4*y4,
(1/sqrt(ab)*y1l)
1),{a4=0,d4/sqrt(ab5)=a});
[el,e2] =0,[el,e3]=0,[el,e4] =0,[el,e5] =0, [e2, e3] = el, [e2 e4

1=0,[e2e5]=—e2 [e3,ed] =0, [e3, e5] = e3 [ed, e5] = —ae4

[If the isotropy is not in the derived algebra and there are four
real and distinct eigenvalues, then the following change of basis
| gives the same algebra with isotropy spanned by e2-e3-e4

> chi4:=-2*a4/(d4*(-d4”"2+a5))*(-d3*y3-d4*y4):

simplify(eval(LieAlgebraData(]
2/sqrt(ab)*y3,
(1/sqrt(ab)*y2+alpha*chid4+yb5),
(1/sqgrt(ab)*y2+(alpha-1)*chi4-y5),

chi4,

1/sqrt(a5)*yl+ad4*d3/(d4*sqrt(ab))*y5

1).{

d4/sqgrt(ab)=a,
alpha=(-d4~2+ab5)/(2*sqrt(ab)*(sqrt(a5)-d4))

2
[el,e2] =0,[el,e3]=0,[el,e4] =0, [el,e5] =0, [e2, e3] = el, [e2 e4
1=0,[e2 e5]=—e2 [e3,e4] =0,[e3, e5]=e3, [ed, e5] = —ae4
[ Note that in the above, a is not one, since d4”2 is not equal to a5.

If there is a repeated nonzero eigenvalue, then a5=d4”2 and again
the value of a4 determines whether or not the isotropy is in the
derived algebra. If a4 = 0, the isotropy is in the derived algebra and
the following change of basis gives s_5,17 with a=1 and isotropy
| spanned by e2-e3
> eval(LieAlgebraData([

2*d4*y 3,

y2+d4*y5,

y2-d4*y5,

-d3*y3-d4*y4,

1/d4*y1

1),{a4=0,a5=d4"2});
[el,e2] =0,[el,e3] =0,[el,e4]=0,[el,e5]=0,[e2,e3] =el,[e2 e4

1=0,[e2, e5] = —e2 [e3,e4d] =0, [e3,e5] =e3,[e4,e5] = —e4

If a5=d4”2 and the isotropy is not in the derived algebra, then
a4 is not zero and the following change of basis gives s_5,18
| with isotropy spanned by e2-e3-(1/2)e4
> eval(LieAlgebraData([
-d4*y3,
y2-d4*y5+a4/(2*d4"2)*(-d3*y3-d4*y4),
y2+d4*y5,

(1.2.3.1.9)

(1.2.3.1.10)

(1.2.3.1.11)
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-a4/(d4n2)*(-d3*y3-da*y4),
1/d4*y1+ad*d3/d4nr2+y5
1).{a5=d4"2});
[el,e2] =0, [el,e3] =0, [el, e4] =0, [el,e5] =0, [e2 e3] =2 el, [e2 e4 (1.2.3.1.12)
1=0,[e2 e5]=e2 [e3,ed] =0,[e3,e5] = —e3 —e4, [ed, e5] = —e4

Section 7.2.3.2: The Center is Trivial

When the center is trivial, a2, a5, and d4 are nonzero. We
| may set a2=1 as follows:

> LD_N232:=eval(LieAlgebraData(
[1/a2*x1,1/a2”2*x2,1/a2”"3*x3,1/a2"3*x4,1/a2*x5],
alg_N232),{ab/a2"2=a5,d3/a2=d3,d4/a2=d4});

LD_N232:=[el,e2] = e2 + a4 e4 + a5 e5, [el, e3] = e3, [ el, e4] = d3 e3 (1.2.3.2.1)

+dded, [el,e5]1=e2, [e2,e3]=0,[e2 ed] =0,[e2, e5] = —e3,[e3, e4
1=0,[e3,e5]=0,[e4,e5]=0
[> DGsetup(LD_N232,[y],[p]);
Lie algebra: alg_N232 (1.2.3.2.2)
;We consider the nilradical:
> Nilradical();

[¥2,y3,y4,y5] (1.2.3.2.3)

:We next consider an arbitrary vector not in the nilradical:

> X:=zevalDG(lambda*yl+beta*y2+gamma*y3+delta*y4+epsilon*y5);
X:=Ayl+By2+yy3+8y4d+ey5 (1.2.3.2.4)

[ The nilradical is a four-dimensional subalgebra containing the isotropy. We shall

see that when a4=0, it is the only such algebra.

We begin by noting that any other algebra with this property contains a choice of X
with A nonzero as well as the isotropy basis y5. Thus, it also contains the Lie bracket
| of these:

> W2:=LieBracket(X,y5);
W2:=Ay2—By3 (1.2.3.2.5)
[ This is not spanned by X and y5 for any choice of X. We consider the Lie brackets
| with this vector:
> LieBracket(W2,y5);
LieBracket(W2,X);
—-Ay3

—2y2+(ABp—ne) y3-22ady4—3’asys (1.2.3.2.6)

I a4=0, then the vectors X, y5, W2, and x3 form an algebra. Otherwise, they do not,
implying that the nilradical is the only four-dimensional subalgebra containing the
isotropy. We shall use this invariant in the following discussion where necessary.

| For now, we consider the adjoint of X:
> AX:=Adjoint(X,[y2,y3,y4,y5]);
A0 0 A

e A Ad3 -B
AXie (1.2.3.2.7)

ra4 0 rd4 O
ra5 0 0 O

[ The following similarity transformation eliminates epsilon and beta, so
| when considering the eigenvectors, we may take X=lambda*x1:
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> Q:=Matrix([

[1,0,0,0],
[(epsilon-a5*beta)/(lambda*a5),1,0,epsilon/(lambda*ab)],
[0,0,1,0],
[0,0,0,1]]);
AX2:=simplify(Q"(-1).AX.Q);
1 00 0
-a5B+e 10 €
Q= Aas ras
0 01 0
0 00 1
A0 0 A
0 A Ad3 O
AX2:= (1.2.3.2.8)
ra4 0 Ad4 O
Aas5 0 0 O
:We now consider the eigenvalues of this matrix:
> LinearAlgebra:-Eigenvalues(AX2);
A
A d4
(1 L V1+4a5 ]x (1.2.3.2.9)
2 2
[1_\/1+4a5 ]x
2 2

> simplify(eval(LinearAlgebra:-Eigenvalues(AX2),a5=d4”2-d4)) assuming
da>1/2;
simplify(eval(LinearAlgebra:-Eigenvalues(AX2),a5=d4”2-d4)) assuming
d4<1/2;

A
A d4
A d4
“(-1+d4) A
A
A d4
(-14df)n (1.2.3.2.10)
A d4

There are only nonreal eigenvalues when a5 < -1/4.

If the eigenvalues all distinct, then a5 is not -1/4, d4 is not one, and a5
is not d4/2-d4.
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There are two distinct eigenvalues and two repeated when one of the

following holds:

a) d4=1 and a5 is not -1/4

b) d4 is neither 1 nor 1/2 and a5 = -1/4

c) ab=d4”2-d4 is not -1/4 (i.e., d4 is not 1/2). Also, d4=1 is
forbidden since it implies a5=0.

In case a), the repeated eigenvalue is A, with eigenvector given by

| considering the kernel of the following:

> |d:=LinearAlgebra:-IdentityMatrix(4):
eval(AX2-lambda*ld,d4=1);

0O 0 0 A
0 0 Ad3 O
(1.2.3.2.11)
ra4 0 0 O
ras5 0 0 -A
=Thus w3 is an eigenvector, and w4 is as well when d3=0.
In case b), the repeated eigenvalue is A/2, with eigenvector given by
| considering the kernel of the following:
> eval(AX2-lambda/2*Id,a5=-1/4);
A
> 0 0 A
0 % rd3 0
. (1.2.3.2.12)
ra4 0 Ad4d-— > A0
A A
g 0 0 2
:The rank is always three, and the eigenvector is:
> LinearAlgebra:-NullSpace(eval(AX2-lambda/2*Id,a5=-1/4));
-2
_8d3a4
2d4-1
(1.2.3.2.13)
4 a4
2d4-1
1

[ Note that this eigenvector is never in the derived algebra of the nilradical,
distinguishing case b) from case a).

In case c), the repeated eigenvalue is Ad4, with eigenvector given by
| considering the kernel of the following:
> eval(AX2-lambda*d4*ld,a5=d4"2-d4);

(1.2.3.2.14)
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-Ad4+ A 0 0 A
0 -Ad4+r Ad3 0
(1.2.3.2.14)
A a4 0 0 0
A (d4% — d4) 0 0 -Ard4

=Here, since d4 is not one, d3/(d4-1)w3+w4 is always an eigenvector.
When a4=0, w2+(d4-1)w5 is also an eigenvalue. Never is the derived
algebra of the nilradical contained in the eigenspace. When a4 is
nonzero, this case may be distinguished from case b) by whether or
not the eigenspace is in the center of the nilradical.

[ There are three repeated eigenvalues when a5 = -1/4 and d4 = 1/2.
Since a5 is nonzero, there are two sets of repeated eigevalues only
when a5=-1/4 and d4=1. We examine the correpsonding

| eigenvectors, given by the kernel of the following matrices:
> eval(AX2-lambda*ld,{a5=-1/4,d4=1});

eval(AX2-lambda/2*Id,{a5=-1/4,d4=1});
0O 0 O A
0 0 ad3 O
Aha4 0 O O
A
"2 0o 0 -a
A
5 0 0 A
0 % rd3 0
(1.2.3.2.15)
A
rad 0 5 0
A A
3 005

As before, we may distinguish d3 = 0 from d3 nonzero by whether
or not the eigenspace contains the center of the nilradical (spanned
by w4). The derived algebra (spanned by w3) is always in the
|_eigenspace.

It is not possible for all eigenvalues to be the same.

We will first consider the cases in which all eigenvalues are distinct, so that
d4 is not one and a5 is not d472-d4. We perform the following change of basis
in those cases and initialize the algebra. We may also perform this change of
| basis in the case b) above, wherein d4 is neither 1 nor 1/2 and a5 = -1/4.
> LD_Na:=LieAlgebraData([

yl+ad*d3/(d4-1)*y5,
y2+(a4*d3/(-d4"2+a5+d4)*y3+ad*(d4-1)/(-d4~2+a5+d4)*y4-y5),
y3,
-d3/((d4-1)*(-d4~2+a5+d4))*y3-1/(-d4"2+ab5+d4)*y4,
a4*d3/((d4-1)*(-d4~2+a5+d4))*y3+ad/(-d4"2+a5+d4)*y4+y5
],alg_Na);
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LD_Na:= [el,e2] = a5e5,[el,e3] = e3, | el, e4] = d4 e4,[el,e5] = e2  (1.2.3.2.16)
+e5 [e2,e3]=0,[e2,ed] =0,[e2 e5]= —e3,[e3,e4] =0, [e3,e5
1=0,[e4e5]=0

=> DGsetup(LD_Na,[w],[omega]);
Lie algebra: alg_Na (1.2.3.2.17)

[ The isotropy in this basis is given by a4*w4+w5, but scaling w4 is an
| automorphism, so we take the isotropy to be either w4+w5 or w5:
> LieAlgebraData([wl,w2,w3,w4*R,w5]);
[el,e2] = a5e5, [el, e3] = e3, [ el, e4] = d4 e4, [el,e5] = e2 +e5,[e2,e3 (1.2.3.2.18)
1=0,[e2ed4d] =0,[e2,e5] = —e3,[e3,ed] =0,[e3,e5] =0, [e4, e5
1=0
[If there are nonreal eigenvalues and no repeated eigenvalues, then d4 is
not one and a5 < -1/4. The following change of basis gives s_5,25
with B not equal to 2 and isotropy spanned by e2+e4 or e2, depending
| on the value of a4.
> eval(eval(LieAlgebraData([
-2*alpha*w3,
w5,
-2*alpha*w2-alpha*w5,
w4,
2*alpha*wl
1).{a5=-(alphanr2+1)/(4*alpha”2)}),
{-2*alpha*d4=-beta});
[el,e2] =0, [el,e3]=0,[el,e4] =0, |el,e5] = —2ael, [e2e3]=el, (1.2.3.2.19)

[e2,e4] =0, [e2 e5] = —0e2+e3 [e3,e4] =0, [e3,e5] = —e2
—oe3 [e4,e5]= —Pped

If there are four distinct real eigenvalues, then d4 is not one and a5 > -1/4. The
following change of basis gives s_5,22 with b not equal to 1 or a+1 and isotropy
| spanned by e2+e3+e4 or e2+e3, depending on the value of a4.
> simplify(eval(simplify(eval(LieAlgebraData(]

-4*alpha*w3,
alpha*(2*w2+w5)+w5,
-alpha*(2*w2+w5)+w5,
2*w4,
2*alphal/(l1+alpha)*wl
1).{a5=-(alpha~2-1)/(4*alpha”2)})),
{(-1+alpha)/(1+alpha)=a,
-2*alpha*d4/(1+alpha)=-b,
-2*alphal/(l+alpha)=-(a+1)}));
[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] = - (1 +a) el,[e2 e3 (1.2.3.2.20)

- (
]=el, [e2e4] =0,[e2 e5]= —e2 [e3, ed4] =0, |e3 e5] = —ae3,
[e4, e5] = —bed

In the last case for this basis, case b) from above, (i.e., ab=-1/4,
but d4 is neither 1 nor 1/2) the following change of basis gives
s_b5,24 with a not equal to one or two and isotropy spanned by
| e2+e4 or e2, depending on a4.
> eval(LieAlgebraData([
1/2*w 3,
1/2*w5,
w2+1/2*w5,
1/2*w4,
2*w1l
1),{a5=-1/4,-2*d4=-a});

1 N N N Nna\
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[el,e2] =0, [el,e3] =0, [el, e4] =0, [el,e5] = —2 el, [e2 e3] = el, [e2, (1.2.3.2.21)
ed]=0,[e2e5] = —e2—e3, [e3,e4] =0, [e3,e5] = —e3, [e4, e5] =

—ae4

We return now to the previous basis (with isotropy y5):

> LieAlgebraData([yl,y2,y3,y4,y5]);

lel,e2] = e2+ a4 e4+a5e5,[el,e3] = e3, [el,e4] = d3e3 +d4 e4,[el, (1.2.3.2.22)
eS]=e2 [e2,e3]=0,[e2,ed] =0,[e2,e5] = —e3,[e3,ed] =0, [e3,e5
1=0,[e4,e5]=0

[We now consider case c) from above.

When a4 is nonzero, we apply the following change of

| basis to eliminate parameters. We initialize the algebra:

> LD_Nb:=eval(LieAlgebraData([
yl+d3*a4/(d4-1)*y5,

y2,
y3,
d3*a4/(d4-1)*y3+ad*y4,
y5
l.alg_Nb),{a5=d4"2-d4});
LD_Nb:= [el, e2] = e2 + e4 +(d4? — d4) e5,[el,e3] = e3, | el, e4 (1.2.3.2.23)

] =d4ed, [el,e5]=e2 [e2,e3]=0,[e2,ed] =0,[e2,e5]= —e3,[e3,
ed]=0,[e3,e5]1=0,[e4,e5]=0

=> DGsetup(LD_Nb,[w],[omega]);
Lie algebra: alg_Nb (1.2.3.2.24)

The following change of basis then gives s_5,23 with isotropy
| spanned by e2+e3.
> simplify(eval(simplify(eval(LieAlgebraData(]
TA3*w3,
-T*(w2-wb5)+w4+R*w5,
P*(w2-w5)-w4+S*w5,
T*w4/d4,
wl/d4

1),
{R=(2*d472-3*d4+1),S=(2*d472-d4),T=2*d4-1,P=2*d 4-1})),
{d4=1/(a+1)}));
[el,e2] =0, [el,e3]=0,[el, e4] =0, el e5] = -(1+a) el, [e2 e3 (1.2.3.2.25)
l=-el [e2 e4] =0, [eZ, e5] = —ae2 [e3,e4] =0,[e3,e5] = —e3
—ed,[ed,e>5] = —ed
[When a4=0 in case c) from above, we instead eliminate

parameters via the following change of basis.
| We initialize this algebra.

> LD_Nc:=eval(LieAlgebraData([
y1,
y2,

y3,

d3/(d4-1)*y3+y4,

y5
]l,alg_Nc),{a5=d4"2-d4,a4=0});

LD_Nc:= [el, e2]| = e2+(d4? — d4) e5, [el, e3] = e3, [ el, e4] = d4 e4, [el, (1.2.3.2.26)
eS]=e2 [e2,e3]=0,[e2,ed] =0,[e2,e5] = —e3,[e3,e4d] =0, [e3, e5
1=0,[e4,e51=0

> DGsetup(LD_Nc,[w],[omegal);
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Lie algebra: alg_Nc (1.2.3.2.27)

The following change of basis then gives s_5,22 with b=1
| and isotropy spanned by e2+e3.
> simplify(eval(simplify(eval(LieAlgebraData(]
TA3*wW3,
-T*(w2-w5)+R*w5,
P*(w2-w5)+S*w5,
T*w4/d4,
wl/d4

1),
[R=(2*d472-3*d4+1),5=(2*d472-d4), T=2*d4-1,P=2*d 4-1})),
{d4=1/(a+1)}));
[el,e2] =0, [el,e3]1=0,[el,e4] =0, [el,e5] = —(1+a) el,[e2 e3 (1.2.3.2.28)

J=el [e2e4]=0,[e2 e5] = —ae2 [e3 e4] =0, [e3 e5] = —e3,
[ed,e5] = —e4

In the case of three repeated eigenvalues, a5 = -1/4 and d4 = 1/2.
When a4 is nonzero, the following change of basis gives s_5,21
| with isotropy spanned by e2-e3+e4.
> chi4:=evalDG(-4*a4*d3*y3+2*ad*y4):
eval(LieAlgebraData(]
1/2*y3,
y2,
y2+chid-1/2*y5,
chi4,
2*y1-4*a4*d3*y5
1),{a5=-1/4,d4=1/2});
[el,e2] =0, [el,e3] =0, [el, e4] =0, [el,e5] = —2el, [e2 e3] = el, [e2, (1.2.3.2.29)
ed]=0,[e2,e5] = —e2—e3,[e3,ed4] =0,[e3,e5] = —e3 —e4, [e4,e5
1= —e4

In the case when a4=0, we instead find, via the following
change of basis, the algebra s_5,24 with a=1 and isotropy
| spanned by e2-e3.
> chi4:=evalDG(-4*d3*y3+2*y4):
eval(LieAlgebraData(]
1/2*y3,
y2,
y2-1/2*y5,
chi4,
2*y1
1),{a4=0,a5=-1/4,d4=1/2});
[el,e2] =0, [el,e3] =0, [el, e4] =0, [el,e5] = —2el, [e2 e3] = el, [e2, (1.2.3.2.30)
ed]=0,[e2,e5] = —e2—e3,[e3,ed] =0,[e3,e5] = —e3, [e4,e5] =
—e4

Consider the cases in which there are repeated eigenvalues,
the derived algebra of the nilradical is in the eigenspace, and
the center of the nilradical is not in the eigenspace (d4=1, d3
| nonzero). The following change of basis eliminates parameters.

> LD_Nd:=eval(LieAlgebraData([
yl+a4*d3/a5*(y2-y5),
(y2-y5),
y3,
1/d3*y4,
(a4/a5*y4+y5)
],alg_Nd),{d4=1});
LD_Nd:= [el, e2] = a5e5,[el,e3] = e3, [el, e4] = e3+e4, [el,e5] = e2 (1.2.3.2.31)
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+e5 [e2,e3]=0,[e2,e4d]=0,[e2 e5]= —e3,[e3,e4] =0, [e3,e5
1=0,[e4,e5]=0

=> DGsetup(LD_Nd,[w],[omega]);
Lie algebra: alg_Nd (1.2.3.2.32)

When a4=0, the isotropy is spanned by w5. Otherwise, the
isotropy is spanned by -a4*d3/a5*w4+w5, but the following
automorphism allows us to take the isotropy to be spanned by
| -W4+w5:

> LieAlgebraData(]

wl,
w2*(a4*d3/ab),
w3*(ad4*d3/a5)"2,
w4*(ad4*d3/a5)"2,
wb*ad4*d3/a5
1)
[el,e2] = a5e5, [el, e3] = e3, [el,e4] = e3 + e4, [el, e5] = e2 + e5, [e2,e3(1.2.3.2.33)

1=0,[e2,ed] =0,[e2,e5] = —e3,[e3,ed] =0,[e3,e5] =0, [e4, e5
1=0

Recall that there are two real distinct eigenvalues of AX2 only if
ab > -1/4, in which case, the following change of basis gives s_5,26
with isotropy spanned by e2+e3 or e2+e3+e4, depending on whether
| a4 is zero or nonzero.
> simplify(eval(LieAlgebraData([
(an2-1)*w3,
(a+1)*w2+w5,
-(a+l)*w2-a*w5,
(a-1)*w4,
(a+1l)*w1l
1).{a5=-a/(a+1)"2}));
[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] = -(1+a) el, [e2 e3 (1.2.3.2.34)

= (
J=el, [e2e4]=0,[e2 e5] = —e2 [e3, ed] =0,|e3 e5] = —ae3,
[e4,e5] = —el-(1+a) e4

If there are nonreal eigenvalues, then a5 < -1/4, and the change
of basis gives s_5,28 with isotropy spanned by e3-e4 or e3,
| depending on the value of a4.
> eval(LieAlgebraData([
2*alpha*w3,
-2*alpha*w2-alpha*w5,
w5,
w4,
2*alpha*wl
1).{a5=-(alphanr2+1)/(4*alpha*2)});
[el,e2] =0, [el,e3] =0, [el, e4] =0, [el,e5] = —2ael, [e2e3] =el, (1.2.3.2.35)

[e2,e4]=0,[e2 e5] = —ae2—e3 [e3,e4] =0, [e3,e5] =e2 -0 e3
[e4,e5] = —el —2 ae4

If there are two sets of repeated eigenvalues, then a5 = -1/4 and the
following change of basis gives s_5,27 with isotropy spanned by
| e2+e3+e4 or e2+e3, depending on a4.
> eval(LieAlgebraData(]
2*w 3,
2*w2,
-2*w2-w5,
w4,
2*w1l
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1).{a5=-1/4});

ed]=0,[e2 e5] = —e2—e3 [e3,e4] =0, [e3,e5] = —e3, [ e4, e5] =
—el—2e4

Consider the cases in which there are repeated eigenvalues,
the derived algebra of the nilradical is in the eigenspace, and
the center of the nilradical is also in the eigenspace (d4=1,
| d3=0) The following change of basis eliminates parameters.
> LD_Ne:=eval(LieAlgebraData([
y1,
(y2-y5),
y3,
y4,
(a4/a5*y4+y5)
l.alg_Ne),{d4=1,d3=0});
LD_Ne:= [el, e2] = a5e5, [el, e3] = e3, [el, e4] = e4, [el, e5] = e2 + e5,
[e2,e3]=0,[e2,ed] =0,[e2,e5]= —e3,[e3,e4] =0, [e3,e5] =0,
[e4,e5]1=0

=> DGsetup(LD_Ne,[w],[omega]);
Lie algebra: alg_Ne

When a4=0, the isotropy is spanned by w5. Otherwise, the
isotropy is spanned by -a4/a5*w4+w5, but the following
automorphism allows us to take the isotropy to be spanned by
| -W4+w5:
> LieAlgebraData(]
wl,
w2*(a4d/ab),
w3*(ad/ab5)"2,
w4*(ad/a5)"2,
w5*a4/ab
1)
[el,e2] = a5e5, [el, e3] = e3, [el, ed] = e4, [el, e5] = e2 + e5, [e2, e3
1=0,[e2,e4]=0,[e2,e5] = —e3,[e3,e4d] =0,[e3,e5] =0, [e4, e>
1=0

Recall that there are two real distinct eigenvalues of AX2 only if
a5 > -1/4, in which case, the following change of basis gives s_5,22
with b=a+1 and isotropy spanned by e2+e3+e4 or e2+e3, depending
| on whether a4 is zero or nonzero.
> simplify(eval(LieAlgebraData([
(anr2-1)*w3,
(a+1)*w2+w5,
-(a+l)*w2-a*w5,
(a-1)*w4,
(a+1l)*w1l
1).{a5=-a/(a+1)"2}));
[el,e2]=0,[el,e3] =0, [el,ed] =0, [el,e5] = - (1 +a) el, [e2 e3

= (
J=el, [e2e4]=0,[e2 e5] = —e2 [e3 ed] =0,|e3 e5] = —ae3,
[e4,e5] = - (1 +a) e4

If there are nonreal eigenvalues, then a5 < -1/4, and the change
of basis gives s_5,25 with =2« and isotropy spanned by e3-e4
| or €3, depending on the value of a4.
> eval(LieAlgebraData([
2*alpha*w3,

[el,e2] =0, [el,e3] =0, el e4] =0, [el,e5] = —2el, [e2 e3] = el, [e2, (1.2.3.2.36)

(1.2.3.2.37)

(1.2.3.2.38)

(1.2.3.2.39)

(1.2.3.2.40)
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-2*alpha*w2-alpha*w5,
wbh,
w4,
2*alpha*wl
1).{a5=-(alphanr2+1)/(4*alpha”2)});
[el,e2] =0, [el,e3] =0, [el, e4] =0, [el,e5] = —2ael, [e2e3] =el, (1.2.3.2.41)
[e2,e4] =0, [e2 e5] = —0e2—e3, [e3,e4] =0, [e3, e5] = e2 — 0. e3,
le,e5] = —2 ae4
[If there are two sets of repeated eigenvalues, then a5 = -1/4 and the
following change of basis gives s_5,24 with a=2 and isotropy
| spanned by e2+e3+e4 or e2+e3, depending on a4.
> eval(LieAlgebraData(][
2*w 3,
2*w2,
-2*wW2-wbh,
w4,
2*w1l
1).{a5=-1/4});
[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] = —2 el, [e2,e3] = el, [e2, (1.2.3.2.42)

ed]=0,[e2 e5]= —e2—e3, [e3,e4] =0, [e3,e5] = —e3, [ e4, e5] =
—2e4
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B.6. Maple Worksheet for Matching Algebras with Petrov’s Classification
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> restart:
"USUO001-1114 1:14:04.55 Tue 10/27/2015"

"Init file loaded with the following packages:"
"DifferentialGeometry, LieAlgebras” ()]

:> with(DifferentialGeometry):with(LieAlgebras):with(Tensor):with(GroupActions):
> DGTable :=table();
DGTable :=table([ ]) (2)

:> read "./50n4_50n3_Database.mm";




B.6. MAPLE WORKSHEET FOR MATCHING ALGEBRAS WITH PETROV’S CLASSIFICATION

153

38

40
41

43
44
45
46
47
48
49

# Calculate isonetry di mension from prel oaded table of structure equations wth
# isotropy.

Bui l dl nvarianMetric := proc(indx)
local C, LD, Iso, H M A S, InvG k, g, p, V,n, CB BO,eq;
# Load and initialize algebra and isotropy H
C : = DGTabl e[ i ndx] [ " StructureConstants"]:
LD := _DQ[["LieA gebra”, alg, [5 table()]], C1]):
DGset up(LD);
I'so : = DGTabl e[indx]["Isotropy"];
V := DG nformation("FraneBaseVectors");
H := DGzip(lso, V, "plus");
n := nops(H);

# Build a generic conplenentary basis CB for H and deternine conditions

# needed to ensure CB is a reductive conplenent to the reductive isotropy H
CB : = Conpl enentaryBasis(H, V, t);

BO := Query(H CB, "ReductivePair")[4][1][2];

# For npbst cases, setting all free paraneters to zero is a suitable choice.
# For two cases, however, this leads to difficult structure equations, so
# we alter the paraneter choice "by hand" for these.
eq := {seq(c =0, ¢ = CB[2])};
if indx =[5 F14,47] or indx = [5,F14,53] then
eq = {t3=-1,t4=0};
fi;
# Now substitute the parameter val ues
M := DGsinplify(subs(eq, BO0));

# Build the nobst general netric g on Mthat is invariant under H
DGEnvi ronment [ GSpace] (M H, P);
S := GenerateSymetricTensors(eval D [seq(Thetal|i, i =1 .. 5-n)]), 2);
InvG : = GroupActions: -1 nvariant Geonetri cObj ect Fiel ds([E5], S, output = "list");
k := nops(InvG;
g := D&ip([seq(al|i, i =1..k)], InvG "plus"):

end:

# Qutput the given index and either the isonmetry dinension if
#it is not five, or "OK if it is five.
I somet ryDi mensi on : = proc(indx)
local g, LD, dim
g := BuildlnvarianMetric(indx);
LD : = IsonmetryAl gebrabata(g, []);
dim:= op(LD)[1][3][1]:
if dim<> 5 then
print(indx, dim
el se
print(indx, OK)
fi;
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> Indx := sort(map(op, [indices(DGTable)]));
Indx:=[[5,F11,0],[5,F1201,[5,F121],[5,F122),[5,F123],[5,F124],[5,F125],[5,

F12,6],[5,F12,71,[5,F12 8], [5, F12,9], [5, F12,10], [5, F12 111, [5, F13,0], [ 5, F13,1],
[5,F13,21,[5, F133],[5,F13,4], [5, F135],[5,F13,6], [5,F13,7], [ 5, F13 8], [5, F14,0],
[5,F14,11, [5,F14,2], [5,F14,3], [5, F14,4], [5,F14,5], [5, F14,61, [ 5, F14, 7], [ 5, F14, 8],
[5,F14,9], [5, F14,10], [5, F14,11], [5, F14,12], [5, F14,13], [ 5, F14,14], [ 5, F14,15], 5,
F14,16], [5, F14,17], [5, F14, 18], [5, F14,19], [5, F14,20], [ 5, F14,21], [ 5, F14, 22],
F14,23], [5, F14,24], [5, F14, 251, [5, F14, 261, [5, F14,27], [ 5, F14, 28], [ 5, F14, 29],
F14,30], [5, F14,31], [5, F14,321, [5, F14,33], [5, F14,341, [ 5, F14,35], [ 5, F14, 36],
F14,371, [5, F14,38], [5, F14,39], [5, F14,40], [5, F14,411], [ 5, F14,42], [ 5, F14, 43],
1, 5 Il [ [ ]
1, 1 I { [ [ ]
1,

’

F14,44],[5,F14,45], [5, F14,46], [5,F14,47], [5,F14,48], [5, F14,49], [5, F14,50],
F14,511, [5, F14,52], [5,F14,53], [5,F14,54], [5, F14,55], [5, F14,56], [ 5, F14,57],
F14,581,[5,F8 0], [5,F811]
> forind in Indx[1..10] do IsometryDimension(ind); od;
[5,F11,0],10
[5,F12,0],6
[5,F121],6
[5,F12,2],6
[5,F12,3],6
[5,F12,4], OK
[5,F12,5],6
[5,F12,6], OK
[5,F12,7],10
[5,F12 8], OK
> forind in Indx[11..20] do IsometryDimension(ind); od;
[5,F12,9], OK
[5,F12,10],7
[5,F1211], OK
[5,F13,0],6
[5,F131],6
[5,F13,2],10
[5,F13 3], OK
[5,F13,4],6
[5,F13,5], OK
[5,F13,6], OK

> for ind in Indx[21..30] do IsometryDimension(ind); od;
[5,F13, 71,7

[5,F13 8], OK
[5,F14,0], 10
[5,F14,1], OK
[5,F14,2], OK
[
[
[

’

[ 5
[ 5
[ S,
[ 5
[ 5
[ 5

’

5,F14,3],10
5,F14,41,10
5,F14,5],10
[5,FI4,6],6
[5,F14,7],6

3

4

®)

(6)
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> for ind in Indx[31..40] do IsometryDimension(ind); od;
[5,F14,8],6

[5,F14,9],6
[5,F14,10],6
[5,F14,11],6
[5,F14,12],6
[5,F14,13],6

[5,F14,14],10

[5,F14,15],6

[5,F14,16],10

[5,F14,171,6 )
> forind in Indx[41..50] do IsometryDimension(ind); od;
5,F14,18],6
5,F14,19],6
5,F14,20],6
5,F14,21],6
5,F14,22],6
5,F14,23],6
5,F14,24],6
5,F14,25],6
5,F14,26],6
5,F14,27],6
> forind in Indx[51..60] do IsometryDimension(ind); od;
5,F14,28],6
5,F14,29],6
5, F14,30],
5,FI14,31],
5,F14,32]
]
]
]
1,7

[
[
[
[
[
[
[
[
[
[

C))

5, F14, 33
5, F14,34],
5, F14,35],
5, F14,36],
5,F14,371,6 (9)
> forind in Indx[61..70] do IsometryDimension(ind); od;

5,F14,38],6

5,F14,39],6
5, F14,40],
5,F14,41],
5,F14,42]
]
]
]
]

[
[
[ 6
[ 6
[ ,6
[ 6
[ 6
[ 7
[

[

5, F14,43
5, F14,44],
5, F14,45],
5, F14,46],
5, F14,47],

=> for ind in Indx[71..81] do IsometryDimension(ind); od;
[5,F14,48],6

[
[
[ 6
[ 6
[ 6
[ ,6
[ 7
[ 6
[ 7
[ 6

(10)
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[5,F14,49],6
[5,FI14,50],6
[5,F14,51],6
[5,FI14,52],6
[5,F14,53],6
[5,F14,54],6
[5,F14,55],6
[5,FI14,56],6
[5,F14,57],6
[5,F14,58],6 (11)
[ These are the cases where the isometry is five-dimensional, i.e., we obtain no
| additional symmetries:
> Indx5D:=[[5,F12,4],[5,F12,6],[5,F12,8],[5,F12,9],[5,F12,11],[5,F13,3],[5,F13,5],[5,F13,6],[5,F13,8],[5,
F14,1],[5,F14,2]];
Indx5D:= [[5,F12,4],[5,F12,6],[5,F128],[5,F129], [5,FI12 11}, [5,F13,31,[5,FI35], (12)

[5,F13,6],[5,F13,8],[5,F14,1],[5,F14,2]]

In the following sections, we match the above with entries in Petrov's classification.
The general procedure is to . . .

. Initialize the algebra and isotropy H.

. Initialize the Petrov Killing vectors KV on a manifold P.

. Calculate the isotropy IsoK at a point.

. Find a change of basis that aligns the two algebras.

. Check that the change of basis also aligns the isotropies (up to scaling).

V (F12, 4) = (33.17) withe = -1

;> C := DGTable[Indx5D[1]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2] =2 el [el,e3] = —2e2 [el, e4] =0, [el,e5] =0, [e2 e3] = 2 e3, [e2, e4 (1.1)
1=0,[e2,e5]1=0,[e3,e4d] =0,[e3,e5]=0,[e4,e5]1=0
| > DGsetup(LD):
| > Iso := DGTable[Indx5D[1]]["Isotropy"]:
> V := DGinformation("FrameBaseVectors"):
> H := DGzip(lso, V, "plus");
H:=|el —e3—-2 e4] (1.2)
[ > DGsetup([x1,x2,x3,x4],P);
Manifold: P (1.3)
> KV:=DGzip([[O, 1, 0, 0], [0, x2, 1, O], [-exp(x3), -exp(2*x3)+x2"2, 2*x2, 0], [1, O, O, O], [0, O, O,
1]],DGinformation("FrameBaseVectors"));
KV:= [a X209 _+0 , —ex3p +(—e2X3+x22> d_+2x20
| xZ2 x2 x3 x1 x2 P
> LDK:=LieAlgebraData(KV,algK);
LDK = [el,e2] = el, [el,e3] =2 e2,[el,e4] = 0, [el, e5] = 0, [e2,e3] = e3,[e2,e4] =0, (1.5)
[e2,e5]=0,[e3,e4] =0,[e3,e5]=0,[e4,e5]=0
> DGsetup(LDK,[X],[0]);

0,0 (1.4)

3 4

Lie algebra: algk (1.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);

IsoK == [ X1 + X3 + X4] (1.7)
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> Mat:=Matrix([[-sqrt(2), O, O, 0, 0], [0, 2, 0, 0, 0], [O, O, sqrt(2), 0, 0], [O, O, O, 1/sqgrt(2), 0], [O, O,
L 0,0, -1]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
v 7 x3 L2
COB := [ -2 X1,2 X2, /2 X3, 5 X4, —XS} (1.8)
> DGequal(LieAlgebraData(COB),LD):
true (1.9
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[1,0, -1, =2,0] (1.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(-1/sqrt(2))-op(IsoK));
0 X1 (1.11)

(F12, 6) = (33.19)

[> c = = DGTable[Indx5D[2]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);

LD:=[el,e2] = e3,[el,e3] = —e2, [el,ed] =0, [el,e5] =0, [e2, e3] = el, [e2,e4] = 0, (2.1)
[e2,e5]1=0,[e3,e4] =0,[e3,e5]=0,[e4,e5]=0

> DGsetup(LD):

> |so := DGTable[Indx5D[2]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");

i H:=[el — e4] (2.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (2.3)

= KV:=DGzip([[0, 1, 0, 0], [cos(x2), -1/sin(x1)*cos(x1)*sin(x2), 1/sin(x1)*sin(x2), 0], [-sin(x2),
-1/sin(x1)*cos(x1)*cos(x2), 1/sin(x1)*cos(x2), 0], [0, 0, 1, 0], [0, 0, 0, 1]],DGinformation
("FrameBaseVectors"));

KV |0 ,cos(x2) o — SOS(XD)SIX2) o SIMX2) o o)y (2.4)
xZ x1 sin(x1) X2 sin(xl) x3 x1
_cos(xl) cos(x2) 3 cos (x2)
sin(xI) X2 sin(x1) x3 x3 x4

=> LDK:=LieAlgebraData(KV,algK);
LDK = [el,e2] = e3,[el,e3] = —e2, [el,e4] =0, [el,e5] =0, [e2,e3] =el,[e2,e4] =0, (2.5)

| [e2e51=0,[e3,e4]=0,[e3,e5]1=0,[e4,e5]=0
> DGsetup(LDK,[X],[0]);

Lie algebra: algK (2.6)
> IsoK:=IsotropySubalgebra(KV,[x1=Pi/2,x2=0,x3=0,x4=0],output=[algK]);
IsoK == [ X3 — X4] (2.7)

[> Mat:=Matrix([[0, 0, 1, 0, 0], [-1, 0, 0, 0, 0], [0, -1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, -1]])-
> COB:=evalDG(convert(Mat.Matrix([[X1], [xz] [X3],[X4], [x5]]) list)):
COB:= [ X3, — X1, — X2, X4, — X5] (2.8)

[ > DGequal(LieAlgebraData(COB),LD);

true (2.9)
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==1[1,0,0, —1,0] (2.10)

=> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (2.11)
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(F12, 6) = (33.20)

| > C := DGTable[Indx5D[2]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:= [el,e2] = e3,[el,e3] = —e2, [el,ed] =0,[el,e5] =0, [e2,e3] = el, [e2,e4] =0, (3.1)

[e2,e5]=0,[e3,e4] =0,[e3,e5]=0,[e4,e5]=0
> DGsetup(LD):
> |so := DGTable[Indx5D[2]]["Isotropy"]:
> V := DGinformation("FrameBaseVectors"):
> H := DGzip(lso, V, "plus");

H:=[el — e4] (3.2)
E DGsetup([x1,x2,x3,x4],P);
Manifold: P (3.3)

= KV:=DGzip([[O, 1, 0, 0], [1/cos(x3)*cos(x2), -1/cos(x3)*sin(x3)*cos(x2), sin(x2), 0], [-1/cos
(x3)*sin(x2), 1/cos(x3)*sin(x3)*sin(x2), cos(x2), 0], [1, 0, 0, 0], [0, O, 0, 1]],DGinformation
("FrameBaseVectors"));

Kvie |o  CO8(X2) o _ sIn(x3) cos(x2)
2 cos(x3) ™ Cos(x3)

. sin(x2)

9+ sin(x2) 04~ 7cos(x3) 3, (3.4)

sin(x3) sin(x2)
cos(x3)

=> LDK:=LieAlgebraData(KV,algK);
LDK := [el,e2] = e3,[el,e3] = —e2, [el,e4d] =0, [el,e5]=0,[e2, e3] = el, [e2,e4] =0, (3.5)

| [e2e5]=0,[e3,e4] =0, [e3,e5] =0, [e4,e5] = 0
> DGsetup(LDK,[X],[0]);

0 cos(x2)d ,d ,0
x2+ (x2) x3 xI' x4

Lie algebra: algkK (3.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X2 — X4] (38.7)

Mat:=Matrix([[O, 1, O, O, O], [-1, O, O, O, O], [0, O, 1, O, O], [0, O, O, 1, O], [O, O, O, 0, 1]]):
COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]),list));
COB = [X2, — X1, X3, X4, X5] (3.8)

> DGequal(LieAlgebraData(COB),LD);

v “V |

true (3.9)
=> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List==[1,0,0, —1,0] (3.10)
=> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (3.11)

(F12, 8) = (33.23)

| > C := DGTable[Indx5D[3]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2]=0,[el,e3] =0, [el,e4d] =0, [el,e5] =0, [e2,e3] =el,[e2 ed] = e3,[e2, (4.1)

e5]1=0,[e3,e4] = —e2 [e3,e5]=0,[e4,e5]=0

> DGsetup(LD):
> |so := DGTable[Indx5D[3]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):
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> H :=DGzip(Iso, V, "plus");
H:=[e4] (4.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (4.3)
> KV:=DGzip([[O0, 1, O, 0], [0, O, 1, O], [-1, x3, O, O], [-x3, 1/2*x3~2-1/2*x1"2, x1, 0], [0, O, O, 1]1,
DGinformation("FrameBaseVectors"));
KV:=10 ,0 0 +x30 30 (x—y+x—12)a +xI10 ,0 (4.4)
- x2’x3’_x1xx2’_x xl__z 2 x2xx3'x4 ’
> LDK:=LieAlgebraData(KV,algK);
LDK :=[el,e2] =0, [el,e3]=0,[el,e4] =0, [el,e5] =0, [e2,e3] = el, [e2,e4] = e3, (4.5)
[e2,e5]1=0,[e3,e4] = —e2, [e3,e5]=0,[e4,e5]=0
> DGsetup(LDK,[X],[0]);
Lie algebra: algk (4.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] 4.7)

> Mat:=Matrix([[-1, O, O, O, 0], [O, 1, O, O, O], [O, O, -1, O, O], [O, O, O, -1, O], [O, O, O, O, 1]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB:=[ —X1,X2, — X3, — X4, X5] (4.8)

> DGequal(LieAlgebraData(COB),LD);

true (4.9)
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==1[0,0,0,1,0] (4.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(-1)-op(IsoK));
0 X1 (4.11)

(F12, 9) = (33.22)

> C := DGTable[Indx5D[4]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);

LD:=[el, e2]=0,[el,e3] =0, el e4] = —2el, [el,e5] =0, [e2 e3] = el, [e2, e4] = (5.1)
—e2, [e2,e5] = —e3,[e3,ed] = —e3, [e3,e5] =e2, [e4,e5] =0

> DGsetup(LD):

> |so := DGTable[Indx5D[4]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):

> H := DGzip(Iso, V, "plus");

H:=[e5] (5.2)

=> DGsetup([x1,x2,x3,x4],P);
Manifold: P (5.3)

> KV:=DGzip([[O, 1, 0, 0], [O, O, 1, O], [-1, x3, O, O], [-x3, 1/2*x3"2-1/2*x1"2, x1, 0], [x1, 2*x2,
x3, 1]],DGinformation("FrameBaseVectors"));

x32  xI?
KV:= |0 - +— |0 +xI0
x2 X

—axl—i—XSaXZ,—xSaxl—(— 5 5

LW g X1 +2x20 +x30 (5.4)

+o

| x4

> LDK:=LieAlgebraData(KV,algK);

LDK:= [el, e2] = 0,[el,e3] =0, [el,e4] = 0, [el,e5] = 2 el, [e2,e3] = el, [e2,e4] = e3,  (5.5)
[e2,e5] =e2 [e3,ed4] = —e2, [e3,e5] =e3, [e4,e5]=0

> DGsetup(LDK,[X],[0]);

= AN
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Lie algebra: algk (5.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] (5.7

:> Mat:=Matrix([[1, O, O, O, O], [O, 1, O, O, O], [O, O, 1, O, O], [O, O, O, O, -1], [O, O, O, -1, 0]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB = [ X1, X2, X3, — X5, — X4] (5.8)

> DGequal(LieAlgebraData(COB),LD);

true (5.9)
=> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,0,1] (5.10)
> evalDG(add(List[i]*COBI[i],i=1..5)*(-1)-op(IsoK));
0 X1 (5.11)

£F12 11) = (33.31)

> C := DGTable[Indx5D[5]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el, e2]=0,[el,e3] =0, [el, e4] =Pel, [el, e5]=0,[e2 e3] =0, [e2 ed] = —e2, (6.1)
[e2,e5] =e3,[e3,ed] = —e3,[e3,e5] = —e2, [e4,e5]=0

;> DGsetup(LD):
| > Iso := DGTable[Indx5D[5]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H :=DGzip(Iso, V, "plus");
H:= [e5] (6.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (6.3)

> KV:=DGzip([[0, 1, 0, 0], [0, O, 1, O], [-1, O, O, O], [O, -x3, x2, O], [x1*_I, _k*x2, x3*_k, 1]],
DGinformation("FrameBaseVectors"));

KV:= [a 8, —0,—x30 _+x20 ,xI_10 +_kx20 +x3_kd _+0 (6.4)
| xZ x3 x1 x2 x3 x1 x2 x3 x4
> LDK:=LieAlgebraData(KV,algK);
LDK = [el,e2] =0, [el,e3] =0, [el, e4] = e2, [ el,e5] = _kel, [e2,e3] =0, [e2, e4] = (6.5)

—el, [e2 e5] = _ke2 [e3,e4] = 0,[e3,e5] = _1e3, [e4, e5] =
> DGsetup(LDK,[X],[0]):

Lie algebra: algk (6.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] (6.7)

:> Mat:=Matrix([[O, O, 1, O, O], [O, -1, O, O, O], [-1, O, O, O, O], [O, O, O, O, -1/_K], [O, O, 0, -1, 0]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB = [XS, -X2, — X1, — = X5 —X4] (6.8)
=> DGequal(eval(LieAlgebraData(COB),-_I/_k=beta),LD);
true (6.9)
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List-=10,0,0,0,1] (6.10)

> evalDG(add(List[i]*COBIi],i=1..5)*(-1)-op(IsoK));

0 X1 (6.11)
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Y (F13, 3) = (33.21) with c = 0

| > C := DGTable[Indx5D[6]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C]);
LD:=[el,e2] =0,[el,e3]=0,[el,e4d] =0, [el, e5]=0,[e2,e3] = —el, [e2,ed] = —e2, (7.1)

[e2,e5]1=0,[e3,ed] =e3,[e3,e5]=0,[ed,e5]=0
> DGsetup(LD):
> |so := DGTable[Indx5D[6]]["Isotropy"]:
> V := DGinformation("FrameBaseVectors"):
> H :=DGzip(Iso, V, "plus");

H:= [e4] (7.2)

=> DGsetup([x1,x2,x3,x4],P);
Manifold: P (7.3)

[ > KV:=DGzip([[O0, 1, O, 0], [O, O, 1, O], [-1, x3, O, O], [-x1, O, x3, 0], [0, O, 0, 1]],DGinformation
("FrameBaseVectors"));

] KVi=[d 48, —0 +x30 , ~x1d +x30 ,0 (7.4)
> LDK:=LieAlgebraData(KV,algK);
LDK:=[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] = 0, [e2, e3] = el, [e2, e4] = e2, (7.5)
[e2,e5]=0,[e3,ed] = —e3,[e3,e5]=0,[e4,e5] =0

> DGsetup(LDK,[X],[0]):

Lie algebra: algk (7.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);

Is0K := [ X4] (7.7)

[> Mat:=Matrix([[-1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, O, -1, 0], [0, O, 0, O, 1]]):
>

COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]),list));
COB:= [ — X1, X2, X3, — X4, X5] (7.8)

> DGequal(LieAlgebraData(COB),LD);

true (7.9)
=> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,1,0] (7.10)
=> evalDG(add(List[i]*COBJi],i=1..5)*(-1)-op(IsoK));
0 X1 (7.11)

¥V (F13, 5) = (33.17) with epsilon =1
;> C := DGTable[Indx5D[7]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2] =2el, [el,e3] = e2 [el, e4] = 0,[el,e5] =0, [e2,e3] =2 e3,[e2,e4] =0, (8.1)
[e2,e51=0,[e3,e4]=0,[e3,e5]=0,[e4,e5]=0

;> DGsetup(LD):
| > Iso := DGTable[Indx5D[7]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");
H:=[e2—2 e4] (8.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (8.3)

> KV:=DGzip([[O0, 1, 0, 0], [0, x2, 1, 0], [-exp(x3), exp(2*x3)+x2"2, 2*x2, 0], [1, O, O, O], [O, O, O,
1]],.DGinformation("FrameBaseVectors"));
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KV:= [a LX20 40
X x2 X

74 3

> LDK:=LieAlgebraData(KV,algK);

LDK = [el,e2] = el, [el,e3] =2 e2,[el,e4] = 0, [el, e5] = 0, [e2,e3] = e3,[e2,e4] =0, (8.5)
[e2,e5]1=0,[e3,e4] =0,[e3,e5]=0,[e4,e5]=0

> DGsetup(LDK,[X],[0]);

—eX39 +(e2"3+x22)6 +2x20 ,0 ,9
x1 x2 x3 xI x

; (8.4)

4

Lie algebra: algK (8.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK := [ X1 — X3 — X4] (8.7)

> Mat:=Matrix([[1/2, -1, 1/2, 0, 0], [1, O, -1, 0, 0], [1/2, 1, 1/2, 0, 0], [0, 0, 0, 1/2, 0], [0, 0, 0, O,
1]]):

> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));

1 1 1 1 1
COB = > X1 —-X2+ > X3, X1 — X3, 5 X1 +X2+ > X3, 5 X4, X5 (8.8)
=> DGequal(LieAlgebraData(COB),LD);
true (8.9)
> List:=op(GetComponents(H,DGinformation(alg,”"FrameBaseVectors")));
List:==[0,1,0, —=2,0] (8.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (8.11)

(F13, 6) =(33.21) with c nonzero

;> C := DGTable[Indx5D[8]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);

LD:=[el,e2]=0,[el,e3] =0, [el,ed] = —el,[el,e5] =0, [e2,e3] =el, [e2 e4] =0, (9.1)
[e2, e5] =e2, [e3,ed] = —e3,[e3,e5] = —e3,[e4,e5]=0
[> DGsetup(LD):
| > Iso := DGTable[Indx5D[8]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");
H:=[e5] (9.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (9.3)

> KV:=DGzip([[0, 1, 0, 0], [O, O, 1, O], [-1, X3, O, 0], [-x1, O, x3, 0], [_c*x1, _c*x2, 0, 1]],
DGinformation("FrameBaseVectors"));

KV:= axz‘ax3' —6X1+x36x2, —x1 ax1+x36x

=> LDK:=LieAlgebraData(KV,algK);

LDK:= [el, e2] =0, [el,e3] =0, [el,e4] = 0, [el,e5] = _cel, [e2,e3] = el, [e2,e4] = e2, (9.5)
[e2,e5]=0,[e3 e4d] = —e3 [e3 e5] = _ce3 [e4d e5]=0

> DGsetup(LDK,[X],[0]);

g-cxld +oex29 49 (9.4)

Lie algebra: algK (9.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK := [ X4] (9.7)

> Mat:=Matrix([[1, 0, 0, 0, 0], [0, O, -1, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, -1, -1/_c], [0, 0, 0, -1, O]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));

(9.8)
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1
COB:= | X1, — X3, X2, — X4 — 7 X5, — X4 (9.8)
=> DGequal(LieAlgebraData(COB),LD);
true (9.9
E List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,0,1] (9.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(-1)-op(IsoK));
0 X1 (9.11)

(F13, 8) =(33.28) with kappa = k + epsilon nonzero

| > C := DGTable[Indx5D[9]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] = —el, [e2,e3] =0, [e2,e4] = —e2, (10.1)

[e2,e5]1=0,[e3 e4] = —ae3 [e3, e5]=—ae3 [e4,e5]=0
> DGsetup(LD):
> |so := DGTable[Indx5D[9]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");

H:=[e4— e5] (10.2)

> DGsetup([x1,x2,x3,x4],P);

Manifold: P (10.3)

[> # We will recalculate the Killing vectors, since there seems to be

| #an error in Petrov's vector fields.

> g:=convert(Matrix([[_k1l1l*exp(-2*_I*x4), 0, 0, 0], [0, O, _k23*exp(-(_k+_epsilon)*x4), 0], [0,
_k23*exp(-(_k+_epsilon)*x4), 0, 0], [0, O, O, _k44]]),DGtensor,[["cov_bas","cov_bas"],[1]);

g=_klle2-1x dx1®dxl + _k23 e (-kT-0x4 dx2® dx3 + _k23 e~ (-k+-0 x4 dx3® dx2 (10.4)

+ _k44 dx4 ® dx4

=> KVG:=KillingVectors(g);
KVG = KillingVectors( _k11 e-2-1x4 dx] ®@ dx1 + _k23 e~ (-k+-9 x4 x2 ® dx3 (10.5)

+ _k23e-(k+_0x4 dx3@dx2 + _k44 dx4 ® dx4)

> # By scaling, rearranging, and setting _kappa = _k + _epsilon, we obtain
# the following. We write this manually so that the ordering of vector
| #fields is always the same, regardless of Maple version, etc.
> KV:=DGzip([[0, 1, O, O], [0, O, 1, O], [-1, O, O, 0], [0, x2, -x3, 0], [_I*x1, 0, _kappa*x3, 1]],
DGinformation("FrameBaseVectors"));
= — 20 —x30
kv [axj ax3’ axl'x x2 x3 X
> LDK:=LieAlgebraData(KV,algK);
LDK:=[el,e2] =0, [el,e3] =0, [el,ed] =el, [el,e5]=0,[e2,e3]=0,[e2 ed] = —e2, (10.7)

[e2,e5] = ke2 [e3,e4]1 =0, [e3,e5] = _le3, [e4,e51 =0
> DGsetup(LDK,[X],[0]);

3,_lx1 9 kX308 49 (10.6)

Lie algebra: algk (10.8)
E IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] (10.9)

> Mat:=Matrix([[1, O, O, O, O], [O, 1, O, O, O], [0, O, 1, O, O], [O, O, O, O, -1/_kappa], [0, O, O, -1,
| -1/_kappa]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
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1 1
COB:= | X1, X2, X3, — e X5, — X4 — e X5 (10.10)
=> DGequal(eval(LieAlgebraData(COB),_|/_kappa=a),LD);
true (10.11)
E List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,1, —1] (10.12)
> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (10.13)
(F14, 1) = (33.14) (includes (33.18) when k < 0)
;> C := DGTable[Indx5D[10]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] =el, [e2,e3] =0, [e2, e4] = el, [e2, (11.1)
e5]=e2 [e3 e4d] =e2 [e3 e5] = —cel +e3, [e4,e5]=0
[> DGsetup(LD):
| > Iso := DGTable[Indx5D[10]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");
H:=[e4] (11.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (11.3)
> KV:=DGzip([[O0, 1, 0, 0], [O, O, 1, O], [0, x3, -exp(x1), O], [1, x2, x3, 0], [exp(-x1), x1*_k-1/2*
exp(-2*x4), 0, exp(-x1)]],DGinformation("FrameBaseVectors"));
-2x4
— _ oxl -x1 _£ -x1
i KV:= [axj axs, x36x2 ex axs, ax1+x26xz+ x36x3,e X ax1+(x1 _k 5 ) 6x2+e X 6x4] (11.4)
> LDK:=LieAlgebraData(KV,algK);
LDK:= [el,e2] =0, [el,e3] =0, [el,ed] = el, [el,e5]=0,[e2,e3] = el, [e2 ed] = e2, (11.5)
[e2,e5] =0, [e3,e4] =0, [e3,e5] = e2, [ed, e5] = _kel —e5
> DGsetup(LDK,[X],[O]);
Lie algebra: algk (11.6)
E IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK := [ X2 + X3] (11.7)
> Mat:=Matrix([[-abs(_k), O, 0, 0, 0], [O, sqrt(abs(_k)), O, O, O], [0, O, O, O, 1], [0, -sqrt(abs(_k)), -
| sqrt(abs(_k)), 0, 0], [0, 0, 0, 1, -1]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB:=| —|_k X1, JT_R X2,X5 — JT_K X2— JT_K X3 X4—X5]| (11.8)
> DGequal(eval(LieAlgebraData(COB), k/abs(_k)=-epsilon),LD);
true (11.9)
E List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:=1[0,0,0,1,0] (11.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(-1/sqrt(abs(_k)))-op(IsoK));
0 X1 (11.11)

(F14, 2) = (33.16)

|:> C := DGTable[Indx5D[11]][" StructureConstants"]:
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> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);

LD:=[el, e2] =2 el, [el,e3] = —e2 [el,ed] =0, [el,e5] =0, [e2 e3] =2 e3, [e2 e4 (12.1)
1=0,[e2,e5]=0,[e3,e4] =0,[e3,e5] =0, [e4,e5]=0

> DGsetup(LD):

> |so := DGTable[Indx5D[11]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):

> H := DGzip(lso, V, "plus");

H:=[e3+ e4] (12.2)

=> DGsetup([x1,x2,x3,x4],P);
Manifold: P (12.3)
E KV:=DGzip([[1, O, O, 0], [0, exp(x3), O, 0], [0, O, 1, O, [O, O, O, 1], [exp(-x3), -exp(-x3)*x2" 2,
-2*exp(-x3)*x2, 0]],DGinformation("FrameBaseVectors"));

KV := x3 -X3 —e-X3x22 _2eX3x2 .
1% [axl,e 040 40 €0 —eXIx20 —2eXIx20 (12.4)

=> LDK:=LieAlgebraData(KV,algK);
LDK:= [el,e2] =0, [el,e3] =0, [el,e4] =0,[el,e5]=0,[e2 e3] = —e2, [e2 e4] =0, (12.5)

i [e2,e5] = —2e3,[e3,e4] =0, [e3,e5] = —e5, [e4,e5] = 0
> DGsetup(LDK,[X],[0]);

Lie algebra: algK (12.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X1 — X5] (12.7)

:> Mat:=Matrix([[O, 1, O, O, O], [O, O, -2, O, O], [O, O, O, O, -1], [1, O, O, O, 0], [O, O, O, 1, O]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]),list));

COB = [X2, —2 X3, — X5, X1, X4] (12.8)
> DGequal(eval(LieAlgebraData(COB)),LD);
true (12.9)
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:=10,0,1,1,0] (12.10)

=> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (12.11)
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C. MAPLE DATABASE

# [5, F8, 0]

DGTable[[5, F8, O0]][" StructureConstants"] = [[[1, 2, 1], 2], [[1,
2], [[4, 5, 4], 1]]:

DGTable[[5, F8, O0]]["Isotropy"] := [][O, O, 1, 1, O], [O, 0, 0,

DGTable[[5, F8, O0]][" Parameters"] := [[],[]]:

# [5, F8, 1]

DGTable[[5, F8, 1]][" StructureConstants"] := [[[1, 5, 1], —1],
1], 3, 5, 3], 1], [[4, 5, 4], —1]]:

DGTable[[5, F8, 1]]["Isotropy"] := [][O, O, O, 1, O], [O, 0, 0,

DGTable[[5, F8, 1]][" Parameters"] := [[] ,[]]:
F11 ; ; 4

# [5, F11, 0]

DGTable[[5, F11, O0]][" StructureConstants"] := [[[1, 5, tan(a)],
([4+. 5, 3], —1], [[3, 5, 4], 1]]:

DGTable[]|5, F11, O]]["Isotropy"] := [[0, O, O, O, 1]]

DGTable[[5, F11,

0]][" Parameters "]

[[a],[a > O, a% Pi/2]]:
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F12 44 i . "

# [5, F12, O]

DGTable[[5, F12, 0]][" StructureConstants"] := [[[1, 3, 2], 1], [[2, 3, 1], —1], [[4, 5,
4], —1]]:

DGTable[[5, F12, 0]][" Isotropy"] := [[0, O, 1, O, O]]:

DGTable[[5, F12, 0]][" Parameters"] := [[],[]]:

# [5, F12, 1]

DGTable[[5, F12, 1]][" StructureConstants"] := [[[1, 2, 1], 2],[[1, 3, 2], —-1], [[2, 3, 3],
2], [[4, 5, 4], 1]]:

DGTable[[5, F12, 1]][" Isotropy"] := [[1, 0, —1, 0, O]]:

DGTable[[5, F12, 1]][" Parameters"] := [[],[]]:

4 [5, F12, 2]

DGTable[[5, F12, 2]][" StructureConstants"] := [[[1, 2, 3], 1], [[1, 3, 2], —-1], [[2, 3,
1], 11, [l4, 5, 4], 1]]:

DGTable[[5, F12, 2]]["Isotropy"] := [[1, O, O, O, O]]:

DGTable[[5, F12, 2]][" Parameters"] = [[] ,[]]:

4 [5, F12, 3]
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DGTable[[5, F12, 3]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], —=2], [[2, 3,
3], 2]

DGTable[[5, F12, 3]]["Isotropy"] := [[1, 0, -1, 0, 0]]:

DGTable[[5, F12, 3]][" Parameters"] := [[],[]]:

# [5, F12, 4]

DGTable[[5, F12, 4]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], —-2], [[2, 3,
3], 2]]:

DGTable[[5, F12, 4]]["Isotropy"] := [[1, O, =1, —2, O]]:

DGTable[[5, F12, 4]][" Parameters"] = [[] ,[]]:

# [5, F12, 5]

DGTable[[5, F12, 5]][" StructureConstants"] := [[[1, 2, 3], 1], [[1, 3, 2], —1], [[2, 3,
1], 1]]:

DGTable[|5, F12, 5]]["Isotropy"] := [[1, 0O, O, O, O]]:

DGTable[[5, F12, 5]][" Parameters"] = [[] ,[]]:

# [5, F12, 6]

DGTable[[5, F12, 6]][" StructureConstants"] := [[[1, 2, 3], 1], [[1, 3, 2], —1], [[2, 3,
1], 1]1:

DGTable[[5, F12, 6]][" Isotropy "] := [[1, O, 0, —1, O]]:

DGTable[|5, F12, 6]][" Parameters"] := [[],[]]:

# [5, F12, 7]

DGTable[[5, F12,

-1

StructureConstants "] [rr¥, 3, 21, 11, [l2, 3, 1], —1]]:

DGTable[[5, F12, 7]][" Isotropy"] := [[0, O, 1, O, 0]]

DGTable[[5, F12, 7]][" Parameters"] = [[] ,[]]:

# [6, F12, 8]

DGTable[|5, F12, 8]|[" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 3], 1], [[3, 4,
—1]]:

DGTable[[5, F12, 8]][" Isotropy"] := [[0, O, 0, 1, O]]:

DGTable[[5, F12, 8]][" Parameters"] := [[],[]]:

4 [5, F12, 9]

DGTable[[5, F12, 9]][" StructureConstants"] := [[[1, 4, 1], -2], [[2, 3, 1], 1], [[2, 4,
2], -1], [l2, 5, 3], —1], [[8, 4, 3], —1], [[3, 5, 2], 1]]:

DGTable[|5, F12, 9]]["Isotropy"] := [[0, O, O, O, 1]]:

DGTable[[5, F12, 9]][" Parameters"] := [[] ,[]]:

# [5, F12, 10]

DGTable[[5, F12, 10]][" StructureConstants"] := [[[1, 3, 1], -—1], [[1, 4, 2], -—-1], [[2,
2], —1], [[2, 4, 1], 1]]:

DGTable[[5, F12, 10]]["Isotropy"] := [[0O, O, O, 1, O]]:

DGTable[[5, F12, 10]][" Parameters"] := [[] ,[]]:

7 7 77 7
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# [5, F12, 11]

DGTable[[5, F12, 11]][" StructureConstants"] := [[[1, 4, 1], betal, [[2, 4, 2], -1], [[2,
5, 3], 1], [[3, 4, 3], —1], [[3, 5, 2], —1]]:

DGTable[]|5, F12, 11]]["Isotropy"] := [[0O, O, O, O, 1]]:

DGTable[[5, F12, 11]][" Parameters"] := [[beta],[beta <>0]]:

HH# F13 45 # i 4

# [5, F13, 0]

DGTable[[5, F13, 0]][" StructureConstants"] := [[[1, 3, 1], 1], [[2, 3, 2], —1], [[4, 5,
41, 11]:

DGTable[[5, F13, 0]][" Isotropy"] := [[0, O, 1, O, O]]:

DGTable[[5, F13, 0]][" Parameters"] := [[],[]]:

# [5, F13, 1]

DGTable[[5, F13, 1]][" StructureConstants"] := [[[1, 2, 1], 2], [[2, 3, 3], 2], [[1, 3, 2],
—1], [[4, 5, 4], 1]]:

DGTable[[5, F13, 1]][" Isotropy"] := [[0, 1, 0, 0, O]]:

DGTable[[5, F13, 1]][" Parameters"] := [[] ,[]]:

4 [5, F13, 2]

DGTable[[5, F13, 2]]|[" StructureConstants"] := [[[1, 3, 1], 1], [[2, 3, 2], —1]]:

DGTable[[5, F13, 2]][" Isotropy"] := [[0, O, 1, O, O0]]:

DGTable[[5, F13, 2]][" Parameters"] := [[],[]]:

- [5, F13, 3]

DGTable[[5, F13, 3]][" StructureConstants"] := [[[2, 3, 1], -1], [[2, 4, 2], —-1], [[3, 4,
3], 1]]:

DGTable[|5, F13, 3]]["Isotropy"] := [[0, O, O, 1, O]]:

DGTable[[5, F13, 3]][" Parameters"] := [[],[]]:

4 [5, F13, 4]

DGTable[[5, F13, 4]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], 1], [[2, 3, 3],
2]]:

DGTable[|5, F13, 4]]["Isotropy"] := [[0, 1, 0, O, O]]:

DGTable[[5, F13, 4]][" Parameters"] = [[] ,[]]:

# [5, F13, 5]

DGTable[[5, F13, 5]][" StructureConstants"] = [[[1, 2, 1], 2], [[1, 3, 2], 1], [[2, 3, 3],
2]]:

DGTable[[5, F13, 5]][" Isotropy"] := [[0, 1, 0, —2, 0]]:

DGTable[[5, F13, 5]][" Parameters"] = [[] ,[]]:

# [6, F13, 6]
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DGTable[[5, F13, 6]][" StructureConstants"] = [[[1, 4, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], 11, [[3, 4, 3], -1, [[3, 5, 3], —1]I:

DGTable[|5, F13, 6]][" Isotropy"] := [[0, O, O, O, 1]]:

DGTable[[5, F13, 6]][" Parameters"] = [[] ,[]]:

# [5, F13, 7]

DGTable[[5, F13, 7]][" StructureConstants"] = [[[1, 2, 1], 1], [[3, 4, 3], 1]]

DGTable[[5, F13, 7]]["Isotropy"] := [[0, 1, 0, —1, O]]

DGTable[[5, F13, 7]][" Parameters"] = [[] ,[]]

# [5, F13, 8]

DGTable[[5, F13, 8]][" StructureConstants"] := [[[1, 5, 1], -1], [[2, 4, 2], -—-1], [[3, 4,
3], —al], [[3, 5, 3], —a]]:

DGTable[[5, F13, 8]|["Isotropy"] := [[0, 0O, O, 1, —1]]:

DGTable[[5, F13, 8]][" Parameters"] := [[a].,[a>0,a<=1]]:

S P14 Hd iy Loy L

# [5, F14, 0]

L L L L

DGTal;le[[5, F14, o]][" StructlireConstants”] [frr, 5, 1], 1], I[[2, 4, 1], 1], [[2, 5, 2],
1], [[3, 4, 2], 1], [[3, 5, 3], 1]]:

DGTable[[5, F14, 0]][" Isotropy"] := [[0, O, O, 1, O]]:

DGTable[[5, F14, 0]][" Parameters"] := [[] ,[]]:

# [5, F14, 1]

DGTable[[5, F14, 1]][" StructureConstants"] := [[[1, 5, 1], 1], [[2, 4, 1], 1], [[2, 5, 2],
1], s, 4, 2], 1], [[3, 5, 1], —epsilon], [[3, 5, 3], 1]]:

DGTable[[5, F14, 1]][" Isotropy"] := [[0, 0, 0, 1, 0]]:

DGTable[|5, F14, 1]][" Parameters"] := |[[epsilon],[abs(epsilon)=1]]:

# [5, F14, 2]

DGTable[[5, F14, 2]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], -—-1], [[2, 3,
3], 2]]:

DGTable[[5, F14, 2]][" Isotropy"] := [[0, O, 1, 1, 0]]:

DGTable[[5, F14, 2]][" Parameters"] := [[],[]]:

# [5, F14, 3]

DGTable[[5, F14, 3]][" StructureConstants"] := [[[1, 4, 1], 1], [[2, 3, 1], 1], [[2, 4, 2],
1]]:

DGTable[|5, F14, 3]]["Isotropy"] := [[0, 1, 1, O, O]]:

DGTable[[5, F14, 3]][" Parameters"] = [[] ,[]]:

4 [5, F14, 4]
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DGTable[[5, F14, 4]][" StructureConstants"] := [[[2, &, 1], 1], [[3, 4, 1], 1], [[4, 5, 2],
1]]:

DGTable[[5, F14, 4]]["Isotropy"] := [[0, 0, 0, 0, 1]]:

DGTable[[5, F14, 4]][" Parameters"] := [[],[]]:

4 [5, F14, 5]

DGTable[[5, F14, 5]][" StructureConstants"] := [[[2, 5, 1], 1], [[3, 5, 2], 1]]:

DGTable[[5, F14, 5]][" Isotropy"] := [[0, 0, 0, 0, I1]]:

DGTable[[5, F14, 5]][" Parameters"] := [[] ,[]]:

4 [5, F14, 6]

DGTable[[5, F14, 6]][" StructureConstants"] := [[[3, 4, 2], 1], [[3, &5, 1], 1], [[4, 5, 3],
1]]:

DGTable[|5, F14, 6]][" Isotropy"] := [[0, O, O, O, 1]]:

DGTable[[5, F14, 6]][" Parameters"] := [[] ,[]]:

4 [5, F14, 7]

DGTable[[5, F14, 7]][" StructureConstants"] = [[[1, 5, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[3, 5, 4], 1]]:

DGTable[[5, F14, 7]]["Isotropy"] := [[1, -1, —1, O, O]]:

DGTable[[5, F14, 7]][" Parameters"] = [[] ,[]]:

# [5, F14, 8]

DGTable[[5, F14, 8]][" StructureConstants"] := [[[2, 5, 1], 1], [[3, 4, 1], 1], [[3, 5, 2],
—-1], [14, 5, 3], 1]l

DGTable[[5, F14, 8]][" Isotropy"] := [[0, O, 0, 1, 0O]]:

DGTable[[5, F14, 8]][" Parameters"] := [[] ,[]]:

# [5, F14, 9]

DGTable[|5, F14, 9]][" StructureConstants"] := [[[2, 3, 1], -1], [[3, 5, 2], —1], [[4, 5,
41, —1]:

DGTable[[5, F14, 9]][" Isotropy"] := [[0, 1, 1, 1, O]]:

DGTable[[5, F14, 9]][" Parameters"] := [[],[]]:

# [5, F14, 10]

DGTable[[5, F14, 10]][" StructureConstants"] := [[[2, 3, 1], -1], [[3, 5, 2], -—1], [[4, 5,
4], —-1]]:

DGTable[|5, F14, 10]]|"Isotropy"] := [[1, O, —1, 0, O]]:

DGTable[[5, F14, 10]][" Parameters"] := [[],[]]:

# [5, F14, 11]

DGTable[[5, F14, 11]][" StructureConstants"] := [[[1, 5, 1], -—1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[4, 5, 4], —a]]:

DGTable[[5, F14, 11]]["Isotropy"] := [[O0O, 1, 1, 1, O]]:

DGTable[[5, F14, 11]][" Parameters"] := [[a],[a<>1,a<>0]]:

L

I L L

7
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# [5, F14, 12]

DGTable[[5, F14, 12]][" StructureConstants"] := [[[1, 5, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[4, 5, 4], —a]]:

DGTable[|5, F14, 12]]["Isotropy "] := [[0, O, 1, 1, O]]:

DGTable[[5, F14, 12]][" Parameters"] := [[a],[a<>1l,a<>0]]:

# [5, F14, 13]

L L L L L

DGTable[[5, F14, 13]][" StructureConstants"] :=

(1, 5, 11, —1], [[2, 3, 1], 1], [[3, 5,
3], -1], [I3, 5, 4], -1], [[4, 5, 1], —-1], [[4, 5, 4], -—-1]]:
0

DGTable[[5, F14, 13]]["Isotropy"] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 13]][" Parameters"] := [[] ,[]]:

# [6, F14, 14]

DGTable[[5, F14, 14]][" StructureConstants"| := [[[1, 5, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], -1, [[4, 5, 1], -1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 14]]["Isotropy"] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 14]][" Parameters"] := [[] ,[]]:

# [5, F14, 15]

DGTable[[5, F14, 15]][" StructureConstants"] := [[[1, 5, 1], -1], [[2, 3, 1], —-1], [[3, 5,
3], -1, [[3, 5, 4], -1], [[4, 5, 1], O], [[4, 5, 4], —1]:

DGTable[[5, F14, 15]]["Isotropy"] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 15]][" Parameters"] := [[] ,[]]:

# [5, F14, 16]

DGTable[[5, F14, 16]][" StructureConstants"] := [[[1, 5, 1], —-1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 16]][" Isotropy "] := [[0O, 1, 1, O, O]]:

DGTable[[5, F14, 16]][" Parameters"] = [[] ,[]]:

# [5, F14, 17]

DGTable[[5, F14, 17]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 2], -—-1], [[3, 4,
3], 1]]:

DGTable[[5, F14, 17]]["Isotropy"] := [[0O, 1, —2, 0, O]]:

DGTable[[5, F14, 17]]|" Parameters"] := [[],[]]:

# [5, F14, 18]

DGTable[[5, F14, 18]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 2], -—-1], [[3, 4,
3], 1]]:

DGTable[|5, F14, 18]]|"Isotropy"] := [|[0O, 1, —2, 0, 1]]:

DGTable[[5, F14, 18]][" Parameters"] := [[],[]]:

# [5, F14, 19]

DGTable[[5, F14, 19]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 3], 1], [[3, 4,
2], —-1]]:

DGTable[[5, F14, 19]][" Isotropy"] := [[0, 1, 0, 0, 0]]:

DGTable[[5, F14, 19]][" Parameters"] := [[],[]]:
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L I 1y

DGTable[[5, F14, 20]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 3], 1], [[3, 4,
2], —-1]]:

DGTable[[5, F14, 20]][" Isotropy"] := [[O0O, 1, O, O, —1]]:

DGTable[[5, F14, 20]][" Parameters"] := [[] ,[]]:

# [5, F14, 21]

DGTable[[5, F14, 21]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 3], —1], [[3, 5,
2], 1], [[4, 5. 1], —1]]:

DGTable[[5, F14, 21]]["Isotropy"] := [[0, O, 1, O, O]]:

DGTable[[5, F14, 21]][" Parameters"] = [[] ,[]]:

# [5, F14, 22]

DGTable[[5, F14, 22]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 3], —1], [[3, 5,
2], 1], [[4, 5. 1], —1]]:

DGTable[[5, F14, 22]]["Isotropy "] := [[0, O, 1, 1, O]]:

DGTable[[5, F14, 22]][" Parameters"] := [[],[]]:

# [5, F14, 23]

DGTable[[5, F14, 23]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], 1], [[3, 5,
3], —1], [[4, 5, 1], —1]]:

DGTable[[5, F14, 23]]["Isotropy"] := [[0, 1, —1, 0, O]]:

DGTable[[5, F14, 23]][" Parameters"] := [[],[]]:

# [5, F14, 24]

DGTable[[|5, F14, 24]]|" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], 1], [[3, 5,
3], —1], [[4, 5, 1], —1]:

DGTable[[5, F14, 24]]["Isotropy"] := [[0, 1, —1, —1, 0]]:

DGTable[[5, F14, 24]]|" Parameters"] := [[],[]]:

# [5, F14, 25]

DGTable[[5, F14, 25]][" StructureConstants"] := [[[1, 4, 1], -=2], [[2, 3, 1], 1], [[2, 4,
2], —1], [[3, 4, 2], —1], [[3, 4, 3], —1]]:

DGTable[[5, F14, 25]][" Isotropy"] := [[0, 0, 1, 0, 0]]:

DGTable[|5, F14, 25]]|" Parameters"] := [[],[]]:

# [6, F14, 26]

DGTable[[5, F14, 26]][" StructureConstants"] := [[[1, 4, 1], -2], [[2, 3, 1], 1], [[2, 4,
2], —1], [[3, 4, 2], —1], [[3, 4, 3], —1]]:

DGTable[[5, F14, 26]][" Isotropy"] := [[0, O, 1, 0, 1]]:

DGTable[[5, F14, 26]][" Parameters"] = [[] ,[]]:

# [5, F14, 27]

DGTable[[5, F14, 27]][" StructureConstants"] := [[[1, 4, 1], —a-—1], [[2, 3, 1], —-1], [[2,
4, 2], —-1], [[3, 4, 3], —a]]:

DGTable[[5, F14, 27]]["Isotropy"] := [[O0O, 1, —1, O, O]]:

DGTable[[5, F14, 27]][" Parameters"] := [[a],[a<>0,a<=1,a>—1]]:

# [5, F14, 28]

DGTable[[5, F14, 28]][" StructureConstants"] := [[[1, 4, 1], —a-—1], [[2, 3, 1], —-1], [[2,

4, 2], —-1], [[3, 4, 3], —al]]:
DGTable[[5, F14, 28]]["Isotropy"] := [[0O, 1, —1, O, 1]]:



C. MAPLE DATABASE 174

DGTable[[5, F14, 28]][" Parameters"] := [[a],[a<>0,a<=1l,a>—1]]:

# [6, F14, 29]

DGTable[|5, F14, 29]]|" StructureConstants"] := [[[1, 4, 1], —2«alpha], [[2, 3, 1], 1],
[[2, 4, 2], —alpha], [[2, 4, 3], 1], [[3, 4, 2], —1], [[3, 4, 3], —alpha]]:

DGTable[[5, F14, 29]][" Isotropy"] := [[0, 1, 0, 0, 0]]:

DGTable[[|5, F14, 29]]|" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 30]

DGTable[[5, F14, 30]][" StructureConstants"] := [[[1, 4, 1], —2xalphal], [[2, 3, 1], 1],
[[2, 4, 2], —alpha], [[2, 4, 3], 1], [[3, 4, 2], —-1], [[3, 4, 3], —alpha]]:

DGTable[[5, F14, 30]]["Isotropy"] := [[0, 1, 0, O, 1]]:

DGTable[[5, F14, 30]][" Parameters"] := [[alpha], [alpha >0]]:

# [5, F14, 31]

DGTable[[5, F14, 31]][" StructureConstants"| := [[[2, 3, 1], 1], [[2, 5, 3], —-1], [[3., 5,
2], 11, [[4, 5, 4], —alpha]]:

DGTable[[5, F14, 31]]["Isotropy "] := [[0, O, 1, O, O]]:

DGTable[[5, F14, 31]][" Parameters"] := [[alpha],[alpha<>1,alpha >0]]:

# [5, F14, 32]

DGTable[[5, F14, 32]][" StructureConstants"| := [[[2, 3, 1], 1], [[2, 5, 3], —-1], [[3, 5,
2], 11, [[4, 5, 4], —alpha]]:

DGTable[[5, F14, 32]]["Isotropy"] := [[0, O, 1, —1, O]]:

DGTable[[5, F14, 32]][" Parameters"] := [[alpha],[alpha<>1,alpha >0]]:

” [5, F1a, 33]

DGTable[[5, F14, 33]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —-1], [[3, 5,
3], 1], [[4, 5, 4], —a]]:

DGTable[[5, F14, 33]]["Isotropy"] := [[O0O, 1, —1, O, O]]:

DGTable[[5, F14, 33]][" Parameters"] := [[a].,[a<>1]]:

# [5, F14, 34]

DGTable[[5, F14, 34]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —1], [[3, 5,
3], 1], [[4, 5. 4], —all:

DGTable[[5, F14, 34]]["Isotropy"] := [[O0O, 1, —1, —1, O]]:

DGTable[[5, F14, 34]][" Parameters"] := [[a].,[a<>1]]:

" [5, F1a, 35]

DGTable[[5, F14, 35]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —-1], [[3, 5,
3], 1], [[4, 5. 4], —1]]:

DGTable[|5, F14, 35]]|" Isotropy"] := [|0O, 1, —1, O, O]]:

DGTable[[5, F14, 35]][" Parameters"] := [[],[]]:

# [5, F14, 36]

DGTable[[5, F14, 36]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —-1], [[3, 5,
3], 1], [[4, 5. 4], —1]]:

DGTable[[5, F14, 36]][" Isotropy"] := [[0, 1, —1, —1/2, 0]]:

DGTable[[5, F14, 36]][" Parameters"] := [[] ,[]]:
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DGTable[[5, F14, 37]][" StructureConstants"] := [[[1, 5, 1], —2«alphal], [[2, 3, 1], 1],
[[2, 5, 2], —alphal, [[2, 5, 3], 1], [[3, 5, 2], —1], [[3, 5, 3], —alphal, [[4, 5, 4],
—beta ]]:

DGTable[[5, F14, 37]]["Isotropy"] := [[0, 1, 0, 1, O]]:

DGTable[|5, F14, 37]]|" Parameters"] := [[alpha,beta],[alpha<>0,beta >0]]:

# [6, F14, 38]

DGTable[[5, F14, 38]][" StructureConstants"] := [[[1, 5, 1], —2«alphal], [[2, 3, 1], 1],
[{z, 5, 2], —alpha], [[2, 5, 3], 1], [[3, 5, 2], —1], [[3, 5, 3], —alpha], [[4, 5, 4],
—beta]]:

DGTable[[5, F14, 38]]["Isotropy"] := [[0, 1, 0, O, O]]:

DGTable[[5, F14, 38]]|" Parameters"] := [[alpha,6beta],[alpha<>0,beta >0]]:

” [5, F1a, 39]

DGTable[[5, F14, 39]][" StructureConstants"] := [[[1, 5, 1], —1-a], [[2, 3, 1], 1], [[2, 5,
2], —1], [[3, 5, 3], —a], [[4, 5, 4], —=b]]:

DGTable[[5, F14, 39]]["Isotropy "] := [[O0, 1, 1, 1, O]]:

DGTable[[5, F14, 39]][" Parameters"] := [[a,b],[a<=1l,a>—-1,b<>0]]:

# [5, F14, 40]

DGTable[[5, F14, 40]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,
2], -1, [[3, 5, 3], —a], [[4, 5, 4], =b]]:

DGTable[[5, F14, 40]][" Isotropy"] := [[O0O, 1, 1, O, O]]:

DGTable[[5, F14, 40]][" Parameters"] := [[a,b],[a<=l,a>—1,b<>0]]:

# [5, F14, 41]

DGTable[[5, F14, 41]][" StructureConstants"] := [[[1, 5, 1], —-2], [[2, 3, 1], 1], [[2, 5,
2], -1], [[2, 5, 3], —-1], [[3, 5, 3], —1], [[4, 5, 4], —a]]

DGTable[[5, F14, 41]]["Isotropy"] := [[0, 1, 0, 1, O]]:

DGTable[[5, F14, 41]][" Parameters"] := [[a].,[a<>0]]:

# [6, F14, 42]

DGTaLgle[[57 F14, 42]]["Struc/t/ureCOIlstant,s"] = [[[1;’5, 1], 72]; [r2z, 3, 1], 1], [I2, 5,
2], -1], [[2, 5, 3], —1], [[3, 5, 3], —1], [[4, 5, 4], —a]]:
0

DGTable[[5, F14, 42]]["Isotropy"] := [[0, 1, 0, 0, O]]:

DGTable[[5, F14, 42]][" Parameters"] := [[a,b],[a<>0]]:

# [5, F14, 43]

DGTable[[5, F14, 43]][" StructureConstants"] := [[[1, 5, 1], —1-a], [[2, 3, 1], 1], [[2, 5,
2], —al, [[3, 5, 3], —1], [[3, 5, 4], —1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 43]]["Isotropy"] := [[0, 1, 1, O, O]]:

DGTable[[5, F14, 43]][" Parameters"] := [[],[]]:

# [5, F14, 44]

DGTable[[5, F14, 44]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,

2], —al, [[3, 5, 3], —1], [[4, 5, 4], —1]]:
DGTable[[5, F14, 44]]["Isotropy "] := [[O0, 1, 1, O, O]]:
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DGTable[[5, F14, 44]]|" Parameters"] := [[],[]]:

# [5, F14, 45]

DGTable[[5, F14, 45]][" StructureConstants"] := [[[1, 5, 1], -—-2], [[2, 3, 1], 1], [[2, 5,
2], -1], [z, 5, 3], -1], [[3, 5, 3], —1], [[3, 5, 4], —1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 45]]["Isotropy"] := [[O0O, 1, —1, 1, O]]:

DGTable[[5, F14, 45]][" Parameters"] := [[],[]]:

# [5, Fi14, 46]

DGTable[[5, F14, 46]][" StructureConstants"| := [[[1, 5, 1], —-2], [[2, 3, 1], 1], [[2, 5,
2], —1], [[2, 5, 3], —1], [[3, 5, 3], —1], [[4, &, 4], —1]]:

DGTable[[5, F14, 46]][" Isotropy"] := [[O0O, 1, —1, O, O]]:

DGTable[[5, F14, 46]][" Parameters"] = [[] ,[]]:

# [5, F14, 47]

DGTable[[5, F14, 47]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,
2], -1], [[3, 5, 3], —a], [[4, 5, 1], —1], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 47]]["Isotropy"] := [[0, 1, 1, 1, 0O]]:

DGTable[[5, F14, 47]][" Parameters"] := [[a],[a<=1l,a>—1]]:

# [5, F14, 48]

DGTable[[|5, F14, 48]][" StructureConstants"] := [[[1, 5, 1], —1-a], [[2, 3, 1], 1], [[2, 5,
2], -1], [[38, 5, 3], —a], [[4, 5, 1], —1], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 48]]["Isotropy"] := [[0, 1, 1, 0, O]]:

DGTable[[5, F14, 48]][" Parameters"] = [[a],[a<=l,a>—1]]:

Eia [5, F14, 49]

DGTable[[5, F14, 49]][" StructureConstants"] := [[[1, 5, 1], —2«alpha], [[2, 3, 1], 1],
[[2, 5, 2], —alphal, [[2, 5, 3], —1], [[3, 5, 2], 11, [[3, 5, 3], —alpha], [[4, 5, 1],
—1], [[4, 5, 4], —2*alpha]]:

DGTable[[5, F14, 49]][" Isotropy"] := [[0, O, 1, —1, O]]:

DGTable[[5, F14, 49]][" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 50]

DGTable[[5, F14, 50]][" StructureConstants"] := [[[1, 5, 1], —2xalphal], [[2, 3, 1], 1],
[{z, 5, 2], —alpha], [[2, 5, 3], —-1], [[3, 5, 2], 1], [[3, 5, 3], —alpha], [[4, 5, 1],
—1], [[4, 5, 4], —2xalphal]]:

DGTable[|5, F14, 50]]["Isotropy "] := [[0O, O, 1, O, O]]:

DGTable[[5, F14, 50]][" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 51]

DGTable[[5, F14, 51]][" StructureConstants"] := [[[1, 5, 1], —2], [[2, 3, 1], 1], [[2, 5,
2], -1l, [z, 5, 3], -1], [[3, 5, 3], -1, [[4, 5, 1], —1], [[4, 5, 4], —2]]:

DGTable[[5, F14, 51]]["Isotropy"] := [[O0O, 1, 1, 1, O]]:

DGTable[[5, F14,

51]][" Parameters "]

= [[1,11]:
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# [5, F14, 52]

HH

DGv"l;aLb,le[[57 F1'4',' 52]]["Strvt;c'tt;reConst;n't,s"] = [[['17 5, 1], !2']', [[2, 3, 11, 11, [[2, 5,
2], —1], [[2, 5, 3], —11, [[3, 5, 3], —11, [[4, 5, 11, —11, [[4., 5, 4], —2]]:
0

DGTable[|5, F14, 52]]["Isotropy "] := [[0O, 1, 1, O, O]]:

DGTable[[5, F14, 52]][" Parameters"] := [[],[]]:

# [5, F14, 53]

DGTable[[5, F14, 53]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,
2], —1I, (I3, 5, 3], —a], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 53]]["Isotropy "] := [[O0, 1, 1, 1, O]]:

DGTable[[5, F14, 53]][" Parameters"] := [[a],[a<=1l,a>—1]]:

# [5, F14, 54]

DGTable[[5, F14, 54]][" StructureConstants"]| := [[[1, 5, 1], —-1-a], [[2., 3, 1], 1], [[2, 5,
2], —-1], [[3, 5, 3], —a], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 54]]["Isotropy "] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 54]][" Parameters"] := [[a],[a<=1l,a>—1]]:

# [5, F14, 55]

DGTable[|5, F14, 55]]|" StructureConstants"] := [[[1, 5, 1], —2«alpha], [[2, 3, 1], 1],

[[2, 5, 2], —alphal], [[2, 5, 3], —11, [[3, 5, 2], 1], [[3, 5, 3], —alpha], [[4, 5, 4],
—2xalpha]]:

DGTable[[5, F14, 55]][" Isotropy"] := [[0O, O, 1, —1, O]]:

DGTable[[5, F14, 55]][" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 56]

DGTable[[5, F14, 56]][" StructureConstants"] := [[[1l, 5, 1], —2«alphal], [[2, 3, 1], 1],
[[2, 5, 2], —alpha], [[2, 5, 3], —1], [[3, 5, 2], 1], [[3, 5, 3], —alpha], [[4, 5, 4],
—2xalpha|]:

DGTable[[5, F14, 56]][" Isotropy"] := [[0, O, 1, 0, O]]:

DGTable[|5, F14, 56]]|" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 57]

DGTaLgle[[57 F14"' 57]]["StrucvtvureConstan't,s"] i= [[[17”5, 1], 72’]" [rz, 3, 1], 1], [I2, 5,
2], -1, [l2, 5, 3], -—-1], [[3, 5, 3], —1], [[4, 5, 4], —-2]]:
1

DGTable[[5, F14, 57]]["Isotropy"] := [[0, 1, 1, 1, 0O]]:
DGTable[[5, F14, 57]]|" Parameters"] := [[],[]]:
# [5, F14, 58]

DGTab,le[[E), F14, 58]]["Struc/tureConstant,s"] 1= [[[1,,5, 1], -2, [l2, 3, 1], 1], [I2, 5,
2]7 _1]7 [[27 5, 3]7 _1]7 [[37 5, 3]7 _1]7 [[47 5, 4]7 _2]]:

DGTable[[5, F14, 58]]["Isotropy "] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 58]][" Parameters"] := [[] ,[]]:
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