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ABSTRACT 
 
 

An Analysis of the Feasibility of Anaerobic Digestion on Small-Scale Dairies in Utah 
 
 

by 
 
 

Steven Chans Lund, Master of Science in Food and Agribusiness 
 

Utah State University, 2016 
 
 

Major Professor: Dr. DeeVon Bailey 
Department: Applied Economics 
 
 

The purpose of this study was to analyze the feasibility of implementing 

anaerobic digester systems on small-scale dairy farms (i.e., 210 cows) in the state of 

Utah.  The specific objectives of the study were the following: 

1. Examine the potential economic benefits of different products produced from 

anaerobic digestion.  

2. Examine the benefits of codigestion on a dairy farm and artisan cheese plant 

operation. 

3. Examine the potential social and environmental benefits received from 

anaerobic digestion. 

4. Analyze the strengths and weaknesses of using anaerobic digestion as a means 

to managing dairy waste. 
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This study proceeds with a literature review of the history and science of 

anaerobic digestion, the dairy industry, other studies on the feasibility of anaerobic 

digestion and the need for sustainable agriculture.  Methods used to determine the 

feasibility of adopting anaerobic digestion on small-scale dairy farms in Utah include 

creating enterprise budgets, analyzing future cash flows, estimating the net present 

value, estimating the internal rate of return and performing sensitivity analyses.  Results 

show that adopting anaerobic digestion on small-scale dairy farms can be feasible when 

subsidies are provided for the initial investment cost.  The feasibility is improved when 

coproducts from anaerobic digestion are marketed correctly.  Small-scale dairy farms 

that produce artisan cheese have a higher probability of adopting anaerobic digestion 

successfully due to the whey byproduct of cheese production. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(143 Pages) 
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PUBLIC ABSTRACT 

 
An Analysis of the Feasibility of Anaerobic Digestion on Small-Scale Dairies in Utah 

 
Steven Chans Lund 

   

With an ever increasing concern for the environment, different methods of 

managing organic waste on dairy farms have been explored and analyzed.  Anaerobic 

digestion has long been a popular method of managing organic waste.  Its popularity 

stems from the potential to decrease greenhouse gases, improve air quality and provide 

a source of additional revenue for the farm.  Problems with implementing anaerobic 

digestion arise from high failure rates, high start-up costs and continuous maintenance 

and equipment replacement.   

Subsidies for the initial investment and improved technology have increased the  

possibility of large-scale dairy farms to adopt anaerobic digestion.  Due to economies of 

scale large-scale dairy farms are more able to adopt anaerobic digestion, but small-scale 

dairies struggle to finance the investment, maintain the digester system and provide 

sufficient organic waste to continuously feed the microorganisms inside the digester 

system.  The increasing impact of urbanization greatly impacts the demand for 

anaerobic digestion on small-scale farms to mitigate the negative effects of organic 

waste produced by dairy farms.   

Dr. Conly Hansen at Utah State University suggested we use an IBR digester 

model to analyze the feasibility of adopting anaerobic digestion on small-scale farms.  
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The IBR digester system is more conducive to small-scale dairies located in regions with 

varying temperature (i.e., Utah), and may be the solution to mitigate the negative 

effects of organic farm waste.  Dr. Donald McMahon also suggested we analyze the 

potential of implementing a digester on a dairy farm that produces artisan cheese.  We 

predicted that this would improve the feasibility due to the need to dispose of whey 

from the cheese production. 

 To determine the feasibility of implementing a digester system on a small-scale 

dairy farm the net present value and the internal rate of return were calculated to 

estimate the success of the investment.  These financial measures were calculated from 

equipment price quotes, estimations from the literature review and from using 

estimated annual receipts and costs for a dairy farm, artisan cheese plant and anaerobic 

digester system.  The feasibility also depends on the success of marketing the products 

produced from the digester system and the farmer’s participation in incentive programs 

for digester systems.  The products produced vary from electricity to waste disposal 

services, and marketing an array of diverse products and services is important to the 

success of the digester system.  The feasibility determined by this study was estimated 

using generalized assumptions from various sources and should be analyzed by 

individual operations to determine specific farm feasibility.   
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CHAPTER I 

INTRODUCTION, MOTIVATION, AND OBJECTIVES 
 

The motivation for this thesis lies in the continuing increase in environmental 

regulations related to waste management, unsightly farms, and the pollution of water, 

air, and land through agricultural practices.  These regulations require additional costs 

be incurred to be compliant or will result in increasing penalties and fines for non-

compliant agricultural firms.   In either case, environmental regulation affects the 

sustainability of agriculture and food production.   

This thesis focuses on the use of anaerobic digester systems on small-scale dairy 

farms as a means to manage waste, to improve the appearance of farms and to reduce 

pollution.  Meeting these three objectives may make dairy farmers more sustainable 

economically, socially and environmentally.  One potential option to increase the 

profitability of small-scale dairy farms is to implement a value-adding component to 

dairy production, specific to this thesis is converting milk to cheese through artisanal 

methods.   

Various regions of the world may have strict definitions of artisan food 

production.  Other regions may require the food production to be done by a skilled 

person, with specific ingredients and in a certain way.  Some believe a universal 

definition should be created and regulated so as to protect cultural and traditional food 

production (Domínguez-López et al. 2011).  For this paper the definition used for artisan 

production is food (e.g. cheese) that is produced by a craftsman in a traditional way 
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instead of by industrial methods.  Artisan dairies are smaller in scale and produce a 

finished product (e.g. cheese) from raw materials obtained through on-farm production.   

Whey is a waste product created in cheese production.  It adds another 

component to the waste management of the operation and another potential benefit of 

using an anaerobic digester system.  The major forms of waste on a dairy farm include 

manure, bedding, whey from dairy processing (if the dairy engages in cheese making) or 

any other spoiled or unused food product produced by the dairy.  With the exception of 

biosolids and animal manures, organic waste management in the United States is 

regulated at the state level.   

The United States Environmental Protection Agency (US EPA) is a federal 

government agency that regulates manure and wastewater generated by Confined 

Animal Feed Operations (CAFOs)1 to ensure they are in compliance with the Clean 

Water Act2. The objective of the Clean Water Act is to reduce and prevent water 

pollution.  Wastewater disposal is regulated through the Clean Water Act to ensure the 

quality of water available for all living organisms (US EPA 2015c).  Polluted water from 

agricultural operations has the potential to kill fish and cause eutrophication and toxic 

algal blooms affecting all states that are connected by common waterways.   

                                                      
1 CAFOs are dairy operations with 700 or more cows confined on site, or an operation 
that disposes of waste water in a ditch, stream or waterway (USDA NRCS n.d.). 
2 Clean Water Act establishes standards to keep US waster free of pollution (US EPA 
2015c). 
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The correct management of waste is essential for compliance with EPA 

regulations and fulfilling the requirements of sustainability.  Ensuring that waste storage 

facilities on dairy farms are well maintained and that the system for land application of 

manure is efficient will help mitigate the economic, social, and environmental problems 

associated with dairy farming. Correct waste management techniques should also 

improve the public perception of agricultural production and also decrease the 

possibility of water pollution, but this may not be sufficient to make an operation 

sustainable if there is not economic benefit.  

Using an Anaerobic Digester in Waste Management 

A mature 1,400 lb. dairy cow that is lactating can generate as much as 112 lbs. of 

manure per day.  Of the 112 lbs. an average of 75% is expected to be recoverable.  

Recoverable manure is defined by the USDA Natural Resource Conservation Service 

(NRCS) as “the amount of manure deposited in confinement that can feasibly be 

collected and utilized” (USDA NRCS 1995).  Thus, the scale of waste management on 

American dairy farms that typically have several hundred to even several thousand cows 

is an important consideration.  Science has been applied to try to find the best way to 

manage the substantial amount of waste associated with dairy production.  Anaerobic 

digesters may be one method that can provide significant assistance to this waste 

management problem, especially for large-scale producers. 

Organic waste, such as manure, naturally degrades.  If this degradation process 

occurs with oxygen, the waste is degraded under aerobic conditions.  If organic waste is 
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broken down without oxygen, it is degraded under anaerobic conditions.  Anaerobic 

degradation occurs as microorganisms feed on and digest organic waste and release 

methane, carbon dioxide and other trace compounds such as hydrogen sulfide.  

Anaerobic digestion can be accelerated in a mechanical anaerobic digester system, and 

the resulting methane can be sequestered from the digestion process in the form of 

biogas.  This biogas can then be used to fuel electric generators or boilers to create 

electricity or heat.  If the biogas is further processed the methane can be separated 

from the remaining carbon dioxide and other trace elements.  This purification process 

allows the methane to be used to fuel vehicles or introduced into a public pipeline to be 

bought and used by the public.  Scrubbed biogas or biomethane is also not as damaging 

to combustion engines used for electric generators.  If biogas is purified, the lifetime of 

combustion engines for electric generators may be extended by several years.   

Any organic waste that does not contain lignin (woody plants) can be used 

effectively as feedstock3 for anaerobic digester systems.  Manure and energy crops such 

as sugar beet and corn are often the primary feedstock used in anaerobic digester 

systems, but the use of additional feedstock such as waste frying oil in codigester 

systems can increase the biogas production without dramatically increasing residual 

solids in the effluent (Cave 2013).  Anaerobic digester systems provide not only a means 

to mitigate animal waste but also food waste.  The FAO reported that as of 2011 “one-

                                                      
3 Feedstock is the organic matter that is fed to the microorganisms, digested and 
converted to biogas. 
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third of food produced for human consumption is lost or wasted globally.”  They 

estimate that the per capita waste by consumers in Europe and North America is 95-115 

kg per year (FAO 2011).  Anaerobic digester systems provide a way to convert energy 

wasted in the form of food to energy that can be used on the farm. 

Need to Use Resources Efficiently for Sustainability 

The increasing population of the world creates with it the need for improved 

efficiency of the use of resources used to satisfy the unlimited wants and needs of 

people.  Terms such as “energy crisis” and “food crisis” are used to describe the 

potential shortage of two resources needed to sustain life.  Concerns relating to the 

depletion of food and energy resources has given rise to government programs, 

regulations and subsidies created with the intention of fostering sustainable methods of 

processing and using scarce resources.  Innovation and technology from both the public 

and private sector continue to improve methods for extracting, harnessing and 

processing energy and food resources so as to reduce and reuse waste and improve 

sustainability.   

By reducing waste and making environmentally-responsible production more 

profitable, food production becomes more sustainable socially, environmentally and 

economically.  The 2011 edition of the United States Code defines sustainable 

agriculture as production that satisfies the food and fiber needs of the consumer while 

using resources natural resources efficiently.  Using natural resources efficiently 

includes integrating natural biological cycles and controls and enhancing the 
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environmental quality.  The farm must also be economically viable and meet the 

financial needs of the farmer and somehow improve society (US Government Printing 

Office 2011).  The US EPA states that sustainable production is based on the fact that 

the natural environment provides everything we need to survive.  Therefore “productive 

harmony” between humans and nature must be achieved.  This is done by accounting 

for social, environmental and economic factors of production, so that natural resources 

will be widely available for future generations (US EPA 2015d).  

Food resources range from heirloom to genetically-modified and energy 

resources from nuclear to renewable.  Each genre can make different arguments for its 

contribution to sustainability.  The endeavors to create sustainable agriculture have 

been given terms such as permaculture and organic when speaking of agriculture 

methods.  With regards to economics, terms such as corporate social responsibility, 

triple-bottom line, and creating shared value are often used.  Regardless of the 

discipline used to study and classify agricultural sustainability, producers are 

consistently concerned about their own financial bottom line and usually focus business 

efforts on reducing costs and hedging risk.  Being able to utilize waste as an energy 

source efficiently has been a topic of interest for many years, but the production of 

energy from waste often creates additional costs without the ability to increase revenue 

sufficiently to profit from these renewable investments.  If all three pillars of 

sustainability (social, environmental and economic) are not realized, then disputes arise 
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about which is more important and regulations are put into place as an attempt to 

provide balance and improve sustainability.  

Different Approaches to Food and Energy Issues 

Worldwide food and energy concerns are addressed and handled differently by 

different countries through political solutions, and individual countries are generally 

driven to seek sustainable solutions for food and energy concerns.  That is, most 

countries are concerned about producing food and energy responsibly, but the resource 

bases and politics of countries are different often resulting in different approaches to 

achieving these goals.  The US has addressed food issues primarily through the lens of 

reducing costs and increasing production.  This has been achieved primarily through 

methods such as increasing agricultural yields through genetically-modified organisms 

(GMOs) and taking advantage of economies of scale through increased farm size and 

thus becoming more efficient.  The US also provides large amounts of subsidies to 

farmers for specific crops to help protect against economic losses.  

On the other hand, the European Union (EU) with its relatively high energy costs 

and small farms has focused more on environmental regulations to drive their subsidies 

to farmers in the hope of preserving the resources used to produce the food needed for 

many years to come.  The EU has done this by providing subsidies through the Common 

Agricultural Policy (CAP) to promote sustainability in food, water and land.  These 

regulations and subsidies have made the EU one of the leaders in biogas production due 

to the increased feasibility from subsidies and the carbon credit exchange.   
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Both the EU and the US have created regulations that directly connect food and 

energy concerns.  The US has encouraged ethanol production, which has greatly 

increased the amount of corn produced in the US, and the EU has improved the 

feasibility of biogas production through anaerobic digestion.  Whatever the means, it is 

evident that the energy sector and the food sector have become intertwined in an 

attempt to provide sustainability.  

The extent to which the US subsidizes anaerobic digester systems will greatly 

affect the feasibility of implementing anaerobic digester systems on small-scale dairies 

(<250 cows).  Whatever the methods and foci of sustainability, governments, the World 

Bank and the United Nations place high priority on agricultural regulations and subsidies 

to reduce food and water scarcity.  The World Bank and the Food and Agriculture 

Organization of the United Nations (FAO) predict a need for a 50% and 70% increase in 

food production by 2050, respectively (World Bank 2015; Food and Agriculture 

Organization of the United Nations 2009).  This increase in food need motivates the 

implementation of sustainable practices. 

A Changing Dairy Industry in the US and Purpose for this Study 

Urbanization and the relocation of the majority of the dairy production to the 

western states of the US have begun to push small-scale dairy operations out of 

business due to water, land, odor and visual pollution in neighborhoods.  Urban 

encroachment has often become a challenge for small dairies (especially in Utah) where 

areas were once populated numerous by small family dairies are becoming surrounded 
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by houses and other non-agricultural activities.  This urbanization has pushed dairy 

production from areas of increasing population, such as New York and Pennsylvania, to 

the western US where there is more open space and less urban pressure.  However, the 

westward movement of US dairies may not be the best solution to situating the 

American dairy industry.  Droughts are more common in the southwestern states and 

increased urbanization of western states has increased the demand for water for non-

agricultural uses.  The lack of water potentially limits the growth of the dairy industry in 

the western US.  This increases the need for small family run dairies to maintain 

profitability and continue localized production despite urbanization. 

Anaerobic digester systems offer a means to mitigate these social and 

environmental problems associated with agriculture, but more specifically agricultural 

production where a large number of animals are clustered such as is the case with dairy 

operations.  Large-scale dairy operations are large enough that they rarely encounter 

problems with urbanization due to the fact that the majority of the surrounding land is 

owned by the producer and will likely not be sold to housing developers that will 

urbanize the area.   

There have also been many studies done on the economic viability of anaerobic 

digester systems implemented on large-scale dairies, and it is much more likely that the 

large-scale operations will be able to be profitable with the anaerobic digester systems 

than would be small-scale operations.  The purpose of this research project is not to 

determine whether anaerobic digester systems can be successfully implemented on 
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large-scale dairies.  There is already a plethora of literature that argues the likelihood of 

anaerobic digester systems being profitable on large-scale dairies.  It is also less 

probable that large-scale dairies are under the same pressures as small-scale dairies to 

manage waste to mitigate the concerns of non-agricultural neighbors (e.g., odor) in the 

case of increasing urbanization.   

In 2012 there were more than 47,000 dairies in the United States and 86% of 

them had less than 200 cows with the average herd size being 187 cows (Dairy 

Management Incorporated n.d.).  In 2014, the USDA Economic Research Service 

reported that there were nine states that had more than 300,000 cows each and of 

those nine, five are in the top ten most populated states of the US (USDA ERS 2014; US 

Census Bureau 2014).  The demand for economic and sustainable waste management is 

high due to urban encroachment and an increasing demand for food.  The purpose of 

this research is to investigate the economic viability of anaerobic digester systems for 

small-scale dairies by evaluating the externalities of agriculture and food production, the 

start-up cost of anaerobic digester systems for small-scale production, and the possible 

sources of revenue for digester systems. 

Anaerobic digester systems that convert manure, sludge or food to biogas are an 

option for producers to possibly reduce energy costs and hedge their risk through 

diversification through selling residual byproducts from the energy conversion process.  

It also provides a way to remove harmful and unpleasant aspects of agriculture that 

could potentially cause lawsuits and detrimental penalties and fines.  If enough energy is 
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produced to reduce fuel and energy costs, then anaerobic digesters may provide enough 

economic value to pay for the necessary equipment for a digester.  If so, producers can 

become more financially sustainable and increase the social and environmental 

sustainability of their production.  If enough residual byproducts from the digester can 

be sold as fertilizer, then revenues may also be increased to a point that profit is created 

from the production of fertilizer by the digester.  If revenues are not high enough, then 

subsidies will need to be made available to encourage social and environmental 

sustainability.  

Diversification through product proliferation by the dairy may be very helpful in 

hedging a producer’s risk, but it can also require additional time away from the primary 

production activity (producing milk) and stretch the producer’s time and energy too 

thinly between the different enterprises of the operation.  Small- and medium-sized 

producers rarely use anaerobic digester systems because the amount of waste produced 

does not provide a high enough economic return from reducing energy costs or 

increasing revenues by selling residual solids as fertilizer.  It is more common to have 

small- and medium-sized producers haul waste to a larger centralized producer to be 

digested and incur the cost of disposal.  

The other option is to use the waste as fertilizer on crops, but there is often not 

enough cropland available for the amount of waste produced, especially due to 

urbanization around small and medium enterprises.  Upon converting waste to energy, a 

useful resource is created which adds value and expands the options of waste 



12 

utilization.  Centralized digester systems allow several local agriculture producers to 

dispose of waste and other industries such as restaurants, bakeries, breweries and 

slaughterhouses to dispose of organic waste.  This organic waste from food production 

also increases the amount of methane produced per unit of feedstock put into the 

digester. 

Anaerobic digester systems provide a way to reduce the carbon footprint of 

landfills by reducing the amount of waste that flows into them.  In 2007, food waste 

made up nearly 20% of the total waste sent to the landfill each year in the US.  Yard 

trimmings increase the percentage by 7% decreasing the total landfill usage by 25%. In 

2007, over 30 million tons of food waste was sent to US landfills.  The EPA argues that 

one of the benefits of using food waste (such as whey from an artisan cheese-producing 

dairy) as a feedstock for anaerobic digestion systems is that food waste has three times 

the methane production potential as biosolids and 15 times the methane production as 

cattle manure.  The effluent from food waste also provides high quality fertilizer (US EPA 

n.d.). 

Anaerobic digester systems are not new technology, and they have a bad 

reputation for failure among dairy farmers in the United States.  There are, however, 

aspects of digester systems that have been improved to be more efficient and cost 

effective than before.  Most farmers, especially dairy farmers, are aware of the 

capabilities of a typical digester system.  Many farmers find the technology very 

attractive, and recognize the benefits of being able to produce in a way that is more cost 
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efficient and sustainable.  However, many producers may be too risk averse to invest in 

digester systems because of the initial high capital costs needed to initially implement 

this technology in agriculture.  After the close of the Chicago Climate Exchange in 2010 

revenues from carbon credits have changed.  Revenues from carbon credits are often 

used to enhance the profitability of anaerobic digestion.  Now farmers must apply and 

be accepted to offset carbon credits.  Without the ease of receiving income from a 

carbon credit exchange similar to what the EU has and additional subsidies from the 

government, risk averse US farmers may be deterred from implementing digester 

systems and attempting to market additional byproducts from the digester systems.  In 

the US there is little incentive to encourage small-scale farmers to use the technology.  

The costs typically exceed the benefits for small-scale farmers.  

The most attractive revenue source of anaerobic digester systems comes from 

the ability to provide the renewable source of electricity that provides social and 

environmental sustainability to agriculture.  However, social and environmental 

sustainability will not make a business sustainable without a source of economic 

sustainability, and they will not allow a producer to provide for her/his family needs.  

Regulations that threaten farm sustainability with financial penalties or taxes for social 

and environmental harm may be one approach to incentivize producers to introduce 

digester systems in their operations.  It may, however, merely put producers out of 

business and raise food prices due to exorbitant penalties and unachievable regulation.  

Another way to incentivize farmers may be to reward them for emission reduction or 



14 

provide subsidies that can cover enough of the initial capital investment to make it 

attractive for producers to use anaerobic digester systems as a means to mitigate waste 

and greenhouse gas emissions.  

The funding for subsidies and incentives will need to come from somewhere. 

Sourcing this amount of money may have repercussions that increase fuel costs, food 

costs or taxes.  The amount of money that can be sourced from the public to subsidize 

agriculture waste management systems such as anaerobic digestion may represent the 

social and environmental cost of implementing sustainable practices.  However, 

incentives from the public sector have the potential to negatively impact the 

sustainability of other farming aspects such as fuel cost, product demand and taxes 

paid.  Another option would be to possibly find investment funding through venture 

capitalists, non-government organizations, research and development funds or 

independent investors.   

Even with funding from subsidies or private investors, digester systems may not 

be used by highly risk-averse producers because of their high failure rate and low 

salvage value.  The components of digester systems are very specialized to biogas 

production and are not very adaptable to anything other than biogas production.  They 

require continual maintenance and management after installation for them to provide 

returns that outweigh the cost of investment.  Digester systems also require farmers to 

become educated in a new enterprise.  Digester systems may only require 30 minutes to 

an hour a day to determine if the system is working as it is designed to work and ensure 



15 

the microorganisms are healthy.  However, if there is a problem the farmer must be 

willing to stop farming and work on the waste management system for that amount of 

time.   

The farmer must also be willing to learn and understand all of the incentive 

programs she/he is involved with that are a potential revenue source.  The primary 

incentive program involves the ability to receive revenue for generating electricity.  It is 

therefore important that the farmer understands the energy industry and what is 

happening with utility prices and other potential revenue streams for energy.  The 

incentive programs such as carbon offsets and renewable energy credits require 

application, paperwork and compliance with the standards of the program.  There is the 

possibility that these programs will be terminated similar to what happened to the 

carbon credit exchange through the Chicago Climate Exchange.  The farmer must be 

willing to understand these programs in order to participate, evolve and find new 

programs if those used as a source of revenue disappear.  These incentive programs are 

what provide economic value to the digester systems and if lost will cause it to be 

economically infeasible as an investment.   

Farmers must also understand the other revenue sources from coproducts (e.g. 

fiber sales and tipping fees4).  If the farmer sells fiber to off-farm sources, then she/he 

will need to understand the market and how to best sell the product.  If the farmer 

                                                      
4 A tipping fee is charged by a landfill to customers that dispose of waste (Waste 
Management 2015). 
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provides an organic waste disposal site, then she/he will need to understand the 

regulations involved with disposal sites and how to market the service.  Farmers may 

not find enough value in digester systems to outweigh the risk of them failing.   

Centralized digester systems may be one method to make biogas production 

more appealing to farmers that are highly risk-averse and unwilling to learn how to 

operate, manage and maintain digester systems.  Due to the increase in education 

needed, the attention needed to be paid to additional revenue sources and potential 

maintenance and labor to make a digester system feasible, it may not be prudent to 

allot a mere 30 minutes to an hour per day to the management of the digester system.  

The farmer may decide it is necessary to employ at least one other person to manage to 

affairs of the digester system.  The success of the digester would be the primary focus of 

the digester system manager to ensure that the investment is used wisely. 

Research Objective 

The objective of this research is to determine the economic feasibility of 

implementing an anaerobic digester system on a small-scale dairy of 210 cows in the US.  

Similar research has been done on larger-scale dairies using capital budgets and other 

tools provided by the USDA.  

Even though there is a considerable amount of research done on the feasibility 

of digester systems, there are many different results.  It is therefore important to realize 

that these discrepancies in the results show the difficulty in estimating the economic 

returns to investing in an anaerobic digestion system.   
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A careful evaluation of equipment costs, operating costs and potential revenues 

is important.  The variables that can affect the estimate are biogas energy yield, on-farm 

energy use, grid electricity price, net metering electricity price, co-digestion feedstock 

availability, and capital and operating costs (Enahoro and Gloy 2008).  It is also 

important to consider that past studies either do not directly describe the effects of 

implementing digester systems on smaller dairies, or they show that it is not feasible 

without subsidization.   

This research paper is considering the additional potential revenue streams and 

a new digester system provided by Dr. Conly Hansen at Utah State University to improve 

the feasibility of digester systems.  It is the purpose of this paper to determine whether 

the value given to the waste is sufficient to outweigh the cost of energy conversion.  It is 

also the purpose of this research paper to analyze the economic viability of a small-scale 

anaerobic digester system designed by Dr. Conly Hansen on dairy farms of 250 cows or 

less, primarily artisan farms that have waste management issues with manure as well as 

whey.   

In order to determine the economic feasibility of an anaerobic digester system, 

enterprise budgets are created for three different enterprises within an artisan farm.  

These budgets are for an artisan dairy farm that makes cheese and sells raw milk.  One 

budget is specifically for the milk production on the dairy.  The second budget is for the 

cheese production and agrotourism involved in the artisan aspect of the farm.  The third 

budget is for the anaerobic digester system and includes start-up costs.  A cash flow 
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analysis is conducted to determine the payback period, net present value (NPV) and 

internal rate of return (IRR).  The cash flow analysis is used as a tool to help dairy 

farmers determine the economic feasibility of an anaerobic digester system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



19 

CHAPTER II 
 

LITERATURE REVIEW 
 
 

An anaerobic digester system is an investment that may help create food and 

energy sustainability from a social and environmental perspective, but does it provide 

financial sustainability to medium and small-scale milk producers?  With increasing 

regulations being placed on agricultural and food production, anaerobic digester 

systems are a potential means to mitigate and manage waste and odor.  In so doing, 

they may provide sustainability to producers who are being pressed by increasing 

urbanization near their agricultural enterprises. 

Energy Production and Market Share 

Different energy sources are considered more sustainable and renewable at a 

faster rate than others, but these sources of energy may not be economical in terms of 

being able to cover more than their costs.  Analyzing renewable and green energy 

alternatives more closely may reveal that the components used to capture renewable 

energy are made from components that are actually scarcer and less renewable than 

fossil fuels.   

The efficiency of alternative energy sources also may be so poor that the energy 

needed to generate them may create such a large carbon footprint that it might end up 

destroying large amounts of biodiversity to produce only small amounts of energy.   

Renewable energy sources may also produce large amounts of visual pollution due to 

the large footprint needed to produce sufficient amounts of energy from alternative 
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sources.  An example of this may be wind turbines placed in the Tehachapi Pass in 

California, which has more than 5,000 wind turbines that blanket the hills and change 

the ecology, especially with regards to animals that fly.  This combined with another 

10,000 wind turbines in Altamont and San Gorgonio Pass makes up 1% of California’s 

electricity.  Though visual pollution is a matter of opinion, there are regulations in some 

regions that attempt to mitigate the amount of visual pollution from renewable energy 

sources.  For example, a national park may not be an acceptable place for thousands of 

turbines.  Most developers will take visual pollution into consideration when developing 

wind farms in domestic areas (Conserve Energy Future n.d.). 

Biofuels show potential as a sustainable renewable energy source through 

creating energy out of waste, but the use of crops to produce energy may be 

counterproductive as far as addressing the need to produce more food for the world’s 

growing population.  As the global population increases, more land will be needed to 

provide sufficient amounts of food to meet demand.  Choosing to use crops as an 

energy source instead of a food source may be a short-lived endeavor because doing so 

reduces the amount of farmable land devoted to food production at a time when the 

population is increasing.  The cost of capturing energy from alternative sources, the 

footprint of the equipment used for alternative energy production, and the potential 

visual pollution resulting from alternative energy production need to be taken into 

consideration when determining the economic viability and the overall sustainability of 
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implementing anaerobic digester systems, especially when implemented in residential 

areas. 

Fossil fuels are one of the most efficient energy sources currently available.  It 

could be said that fossil fuel is the energy source preferred by the majority of consumers 

due to its continued worldwide use in spite of environmental warnings and concerns 

tied to the use of fossil fuels used to produce energy.  According to the International 

Energy Agency (IEA), in 2013 81% of the total primary energy supply in the world was 

generated by fossil fuels.  In 2012, the percent of total energy consumption generated 

by fossil fuels was 66% (IEA 2014).  Fossil fuel is the most common energy source used in 

agriculture in the US, and the demand for fossil fuels used in the generation of energy is 

fairly inelastic.   

Farming practices have evolved in a way that products cannot easily be 

harvested nor taken to market without the use of fossil fuels.  Neoclassical supply and 

demand laws demonstrate that the demand for fossil fuels is still high enough to 

outweigh warnings and concerns about greenhouse gas (GHG) emissions caused by the 

burning of fossil fuels.   

The availability of fossil fuels varies from region to region and greatly affects the 

price of energy and the choice of energy sources.  In remote areas, or areas that have 

low availability, fossil fuels may not be the most economic choice to generate energy.  

This was the case in Europe after World War II and in remote parts of Asia where biogas 

became a popular energy resource for heating and cooking.  Currently, the depletion of 
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available fossil fuel reserves is a major concern and may also increase the demand for 

biogas if nuclear energy is deemed too dangerous.   

Fossil fuel scarcity has increased as a result of environmental regulations which 

limit the locations fossil fuels can be extracted (e.g. areas designated as “Wilderness” 

and offshore production).  New technologies, such as enhanced oil recovery techniques 

such as fracking, have increased the ability to extract oil efficiently and completely, 

increasing the supply of fossil fuels but also increasing the speed at which they are being 

depleted.  Some of the new technologies such as fracking increase the controversy with 

regards to the health of the environment.  As technology improves, fossil fuel supply 

increases and prices decrease or remain the same depending on demand.  

Improvements in mining technology and fuel efficiency will prolong the need to 

transition from fossil fuels to renewable energy as a primary energy source unless 

environmental issues become more of a priority. 

As fossil fuels become more scarce, the cost of petroleum-based products 

increases and new forms of energy will need to be developed and used.  However, the 

restructuring that will have to occur to transition from petroleum-dominated energy to 

renewable energy will take time and will be expensive (Timmons, Harris and Roach 

2014).  Converting farm equipment, such as tractors and other implements, to be fueled 

by energy sources other than fossil fuels will be expensive and could cause problems in 

food production.  Anaerobic digester systems offer a potential solution to problems 

arising from such an energy source transition.  After biogas is purified into biomethane, 
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it can be used as an alternate energy source to fossil fuels and, if used to fuel 

equipment, would require small adjustments to tractors and other implements.   

Nuclear energy is the most efficient energy source, but consumers are very 

cautious and concerned about the use of nuclear energy despite reassurances from 

nuclear energy advocates and scientists.  The IEA records that only 9.7% of the total 

primary energy supply is from a nuclear source (IEA 2014).  Despite the many 

advantages to using nuclear energy, the fear produced as a result of nuclear accidents 

such as Chernobyl and Fukushima deter the use of nuclear energy.  Fear also reduces 

the potential for using nuclear energy as a sustainable source of energy until its negative 

psychological and environmental factors are outweighed by demand.  Nuclear energy 

may produce inexpensive energy, but it creates nuclear waste that is difficult to dispose.  

In contrast, anaerobic digestion produces energy from waste and offers a sustainable 

way for farmers to produce energy on site.  

Renewable energy sources produce energy from resources that are replenished 

on a human timescale.  They include hydraulics, biofuels and waste, geothermal, solar 

and wind.  Renewable energy sources are clearly beneficial to farmers in remote areas 

and in situations where low amounts of energy are needed.  Renewable energy has the 

opposite psychological problem for consumers as nuclear energy.  Psychologically 

renewable energy is appealing to most people because it seems to imply limitless 

amounts of energy that should be fairly inexpensive because it is perpetually generated 

by nature.  However, the equipment used to capture energy from renewable sources is 
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expensive and the energy generated may be neither reliable nor available on demand.  

For example, solar-based renewable energy requires sunlight which is not available at 

night. 

The storage capacity for renewable energy tends to be less than for other energy 

sources and the carbon footprint of energy capture and storage equipment is larger for 

renewable energy than for other energy sources.  The IEA reports that 9.3% of the total 

primary energy supply is renewable energy, which is almost equal to that of nuclear (IEA 

2014).  Renewable energy often requires subsidies to make it economically feasible and 

has its greatest value in reducing negative externalities and improving the environment.   

Renewable energy produces less GHG emissions than fossil fuels and is 

considered to be an environmentally-friendly energy source.  Biofuels, especially 

produced from organic waste, have a significant potential as a renewable energy source 

but are capital intensive and expensive in terms of the equipment needed to be 

purchased and operated to convert organic waste into usable energy.  Of the renewable 

energy sources biofuels made up 5.3% in 2013.  In 2012, biofuels and waste made up 

12.4% of final worldwide energy consumption (IEA 2014).   

The maintenance and labor required to keep digester systems working is often 

too expensive or time consuming to continually be used by small and medium-sized 

enterprises that can neither afford to hire a separate manager for the biogas portion of 

the business nor take advantage of benefits achieved through economies of scale.  In 

other words, significant economies of scale exist in generating energy using digester 
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systems and this draws into question the scale needed to make installing a digester 

system economically viable on dairy farms. 

History of Anaerobic Digestion 

Anaerobic digestion occurs naturally when there is an absence of oxygen and it 

has been around since the microorganisms that digest and degrade organic waste came 

into existence.  Biogas was first identified by Jan Baptita Van Helmont in the 17th century 

as emanating from decaying organic matter and was researched throughout the 18th 

and 19th century before the first anaerobic digestion plant was developed and used near 

the end of the 19th century.  It was at that point that an anaerobic digester system was 

developed in Exeter, England to fuel streetlamps with biogas from sewage.   

Anaerobic digestion has been used and researched widely in India and China for 

agricultural purposes and as a source of energy in remote locations.  India and China 

especially focused on small and medium-sized digester systems that could be used by 

individual households for generating household energy.  Anaerobic digester systems 

became very popular in Europe during and after World War II when energy sources 

were scarce and demand was high (Lusk 1998).   

Today biogas production from co-digester systems and centralized digester 

systems is still very common in Europe with 6,800 digester systems producing electricity 

in Germany alone (United Kingdom 2011).  The US initially focused on using anaerobic 

digester systems as a waste management system for municipal solid waste.  However, 
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by the 1970s the US began looking at digester systems as a means to manage farm-

based waste.   

Due to urban encroachment, digester systems were implemented in the US as a 

means to mitigate odor and pollution from livestock manure.  Digester systems became 

a popular option not only to mitigate pollution but also to generate renewable 

electricity during this time.  Even though digester systems overall had about a 50% 

failure rate and farm-based digester systems had about a 66% failure rate, Lusk argues 

that this high failure rate is probably no better or no worse than other energy 

technologies ranging from synthetic fuels to other renewables that received 

government support during the energy crises of the 1970s (Lusk 1998). 

The Science of Anaerobic Digester Systems 

Anaerobic digestion and aerobic digestion decompose organic waste.  Organic 

waste is, generally speaking, anything that was once alive but has become a bi-product 

of some production process (e.g., manure, sawdust, etc.).  The main difference between 

anaerobic digestion and aerobic digestion is the absence of oxygen in anaerobic 

digestion.  When the feedstock, or influent, is introduced into the controlled 

environment, where the microorganisms live, it begins to degrade as the bacteria digest 

it.  It is first broken down into simple organic acids and then converted into biogas.  

These microorganisms are sensitive to the pH level and the temperature of the 

microclimate within the digester system tanks.  Balancing the ratio of carbon to nitrogen 

will yield optimum health of microorganisms.  Limiting factors for biogas production are 
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the type of waste, concentration of waste, temperature of waste, toxic materials, pH, 

hydraulic retention time (time that a soluble compound remains in a constructed 

bioreactor), solids retention time (average time the activated-sludge solids are in the 

system), ratio of food to microorganisms, rate of digester loading, and the rate at which 

toxic end products are removed (Burke 2001).   

Biogas is made up primarily of methane, but it also contains carbon dioxide, 

water vapor, ammonia and hydrogen sulfide.  Biogas is often used in power generators 

to produce electricity, or it can be used as a fuel source in a boiler or furnace.  These 

other components of biogas are often removed through a process called “scrubbing” to 

purify the biogas to be 98% methane and to make it more compatible for combustion 

engines and pipeline introduction to the public (Lazarus and Rudstrom 2007).  Scrubbing 

increases the lifetime of the engine and could increase the viability of anaerobic 

digestion systems on small-scale operations.  Being able to use biomethane to fuel 

equipment creates self-reliant farm production by reducing the farmer’s dependency on 

outside sources of farm inputs. 

Anaerobic digester systems can be used to manage waste for various organic 

materials.  Potential regulations that require homes, restaurants and food processors to 

separate organic waste from inorganic waste, similar to regulations in Europe, could 

change the public perception of waste management about converting organic waste to 

a source of energy.  Examples of alternative feedstock for digester microbes include 

domestic organic waste (e.g., eggshells, flowers, fruit, coffee filters and leftovers), plant 
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waste (i.e., grass clippings, leaves, not wood), communal sewage sludge (must be 

decontaminated for phosphor, nitrate and heavy metals), manure, energy crops and 

industrial food waste (i.e., food waste from food and meat production).   

Organic waste containing large amounts a lignin, such as woody materials, 

requires a lot of time for the microorganisms to digest.  Consequently, waste containing 

large amounts of lignin is typically not suitable to use in anaerobic digester systems due 

to the sensitivity of the microorganisms and the longer throughput time.  Lignin will not 

degrade well during anaerobic digestion.  Lignin is found in cow manure in higher 

quantities than other livestock manures such as swine or poultry.  The large percentage 

of lignin in cow manure is another reason why other manures, and especially other food 

wastes, produce more biogas per volume of effluent produced than does cow manure.  

Table 1 shows the percentage of lignin found in cow manure (Stafford, Hawkes and 

Horton 1980).  Diluting cow manure with other organic wastes that have lower 

concentrations of lignin will improve the efficiency of anaerobic digestion but may 

change the pH resulting in increased monitoring to ensure the health of the 

microorganisms. 
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Table 1. Composition of Manure Volatile Solids 

COMPONENT % DRY MATTER 

ETHER EXTRACT 2.6 
CELLULOSE 31 
HEMICELLULOSE 12 
LIGNIN 12.2 
STARCH 12.5 
CRUDE PROTEIN 12.5 
AMMONIA 0.5 
ACIDS 0.1 

VOLATILE SOLIDS TOTAL 83 
Source: Stafford, Hawkes and Horton (1980). 
 
 

Different management techniques such as co-digestion and centralized digester 

systems can either improve or diminish the efficiency of digester system production.  

Co-digestion combines different types of organic wastes to the commonly used 

feedstock such as manure and energy crops.  The additional organic waste can make a 

significant impact on biogas production while skewing the ratio of biogas to effluent in 

favor of biogas.  European digester systems have found that co-digestion, specifically 

with slurry and energy crops, made digester systems more economically viable (Cave 

2013).  This is due to a lower percentage of lignin and higher amounts of energy 

contained in undigested food, feed and organic matter.  Due to the higher amount of 

lignin than other manures and wastes, diluting cow manure with water or other organic 

waste products can help “reduce the concentration of certain constituents … that inhibit 

anaerobic decomposition” (Burke 2001).   

The ability to introduce whey from cheese production should improve the 

efficiency of the digester system in producing energy.  Probiopol provides ranges of 
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biogas production that can be achieved by using other forms of organic waste.  Potential 

biogas production of manure can range from 25 cubic meters per metric tonne to 36 

cubic meters per metric tonne. The maximum potential for whey is 55 cubic meters per 

metric tonne.  Waste from plants can range from 75 cubic meters per metric tonne to 

110 cubic meters per metric tonne.  Food waste can range from 120 cubic meters per 

metric tonne and 220 cubic meters per metric tonne. Grease and oils range from 400 

cubic meters per metric tonne and 600 cubic meters per metric tonne (Probiopol 2015).  

One Mcf is equal to 28.32 cubic meters or 10 therms and one ton is equal to .91 metric 

tonnes. 

Centralized anaerobic digestion (CAD) systems offer the potential to increase the 

amount of production and revenue from digester systems by accepting organic waste 

from sources outside of the farm and from other local farms by charging tipping fees.  It 

provides a means to implement co-digestion and aid in diluting lignin and provides 

higher methane producing feedstock.  CAD systems require more attention and 

management because of the sensitivity of the microorganisms.  If there is too much 

dilution or toxic feedstock introduced from outside sources, the microorganisms will be 

negatively affected and potentially die.  A dairy located near an urban center may find 

this alternative appealing due to potentially being able to source waste from an 

increased number of restaurants and industries seeking ways to dispose of organic 

waste than would be the case for dairies in remote locations (Cave 2013).   
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Types of Microorganisms 

Microorganisms used for biogas production are living organisms and therefore 

sensitive to the temperature and pH of the environment in the anaerobic digester tanks.  

This is largely influenced by the waste they are given for feedstock to convert to biogas.  

The microorganisms are adaptable, but these variables need to be taken into 

consideration in order to keep the microorganisms alive.  There are different 

temperature ranges for microorganisms used in anaerobic digester systems.  The 

different ranges are thermophilic, mesophilic and psychrophilic, which operate from 50 

degrees Celsius to 60 degrees Celsius, 35 degrees Celsius to 40 degrees Celsius and 15 

degrees Celsius to 24 degrees Celsius respectively.   

Thermophilic microorganisms require higher energy inputs than the other two 

microorganisms to maintain their relatively high temperature.  In a system using 

thermophilic microorganisms, the microorganisms are less able to adapt to the 

environment but have higher pathogen removal effectiveness than the other two 

systems.  Systems using thermophilic microorganisms also have the fastest throughput 

time of 3 – 5 days.  This means that waste can be fully processed in this amount of time.  

Systems using mesophilic organisms are not as sensitive to environmental changes 

within the tank such as temperature or pH as thermophilic organisms.  Systems using 

mesophilic organisms have a throughput time of 15 – 20 days.  Systems using 

psychrophilic microorganisms have even longer throughput times than thermophilic and 

mesophilic microorganisms but are more adaptable to changes in temperature and pH.  
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According to Biogas Energy Inc. (n.d.), the most reliable strain of microorganisms for 

biogas production are the mesophilic digesters.  Anaerobic digestion of agri-food waste 

has the potential to reduce odor, pathogen levels in manure and GHG emissions on the 

farm.  It also improves the value of the manure as fertilizer because of the odor and 

pathogen reduction.  Anaerobic digestion produces renewable energy from organic 

waste such as food byproducts, spoiled food or unused food (Canada 2007).   

Types of Digester Systems 

The three primary types of anaerobic digester systems are 1) the covered lagoon 

system, 2) the complete-mix system and 3) the plug-flow system.  There are other types 

of digester systems, but the three primary systems mentioned here are the ones most 

commonly found in previous economic studies about digester systems.  One other type 

of digester will be explained here because it is the type used for this analysis.   

The covered lagoon system is the simplest type of anaerobic digester and is not 

heated, so it is only a viable option for warmer climates.  The other two systems are 

more expensive than covered lagoons but are more efficient at producing energy.  The 

plug-flow and the complete-mix systems are both heated and insulated, so they are 

better options for cold climates than covered lagoons (Lee and Sumner 2014).  Selecting 

the correct digester system is important to the success of the investment.  Each type has 

pros and cons and the appropriate type of digester depends on the climate, livestock 

operation size and existing manure management.  It is also important to consider the 
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amount of money the farmer is willing to invest and the coproducts she/he wants to 

include in the revenue stream. 

In a covered lagoon system, there are two lagoons used in the process of biogas 

production.  This is a passive system that has slower throughput time and the fertilizer 

nutrients are not recovered quickly because the fiber is retained for a longer amount of 

time than in other systems (Hamilton 2012).  There are two lagoons in this system that 

are used to capture the biogas.  The first lagoon is where the microorganisms consume 

the feedstock and generate biogas.  The second lagoon is where the effluent is stored 

(Lee and Sumner 2014).   

The covered lagoon system is typically used to manage waste from flush systems 

and has a higher percentage of water mixed with the manure than the other systems.  

The percent of total solids for covered lagoon systems ranges from 0.5 to 2 percent.  

Because this type of digester is not heated, it would most likely use psychrophilic 

bacteria due to their ability to adapt to ambient temperatures.  Due to the longer 

throughput time this type of system needs compared other systems, is not as conducive 

to generating electricity and in some cases may only be used for heat production.  

Larger covered lagoon systems in hotter climates may have the potential to generate 

enough biogas to justify the use of a generator to produce electricity.   

A plug-flow system can use both mesophilic and thermophilic bacteria because 

the biogas production occurs in a tank that is heated and insulated as manure flows 

from one end to the other.  The throughput time is shorter than the covered lagoon 
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system, and this type of system is more conducive to electric energy generation.  The 

covered lagoon uses manure that is heavily diluted, but the plug flow functions best 

with manure that is thick, and it requires low amounts of mixing.  The percent of total 

solids for plug-flow systems ranges from 11 to 14 percent. 

Complete-mix systems use both mesophilic and thermophilic bacteria because 

the biogas production occurs in a tank that is heated and insulated.  This type of system 

requires that the manure be mixed continually within the tank so that the solids do not 

settle.  The manure is mixed with an agitator and requires some of the energy produced 

from the system to facilitate the mixing.  The percent of total solids for complete-mix 

systems ranges from 3 to 10 percent (Penn State University n.d.).  Both the complete-

mix and plug-flow system are low rate systems where influent displaces effluent, 

including the microorganisms.  Some of the microorganisms can be recycled and 

returned to the digester system after they leave with the effluent. 

A fourth type of system is a suspended media system.  There are different types 

of suspended media systems, but the system used for this analysis is the induced 

blanket reactor (IBR) system.  The percent solids for IBR systems range from 6 to 12 

percent.  This is a high rate system and microorganisms remain in the system (Hamilton 

2012). 

The IBR is mentioned because it is the type of digester system that will be used 

to estimate costs and revenues for the analysis of this thesis.  Information on the 

specific IBR system is provided by Dr. Conly Hansen at Utah State University.  The IBR 
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system provides benefits that make it attractive to small-scale farmers.  It has a smaller 

physical footprint than other systems which is very beneficial in areas suffering from 

urban encroachment.  The smaller footprint also reduces the opportunity cost of using 

the land for other farm production.  The IBR system is designed for small-scale dairies in 

areas with varying climates such as Utah. (Hansen 2015).    

Local Food Production 

The FAO reports that in 2013 agriculture production increased worldwide over 

the previous year (FAOstat 2013).  This increase in production is important because it 

shows an improvement in the world’s ability to supply food for its increasing population.  

However, there are only limited amounts of land and as population continues to grow, 

more of the land is used to produce food at the same time more land is needed to 

provide housing for the increasing population.  The FAO predicts a world population of 

over 9 billion persons by 2050 that will require food and shelter.  If food and shelter are 

not provided political unrest in both developing and developed countries will occur (FAO 

n.d.).   

The United Nations (UN) Committee on Economic, Social and Cultural Rights 

states that food and nutrition security is a human right and that every person should 

have physical and economic access to adequate food (FAO n.d.).  Being able to meet the 

nutritional needs of every person will require that city designers and managers take into 

consideration the food system for cities as cities encroach on rural developments where 

food is produced.  Urban and rural authorities will need to work together to create 
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sustainable food systems that promote localized food systems and the perpetual 

existence of agriculture despite urban encroachment (FAO n.d.).  

One of the problems with urban encroachment is that it encourages food 

production to be outsourced to other regions and countries thus reducing the 

production of food in the immediate area.  Food availability has rarely been perceived as 

a problem in the past with regard to urban planning because most have taken for 

granted that food would always be available in local supermarkets regardless of how 

large the city became.   

As populations increase and food scarcity increases, food prices are also 

expected to increase.  Globalization has caused many developed countries to rely more 

heavily on developing but poorer countries to supply much of the food they consume.  

This places a lot of strain on developing countries to not only supply enough for their 

needs but also the needs of other countries.  This occurs especially when developed 

countries continue to lose agricultural ground to urbanization.  Unless buying local 

becomes more of a priority this problem will be exacerbated as developing countries 

also experience an increase in urban encroachment. 

There has been an increased emphasis in developed countries on buying local 

food products and to increase food sustainability despite expanding urbanization.  The 

USDA, Economic Research Service (ERS) reports that in 2012 local food sales were an 

estimated US $6.1 billion.  The USDA defines local food as “food for human consumption 

sold via direct-to-consumer (DTC) and intermediate marketing channels.”  Even though 



37 

this definition does not give a specific distance the US Congress in the 2008 Food, 

Conservation, and Energy Act specifies that it cannot exceed “400 miles from the origin, 

or within the state in which it is produced.”  DTC marketing channels include farmers’ 

markets, on-farm stores and pick-your-own operations and make up 20% of local food 

sales.  Sales from these food sources increased by 32% between 2002 and 2007 but 

decreased by 1% between 2007 and 2012.   

Small-scale farms that have less than $75,000 in annual gross cash farm income 

represent 85% of all the farms producing for local food markets in the US.  However, 

these small-scale farms only represent 13% of all local food sales (USDA ERS 2015).  

Despite their low percentage of local food sales, the majority of US farms are small-scale 

farms and many are at risk of going out of existence due to urban encroachment.  

Though this may not have a large economic effect on the amount of local food sales, 

urbanization is more likely to occur around smaller producers than large producers.  

Without a means to mitigate unpleasant smells and pollution associated with dairy 

farms, the majority of the local dairy food producers are at risk of going out of business 

and decreasing the amount of local dairy products produced.   

Urbanization and the loss of small farming operations also reduces the farm 

culture that many consumers associate with local products which could possibly reduce 

the incentive for consumers to pursue buying local food products.  Artisan dairies that 

strive to maintain an appearance that would contribute to a farming culture near urban 

areas will struggle to persist in urbanized areas. 
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Sustainability 

Many believe that in order to be sustainable, agriculture practices that use 

scarce resources efficiently and produce in an environmentally-friendly way are needed.  

There must be a focus on economic, social and environmental health, and the triple-

bottom-line focus should be the goal of every stakeholder in the supply chain.  The FAO 

recommends that agriculture production begin a transition from fossil fuel-based inputs 

to renewable energy sources.  This may help ensure sustainability as fossil fuel 

reservoirs are depleted and might contribute to food being affordable as fossil fuel 

prices increase.  It may also improve the profitability of agriculture enterprises by 

reducing the costs of production (FAO n.d.).  Renewable energy, especially from biomass 

and organic waste, can reduce the demand for fossil fuels in agriculture and improve 

sustainability by transitioning production from a linear process to a cyclical process that 

better mimics an effective ecosystem (Sullivan 2003). 

During the last 75 years, the US dairy industry has made many changes and 

advances.  Improved breeding practices have increased milk yield and farm efficiency so 

that producers are supplying more milk with fewer cows.  As mentioned previously, 

there has been a shift away from many small-scale farms to fewer large-scale farms.  

This is due to business management decisions related to economies of scale, new 

production technologies and urban encroachment that has pushed dairy producers to 

adjust the allocation of resources used.  These structural changes in the dairy industry 

have improved many aspects of milk production and the economic viability of the dairy 
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industry in the US.  However, an economically-viable enterprise does not necessarily 

represent a sustainable industry.  Many experts are concerned that the economic 

improvements in the American dairy industry do not equate to a sustainable industry.  

According to von Keyserlingk et al. (2013), experts are concerned that many of the 

strengths that have made dairy production more economically viable “lack the resilience 

to adapt to changing social and environmental landscapes” (5405) and are therefore not 

sustainable. 

The dairy industry has been under scrutiny for several years due to the amount 

of GHG emissions produced from the CAFO that large dairy represent.  Though 

efficiency in milk production has improved dramatically, the growing population has 

increased the demand for dairy products driving an increase in CAFOs.  Fewer dairies 

use grazing practices, especially in the US, than was the case in decades past and waste 

management issues have increased as a result.  Further problems arise as urbanization 

decreases the amount of land available for agriculture and increases the concentration 

of herds on smaller parcels of land.  As farmers struggle to mitigate issues with urban 

encroachment, the dairy industry has begun to relocate to states that have more land 

available for agriculture.  Western states such as California and Idaho have seen an 

increase in herd sizes due to this relocation.   

Though many western US states have land available, these states are also 

experiencing the effects of urbanization.  One problem that many of the western states 

have faced in recent years is drought conditions coupled with an increasing human 
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population that demands water be redistributed away from the agriculture sector to 

urban needs.  Urban encroachment requires a reallocation of water to supply domestic 

households and water in the southwestern states is often in short supply (von 

Keyserlingk et al. 2013).  Digester systems also require water and this needs to be 

accounted for before deciding to implement anaerobic digestion as a means to mitigate 

risk.  This is also a valid argument for using whey with manure as a feedstock due to the 

high water content in whey.  Introducing whey will provide enough water to the 

digester system to eliminate the need for additional water from outside the system. 

The importance of water conservation in the southwestern states often creates 

problems between household users and the agriculture sector.  As a result, it becomes 

even more important to regulate the use of water as a scarce resource and to protect 

against pollution from CAFO waste.  This creates an issue regarding the viability of dairy 

farms due to social and environmental issues in Utah. 

Utah has also experienced an increase in average dairy herd size and a decrease 

in dairy farm numbers.  As housing developments are built around dairy farms, 

generational farms go out of business for a number of reasons.  The construction of 

housing developments increases the value of the adjacent land to the point that it is 

more beneficial to sell portions of the farm, or all of the farm, than mitigate the social 

and environmental issues associated with continuing to operate the farm in its current 

location.  If just portions of the farm are sold, then herd concentrations increase and 

cause more potential problems regarding social and environmental issues.  If the entire 
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farm is sold, then the option for consumers to buy local products is reduced and food 

system sustainability decreases. 

Keeping in mind that a profitable farm is not necessarily a sustainable farm, but a 

sustainable farm is an economically successful farm, the benefits of digester systems on 

dairy farms can be evaluated.  Benefits such as GHG reduction through pollution 

mitigation and pathogen and weed seed reduction in manure applied to the land 

improve the environmental portion of sustainability.  It also improves the economic 

viability of the farm by reducing the cost of herbicides used to fight weed infestations.  

Liquid from the effluent is relatively clean and can be used for flushing and irrigation, 

and nonpoint source pollution is reduced thus improving water conservation.  Benefits 

such as odor and fly reduction in developed neighborhoods provide social benefits.  This 

improves sustainability by providing more self-reliance to communities that can buy 

locally and have sustainable community food systems.  Implementing sustainable 

practices can increase the value of the farm, and if products are marketed correctly, 

increase the value of its food products.  There is potential to improve sustainable 

practices through on-farm anaerobic digestion, especially for artisan farms and other 

farmers participating in direct marketing.   

Though sustainable agriculture does not necessarily receive a certification such 

as an “organic” certification from the USDA, there is potential for farmers to demand a 

premium for their food products as a result of implementing sustainable practices.  

Depending on the marketing channels used and the education consumers receive from 
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producers, sustainable practices can differentiate products enough that a premium will 

be paid by consumers similar to that paid for “organic” certified food.  There are many 

similarities in “organic” and sustainable production, and some sustainable producers 

may seek to become “certified organic,” but there are also some differences.  For 

example, sustainable producers only minimize synthetic fertilizers used, and “organic” 

producers are not permitted to use synthetic fertilizers.   From a different perspective, 

there are practices that make sustainable farming different and at times more 

environmentally-conscientious than “organic” farming.  For example, the emphasis on 

reducing fossil fuel inputs and increasing renewable energy inputs is a strong driving 

force in sustainable agriculture but is not measured in an “organic” certification (Keating 

and Jacobsen 2012). 

To determine whether agricultural production is sustainable or not there has to 

be some method of observing and measuring sustainability.  Social and environmental 

aspects of sustainability are often the focus of certification criteria for certifiers such as 

The Rainforest Alliance, the USDA and Fair Trade.  However, these certifying bodies 

typically only focus on social and environmental issues, and very few provide economic 

criteria to measure overall sustainability.  The Appropriate Technology Transfer for Rural 

Areas (ATTRA) provides a checklist of possible criteria that can be used to determine 

sustainability found in Table 2.  Though there are criteria that may not be applicable to 

every producer, the checklist may be beneficial to producers seeking to implement 
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anaerobic digester systems on a small-scale or artisan dairy farms in order to become 

more sustainable.  

 
Table 2.  Sustainability Checklist 

Economic Sustainability    

 The family savings or net worth is consistently increasing  

 The family debt is consistently decreasing   

 The farm enterprises are consistently profitable from year to year 

 Purchase of off-farm feed and fertilizer is decreasing  

 Reliance on government payments is decreasing  

Social Sustainability    

 The farm supports other businesses and families in the community 

 Dollars circulate within the local economy   

 The number of rural families is increasing or holding steady 

 Young people take over their parents' farms and continue farming 

 College graduates return to the community after graduation 

Environmental Sustainability    

 There is no bare ground     

 Clean water flows in the farm's ditches and streams  

 Wildlife is abundant     

 Fish are prolific in streams that flow through the farm  

 The farm landscape is diverse in vegetation   

Source: Sullivan (2003). 
 
 

The criteria used to determine economic sustainability listed above in Table 2 

can all be used to help determine the need for an anaerobic digester system on a small-

scale or artisan dairy farm to create overall sustainability.  The criteria under the social 

aspects are key indicators of the need for anaerobic digestion on a farm.  Anaerobic 

digester systems can help farms support others in the community and circulate dollars 

within the local economy by providing a place for members of the community to dispose 

of organic waste for a tipping fee.  It can also provide a source of fertilizer for local 
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community members to purchase.  It improves the possibility of the number of rural 

families increasing by mitigating problems associated with agricultural production in the 

proximity of urbanization such as odor, appearance and pollution.  Being able to 

mitigate these problems also improves the likelihood that the farm will remain for 

future posterity to inherit despite urban encroachment.  On-farm anaerobic digestion 

also improves the environmental sustainability of farms by decreasing the potential for 

water and land pollution.  This increases the possibility that wildlife will be seen on the 

farm and improves the aesthetic appearance of the farm.  

Creating a sustainable community food system in the US could be important to 

supply adequate food and nutrition to US citizens in the future.  Food sustainability will 

reduce the possibility of political instability.  It will provide economic strength to the 

agriculture sector.  Sustainable food systems also conserve aspects of American culture 

(family farming) and family legacies.  The Agricultural Sustainability Institute (ASI) of the 

University of California, Davis (UC Davis) defines sustainable community food systems as 

a network of food production and disposal that improves the environment, economy 

and social health of local areas.  This especially includes the production that occurs on 

family farms and the marketing channels used to sell goods.  The ASI of UC Davis argues 

the importance of creating local jobs through agriculture and improving the living 

conditions around farms (UC Davis ASI n.d.).  Anaerobic digester systems implemented 

on small-scale and artisan dairies can play a large role in creating sustainable community 
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food systems in rural America by managing not only production waste but also 

consumer waste.   

Social and Environmental Costs 

Negative externalities reduce the sustainability of dairy farms by impacting the 

social and environmental components of a sustainable operation.  This can also 

potentially impact the economic viability of a sustainable operation if fines are imposed 

or monetary compensation is demanded through lawsuits against dairies because of 

their potential negative externalities.  Determining a cost for negative externalities is 

difficult, but can be estimated by determining the cost of continuing to produce when 

social and environmental fines are imposed on producers that do not comply with 

standards and regulations.   

In 2004, Tegtmeier and Duffy did a study estimating the cost of negative 

externalities related to livestock production and determined an industry-wide 

externality cost for livestock producers to be US $166.7 million.  This cost of negative 

externalities is only for damages to air resources and is based on a price of US $0.98 per 

tonne of carbon dioxide equivalents (CO2e)5.  Other studies similar to this have been 

done in various countries including New Zealand.  It is noted that as the price of CO2e 

increases, the demand for waste mitigation practices may increase to prevent the 

problem rather than having producers merely pay to clean up the problem after the fact 

                                                      
5 Carbon dioxide equivalent is base measurement used to compare greenhouse gases.  It 
is based on their global warming potential (US EPA 2015a). 
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(Foote and Joy 2014).  This may include an increased demand for more anaerobic 

digester systems to help farmers comply with standards and to also benefit from carbon 

offset programs.   

It is difficult to determine an actual cost of CO2e per producer.  The amount of 

CO2e produced by a small artisan cheese producer may be negligible, but a fine 

associated with an increased cost of CO2e may also impact small-scale producers and 

potentially lower their risk aversion to adopting waste management systems that 

decrease the emissions of CO2e. 

Anaerobic digester systems use methane that is produced from the consumption 

of organic feedstock by microorganisms.  The methane, or biogas, is used to generate 

heat or electricity through combustion.  The combustion of methane produces carbon 

dioxide which is also a GHG.  However, carbon dioxide is a GHG that is not as 

detrimental to the environment as methane.  Methane is capable of absorbing more 

radiative energy inside the atmosphere than is CO2.  Though methane has a shorter 

lifetime in the atmosphere than CO2, it has an impact 25 times greater than CO2.  The 

radiative absorption and the lifetime of an emitted gas are what determine the severity 

of a GHG.  Over a 100-year time period, methane has a Global Warming Potential6 of 

between 28 and 36 times greater severity of damage than CO2 (US EPA 2015b).  

                                                      
6 Global Warming Potential is a measure of the severity of a greenhouse gas.  It is based 
off of 1 ton of carbon dioxide over a 100 year time period (US EPA 2015b).  
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Anaerobic digester systems are valuable to agriculture producers if they take advantage 

of programs that incentivize the reduction of CO2e. 

Another consideration is determining the sustainability of the farm and the value 

of adopting anaerobic digestion based on avoiding potential lawsuits arising as a result 

of pollution, pathogen infestation and odors caused by the farm operation.  This 

potential increases as residential neighborhoods are developed around livestock 

producers.   

Dairy farms and cheese plants impacted by urban encroachment have a higher 

risk of lawsuits than those not close to residential neighborhoods.  A list of claims 

awarded because of agricultural nuisance lawsuits ranges from US $12,100 to 

$50,000,000 between the years of 1991 to 2007 (Keske 2009).  None of these lawsuits 

were against dairy producers and the size of the operations involved as defendants 

varies, but the producers were sued for not mitigating wastes that are similar to what 

dairy farms emit.  Examining the lawsuits is not helpful in determining the legitimate 

cost of externalities, but they represent a potential risk for dairy farmers near urban 

areas.  Keske argues that though these awards from lawsuits are based on individual 

cases, they provide some insight into the potential economic problems that could 

diminish the sustainability of a dairy farm if the issue of negative externalities is not 

considered and dealt with by the farmer.  It is also noted that not all of these lawsuits 

were against producers impacted by urban encroachment.  However, urban 

encroachment increases the risk of having lawsuits from odor and flies filed against 
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farmers.  Using anaerobic digestion as a waste management method provides a way to 

mitigate the risk of lawsuits and several other problems that threaten the sustainability 

of dairy farms in Utah.   

Digester systems provide a means for urban authorities and planners to 

cooperate with farmers to mitigate the effects externalities on residents who live close 

to dairy farms.  This will improve the sustainability of not only the dairy producer but of 

the community.  In order to determine whether anaerobic digestion of dairy waste truly 

provides sustainability, the economic feasibility and viability of anaerobic digesters on 

small to medium-sized dairy farms needs to be evaluated.  Taking into account the three 

pillars of the triple bottom line, economic, environmental and social, will help producers 

and city planners determine the need for a digester system to mitigate organic waste 

issues in Utah. 

Enterprise and Capital Budgets 

One of the tools used to help measure potential economic performance is an 

enterprise budget.  An enterprise budget is used to estimate the annual costs and 

returns of a specific enterprise to help make investment and management decisions.  

Enterprise budgets are often based off of price and quantity demanded assumptions.  

Enterprise budgets show the expected profit if all of the goods are sold at a specific 

price.  Enterprise budgets are representative and do not necessarily reflect costs and 

returns for a specific operations (Agricultural Marketing Resource Center 2014).   
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Capital budgets help predict the success of a capital investment.  Estimating the 

NPV and the IRR are financial methods associated with capital budgeting and can be 

used to predict the potential success of implementing anaerobic digestion.  Capital 

budgets make assumptions about the lifetime, discount rate and growth rate of the 

investment.  In order to estimate net cash flows for the capital budget, assumptions are 

also made about future inflows and outflows of cash over a given period of time. 

Another analytical tool that can be used to help determine the feasibility of using 

anaerobic digestion to manage organic waste is the FarmWare program (Conservation 

Technology Information Center n.d.).  It is a program provided by AgSTAR and is often 

referenced in the literature as a resource to estimate the feasibility of anaerobic 

digester systems.  AgSTAR is used in this analysis as a benchmark to compare results 

estimated by many other researchers.  However, the financial estimates are often not 

equal, and the estimates from AgSTAR often predict better financial performance than 

other studies (Enahoro and Gloy 2008). 

Researchers often note the importance of economies of scale when estimating 

the potential success of investments in anaerobic digestion.  Economies of scale are 

important in the production of biogas, and describe in part why larger operations 

benefit from improved net revenues when anaerobic digesters are used as compared to 

smaller operation.  Based on several different case studies, the minimum size threshold 

for an anaerobic digester system to be feasible for a dairy typically ranges from 500 to 

1,000 cows (Lee and Sumner 2014).  The majority of the case studies and estimates from 
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other studies reflect dairies large enough to meet this threshold, and the other studies 

that have considered smaller dairies estimate that it is not profitable without a higher 

price per CO2e.  Capital costs for dairies of with herd sizes between 100 and 250 cows 

have varying costs per cow and are expected to have higher costs per cow than dairies 

with herd sizes over 500.  By keeping the capital cost per cow below US $1,500 more 

small-scale dairies are capable of adopting anaerobic digestion feasibly.  This can be 

achieved through low cost designs or through subsidies (Shelford 2012). 

Coproducts and Revenue Streams 

Revenue estimates for anaerobic digestion are driven primarily by the price of 

electricity, but studies have also shown that an increased carbon price improves the 

feasibility of investing in anaerobic digester systems.  The Cap and Trade program in the 

US determines a limit for the amount of GHG that can be emitted without penalty.  If a 

company estimates that it will exceed that limit, it can offset the amount of GHG it 

emits by trading with an entity that is reducing GHG through methods such as anaerobic 

digestion of dairy waste (US EPA 2009).  There are two different types of carbon offset 

markets in the US.  There are voluntary offset markets where individuals voluntarily 

participate in reducing GHG.  The Chicago Climate Exchange helped facilitate this type of 

market before its close in 2010.  The other market is the compliance market.  This is in 

conjunction with the cap-and-trade regulations in different regions of the US.  The RGGI 

was the first to implement a compliance market in the US (Key and Sneeringer 2011). 



51 

The Chicago Climate Exchange allowed people in North America to trade CO2e 

from 2003 to 2010.  It was owned by Intercontinental Exchange (ICE) and stopped 

carbon credit trading in 2011.  When the carbon credits ceased to be traded, ICE 

provided a way for people in North America to receive compensation for carbon offsets 

by registering with the Chicago Climate Exchange Offsets Registry Program 

(Intercontinental Exchange n.d.).  In 2008 Regional Greenhouse Gas Initiative (RGGI) 

started providing a way to counteract carbon emissions through the purchase of carbon 

offsets.  These groups, along with others, certify the trading of offsets to comply with 

cap-and-trade regulations (Natural Resource Defense Council 2014).   

Cap-and-trade is a regulatory method that places a cap on the amount of GHGs 

produced by various sources.  Sources that wish to offset the amount of GHGs produced 

can trade CO2e with other sources that reduce GHGs through practices such as green 

energy production.  Producing energy through anaerobic digestion reduces GHG 

emissions and provides a means to increase revenue by participating in the offset 

programs.  Based on the auction results from the California Cap-and-Trade Program in 

August 2015, the auction settlement price for carbon offsets is US $12.52.  This auction 

is held by the California Air Resources Board and Québec’s Minitère du Développment 

Durable, de l’Enviornnement et de la Lutte contre les changements climatiques 

(California Environmental Protection Agency 2015). 

The price of carbon offsets can make a significant difference in determining the 

feasibility of implementing anaerobic digestion.  This is because the price of carbon 
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offsets can influence the decision of small-scale farms to implement anaerobic digestion 

to manage waste and help reduce GHGs or not.  Using the NPV to determine the 

feasibility of investment, a carbon price of US $13 per tonne of CO2e makes it possible 

for dairies with more than 544 cows to be profitable according to Key and Sneeringer 

(2011).  A carbon price of US $26 per tonne of CO2e lowers the feasibility range to 265 

dairy cows.  This does not mean that every dairy will be profitable at these prices but 

that dairies with this sized inventory have an improved probability of feasibly 

implementing anaerobic digestion (Key and Sneeringer 2011).  Gloy (2011) makes the 

argument that even though the US EPA claims that a price of US $8 per tonne of CO2e is 

a breakeven price for implementing a plug flow digester system, the adoption of 

anaerobic digestion needs to be analyzed case by case.   

Manning and Hadrich (2015) provide similar results as Key and Sneeringer (2011) 

regarding the price of CO2e, but they also point out that the cost of enrolling in offset 

programs also deters participation in the carbon offsets market by adopting anaerobic 

digestion.  They state that the price per tonne of CO2e minus the cost of enrolling in the 

program is the social cost of carbon, and this cost must be high enough to motivate a 

higher percentage of dairies to adopt anaerobic digestion. Other possible revenue 

sources such as tipping fees, fiber sales and alternative energy sales also increase the 

possibility of adopting anaerobic digestion as a means to mitigate waste management 

depending on the size of the dairy, efficiency of the system and the available market for 

coproducts. 
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Biomethane is an alternative energy source that can be produced from 

anaerobic digestion.  It is biogas that has been purified sufficiently to be introduced into 

the grid via a natural gas pipeline.  There are three different prices associated with 

natural gas: the wellhead price, the city-gate price and the commercial price.  A dairy 

would typically be paid the commercial price.  Though natural gas prices may be higher 

than electricity prices, the equipment cost to generate natural gas may make it so it is 

not feasible for dairies especially for a small-scale digester system.   

Biomethane production from animal manure is more common in Europe than in 

the US and cost estimates from previous studies are based on European biomethane 

facilities.  These facilities are large-scale dairies ranging from 1,500 cows to 27,000 cows.  

The capital cost presented here is based on the smallest dairy operation and is 

estimated to be US $500,000.  The additional operation and maintenance cost is 

estimated to be US $5.02 per Mcf (Krich et al. 2005).  Adopting biomethane production 

on a 210-cow dairy many not be feasible due to the lack of economies of scale, and the 

cost of capital may be overestimated because of a lack of information and adoption in 

the US. 

Bishop and Shumway (2009) analyze the sensitivity of the NPV, the IRR and the 

modified internal rate of return (MIRR) with different coproducts.  The coproducts 

provide additional revenue but additional costs too.  Some do not provide substantial 

benefit to the anaerobic digester enterprise.  In this analysis fiber sales, tipping fees and 
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carbon credits are the coproducts expected to benefit the enterprise the most.  Tipping 

fees increase the NPV more than the other coproducts (Bishop and Shumway 2009).   

Tipping fees are beneficial to the enterprise for a couple of reasons.  They increase 

revenue, improve the energy levels of the feedstock and decrease the probability of 

having insufficient feedstock.  If the quantity of manure is insufficient to continually 

provide feed for the microorganisms, they will die and the anaerobic digester system 

will fail.  A small-scale artisan cheese dairy may have problems providing sufficient 

feedstock without taking on off-farm organic waste when the dairies own cows are 

being pasture fed thus reducing the amount of manure generated by the dairy itself. 

Fiber generated by the digester system is sold as either livestock bedding or fertilizer.  

Fiber is often used by the dairy to offset their own bedding costs or to fertilize crops.  It 

can also be sold to off-farm sources as fertilizer.  Landfills often sell compost from 

decomposed organic waste.  Fiber sales from the farm can be treated similarly and are 

valued at US $13.50 per cubic yard by Bishop and Shumway (2009). 

For a 750-cow dairy with a grant for 38% of the cost of capital, the tax credit, the 

fiber sales, the tipping fees and the carbon offsets make the adoption of a digester 

system feasible.  Implementing the sale of these coproducts provides a NPV of US 

$1,375,371 and an IRR of 20% for the investment. This estimation is with a 4 percent 

discount rate (Bishop and Shumway 2009).  

Lee and Sumner (2014) note that it is difficult to determine a discount rate for 

investing in an anaerobic digestion system, especially for one that does not meet the 
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minimum dairy size threshold.  The literature usually assumes a discount rate range 

from 3 percent to 10 percent.  As the minimum threshold is approached, the discount 

rate should be increased to reflect a riskier investment that is unable to take advantage 

of economies of scale and has a high failure rate.  Enahoro and Gloy (2008) estimate a 

discount rate of 10 percent, which may be appropriate due to the lack of information 

available on initial capital investment, predicted biogas production, expected lifetime of 

equipment, future utility prices, operating costs, carbon offset price and the 

continuance of incentive programs.  For a dairy smaller than 250 cows, a discount rate 

higher than 10% is more probable given the estimates from the literature are based on 

larger-scale operations and often reflect higher CO2e prices. 

Labor Requirement 

Labor is not specified in all of the literature about anaerobic digesters, and 

estimated labor requirements range from 30 minutes a day to full-time employees 

dedicated to monitoring and maintaining the digester system.  AgSTAR estimates 30 

minutes per day are needed to take care of monitoring the system and perform minor 

maintenance, an additional 30 minutes per day needed to load the digester and an 

additional 20 minutes per day was estimated to be needed to handle inquiries.  Labor 

was estimated to cost US $20 per hour (Lazarus and Rudstrom 2007).  AgSTAR estimates 

that 30 minutes per day are required at a cost of US $60 per hour for a 9,000-cow dairy 

(McDonald 2012).  Stokes, Rajagopalan and Stefanou (2008) estimate that about 30 

minutes per day are needed to monitor, repair and maintain the digester system and 
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recommend a cost of US $12 per hour for labor for a 500-cow dairy.   Dvorak and Frear 

(2012) estimate an annual salary of US $20,000 for labor or US $10 per cow.  

The Kettle Butte Dairy in Roberts, Idaho employs three full-time people to 

monitor and maintain its digester system on its 5,000-cow dairy.  In a personal interview 

with Guillermo Llamas, he suggested that 30 minutes per day is an unreasonable 

estimate for labor to monitor and maintain the digester system and recommended that 

more time be allocated to monitoring and maintenance (Llamas 2015).  Premium Farm 

in Wheatland, Wyoming suggests 40 hours per week are necessary to maintain their 

digesters.  Employees in charge of maintaining the digester system are paid US $8.76 

per hour plus housing (Keske 2009). 

Estimating the amount of labor needed for a digester system is difficult.  Labor 

time and compensation have a wide range of estimates in the literature.  It is especially 

difficult to estimate labor requirements for an anaerobic digester for a small-scale 

operation due to the lack of coverage in the literature.  Scaling estimates based on a per 

cow cost may provide the best estimate.  However, most estimates are not based on 

herd size.  The estimate of 30 minutes per day is used for herd sizes ranging from 500 to 

9,000 cows.  Having a digester capable of generating additional revenue sources other 

than electricity will require more time and labor, but the additional revenue sources are 

estimated to have a positive impact on the overall profitability and sustainability of the 

operation.   
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Including off-farm organic waste for feedstock, especially waste with high 

volatile solid content, will increase the reliability of consistent biogas production.  

Including additional waste will increase labor costs to manage the organic waste 

disposal and associated tipping fees, but additional time and labor will also be needed 

to obtain additional sources of off-farm organic waste to prevent failure of the digester 

system and the death of the microorganisms when feedstock is low.  This can include 

organic waste from local restaurants, food processors and abattoirs (Enahoro and Gloy 

2008).   

Increasing revenue through other revenue streams increases the difficulty of 

estimating labor time and compensation due to additional requirements such as 

marketing, education for incentive programs and time.  Because of the high failure rate 

for anaerobic digester systems, accurate labor estimates are important to determine the 

feasibility of implementing anaerobic digestion.  Labor is one of the few operating 

expenses associated with anaerobic digester systems and has a lot of weight in terms of 

predicting the profitability of a system.  Underestimating labor time and compensation 

will encourage unwise investment and potentially increase the failure rate of anaerobic 

digesters and dairies.   

Subsidies and Grants  

In a study by Manning and Hadrich (2015), subsidies for anaerobic digester 

systems are reported to range from 14.03 percent to 70.59 percent of the initial cost for 

various sizes of farms and different types of digester systems.  They argue that a balance 
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is required when subsidizing anaerobic digester systems.  The social and environmental 

benefits associated with anaerobic digesters are important, but because of the potential 

financial benefits it is not necessary to subsidize the entire investment.  The subsidy 

program needs to do more than simply transfer money from taxpayers to farmers, and 

this can be done by basing the percentage of the initial cost covered by subsidy on the 

number of cows on the farm (Manning and Hadrich 2015).   

Stokes, Rajagopalan and Stefanou (2008) discuss the potential insufficiency of 

using NPV to determine the feasibility of anaerobic digestion due to a lack of confidence 

in estimated revenue streams and cost estimates.  Numerous uncertainties about the 

revenue streams and costs make adopting anaerobic digestion riskier and more difficult 

to determine its feasibility.  The uncertainty of coproduct supply and the value from 

anaerobic digestion and the uncertainty of the lifetime of incentive program make 

predicting future cash flows difficult and variable.  It is suggested that the NPV is a 

useful tool to estimate feasibility but that flaws resulting from coproduct and operating 

cost uncertainty require real option theory to be used to help analyze the feasibility of 

the investment (Stokes, Rajagopalan and Stefanou 2008). 

Real option theory is used to estimate the value of the producer’s option to 

delay investing.  This adds additional barriers to the producer’s decision to invest in 

anaerobic digestion and should be accounted for in the value of subsidies and grants 

provided (Stokes, Rajagopalan and Stefanou 2008).  By accounting for the value of the 

option to delay investment the decision to invest is influenced by more than just the 
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expected cash flows and the discount rate.  Cash flows that are volatile due to 

uncertainty, similar to those associated with anaerobic digestion, can produce 

contradicting NPV results depending on the year.  Taking into account the time value of 

money by calculating the NPV may not be a sufficient decision rule for adopting 

anaerobic digestion if the farmer gains more by waiting to invest.  This may be the case 

regardless of whether or not a positive NPV is estimated (Damodaran 2012).  This adds 

to the difficulty of attempting to estimate the feasibility for small-scale dairies and the 

subsidy level required. 

If the value associated with the option to delay investment is considered to be 

relevant, then additional revenue may be required to encourage farmers to invest in 

anaerobic digestion.  The amount needed to subsidize the value in the option to delayed 

investment depends on the price per kWh for surplus energy (Stokes, Rajagopalan and 

Stefanou 2008). Developing an appropriate subsidy amount will help foster the desired 

social and environmental benefits but will also encourage anaerobic digestion investors 

to be more proactive in making the investment profitable. 
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CHAPTER III 

METHODOLOGY 
 
 

Description of the Integration of the Three Enterprises 

The three separate enterprises used for the analysis of dairy waste management 

via anaerobic digestion are 1) the small-scale dairy (milking) activity, 2) the artisan 

cheese production activity and 3) the anaerobic digester system.  From the literature 

review, one can see that it is common for analyses to consider either the anaerobic 

digester system or the artisan cheese plant as part of the dairy enterprise, but not the 

dairy, cheese, and digester operations to be considered together.  For this analysis, each 

of the three enterprises is first analyzed separately to determine its individual 

profitability as well as its potential to improve farm profitability when combined and 

integrated with the other activities or operations.   

 
 

 
Figure 1.  Integrated Enterprise Layout 
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The separate enterprises are initially treated as separate enterprises instead of 

an additional capital investment (separate enterprise analysis rather than partial 

budgeting).  By separating and identifying these receipts and costs the labor required for 

each enterprise is identified and can then be allocated more readily from the general 

labor pool available to the farm.  This assists in identifying and capturing the true cost 

(both capital and operational costs) of the enterprise as part of the integrated dairy 

operation.   

As is typically the case in economic analysis, assumptions are made to simplify 

the analysis and provide a model that can be used more generally by farmers to 

determine the possibility of profitably implementing anaerobic digester systems on 

small-scale farms.  After the three enterprises are analyzed separately, the cash flows 

from the separate enterprises are added together to determine a cash flow for the 

entire integrated operation. 

The dairy considered as the basis for this analysis is currently operational 

allowing for the assumptions and results of the analysis to be confirmed against the 

actual operation.  The dairy provides milk for the artisan cheese processing plant.  

Waste from cheese production, primarily whey, is placed in storage and then sent to the 

anaerobic digester system where it becomes feedstock for the microorganisms to 

produce biogas and digested fiber.  Waste from the dairy, primarily manure, is placed in 

a storage pit and then is sent to the anaerobic digester system along with the waste 

from the cheese production to be used as feedstock by the microorganisms to produce 
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biogas and digested fiber.  If organic waste is accepted from off-farm locations, then it is 

storage and then sent to the anaerobic digester system along with the waste from 

cheese and milk production to produce biogas and digested fiber.  The biogas that is 

produced is either used as fuel to generate electricity from a generator(s), as fuel for a 

boiler to create heat and/or goes through additional refining (scrubbing) to produce 

biomethane.  Biomethane production requires additional equipment to be able to scrub 

the biogas.  If electricity is generated, then it is used either on-farm or sold back to the 

electrical grid to be used by the general public.  If heat is generated from the boiler, 

then it can be used to heat on-farm facilities or the owner’s house.  If biomethane is 

produced, then it can be used by vehicles that have been converted to use compressed 

natural gas, or it can be sold and injected into a pipeline to be used as natural gas by the 

general public. 

 
Table 3.  Labor Requirements for the Integrated Operation (US Dollars) 

 QUANTITY HRS/WEEK PAY 

DAIRY    

    OWNER 1 40 $25  

    HIRED 2 30 $12  

ARTISAN CHEESE    

    OWNER 1 40 $25  

    CHEESE MAKER 1 Salary $45,000  

    HIRED 2 30 $12  

    HIRED 15 20 $7.25  

ANAEROBIC DIGESTER    

    OWNER 2 0.5 $25  

    HIRED 1 25 $12  

Source: Painter, Gray and Norell (2012); Bouma, Durham and Meunier-Goddik (2014); Kohler and Kohler (2015). 
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Dairy Model 

The costs and returns for the dairy operation that were used in the analysis 

(Table 4) are based on a 2014 enterprise budget for a dairy operation developed by the 

University of Idaho.  This enterprise budget was chosen because it models a small-scale 

dairy of 210 cows.  By necessity, an enterprise budget makes many assumptions and is 

only representative of dairy operations of that size or, in other words, it does not 

represent the process and production of a specific farm.  It was decided to use an 

enterprise budget so that somewhat generalizable results would be generated that 

would be potentially used and adapted after modification by individual farmers 

according to their own estimated costs of production and production techniques.  

Another reason for using an enterprise budget instead of a specific farm is to 

maintain the confidentiality of the practices used by individual farmers by not revealing 

too much about specific costs, returns, and production practices.  A Utah dairy farmer 

was interviewed to provide general information about how to adjust the enterprise 

budget to reflect a dairy that produces milk that is used in an artisan cheese production 

activity.  Changes that were made include price updates for products sold and costs that 

are incurred, amounts of milk produced per cow and a few minor changes related to 

feed.   

In order to appeal to certain market segments, artisan cheese often gains value 

by making milk production reflect an artisanal practice.  This can be achieved by 

implementing feeding practices such as pasture feeding and reducing or eliminating 
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corn from feed due to genetically modified organisms and other negative perceptions 

held by certain groups of consumers about corn-fed livestock.   

Fixed Assets Required for the Dairy Explained 

It is assumed that the dairy is already in operation and that existing fixed assets 

currently carry no debt.  Fixed assets include such things as real estate and equipment 

and while they are assumed to not require debt payment they are depreciated to 

represent the cost of using the asset because the asset will eventually need to be 

replaced for the operation to be on-gong.  Ownership costs are estimated by Painter, 

Gray and Norell (2012) from the University of Idaho in their dairy budget and only minor 

changes were made to reflect current market prices for livestock.  There is no capital 

investment needed for the dairy except to upgrade and replace equipment as needed.   

Labor Required for the Dairy Explained 

It is assumed that two able-bodied adults are partners in the operation and that 

the labor availability of each partner does not exceed 41 hours per week though this 

may be underestimated.  Labor is assumed to be allocated equally between the dairy 

and cheese production activities.  One hour each week is spent on the anaerobic 

digester system.  Hired labor for the dairy consists of two employees who work 30 hours 

a week and each.  This amount of labor may also be underestimated, but a portion of 

the dairy labor is performed by the other enterprises (e.g., manure and bedding 

management).  Therefore, the labor on the dairy is reduced to try and account for the 

integration of the enterprises. 
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Table 4.  Dairy Enterprise Budget for 210 Cow Herd (US dollars) 
      Weight 

Each 
Unit Total Number Or 

Units 
Price or 

Cost/Unit 
Total Value 

Gross Receipts           

  Milk (Artisan Production) 57.19 cwt                 180  $25.00  $257,373.88  

  Milk 88.91 cwt                 180  $17.00  $272,051.76  

  Bull calves 1.00 head                   95  $300.00  $28,350.00  

  Heifer calves 1.00 head                   95  $300.00  $28,350.00  

  Cull cows 1.00 head                   63  $1,500.00  $94,500.00  

    Total Receipts         $680,625.64  

                

Operating Costs           

  Alfalfa hay 1 cwt                   11,729  $9.00  $105,559.20  

  Corn silage 0 cwt                   25,893  $2.75  $0.00  

  Grain mix 1 cwt                   19,656  $10.00  $196,560.00  

  Minerals 1 cwt                        151  $30.00  $4,536.00  

  Feeder hay 1 cwt                     1,620  $7.50  $12,150.00  

  Marketing 1 head                        210  $69.70  $14,637.00  

  Supplies 1 head                        210  $171.85  $36,088.50  

  Utilities 1 head                        210  $51.44  $10,802.40  

  Legal and accounting 1 head                        210  $13.72  $2,881.20  

  Bedding 1 Cubic Yards                        950  $15.00  $14,250.00  

  Custom manure management 1 head                        210  $20.00  $4,200.00  

  Replacement heifers 1 head                          69  $1,900.00  $131,100.00  

  Interest on operating capital 1 head                        210  $39.07  $8,204.70  

  State & association charges 1 head                        210  $32.94  $6,917.40  

  Insurance 1 head                        210  $17.17  $3,605.70  

  Veterinary Medicine   1 head                   12,774  $1.00  $12,774.30  

  Miscellaneous 1 head                        210  $19.79  $4,155.90  

  Machinery (fuel, lubrication, 
repair) 

1 $                     6,548  $1.00  $6,547.56  

  Vehicles (fuel, repair) 1 $                     3,615  $1.00  $3,615.00  

  Equipment (repair) 1 $                     5,539  $1.00  $5,538.50  

  Housing and Improvements 
(repair) 

1 $                     3,293  $1.00  $3,292.50  

  Hired Labor  hour                     3,120     $12.00  $37,440.00  

  Owner Labor  hour                     2,080  $25.00  $52,000.00  

    Total Operating Costs         $676,855.86  

        Income Above Operating Costs         $3,769.78  
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Table 4.  Continued 
      Weight Each Unit Total Number Or Units Price or Cost/Unit Total Value 

Ownership Costs           

  Capital Recovery:           

    Purchased Livestock 1 $                           -    $1.00  $0.00  

    Housing and Improve. 1 $                   19,259  $1.00  $19,259.26  

    Machinery 1 $                     6,955  $1.00  $6,954.65  

    Equipment 1 $                   15,378  $1.00  $15,378.33  

    Vehicles 1 $                     3,310  $1.00  $3,310.24  

  Interest on Retained Livestock 1 $                 270,000  $0.055  $14,850.00  

  Taxes and Insurance 1 $                     1,930  $1.00  $1,929.94  

  Overhead 1 $                   20,000  $1.00  $20,000.00  

    Total Ownership Costs         $81,682.42  

        Total Costs         $758,538.28  

            Net Income         ($77,912.64) 

            Net Income per head     ($371.01) 

Source: Painter, Gray and Norell (2012); Kohler and Kohler (2015). 

 
 
Other Operating Costs and Receipts for the Dairy Explained 

Costs and revenues received represent current market prices except for 

revenues from milk sold to the artisan cheese plant and prices paid for bedding.  These 

prices are adjusted to represent prices influenced by the other two enterprises.  

Operating costs and receipts received reflect prices in the year 2015 in Utah and would 

need to be adjusted for different regions and years.   

Milk production is estimated assuming 45 pounds per cow per day for 180 out of 

the 210 milking cows.  This results in 146 hundred weight (14,600 lbs.) of milk being 

produced by the milking operation per day.  In order to adjust the dairy enterprise 

budget to reflect milk production in an artisanal fashion, corn is not fed and its costs, 

reflected in the University of Idaho enterprise budget, are removed from the costs 
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incurred for the integrated operation considered here.  Milk production is also reduced 

from that reported in the University of Idaho enterprise budget from 70 pounds per cow 

per day to 45 pounds per cow per day.  This amount of daily milk production better 

reflects pasture-fed dairy cows than corn-fed cows.   

Due to constraints posed by cheese production capability, it is assumed that the 

artisan cheese production operation is unable to produce cheese from the entire 

amount of milk produced by the dairy.  Therefore 39 percent of the milk goes to cheese 

production and the remaining milk is sold to a milk manufacturer.  The percentage of 

milk sold to the artisan cheese plant is determined by the capacity of the cheese plant.  

This volume of milk plays a large role in the profitability of the dairy because the milk 

price paid by the cheese operation is assumed to be higher than that paid by the milk 

manufacturer for non-organic milk.   

The price paid by the dairy manufacturer closely reflects the national milk price 

and is not determined by the farmer.  By producing cheese, the farmer adds value to the 

milk produced and can essentially reflect this in the “transfer” price between the dairy 

and the cheese operation. This price can be higher or lower depending on what 

enterprise (dairy or cheese operation) the farmer chooses to have a higher cash flow.7  

The transfer price paid to the dairy by the cheese operation is assumed, in this case, to 

                                                      
7 Basically, this means that the transfer price could reflect the national milk price paid by 
the milk manufacturer in which case the dairy will seem less profitable and the cheese 
operation more profitable.  Or, a higher transfer price representing the value of milk in 
the cheese operation could be charged which would result in a more profitable dairy 
operation and less profitable cheese operation. 
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be US $25 per hundred weight instead of the price paid by other dairy manufacturers, 

US $17 per hundred weight.  This is a price ($25/cwt.) that is higher than what would be 

paid by dairy manufacturers, but is still realistic in that it represents the potential of 

adding value to a commodity such as milk in the creation of a value-added product 

(cheese).  This price is also justified due to the potential of selling the milk to dairy 

manufacturers as certified organic if the farmer is willing to comply with the standards 

for organic milk.  The price of organic milk ranges from US $30 – 40 per hundred weight 

in the US (Natzke 2015).  For this study it is assumed that the milk is not certified 

organic.  

Cheese production provides the farmer with diversification.  It allows the farmer 

to adjust the transfer price in whichever direction to reflect the relative value of the milk 

in either milk production or cheese production based on the manager’s (farmer’s) own 

determination.  If the farmer desires to direct more money towards the dairy, then a 

higher transfer price can be charged to the dairy to make it more financially sustainable.  

By selling a higher percentage of milk to the cheese operation, the dairy will be more 

profitable.  It may be prudent to increase the capacity of the cheese plant to be able to 

process 100 percent of the milk produced by the dairy.   

The total number of calves born equals 90 percent of the number of cows in the 

herd.  The cull rate for cows is estimated to be 30 percent of the herd.  To account for 

transfer costs and pricing in the integrated operation, it is assumed that the dairy 

includes a charge for the anaerobic digester system to do the custom manure 
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management.  Bedding is also “purchased”8 from the anaerobic digester enterprise.  The 

bedding is purchased at a higher price than the price suggested by the literature review, 

US $8 per cubic yard of fiber from the anaerobic digester system (Hoard’s Dairyman 

2011) or US $36 per head (Bishop and Shumway 2009).  The higher transfer cost per 

cubic yard of bedding is a cost per cubic yard that is similar to that which was being paid 

by the dairy before receiving digested fiber for bedding.  The initial estimated cost of 

bedding is US $14,490 and the estimated cost of digested fiber for bedding is US 

$14,250.  The digester enterprise includes the costs of cleaning and installing the 

bedding.  The dairy also “purchases” a percentage of the power, heat or biomethane 

from the digester enterprise if it is not sold back to the grid.  The percentage of energy 

“purchased” by the dairy is the amount of energy not used by the artisan cheese plant.  

The remainder of the prices and quantities for the dairy enterprise budget were 

prepared and provided by the University of Idaho. 

 

 

                                                      
8 This means a transfer price/cost is used to connect the two enterprises (dairy and 
digester) in the integrated operation.  Although actual cash does not change hands 
when the dairy purchases services (manure management) and goods (bedding and 
power) from the digester enterprise, a reasonable charge or transfer price/cost must be 
included to reflect the opportunity costs of the digester operation and its value in terms 
of the services and goods it transfers to the other parts of the integrated operation.  The 
terms “bought” or “purchased” simply reflect that a transfer between segments of the 
integrated operation takes place and a transfer price/cost is included in the enterprise 
budgets for this transfer to account for the opportunity costs of the goods and/or 
services being transferred among the different enterprises. 
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Artisan Cheese Model 

Producing artisan cheese adds value to the milk bought from the dairy and helps 

the farmer improve profitability.  The artisan cheese plant or operation used here 

represents a larger production size, in terms of volume, than what was included in the 

literature review.  However, the production size selected reflects operations that might 

be associated with dairy farms that are being affected by urban encroachment in Utah.  

The issue of urban encroachment on farming operations can be prevalent with family 

dairy farms that have been owned for generations in the same location. Neighborhoods 

have been built around them as land is sold and developed.  Our sample dairy farm that 

was used to help estimate prices and quantities for the dairy model is an example of a 

dairy affected by urban encroachment.  Our sample dairy farm is also used to help make 

generalized assumptions for the artisan cheese model.  Other sources of information are 

also used to estimate appropriate prices and quantities for capital investment, revenue 

and operating expenses.  It is assumed that the artisan cheese project will be financed 

over a 10-year period. 

Fixed Assets Required for Artisan Cheese Explained 

Costs for the cheese plant (Table 5) are based on the assumption that there has 

been a complete startup investment that will depreciate over a 10-year period.  The 

equipment needed for the cheese plant has the capacity to produce 104,926 pounds of 

cheese per year and is assumed to have been purchased as new.  The land required for 

the cheese operation is one acre and is purchased from the dairy to reflect a separation 
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between the cash-flow for the dairy and the cash-flow for the artisan cheese 

production.  Purchasing the land also reflects the opportunity cost incurred by the dairy 

by not having one less acre from which to produce.   

The cost of the cheese facilities per square foot is assumed to be similar to that 

of the smaller artisan cheese plant that was discussed in the literature review.  The 

processing and retail facilities for the cheese operation are estimated to cost US $150 

per square foot.  The total cost of the aging facility is US $26.81 per square foot plus US 

$24,074 (Bouma, Durham and Meunier-Goddik 2014).  The square footage for the 

cheese plant is estimated to be 4,063 square feet for the processing facility and 7,376 

square feet for the aging facility (Bouma 2012).  The retail facility is assumed to be the 

same size as the processing facility.  The square footage needed is calculated to be 

equivalent to the square footage per pound of cheese produced by smaller artisan 

cheese plants and then scaled to meet square footage needed for 104,926 pounds of 

cheese per year.  The cost of equipment for both raw milk production and cheese 

production are estimates provided by equipment distributors.   The equipment and 

buildings for the cheese operation are depreciated over 10 years using straight line 

depreciation with a terminal (salvage) value of 10% of the initial investment. 
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Table 5.  Artisan Cheese Cost of Investment (US dollars) 
     Weight Each Unit  Total Number of Units   Price or Cost/Unit   Total Value  

INITIAL INVESTMENT           

Cheese Equipment           

  Pasteurizer 1                       1  $46,500.00  $46,500.00  

  COP 1                       1  $15,000.00  $15,500.00  

  Recorder & Thermostat 1                       1  $3,500.00  $3,500.00  

  Air Space Heater 1                       1  $1,200.00  $1,200.00  

  Leak Detect Valve 1                       1  $1,300.00  $1,300.00  

  Cheese Vat 5000lb 1                       1  $42,420.00  $42,420.00  

  Cheese Vat 2000lb 1                       1  $25,140.00  $25,140.00  

  Drain Table 1                       1  $1,500.00  $1,500.00  

  Curd Distributor 1                       1  $1,150.00  $1,150.00  

  Turning Trays 1                       1  $125.00  $125.00  

  Tipping Station 1                       1  $2,005.00  $2,005.00  

  Cheese Bag Trolley 1                       1  $2,225.00  $2,225.00  

  Curd Rake 1                       1  $270.00  $270.00  

  Tower Cheese Strainer 1                       1  $525.00  $525.00  

  Curd Knife 1                       1  $995.00  $995.00  

  Cheddar Mold 1                       1  $215.00  $215.00  

  Cheese Press 1                       1  $16,900.00  $16,900.00  

  Curd Mill 1                       1  $16,900.00  $16,900.00  

Raw Milk Equipment           

  Centrifugal Pump 1 1.5 HP                     1  $2,205.00  $2,205.00  

  Filler Feed Pump Control 1                       1  $2,285.00  $2,285.00  

  Filler/Capper 1 5 Bottles/Min                     1  $7,900.00  $7,900.00  

  Change Sizes 1 .5 gal., qt., pt.                     3  $450.00  $1,350.00  

  Bulk Tank 1 100-300 gal.                     1  $4,950.00  $4,950.00  

  In Table 1                       1  $750.00  $750.00  

  Off Table 1                       1  $450.00  $450.00  

Building           

  Land 1 acre                     1  $20,000.00  $20,000.00  

  Processing 1 square ft.               4,063  $150.00  $609,450.00  

  Retail Facility 1 square ft.               4,063  $150.00  $609,450.00  

  Aging Facility 1 square ft.               7,376  $26.81  $221,824.56  

    Total Initial Investment         $1,658,984.56  

        Cost per Head     $7,899.93 

Source: Bouma, Durham and Meunier-Goddik (2014); Anco (2015); and Dairy Heritage (2015). 
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Labor Requirements for the Artisan Cheese Plant 

It is assumed that the owner-labor provided by each partner does not exceed 41 

hours per week, and that the two owners allocate their time equally between the dairy 

and the cheese production facilities (Table 6).  One partner spends 40 hours at the dairy 

and the other spends 40 hours at the artisan cheese plant.  The remaining half of an 

hour of labor for each partner is spent with the anaerobic digester system.  The 

cheesemaker is paid an annual salary of US $45,000 (Bouma et al. 2014).  Hired labor is 

paid US $12.  Two hired laborers works 30 hours per week each at the cheese plant and 

the worker.  This wage ($12 per hour) is the same hourly wage paid to the dairy 

workers.  There are 15 part-time workers in the cheese operation (retail store, farmers 

markets, and packaging operation) that are paid minimum wage US $7.25 and will each 

work 20 hours per week. 
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Table 6.  Artisan Cheese Enterprise Budget (US dollars) 
    Weight 

Each 
Unit  Total Number of 

Units  
 Price or 

Cost/Unit  
 Total Value  

    

Gross Receipts           

  Raw Milk 5.7194 cwt                 180  $70.00  $72,064.69  

  Cheese           

      Direct Market 50% lbs           104,926  $13.00  $682,020.20  

      Wholesale 30% lbs           104,926  $7.80  $245,527.27  

      Distributor 20% lbs           104,926  $3.90  $81,842.42  

  Other Retail Net Sales 1 $                     1  $5,000.00  $5,000.00  

  Agrotourism 40 People                   52  $5.00  $10,400.00  

   Total Receipts         $1,096,854.59  

              

Operating Costs           

  Cheese Maker  Salary                     1  $45,000.00  $45,000.00  

  Owner Labor  Hours              2,080  $25.00  $52,000.00  

  Hired Labor  Hours              3,120  $12.00  $37,440.00  

  Hired Labor  Hours            15,600  $7.25  $113,100.00  

  Packaging 1 lbs           104,926  $0.50  $52,463.09  

  Water Service 1 hcf             10,493  $5.25  $55,086.25  

  Custom Whey Management 1 $                     1  $4,000.00  $4,000.00  

  Sanitation 1 $                     1  $15.47  $15.47  

  Electricity 1 $           104,926  $0.39  $40,921.21  

  Propane 1 $           104,926  $0.14  $14,840.38  

  Marketing 0.03 $         1,096,855    $32,905.64  

  Farmers' Market Fees   $                   52  $60.00  $3,120.00  

  Distribution 44.444 gal                   12  $2.70  $1,440.00  

  Maintenance 0.01 $           104,926    $1,049.26  

  Cheese Ingredients vats/yr    units/vat  $/unit   

      Cultures 52 lbs             20,000  $0.008  $8,465.12  

      Milk 57.19 cwt                 180  $25.00  $257,373.88  

      Rennet 52 lbs             20,000  $0.006  $6,046.51  

      Salt 52 lbs             20,000  $0.006  $6,046.51  

  Insurance 1 $                     1  $3,605.70  $3,605.70  

  Property Tax (1%)                   0.010  $1,460,724.56  $14,607.25  

  Depreciation (10 Years @ 10% Salvage of 
Initial Cost) 

        $149,308.61  

   Total Operating Costs         $898,834.88  

        Net Income         $198,019.70  

        Net Income per Head     $942.95 

Source: Bouma (2012); Curren (2013); Bouma, Durham and Meunier-Goddik (2014); and Kohler and Kohler (2015). 
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Other Operating Costs and Receipts for the Artisan Cheese Explained 

It is assumed that all of the raw milk and cheese produced by the integrated 

farm is sold, and the number of agrotourists per week is consistent throughout the year.  

Raw milk sales constituted 10% of the milk that was transferred to the artisan cheese 

operation.  The remainder of the milk produced by the dairy is converted to cheese.  

The prices for the cheese sold at the retail store varies, but an average is calculated for 

aged cheese and cheese curd and this is the price used to calculate returns and cash 

flows in the analysis for the cheese production activity. 

There are three different channels through which the cheese is marketed 1) 

Direct Market, 2) Wholesale and 3) Distributor.  It is assumed that all of the cheese will 

be sold each year and that 50 percent will be sold through direct marketing, 30 percent 

will be sold through wholesale and 20 percent will be sold through distributor marketing 

channels.  Direct marketing channels include the cheese sold through the on-farm retail 

store, the farmer’s market and the internet.  Wholesale channels make high-volume 

purchases.  Packaging costs for high volume purchases are assumed to be the same as 

the other marketing channels.  Distributor marketing channels distribute the cheese to 

other off-farm retail stores.  The cost for packaging cheese is also lumped together for 

aged cheese and cheese curd (Bouma, Durham and Meunier-Goddik 2014).   

It is estimated that 40 people per week visit the farm as agrotourists.  

Agrotourists receive a tour of the cheese plant, dairy farm and anaerobic digester 

system.  The on-farm retail store provides a source of direct marketing for the cheese, 
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but seeks to attract consumers and supplement receipts through agrotourism and the 

sale of other off-farm products (e.g., gift baskets and ice cream).  The net retail sales 

from off-farm products is estimated to be US $5,000. 

Custom whey management is done through the anaerobic digester system.  

There was no previous studies in the literature about artisan cheese production that 

reflect a cheese plant that produces 104,926 pounds of cheese per year.  The largest 

artisan cheese budget found reflects a production size of 60,000 pounds of cheese per 

year.  The cost of custom whey management is a fixed value estimated for the 60,000 

pounds of cheese per year.  The same cost of custom whey management used to 

estimate the cost to produce 60,000 pounds of cheese per year will be used to estimate 

the cost of custom whey management used to estimate the cost to produce 104,926 

pounds of cheese per year (Bouma, Durham and Meunier-Goddik 2014). 

The budget used to estimate the costs to produce 60,000 pounds of cheese per 

year is used whenever possible to estimate the cost of producing 104,926 pounds of 

cheese.  However, an enterprise budget estimating the cost of production for a smaller 

operation is used to estimate the cost of water services.  This is due to a lack of detail in 

information regarding this cost in the budget that estimates the cost to produce 60,000 

pounds of cheese per year (Bouma, Durham and Meunier-Goddik 2014).  The cost of 

water services is based off of an estimate for a budget reflecting 2,400 pounds of cheese 

produced per year.  The budget for 2,400 pounds of cheese produced per year estimates 

the price per one hundred cubic feet (hcf) water to be US $5.25.  To produce 2,400 
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pounds of cheese per year it is estimated that 240 hcf per year will be required, or 10 

hcf per pound of cheese per year (Curren 2013).  Therefore, it is assumed that 10,493 

hcf will be required to produce 104,926 pounds of cheese per year.  This potentially 

removes benefits from economies of scale and may over or underestimate costs.   

The distribution distance is estimated to be 800 miles round trip.  This distance is 

chosen because 400 miles is the maximum distance for food to be considered locally 

produced (USDA ERS 2010).  The final assumption made for the artisan cheese 

production is that the same amount of insurance paid annually for the dairy will be paid 

for the cheese production. 

Anaerobic Digester Model 

For purposes of calculating its costs and returns, the anaerobic digester system is 

assumed to be a separate enterprise from the artisan cheese production and the dairy 

production (Table 7).  The anaerobic digester is a waste management enterprise that 

provides a waste management service to the dairy and the artisan cheese plant.  Along 

with the service provided, the anaerobic digester provides products that will be sold to 

the artisan cheese plant and the dairy.  There is little current literature covering an 

anaerobic digester model as small as the one considered here.  The literature that is 

available for similarly-sized anaerobic digesters indicates that, under typical 

circumstances, an anaerobic digester the size of the one considered in this study is not 

profitable.  However, a new and less expensive digester model as designed by Dr. Conly 

Hansen at Utah State University is used to represent this enterprise in this study and 
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may yield alternative results to studies of larger digesters that were done in the past.  It 

is assumed that the anaerobic digester system project will be financed over a 20 year 

period.   

Anaerobic Digester SWOT Analysis Explained 

A SWOT analysis provides an organized and intuitive view of the internal and 

external variables that affect the potential success of adopting anaerobic digestion.  It 

helps the farmer analyze the social, environmental and economic consequences of 

adopting anaerobic digestion before estimating the financial feasibility. The SWOT 

analysis provides no financial measures.  The SWOT analysis organizes the information 

obtained from the literature review in a table under four categories (i.e., strengths, 

weaknesses, opportunities and threats) to help the farmer develop a cursory 

assessment of investing in an anaerobic digester system.  This is the first tool used, but it 

does not determine the feasibility of the project.   

Fixed Assets Required for the Anaerobic Digester Explained 

The anaerobic digester system considered in this study is a codigestion model 

that requires enough storage capacity to meet the waste management needs of both 

whey and manure produced by the cheese operation and dairy, respectively.  The IBR 

model provides tanks that are less expensive than other tanks used by other digester 

systems.  This reduction in the cost for tanks is the primary financial benefit of the IBR 

digester system when compared to other systems.  Five tanks are required if tipping 
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fees are included as a revenue source.  If tipping fees are not included, then four tanks 

are sufficient for an operation of the size considered in this study. 

The generators associated with the anaerobic digester need engine 

replacements every four years, but all of the engines are not replaced simultaneously.  

Therefore generators work continuously.  It is assumed that whey from the cheese plant 

is always a component of the feedstock fed to the microorganisms of the anaerobic 

digester.  Land is purchased from the dairy because the anaerobic digester system is 

first analyzed as a separate enterprise from the dairy (Table 7).  This cost for the land 

included in the anaerobic digester’s enterprise budget represents the opportunity cost 

of the dairy forgoing the use of that land for furthering the dairy operations.   

It is assumed that the dairy provides any hauling equipment needed for the 

anaerobic digester enterprise to perform custom manure management and to clean and 

to install bedding.  If biomethane is produced, additional equipment and labor will be 

required.  The equipment cost for a small dairy biogas upgrading plant is estimated to 

be US $500,000 plus the cost of the storage tanks (Krich et al. 2005).  Basic anaerobic 

digestion equipment costs reflect the estimates of suppliers or were taken from the 

Minnesota Project.  The Minnesota Project was an anaerobic digester economic analysis 

done for a farm similar in size and equipment to the one considered in this study.  The 

reason the Minnesota Project estimates are not used in their entirety to build the 

enterprise budget for this study is due to their lack of transparency and detail in the 

costs reported for the Minnesota Project.  All applicable information from the 
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Minnesota Project that could be used from this study were used to estimate costs.  This 

includes costs for buildings, utility hook up, flare and boiler, tank insulation, 

construction and plumbing and electrical (Lazarus 2009).   

The manure storage pit is an earthen pit.  A concrete pit is expensive, but under 

certain situations concrete pits may be chosen instead of an earthen storage pit.  For 

example, if regulations are implemented to require a concrete pit, or if financial help is 

provided from sources such as the National Resource Conservation Service (NRCS), or if 

the owner simply wishes to build a concrete pit, then the added costs for concrete, 

rebar and additional labor would need to be added to the costs for the manure pit to 

reflect a concrete pit rather than an earthen pit.  The earthen pit is used for this analysis 

in order to reduce capital costs.  Measuring the capital cost per cow and keeping the 

capital cost per cow near US $1,500 helps to determine the feasibility of adopting 

anaerobic digestion.  By keeping the capital cost per cow near US $1,500 the breakeven 

potential is improved (Shelford 2012). 

The anaerobic digester is depreciated over 20 years using straight-line 

depreciation.  Twenty years is the lifetime of the digester and, according to literature 

reviewed, this is an acceptable estimate of the time for the digester’s useful life.  The 

terminal or salvage value is the price of the land because there will be little or no value 

left in the equipment, and any value that is left will be difficult to recover through the 

sale of the equipment for scrap metal.   
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Table 7.  Anaerobic Digester System Cost of Investment (US dollars) 
      Weight 

Each 
Unit Total Number of 

Units 
Price or 

Cost/Unit 
Total Value 

Investment Costs           

  Digester Tank 1 Tank  5  $12,000.00  $60,000.00  

  Generator (6kW Inverter) 1 EcoGen Generac                            4  $3,799.00  $15,196.00  

  FAN Separator (32-34% DM) 1 S855HD                            1  $44,240.00  $44,240.00  

  Building Costs 1 Equip. Shelter                            1  $36,527.26  $36,527.26  

  Concrete Pads  1 Cubic Yards                          45  $100.00  $4,500.00  

  Utility Hook Up 1 $                            1  $13,282.64  $13,282.64  

  Flare and Boiler 1 $                            1  $14,389.53  $14,389.53  

  Tank Insulation 1 $                            1  $35,420.37  $35,420.37  

  Construction Labor 1 $                            1  $16,603.00  $16,603.00  

  Plumbing & Electrical Work 1 $                            1  $22,137.73  $22,137.73  

  Agitator 1 $                            1  $18,231.40  $18,231.40  

  Pump 1 DODA AFI 35                            1  $7,643.00  $7,643.00  

  Biomethane Upgrade 0 $                            1  $500,000.00  $0.00  

  Legal Fees   $   $9,645.00  $9,645.00  

  Miscellaneous 767.00 kWh                        365  $0.01  $1,679.73  

  Land 0.67 Acre                            1  $20,000.00  $13,400.00  

  Pit Excavation & Dirt Work 250 6ft x 100ft x 250ft                            1  $95.00  $23,750.00  

  Manure Storage Pit 0 Cubic Yards                        710  $100.00  $0.00  

  Rebar 0 #5 Rebar                            1  $37,800.00  $0.00  

  Vertical Plastic Whey 
Storage 

1 20,000 gal                            1  $19,599.99  $19,599.99  

    Total Initial Investment       $356,245.65  

        Investment Tax Credit (10%)     $35,624.57  

            Total Cost       $320,621.09  

            Cost per Head    $1,526.77 

Source: Krich et al. (2005); Bishop and Shumway (2009); Lazarus (2009); FAN (2015); Western States Rebar Fabrication (2015); 
Generac (2015); Governor’s Office of Energy Development (2015); High Tech Manure Handling Equipment (2015); USDA NRCS 
(2015); Jensen Excavating (2015); Spanjer (2015). 

 

Labor Required for the Anaerobic Digester Explained 

It is assumed the custom manure and whey management service provided by the 

anaerobic digester mitigates all risks associated with on-farm organic wastes.  These 
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services are paid for by the dairy and cheese plant enterprises using a transfer price.  

Any labor needed regarding manure or whey processing is performed by the anaerobic 

digester enterprise.  Any labor needed regarding bedding is also performed by the 

anaerobic digester enterprise.  Labor costs per week are equal to those for the dairy and 

cheese plant ($12 per hour).   

Labor required for the digester system is 20 hours per week if no off-farm9 

organic waste is being received.  If off-farm organic waste is accepted an additional 5 

hours is needed to accept off-farm organic waste and collect tipping fees.  In order to 

account for the time to monitor and maintain the digester system and manage the 

revenue stream of coproducts and services (e.g. tipping fees) 25 hours per week are 

estimated for labor for the digester.  Because tipping fees reduce the effects of 

seasonality and also reduce the potential of failing, 25 hours per week is the time used 

to estimate hired labor costs.  An additional hour is estimated for owner labor costs 

(Table 8). 

Low tipping fees can effect decreased feasibility when additional labor is 

required for accepting off-farm organic waste.  However, accepting off-farm organic 

waste improves the dependability of feedstock supply and decreases the effects of 

seasonality.  It is assumed that five additional hours are sufficient to meet the demand 

for organic waste disposal services within the community and part of the supply needs 

                                                      

9 The farmer may choose to take waste from other farmers or waste producers and 
charge them for processing it through the digester. 
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of the digester system for additional off-farm feedstock.  Obtaining off-farm organic 

waste from restaurants, bakeries and other food producers is also crucial to improve the 

dependability of the feedstock supply and reducing the effects of seasonality when cows 

are feeding in the pasture or if cheese production is reduced.  Labor time dedicated to 

collecting tipping fees decreases the feasibility of the digester system because of the 

low organic waste price in Utah. 

It is estimated that the amount of labor required for a digester system for 210 

cows is not as much as the amount required for larger dairies used to estimate labor in 

the literature review.  It is assumed that 30 minutes per day is an inadequate amount of 

labor time to monitor and maintain the digester system, provide the waste 

management services to the dairy and cheese plant, manage and keep up to date on 

incentive programs, ensure the amount of carbon that is offset by the digester system is 

equal to the amount of CO2e sold and acquire a sufficient amount of feedstock (i.e. off-

farm sources) to prevent the failure of the digester system.  Allotting 25 hours of labor 

per week to the digester system will provide sufficient labor time in case of emergencies 

relating to the digester system.  Allotting 25 hours of labor per week to the digester 

system will also prevent neglect and give proper priority to the welfare of the digester if 

the dairy and/or cheese plant have simultaneous emergencies or production issues. 
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Table 8.  Anaerobic Digester System Enterprise Budget (US dollars) 
      Weight 

Each 
Unit Total Number of 

Units 
Price or 

Cost/Unit 
Total Value 

Gross Receipts            

  Net Metering 767 kWh                        365  $0.11  $29,955.19  

  Heat 0 therm                        365  $0.95  $0.00  

  Biomethane (Residential) 0 therm                        365  $1.00  $0.00  

  Bedding (Fiber) 75% Cubic Yard                     1,248  $15.00  $14,040.00  

  Fertilizer (Fiber) 25% Cubic Yard                     1,248  $15.00  $4,680.00  

  Custom Manure Mgmt. 1 Head                        210  $20.00  $4,200.00  

  Custom Whey Mgmt. 1 $                            1  $4,000.00  $4,000.00  

  Carbon Offsets 1.44 Tonne CO2e                        210  $12.50  $3,772.13  

  Tipping Fees (up to 130% 
Capacity) 

1 Cubic Yard                     2,500  $3.00  $7,500.00  

  Prod. Tax Credit (Utah) 767 kWh                        365  $0.00  $195.97  

    Total Receipts         $68,343.28  

                

Operating Costs           

  Hired Labor  25 Hours                          52  $12.00  $15,600.00  

  Owner Labor  Hours                          52  $25.00  $1,300.00  

  Biomethane Prod. 0 therm                        365  $0.50  $0.00  

  Legal Fees   $   $750.00  $750.00  

  Other Professional Services   $   $8,011.00  $8,011.00  

  Miscellaneous 767 kWh                        365  $0.00  $559.91  

  Maintenance (5% of 
Investment) 

  $     $17,812.28  

  Engine Overhaul (Every 4 Years)   Engine                            1  $1,500.00  $1,500.00  

  Property Tax (1%)   $                     0.010  $356,246  $3,562.46  

  Depreciation (20 Years)   $                          20    $17,142.28  

   Total Operating Costs         $66,237.93  

        Net Income         $2,105.35  

        Net Income per head     $10.03 

Source: Krich et al. (2005); Bishop and Shumway (2009); Lazarus (2009); Gloy (2011); California Environmental Protection Agency 
(2015); Governor’s Office of Energy Development (2015); Rocky Mountain Power (2015); Timpanogas Special Service District (2015); 
US Energy Information Administration (2015). 
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Other Operating Costs and Receipts for the Anaerobic Digester Explained 

The largest source of revenue for the digester system is the electricity generated 

through using biogas to fuel generators.  It is estimated that 767 kWh per day could be 

produced by a digester the size of the one considered in this study.  If whey is not used 

as a companion feedstock to manure, then only 697 kWh per day are produced.  This 

would result in an estimated loss in revenues of US $2,700 per year in net metering 

alone if only manure and not whey is processed by the digester.  Not processing whey 

will also result in a loss of fiber as fertilizer receipts and whey management receipts 

because less feedstock will be introduced to the digester system.  If whey is not used as 

a companion feedstock to manure, then 182 gallons of additional fresh water per day 

will also be required for the digester system to function correctly.  If whey is not used as 

a companion feedstock to manure, then an additional US $100 per year will be required 

for the cost of water.  Consequently, for this study it is assumed that whey will always 

be a companion feedstock to manure in this model. 

It is assumed that the anaerobic digester system will collect all the whey and 

manure from both of the other enterprises (cheese and dairy operations).  Both of these 

organic waste materials (manure and whey) will be used simultaneously as feedstock.  It 

is assumed that the system will run continuously and produce constant amounts of 

energy (no seasonality) throughout the year.   

Bedding produced from digester fiber is sold to the dairy at a higher price as was 

explained before.  To help determine the price the digester enterprise should charge the 
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dairy for bedding, the price of fertilizer was reviewed.  The price of fertilizer represents 

the price that the fiber could be sold for if it was not sold as bedding (opportunity cost).  

Bishop and Shumway (2009) estimate the value of the fiber at US $13.50 per cubic yard.  

The price of compost at landfills in Utah is circa US $15 per cubic yard.  This is the price 

used to estimate the value of the fiber for both bedding and fertilizer, and this price is 

similar to the cost of bedding that was originally estimated by the dairy enterprise 

budget before digester fiber was considered for bedding.   

The original price of bedding in the dairy enterprise budget was nearly US $15.50 

per cubic yard.  If the digester enterprise sells bedding to the dairy at US $15.  The dairy 

incurs a lower cost of bedding by using fiber from the digester system.  The digester 

enterprise benefits from selling bedding at a price lower than what it could be sold for 

as fertilizer.  By selling fiber as bedding for 90 percent more than what the literature 

suggests, the digester enterprise is also able to cover the cost of providing the bedding 

service. 

According to the literature review, receiving tipping fees is one of the sources of 

income that significantly improves the NPV and IRR for an anaerobic digester enterprise.  

Providing a place for the community to dispose of organic waste has significant potential 

to generate additional revenue streams and to contribute to the consistency of biogas 

production.  If manure feedstock is reduced seasonally due to cows being on pasture 

and leaving the manure in the field, then having an off-farm source of feedstock is 

beneficial to maintain steady biogas production.   



87 

This study assumes a steady supply of manure is available.  Accepting organic 

waste disposal increases the amount of green energy produced.  One more tank is 

required for feedstock storage if tipping fees are included in the revenue stream.  It is 

assumed that off-farm organic waste makes up only 30 percent of the feedstock when 

tipping fees are included.  The charge for organic waste is estimated to be US $5.50 per 

cubic yard (Bishop and Shumway 2009).  This price is slightly higher than what is charged 

for organic waste to be disposed of in Utah.  

Tipping fees for organic waste range from US $2 per cubic yards and US $5 per 

cubic yards for waste smaller than two feet in diameter and greater than two feet in 

diameter respectively.  US $3 per cubic yard is the price used for tipping fees in this 

model to represent the fees charged in Utah.   

Tax credits from government programs and incentives are assumed to be 

constant over time.  There are also two tax credits received from the Utah Governor’s 

Office of Energy Development.  The production tax credit pays US $.0035 per kWh per 

year.  This tax credit is available for the first four years of production.  To show the 

effect of the tax credit for the lifetime of the investment, it is spread evenly for 20 years.   

The second tax credit is the Investment Tax Credit.  It is worth 10 percent of the 

investment or US $50,000, whichever is less.  This tax credit is for commercial 

installations (Governor’s Office of Energy Development n.d.).  The termination of net 

metering, tax credits, renewable energy credits and carbon offsets provided by 

government programs and incentives would cause the revenue for the waste 



88 

management enterprise to decrease dramatically.  If biomethane is produced by the 

anaerobic digester on the farm then the cost of operation and maintenance for 

biomethane is estimated to be US $5.02 per MCF (Krich et al. 2005).  This is equal to US 

$0.11 per therm per day. 

NPV, IRR and Sensitivity Analyses Explained 

The dairy, artisan cheese and anaerobic digester enterprise budgets (Tables 5, 6 

and 8) provide hypothetical annual models of annual costs and returns that can be 

viewed as a tool to help farmers make decisions about investments.  The receipts and 

expenditures in the enterprise budgets are based on a large number of assumptions but 

provide data needed for a capital budget.  The capital budget is used to determine the 

NPV, IRR and payback period.  It also provides an estimated cash flow (positive or 

negative) from which the NPV and IRR are calculated for the lifetime of the investment.  

The sensitivity analysis for the anaerobic digester enterprise provides a chart with a 

range of NPVs that are based on different discount rates and percentages of the 

investment that is subsidized. 

The NPV is the primary metric used to determine whether an investment should 

be accepted or rejected.  It takes into account the time value of money by analyzing 

estimated future cash flows and discounting them to the present time.  A NPV greater 

than zero is an acceptable investment but is based on whatever discount rate is used in 

its calculation.  −𝐶0 is the initial investment and 𝐶𝑇 is the net cash flow for each year of 
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the lifetime of the investment.  𝑉𝑇 is equal to the salvage value of the investment, and r 

is equal to the discount rate.  T is equal to the planning horizon. 

(1) 𝑁𝑃𝑉 =  −𝐶0 +  
𝐶1

1 + 𝑟
+  

𝐶2

(1+𝑟)2
+ ⋯ +  

𝐶𝑇

(1+𝑟)𝑇
+  

𝑉𝑇

(1+𝑟)𝑇
 

The IRR is a metric similar to the NPV that is used to determine the feasibility of 

investments by analyzing its predicted net cash flows.  An acceptable IRR is one higher 

than the discount rate.  It must be a rate higher than the discount rate or the NPV of 

future cash flows will be less than zero.  The NPV is the primary metric used to 

determine the feasibility of the investment because of possible issues that arise with the 

IRR due to variable discount rates over long-term investments.  It is used as a 

companion metric to the NPV to help measure the feasibility of the investment because 

it is simple and easy to see the feasibility if the rate is greater than the discount rate.  

The variables for the IRR equation are the same as those for the NPV equation. 

(2) 0 =  −𝐶0 + 
𝐶1

1 + 𝑟
+  

𝐶2

(1+𝑟)2 + ⋯ +  
𝐶𝑇

(1+𝑟)𝑇 +  
𝑉𝑇

(1+𝑟)𝑇 

The payback period is reached when an investment has had enough positive net 

cash flow to breakeven on the investment.  An acceptable payback period for this 

investment (the integrated farming operation considered in this study) would likely 

range from one to 15 years.  The more quickly the payback period is reached, the better 

the investment.   

The percentage of the investment that is subsidized is the measure used in this 

model to illustrate the effects of social and environmental risk.  The subsidy is used to 

help the farmer finance the initial investment of the project.  However, the money used 
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to subsidize the project, whether it is from government entities or non-government 

entities, has to come from somewhere.  It represents money provided by the 

community through taxes or donations to non-government entities that is used to help 

struggling or immature enterprises that often provide a social or environmental benefit.  

Adopting anaerobic digestion is investing in a struggling or immature enterprise in the 

US that provides social and environmental benefits.   

The sensitivity analysis for the discount rate and the subsidy rate provides results 

for the NPV that vary depending on the discount rate used and the subsidy rate used.  It 

provides flexible results that can be used to help analyze the feasibility of the 

investment.  The sensitivity analysis for the labor and whey management provides net 

income results for the digester system that vary depending on the labor and whey 

management.  This sensitivity analysis provides flexible results that can be used to help 

analyze the effects of increased or decreased labor time.  It also provides information 

regarding the potential cost reduction of whey disposal achieved by adopting anaerobic 

digestion if off-farm disposal methods become more expensive. 

For this model it is assumed that there is no value in the option of delaying 

investment.  The farmer is therefore not indifferent to investing or waiting to adopt 

anaerobic digestion.  This assumption is made by assuming that due to regulation or 

urban encroachment, the farmer is obligated to either adopt anaerobic digestion or 

cease production.  Value in the option of delaying investment increases the amount of 

subsidy needed to make the adoption of anaerobic digestion feasible.   
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The value in the option to delay investment in anaerobic digestion arises 

primarily because of the uncertainty of revenue streams such as the price of electricity, 

the carbon offset longevity and the availability of feedstock.  The uncertainty of revenue 

streams increases the uncertainty of the value of the investment (Stokes, Rajagopalan 

and Stefanou 2008).   

To account for the uncertainty of the value of the investment in the model uses a 

range of discount rates to reflect the financial risk farmer undertakes instead of a value 

for the option to delay investment.  This is done to simplify and separate the different 

components of sustainability (i.e., social, environmental and financial).  Social and 

environmental risks are represented by the subsidy, and the financial risk is represented 

in the discount rate. 

The higher the percentage of initial investment covered by the subsidy is a signal 

that the social and environmental benefit provided by the enterprise is a high priority 

for the community.  In the sensitivity analysis, a higher financial risk, or discount rate, 

requires a higher subsidized percentage of investment, social and environmental value 

for the farmer to be willing to invest in an anaerobic digester system.  The 

recommended subsidy percentage for this model is the lowest percentage that provides 

a positive NPV for an estimated discount rate. 

The discount rate represents the financial risk of an investment.  It takes into 

account the time value of money.  It is the rate used to determine the NPV of future 
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cash flows.  The higher the discount rate the riskier the investment.  The higher the 

discount rate the higher the IRR must be for the project to be considered feasible.   

For this analysis, an acceptable discount rate was determined by reviewing the 

literature and choosing a discount rate used for similar investments.  The range of 

discount rates used by other larger-sized anaerobic digester systems (systems larger 

than 500-cows and often greater than a 1,000 cows) ranges from three percent to 10 

percent (Lee and Sumner 2014).   

The success rate of anaerobic digester systems has improved over the last few 

decades, but most of that improvement has been realized in large-scale operations.  In a 

study published in 2012 and by Klavon et al., small-scale, under 500 cows, anaerobic 

digesters were analyzed.  It was determined that anaerobic digesters may be cost 

effective but also noted that of the eight digesters examined in the literature review, 

only 50 percent were successful (Klavon et al. 2013).   

The success of the dairy and the cheese plant operations should not be sacrificed 

to make the anaerobic digester enterprise successful.  Money that could be used to 

improve capacity and efficiency for the dairy and cheese enterprises has value.  The 

opportunity cost of forgoing further investment in these other two enterprises needs to 

be taken into account when choosing a discount rate for the digester.  A discount rate of 

four percent is considered low even for a large-scale operation.  A discount rate greater 

than 10 percent is more likely given that there is a high failure rate for anaerobic 

digesters and an even higher failure rate for anaerobic digesters on small-scale 
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operations.  A recommended discount rate range for this analysis is from 10-20 percent 

depending on the risk aversion of the producer.  This is not an unreasonable estimated 

discount rate given the opportunity cost of diverting funds from the other two 

enterprises, the low annual net cash flow, the failure rate and the high initial investment 

cost.  Real estate investors may estimate discount rates from 10-35 percent depending 

on the stability of the asset (Kirsch 2013).   

Whey Disposal and Labor Sensitivity Analysis Explained 

 A sensitivity analysis for whey disposal and hired labor for the anaerobic digester 

is created for two reasons 1) there is a lack of consistency in information regarding the 

required amount of time for managing the digester system enterprise.  The sensitivity 

analysis provides an array of annual net income results for various amounts of labor.  2) 

it provides an array of annual net income results if the price of whey disposal increases.  

If the annual net income of the artisan cheese plant is sufficiently low due to a higher 

cost of off-farm whey disposal, then the cheese plant no longer adds enough value to 

the milk produced by the farmer for the farm to be profitable.  Potential increases in the 

cost of off-farm whey disposal may decrease the profitability of the artisan cheese plant 

unless anaerobic digestion is adopted.  The sensitivity analysis helps show the value in 

adopting anaerobic digestion for on-farm whey disposal. 

The Value of Whey Management 

 The value of on-farm whey management has a variety of benefits for the 

anaerobic digester (e.g., high energy feedstock), but the value it provides via receipts to 
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the anaerobic digester shows the symbiotic relationship between the digester, dairy and 

cheese plant.  The value of whey management to the anaerobic digester is estimated by 

calculating the NPV for an investment in anaerobic digestion without receiving a receipt 

for whey management.  In order to obtain an acceptable NPV (i.e., at least zero) for the 

investment in anaerobic digestion other revenue sources need to increase when there 

are no receipts for whey management.  The receipt for manure management is 

therefore adjusted to determine an acceptable NPV when receipts for whey 

management are not received.  The increase in the cost for manure management 

incurred by the dairy is then compared to the price of milk that the dairy must receive to 

maintain a similar level of annual net income as would be received with a lower cost of 

manure management.  This estimates a price of milk required to compensate for no 

whey management receipt and achieve an acceptable NPV for the anaerobic digester.  

Similarly, the increase in cost for manure management incurred by the dairy is 

compared to the price of cheese that the cheese plant must receive to maintain a 

similar level of annual net income.  The price of cheese is adjusted to compensate for 

the loss of whey management receipts for the anaerobic digester.  
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CHAPTER IV 

RESULTS 
 
 

This chapter reports the projected financial feasibility for the anaerobic digester system 

on a small integrated dairy farm.  The financial feasibility of adopting the digester 

system is reported separately from the dairy operation and the artisan cheese plant.  

The financial effect of adding the anaerobic digester when integrated with the artisan 

cheese plant and small-scale dairy is estimated to determine its overall feasibility.  

Analyzing the strengths and weaknesses of anaerobic digestion with a SWOT analysis 

gives a cursory overview of the potential success of the investment (Table 9). 

 
Table 9. Anaerobic Digester SWOT Analysis 

Strengths Weaknesses 

Waste Management History of High Failure Rate 
Diversified Revenue Stream High Capital Cost 

Reduce Odors Frequent Motor Replacement 
Reduce Pollution Low Annual Net Revenue 

Reduce Impact of GHG Overextension of Resources 
Reduce Threat from Regulation Lack of Expertise 

  Seasonality of Feedstock 

 

Opportunities Threats 

Improved Social Image Microorganism/System Failure 
Improved Environmental Image Termination of Incentive Programs 

Certifications Lack of Off-Farm Organic Waste 
Continue Farm Legacy & Culture   

Environmentally Conscious Consumer   

 

The digester system enterprise budget (Table 8) is one tool used to determine 

the feasibility of adopting an anaerobic digester system by estimating the capital cost 
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per cow on the dairy farm.  The target capital cost per cow is US $1,500 according to the 

Shelford (21012) estimation for target capital cost per cow.  A projected cash-flow 

analysis and capital budget for the digester system is another tool used in conjunction 

with the enterprise budget to determine the feasibility of the digester system by 

estimating the payback period for the digester as well as its NPV and IRR.   

The cash-flow analyses, based on the enterprise budgets, for the small-scale 

dairy and the artisan cheese plant presented in this chapter help analyze the benefits of 

integrating the anaerobic digester system into the farm operation.  Results are based on 

the capital cost per cow for the investment of the anaerobic digester system, the NPV 

and the IRR.  The payback period is also used to analyze if adding the waste 

management system (i.e., anaerobic digestion) and artisan cheese plant to the dairy 

increase overall farm profitability.   

Dairy Enterprise Budget Results 

The net income for the small-scale dairy is US -$77,912.64 per year, or US -

$371.01 per cow per year for a 210 cow dairy under the assumed conditions (Table 4).  

Net income is negative when 61 percent of the milk volume is sold to a dairy 

manufacturer at a price of US $22 per hundred weight and when 39 percent of the milk 

volume is used for artisan cheese production at a price of US $25.  When the price of 

milk sold to a dairy manufacturer is US $17 per hundred weight, the dairy must use 76 

percent of the milk for artisan cheese production before the net income is positive. 
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Artisan Cheese Enterprise Budget Results 

The results reported in the artisan cheese enterprise budget (Table 6) indicate 

that, when considered it is the most profitable of the three enterprises (dairy, cheese, 

and digester) considered in this study (Table 6).  Artisan cheese production provides a 

net income of US $198,019.70 per year, or US $942.95 per cow per year.  The cost to 

adopt this value adding enterprise (cheese plant) is US $1,658,984.56, or US $7,899.93 

per cow.  This may be one reason farmers are deterred from investing in artisan cheese 

production.   

Artisan cheese production provides increased receipts to the dairy enterprise 

and reduces the effects of low milk prices paid by dairy manufacturers.  The whey 

produced by the artisan cheese plant provides additional feedstock for the anaerobic 

digester system and increases the receipts reported for the anaerobic digester 

enterprise budget (Table 8).  The additional feedstock improves the amount of biogas 

produced and reduces the effect of seasonality on biogas production.  This is because 

manure quantities going through the digester are low when the cows are on pasture 

(i.e., during summer months).  Having whey available for the digester during the months 

the cows are on pasture helps to maintain production for the digester during those 

months.  The artisan cheese enterprise provides the highest source of net income per 

year to the farmer of the three enterprises considered and improves the net income per 

year for the other two enterprises. 
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Anaerobic Digester Enterprise Budget Results 

The net income for the anaerobic digester is US $2,105.35 per year, or US $10.03 

per cow per year, when production is optimal and all government incentives are 

acquired (Table 8).  Optimal production refers to when the microorganisms are healthy, 

the feedstock supply is adequate and the equipment is functioning correctly.  Net 

metering (i.e., electricity) is the best option for biogas use.  Converting all biogas 

produced to electricity provides a positive net income per year.  To implement 

anaerobic digestion as a waste management resource (install a digester), a capital cost 

of US $320,621.09 is required after subsidies.  This is the capital cost after an investment 

tax credit of US $35,624.57 is given by the State of Utah. 

A capital cost of US $320,621.09 equates to a cost of US $1,526.77 per cow for 

the 210-cow dairy.  According the literature, the low cost of the IBR digester system 

reduces the capital cost sufficiently to meet the target capital cost per head of US 

$1,500 suggested by Shelford (2012).  Meeting the capital cost per head target indicates 

that adopting the IBR anaerobic digester system is feasible if the other investment 

measures (i.e., NPV and IRR) indicate acceptable investment results (Table 8). 

Labor and Whey Management Sensitivity Analysis 

The sensitivity analysis for labor on the digester system and the receipts from 

custom whey management demonstrate how the annual net income is affected by 

various amounts of labor and custom whey management receipts.  Labor ranges from 1 

– 40 hrs., and the receipts for custom whey management range from US $1,000 – 8,000 
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per year (Table 10).  The feasibility of adopting anaerobic digestion improves as the cost 

of off-farm whey disposal for the cheese plant increases and labor for the anaerobic 

digester decreases.  An increase in off-farm whey disposal improves the feasibility of 

anaerobic digestion because the cost savings improves due to on-farm waste 

management.  The cost of whey management is reduced by having the anaerobic 

digester, and the whey received as feedstock for the digester produces more methane 

per unit than manure from the dairy.   

 
Table 10. Labor per Week and Whey Management Sensitivity Analysis for Digester 

W
H

EY
 M

A
N

A
G

EM
EN

T 

LABOR 

 -70% -60% -40% -20% 0% 20% 40% 60% 70% 

 7.5hrs 10hrs 15hrs 20hrs 25hrs 30hrs 35hrs 40hrs 45hrs 

 $4,680 $6,240 $9,360 $12,480 $15,600 $18,720 $21,840 $24,960 $28,080 

$1,000 $10,025 $8,465 $5,345 $2,225 -$895 -$4,015 -$7,135 -$10,255 -$13,375 

$2,000 $11,025 $9,465 $6,345 $3,225 $105 -$3,015 -$6,135 -$9,255 -$12,375 

$3,000 $12,025 $10,465 $7,345 $4,225 $1,105 -$2,015 -$5,135 -$8,255 -$11,375 

$4,000 $13,025 $11,465 $8,345 $5,225 $2,105 -$1,015 -$4,135 -$7,255 -$10,375 

$5,000 $14,025 $12,465 $9,345 $6,225 $3,105 -$15 -$3,135 -$6,255 -$9,375 

$6,000 $15,025 $13,465 $10,345 $7,225 $4,105 $985 -$2,135 -$5,255 -$8,375 

$7,000 $16,025 $14,465 $11,345 $8,225 $5,105 $1,985 -$1,135 -$4,255 -$7,375 

$8,000 $17,025 $15,465 $12,345 $9,225 $6,105 $2,985 -$135 -$3,255 -$6,375 

aSee Table 8 for estimated net income 
 

Marketing Coproducts 

The coproducts that maximize profitability for the digester are net metering (i.e., 

electricity production), bedding, fertilizer, custom on-farm waste management, carbon 

offsets and off-farm waste management (i.e., tipping fees).  Energy companies are the 

target market for selling electricity, if they pay the same price for net metered electricity 
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as the price they charge for electricity.  The electricity produced is sold back to the grid 

instead of being used on-farm.  Selling electricity back to energy companies allows the 

farm to remain on the grid and to maintain a working relationship with the energy 

company.  By maintaining this relationship, the farm is able to more readily take 

advantage of services provided by the energy company. 

Coproducts produced from the fiber produced by the anaerobic digester can be 

sold to nurseries and local gardeners within a 20 to 30-mile radius of the farm.  20 to 30 

miles is close to the radius of the Wasatch, Utah and Summit counties in Utah.  

However, even if no fiber is used on the farm for bedding or fertilizer, there is still not 

enough produced on the farm to justify selling to a target market outside of the 20 to 

30-mile area.  Both males and females that garden and are environmentally-conscious 

are targeted for selling the farm’s fertilizer.   

It is important that the off-farm organic waste disposal service offered by the 

integrated farm be marketed effectively.  These disposal services provide revenue from 

the tipping fees but also compete with local landfills and private disposal methods (e.g., 

burning).  So, these fees need to be competitive with these competing activities.  The 

target market for organic disposal services is similar to that for fiber sales.  Consumers 

living within a radius of 20 to 30 miles from where the digester is located should be 

targeted for disposal services.  Both males and females who are environmentally-

conscious are targeted.  Consumers purchasing the waste services from the farmer 
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would transport their own waste to the where the digester is located and would pay a 

tipping fee for environmentally-conscious disposal using the anaerobic digester.   

Other off-farm organic waste disposal services for food producers will be marketed 

differently.  This target market is represented by food sellers (e.g., restaurants, bakeries 

and abattoirs) within a 20 to 30 mile radius from the digester system.  This target 

market provides a more reliable supply of organic waste than other sources and the 

organic waste would be collected by the farmer owning the digester system. 

Benefits of Whey Management 

Besides providing additional feedstock with a high energy content, the whey 

management improves the feasibility of the anaerobic digester.  Without the receipts 

from whey management the receipts from manure management need to be at least US 

$19,088.16 for the unsubsidized digester to achieve an acceptable NPV (Table 11).  This 

is US $14,888.16 more than the estimated cost of manure management of a typical 

dairy.  An acceptable NPV that does not effect a change in annual net income for the 

other enterprises can also be achieved if the price of artisan milk increases by US 

$333.74 per hundred weight, or if the price of milk purchased by the dairy 

manufacturers increases by US $214.70 per hundred.  If the artisan cheese plant bears 

the cost of adopting anaerobic digestion, then cheese prices must increase by US $0.18 

per pound for the direct market, wholesale and the distributor.  This price is more 

realistic than the required increase in price of milk, but it does not take into account the 

loss of high energy feedstock from the whey collected from the cheese plant. 
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Table 11. Milk and Cheese Prices Needed to Compensate for No Whey Management 
COPRODUCT 

SCENARIO 
COST OF MANURE 

MANAGEMENT FOR 
ACCEPTALE NPV 

DIFFERENCE 
FROM 

ESTIMATED COST 

COST PER 
CWT OF 
ARTISAN 

MILK 

COST PER CWT OF 
MANUFACTURER 

MILK 

COST PER 
LB OF 

CHEESE 

W/ ALL 
COPRODUCTS 

$15,088.50a -$10,888.50b $263.81c $169.71d $0.14e 

W/O WHEY $19,088.16 -$14,888.16 $333.74 $214.70 $0.18 

W/O CARBON 
OFFSETS 

$18,868.50 -$14,668.50 $329.90 $212.23 $0.18 

W/O WHEY AND 
CARBON OFFSETS 

$22,868.00 -$18,668.00 $399.83 $257.22 $0.22 

W/O WHEY, CARBON 
OFFSETS AND 
TIPPING FEES 

$25,512.48 -$21,312.48 $446.07 $286.96 $0.24 

aPrice needed for custom manure management to achieve an acceptable NPV with no subsidies 
bDifference between needed pricea and estimated price of custom manure management (i.e., US $4,200) (Table 4) 
cCalculated by dividing the cost of manure managementa by the estimated amount of milk used by the cheese plant (i.e., 57.19 cwt)  
  (Table 4) 
dCalculated by dividing the cost of manure managementa by the estimated amount of milk sold to dairy manufacturers (i.e., 88.91    
  cwt) (Table 4) 
eCalculated by dividing the cost of manure managementa by the estimated amount of cheese sold (i.e., 104,926 lbs.) (Table 6) 

 

Capital Budget and Cash Flow Analysis Results 

The NPV and the IRR are estimated using the cash flow analyses.  An acceptable 

investment result for the NPV is a value that is greater than zero.  An acceptable 

investment result for the IRR is a percentage that is greater than or equal to the 

discount rate.  The payback period is also estimated to provide additional information to 

potential investors to help determine the feasibility of specific operations based on her/ 

his risk aversion. 

Dairy Cash Flow Analysis 

Neither the NPV nor the IRR are estimated for the dairy enterprise because it is 

not considered a new investment and is already operating (Table 12).  There is not a 

need to analyze the feasibility of an investment in the dairy enterprise because the 
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investment has already been made.  The NPV and the IRR for the dairy do not provide 

meaningful information for this study.  The cash-flow analysis for the dairy estimates a 

negative cumulative cash flow for the first 10 years assuming that the price of milk per 

hundred weight is less than $22.  The cumulative cash flow would be even more 

negative without the high price of milk “sold” to the artisan cheese enterprise (Table 

12).  The cumulative cash flow for a given period is determined by calculating the 

difference between the cash flow of the current period and the previous period.  The 

dairy cumulative cash flow is improved by increasing the amount of milk converted to 

artisan cheese, or by selling the milk as “organic” to a dairy manufacturer.  However, the 

primary focus of this thesis is to determine the feasibility of adopting anaerobic 

digestion and these results are not analyzed here. 

Artisan Cheese Capital Budget and Cash Flow Analysis 

The estimated NPV and IRR for the artisan cheese plant investment both indicate 

that the cheese plant is an acceptable investment under the assumed conditions.  The 

results for the NPV and the IRR are US $580,739 and 39.17%, respectively (Table 13).  

The NPV is greater than zero, therefore it indicates the cheese operation is an 

acceptable investment.  The discount rate used to estimate the IRR is 10 percent, 

therefore the IRR also indicates the cheese plant is an acceptable investment.  The 

investment in the cheese plant is assumed to be amortized over a time period of 10 

years.  The cumulative cash flow for the cheese plant (Table 13) estimates a 3-year 

payback period.   
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Table 12.  Projected Cash Flow (US dollars) for the 210-Cow Dairy 
Year   0 1 2 3 4 5 6 7 8 9 10 

                        

Receiptsa   680,626 701,044 722,076 743,738 766,050 789,032 812,703 837,084 862,196 888,062 

Terminal Value                     0 

Cash Inflowb   680,626 701,044 722,076 743,738 766,050 789,032 812,703 837,084 862,196 888,062 

                        

Down Paymentd 0                     

Labora   89,440 92,123 94,887 97,734 100,666 103,685 106,796 110,000 113,300 116,699 

Other Operating Expensesa   587,416 605,038 623,189 641,885 661,142 680,976 701,405 722,447 744,121 766,444 

Ownership Costa   81,682 84,133 86,657 89,257 91,934 94,692 97,533 100,459 103,473 106,577 

Depreciationg   0 0 0 0 0 0 0 0 0 0 

Interesth   0 0 0 0 0 0 0 0 0 0 

Principalh   0 0 0 0 0 0 0 0 0 0 

Taxable Incomei   -77,913 -80,250 -82,658 -85,137 -87,691 -90,322 -93,032 -95,823 -98,697 -101,658 

Income Taxesj   0 0 0 0 0 0 0 0 0 0 

Net Cash Outflowb & c 0 758,538 781,294 804,733 828,875 853,742 879,354 905,734 932,906 960,894 989,720 

Net Cash Flowe 0 -77,913 -80,250 -82,658 -85,137 -87,691 -90,322 -93,032 -95,823 -98,697 -101,658 

                        

Cumulative Cash Flowf 0 -77,913 -158,163 -240,820 -325,957 -413,649 -503,971 -597,003 -692,825 -791,523 -893,181 

aReceipts and costs are obtained from Table 4. 
bReceipts and costs are estimated with a growth rate of 3% 
cNet Cash Outflow is determined by adding Labor, Other Operating Expenses, Interest, Principal and Income Taxes 
dDown payment is 0 because the dairy enterprise is in operation and has no start-up capital cost 

eNet Cash Flow is determined by subtracting the Net Cash Outflow from the Cash Inflow 
fCumulative Cash Flow is determined by adding the Net Cash Flow for the current period to the Cumulative Cash Flow for the previous period 
gDepreciation is straight line depreciation 
hA finance rate of 8% is used to determine Interest and Principal 
iTaxable Income is determined by subtracting Labor, Other Operating Expenses, Depreciation and Interest from the Cash Inflow 
jIncome Taxes are calculated with a 30% tax rate 
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Anaerobic Digester System Capital Budget and Cash Flow Analysis 

The estimated NPV and IRR for the anaerobic digestion as a waste management 

system indicate that it is not an acceptable investment.  The NPV and the IRR are 

estimated to be US -$65,378 and -5.20%, respectively (Table 14).  The NPV is less than 

zero and therefore unacceptable.  The IRR is less than the assumed discount rate of 12 

percent and is therefore unacceptable when considered as a stand-alone investment.  

Though the suggested target capital cost per cow (i.e., US $1,500) is achieved, the 

investment should not be made unless the investment is even more heavily subsidized 

by a government or non-government entity.  A 12 percent discount rate indicates that 

an estimated 35 percent of the investment cost must be subsidized before an 

acceptable NPV and IRR is realized (Table 14).  If 30 percent of the investment cost is 

subsidized, then the estimated NPV and IRR are US $1,356 and 12.39 percent, 

respectively.  The investment for the anaerobic digester is assumed to be amortized 

over a time period of 20 years. 

The cumulative cash-flow with no subsidy for the digester indicates that a 

payback period is not be achieved during the 20-year lifetime of the equipment and, 

indeed, has a negative cumulative cash flow that continues throughout the 20 years.  

This is not an acceptable payback period.  With a subsidy of 45 percent of the 

investment cost (Table 14), the payback period is achieved in six years.  A six-year 

payback period is acceptable if it is less than the maximum payback period desired by 

the investor.  A subsidy of 60 percent of the investment cost for the digester reduces its 
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payback period to three years.  This is a much more acceptable payback period and 

indicates a payback period accepted by more investors with higher risk aversion.  The 

results indicate that requiring an anaerobic digester will greatly reduce the profitability 

of the entire integrated operation unless significant subsidies are provided to the 

farmer. 

Sensitivity Analysis for an Array of Discount Rates and Subsidy Rates 

Levels of risk aversion vary for different investors.  This can partially be 

accounted for in this analysis by using an array of discount rates that reflect different 

required returns to make an investment.  Higher discount rates reflect higher risk 

aversion while lower discount rates reflect lower risk aversion.  For example, investors 

who consider the adoption of anaerobic digestion to be highly risky may use discount 

rates higher than 12 percent which, in turn will lead to higher estimates of the subsidy 

needed to indicate a feasible investment.  The reason for this is that a high discount rate 

results in a lower NPV than if a low discount rate is used.  If the NPV is negative (more 

likely the higher the discount rate used), it suggests that a higher subsidy will be 

required to entice the investor to invest in the anaerobic digester. 

The results provided by the sensitivity analysis based on the NPV indicate that as 

the discount rate increases the subsidy must increase for the adoption of anaerobic 

digestion to be feasible (Table 15).  The sensitivity analysis is used to estimate the 

feasibility of the investment at various economic, social and environmental risk levels.  If 

the discount rate in the sensitivity analysis ranges from 4 to 25 percent and a subsidy 
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ranging from 22 to 54 percent is provided, then the anaerobic digester is an acceptable 

investment because the NPV is positive (Table 15).  These results are based on the 

digester system being a separate entity from the dairy and the artisan cheese plant. 

Overall Results for the Three Enterprises 

The cumulative net cash flow of the dairy, artisan cheese plant and anaerobic 

digester system is used to estimate the overall payback period of the integrated farm 

operation.  Tables 15-20 report net cash flow for the different operations (dairy, cheese 

plant, and digester) as well as the total cash flow for the integrated operation (cash flow 

added for the three components of the operation).  A positive overall cash flow (positive 

when the cash flows of the three components are added) indicated that the payback 

period has been achieved.  Table 15 reports these results under different levels of 

subsidies for the anaerobic digester. 

The cumulative net cash flow estimates a payback period of nine years for the 

artisan cheese plant investment and the adoption of an anaerobic digester if there is no 

subsidy for the digester.  The cash flow of the artisan cheese enterprise is large enough 

that it compensates for the low cash flows of the dairy and digester system enterprises.  

The overall payback period of the integrated operation is reduced from nine years to 

eight years with a subsidy for 15 percent of the cost of investment for the digester.  The 

overall payback period of the integrated operation is reduced one year for every 15 

percent subsidy increment addition until the 30 percent subsidy range.  After a 30 

percent subsidy is provided a 30 percent subsidy increment addition is required to 
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Table 13.  Artisan Cheese Projected Cash Flow, NPV and IRR (US dollars) with a 10 percent Discount Rate and an 8 percent Finance  
Rate 

Year  0 1 2 3 4 5 6 7 8 9 10 

                        

Receiptsa   1,096,855 1,129,760 1,163,653 1,198,563 1,234,520 1,271,555 1,309,702 1,348,993 1,389,463 1,431,146 

Terminal Value                     165,898 

Cash Inflowsa   1,096,855 1,129,760 1,163,653 1,198,563 1,234,520 1,271,555 1,309,702 1,348,993 1,389,463 1,597,045 

                        

Down Paymentc 331,797                     

Labora   247,540 254,966 262,615 270,494 278,608 286,967 295,576 304,443 313,576 322,984 

Other Operatinga Expensesa   501,986 517,046 532,557 548,534 564,990 581,940 599,398 617,380 635,901 654,978 

Depreciationa   149,309 149,309 149,309 149,309 149,309 149,309 149,309 149,309 149,309 149,309 

Interesta   106,175 98,846 90,930 82,381 73,149 63,177 52,408 40,778 28,217 14,651 

Principala   91,615 98,944 106,860 115,409 124,641 134,613 145,382 157,012 169,573 183,139 

Taxable Incomea   91,845 109,594 128,242 147,845 168,464 190,163 213,011 237,083 262,460 455,123 

Income Taxesa   27,553 32,878 38,473 44,353 50,539 57,049 63,903 71,125 78,738 136,537 

Net Cash Outflowb 331,797 974,870 1,002,680 1,031,435 1,061,171 1,091,928 1,123,745 1,156,667 1,190,738 1,226,005 1,312,289 

Net Cash Flowa -331,797 121,985 127,080 132,218 137,391 142,592 147,810 153,035 158,255 163,457 284,756 

                        

Cumulative Cash Flowa -331,797 -209,812 -82,732 49,486 186,877 329,469 477,279 630,314 788,569 952,026 1,236,782 

NPVd 580,739           

IRRd 39.17%           

aSee Table 12 footnotes to know how numbers were calcuated   
bReceipts and costs are estimated with a growth rate of 3% 
cDown payment is 20% of the investment 
dNet present value is calculated assuming a discount rate of 10% and a finance period of 10 years 
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Table 14.  Digester Projected Cash Flow, NPV and IRR (US dollars) with No Subsidy and an 8 percent Finance Rate 
Year  0 1 2 3 4 5 6 7 8 9 10 

                        

Receiptsa   68,343 70,394 72,505 74,681 76,921 79,229 81,605 84,054 86,575 89,172 

Terminal Value                       

Cash Inflowsc   68,343 70,394 72,505 74,681 76,921 79,229 81,605 84,054 86,575 89,172 

                        

Down Paymenta 64,124                     

Laborb   16,900 17,407 17,929 18,467 19,021 19,592 20,179 20,785 21,408 22,051 

Other Operatingb   32,196 33,162 34,156 35,181 36,236 37,324 38,443 39,597 40,784 42,008 

Depreciationa   15,361 15,361 15,361 15,361 15,361 15,361 15,361 15,361 15,361 15,361 

Interesta   20,520 20,071 19,587 19,064 18,499 17,889 17,230 16,519 15,750 14,920 

Principala   5,605 6,053 6,538 7,061 7,626 8,236 8,894 9,606 10,375 11,204 

Taxable Incomea   -16,633 -15,607 -14,528 -13,393 -12,197 -10,937 -9,609 -8,208 -6,729 -5,168 

Income Taxes   0 0 0 0 0 0 0 0 0 0 

Net Cash Outflowb 64,124 75,220 76,693 78,210 79,773 81,382 83,040 84,748 86,506 88,318 90,183 

Net Cash Flowa -64,124 -6,877 -6,300 -5,705 -5,092 -4,461 -3,811 -3,142 -2,453 -1,742 -1,011 

                        

Cumulative Cash Flowa -64,124 -71,001 -77,301 -83,006 -88,098 -92,560 -96,371 -99,513 -101,966 -103,708 -104,719 

NPVd -86,926           

IRRd -8.18%           
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Table 14.  Continued 
Year  11 12 13 14 15 16 17 18 19 20 

                      

Receipts 91,848 94,603 97,441 100,364 103,375 106,477 109,671 112,961 116,350 119,840 

Terminal Value                   $13,400 

Cash Inflows 91,848 94,603 97,441 100,364 103,375 106,477 109,671 112,961 116,350 133,240 

                      

Down Payment                     

Labor 22,712 23,394 24,095 24,818 25,563 26,330 27,120 27,933 28,771 29,634 

Other Operating 43,268 44,566 45,903 47,280 48,699 50,160 51,665 53,215 54,811 56,455 

Depreciation 15,361 15,361 15,361 15,361 15,361 15,361 15,361 15,361 15,361 15,361 

Interest 14,024 13,056 12,010 10,881 9,662 8,345 6,922 5,386 3,727 1,935 

Principal 12,101 13,069 14,114 15,244 16,463 17,780 19,202 20,739 22,398 24,190 

Taxable Income -3,518 -1,774 71 2,024 4,091 6,281 8,603 11,066 13,680 29,855 

Income Taxes 0 0 21 607 1,227 1,884 2,581 3,320 4,104 8,956 

Net Cash Outflow 92,105 94,085 96,145 98,830 101,614 104,499 107,490 110,592 113,811 121,171 

Net Cash Flow -258 518 1,296 1,534 1,762 1,978 2,181 2,369 2,539 12,070 

                      

Cumulative Cash Flow -104,977 -104,459 -103,162 -101,628 -99,866 -97,889 -95,708 -93,339 -90,800 -78,730 

NPV -86,926          

IRR -8.18%          

aSee Table 12 footnotes to know how categories were calculated   

bReceipts and costs are obtained from Table 8 
cReceipts and expenses are estimated with a growth rate of 3% 
dSee Table 13 footnotes to know how categories were calculated 
dNet present value is calculated assuming a discount rate of 12%, a subsidy of 0% and a finance period of 20 years 
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Table 15.  Anaerobic Digester System NPV Sensitivity Analysis with Subsidies from 15 percent to 54 percent 
          SUBSIDY RATE (SOCIAL & ENVIRONMENTAL RISK)     

   NPVa 15% 16% 17% 18% 19% 20% 21% 22% 23% 24% 

  4% (24,501.99) (20,431.31) (16,360.64) (12,289.96) (8,219.29) (4,148.61) (77.94) 3,992.74  8,063.42  12,134.09  

  5% (29,466.08) (25,674.31) (21,882.55) (18,090.79) (14,299.02) (10,507.26) (6,715.50) (2,923.74) 868.03  4,659.79  

  6% (33,667.11) (30,121.00) (26,574.89) (23,028.78) (19,482.67) (15,936.56) (12,390.45) (8,844.34) (5,298.23) (1,752.12) 

  7% (37,229.90) (33,900.93) (30,571.96) (27,243.00) (23,914.03) (20,585.06) (17,256.09) (13,927.12) (10,598.15) (7,269.18) 
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8% (40,257.55) (37,121.19) (33,984.83) (30,848.48) (27,712.12) (24,575.76) (21,439.41) (18,303.05) (15,166.69) (12,030.33) 

9% (42,835.37) (39,870.46) (36,905.55) (33,940.64) (30,975.73) (28,010.82) (25,045.91) (22,081.00) (19,116.09) (16,151.18) 

10% (45,034.19) (42,222.41) (39,410.62) (36,598.83) (33,787.05) (30,975.26) (28,163.48) (25,351.69) (22,539.91) (19,728.12) 

11% (46,912.93) (44,238.36) (41,563.79) (38,889.21) (36,214.64) (33,540.07) (30,865.49) (28,190.92) (25,516.35) (22,841.78) 

12% (48,520.73) (45,969.51) (43,418.29) (40,867.07) (38,315.84) (35,764.62) (33,213.40) (30,662.18) (28,110.96) (25,559.73) 

13% (49,898.68) (47,458.69) (45,018.71) (42,578.73) (40,138.74) (37,698.76) (35,258.77) (32,818.79) (30,378.80) (27,938.82) 

14% (51,081.19) (48,741.83) (46,402.47) (44,063.11) (41,723.74) (39,384.38) (37,045.02) (34,705.65) (32,366.29) (30,026.93) 

15% (52,097.20) (49,849.12) (47,601.05) (45,352.97) (43,104.90) (40,856.82) (38,608.75) (36,360.67) (34,112.60) (31,864.52) 

16% (52,971.02) (50,806.01) (48,640.99) (46,475.98) (44,310.96) (42,145.95) (39,980.93) (37,815.92) (35,650.90) (33,485.88) 

17% (53,723.22) (51,633.98) (49,544.75) (47,455.52) (45,366.29) (43,277.06) (41,187.82) (39,098.59) (37,009.36) (34,920.13) 

18% (54,371.14) (52,351.24) (50,331.34) (48,311.44) (46,291.54) (44,271.64) (42,251.74) (40,231.84) (38,211.94) (36,192.04) 

19% (54,929.52) (52,973.21) (51,016.90) (49,060.60) (47,104.29) (45,147.99) (43,191.68) (41,235.38) (39,279.07) (37,322.76) 

20% (55,410.84) (53,513.01) (51,615.18) (49,717.36) (47,819.53) (45,921.71) (44,023.88) (42,126.05) (40,228.23) (38,330.40) 

  21% (55,825.74) (53,981.82) (52,137.90) (50,293.98) (48,450.06) (46,606.14) (44,762.22) (42,918.30) (41,074.39) (39,230.47) 

  22% (56,183.29) (54,389.18) (52,595.07) (50,800.96) (49,006.85) (47,212.74) (45,418.63) (43,624.52) (41,830.41) (40,036.30) 

  23% (56,491.25) (54,743.26) (52,995.28) (51,247.29) (49,499.31) (47,751.32) (46,003.34) (44,255.35) (42,507.37) (40,759.38) 

  24% (56,756.24) (55,051.06) (53,345.89) (51,640.71) (49,935.53) (48,230.35) (46,525.17) (44,820.00) (43,114.82) (41,409.64) 

  25% (56,983.96) (55,318.59) (53,653.23) (51,987.86) (50,322.50) (48,657.13) (46,991.77) (45,326.40) (43,661.03) (41,995.67) 

 



 

 
1

12
 

Table 15.  Continued 
          SUBSIDY RATE (SOCIAL & ENVIRONMENTAL RISK)     

   NPVa 25% 26% 27% 28% 29% 30% 31% 32% 33% 34% 

  4% 16,204.77  20,250.41  24,293.76  28,337.11  32,380.45  36,423.80  40,467.15  44,510.49  48,553.84  52,597.19  

  5% 8,451.55  12,220.79  15,987.95  19,755.12  23,522.28  27,289.45  31,056.61  34,823.77  38,590.94  42,358.10  

  6% 1,793.99  5,319.80  8,843.74  12,367.69  15,891.64  19,415.58  22,939.53  26,463.47  29,987.42  33,511.37  

  7% (3,940.21) (629.54) 2,679.44  5,988.42  9,297.40  12,606.38  15,915.37  19,224.35  22,533.33  25,842.31  
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8% (8,893.98) (5,774.14) (2,655.83) 462.48  3,580.80  6,699.11  9,817.42  12,935.74  16,054.05  19,172.36  

9% (13,186.27) (10,236.29) (7,287.69) (4,339.08) (1,390.47) 1,558.13  4,506.74  7,455.34  10,403.95  13,352.55  

10% (16,916.34) (14,118.06) (11,321.02) (8,523.98) (5,726.94) (2,929.90) (132.86) 2,664.18  5,461.22  8,258.26  

11% (20,167.20) (17,504.85) (14,843.63) (12,182.41) (9,521.18) (6,859.96) (4,198.73) (1,537.51) 1,123.71  3,784.94  

12% (23,008.51) (20,468.37) (17,929.24) (15,390.11) (12,850.98) (10,311.86) (7,772.73) (5,233.60) (2,694.47) (155.35) 

13% (25,498.84) (23,068.90) (20,639.88) (18,210.86) (15,781.85) (13,352.83) (10,923.82) (8,494.80) (6,065.78) (3,636.77) 

14% (27,687.56) (25,357.32) (23,027.91) (20,698.50) (18,369.09) (16,039.69) (13,710.28) (11,380.87) (9,051.46) (6,722.05) 

15% (29,616.45) (27,376.65) (25,137.62) (22,898.59) (20,659.56) (18,420.53) (16,181.49) (13,942.46) (11,703.43) (9,464.40) 

16% (31,320.87) (29,163.38) (27,006.59) (24,849.80) (22,693.00) (20,536.21) (18,379.41) (16,222.62) (14,065.83) (11,909.03) 

17% (32,830.90) (30,748.52) (28,666.76) (26,585.01) (24,503.26) (22,421.51) (20,339.76) (18,258.01) (16,176.26) (14,094.51) 

18% (34,172.14) (32,158.48) (30,145.39) (28,132.30) (26,119.21) (24,106.12) (22,093.03) (20,079.95) (18,066.86) (16,053.77) 

19% (35,366.46) (33,415.84) (31,465.74) (29,515.64) (27,565.55) (25,615.45) (23,665.35) (21,715.25) (19,765.16) (17,815.06) 

20% (36,432.58) (34,539.93) (32,647.77) (30,755.61) (28,863.44) (26,971.28) (25,079.12) (23,186.95) (21,294.79) (19,402.63) 

  21% (37,386.55) (35,547.36) (33,708.61) (31,869.86) (30,031.11) (28,192.36) (26,353.61) (24,514.86) (22,676.11) (20,837.35) 

  22% (38,242.18) (36,452.40) (34,663.01) (32,873.62) (31,084.23) (29,294.84) (27,505.45) (25,716.06) (23,926.67) (22,137.28) 

  23% (39,011.39) (37,267.36) (35,523.69) (33,780.02) (32,036.35) (30,292.68) (28,549.01) (26,805.34) (25,061.67) (23,318.00) 

  24% (39,704.46) (38,002.90) (36,301.67) (34,600.44) (32,899.21) (31,197.98) (29,496.75) (27,795.52) (26,094.29) (24,393.06) 

  25% (40,330.30) (38,668.25) (37,006.49) (35,344.74) (33,682.99) (32,021.24) (30,359.49) (28,697.74) (27,035.98) (25,374.23) 
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Table 15.  Continued 
         SUBSIDY RATE (SOCIAL & ENVIRONMENTAL RISK)   

   NPVa 35% 36% 37% 38% 39% 40% 41% 42% 43% 44% 

  4% 56,629.48  60,642.59  64,655.70  68,668.80  72,681.91  76,695.02  80,708.13  84,721.23  88,725.15  92,705.06  

  5% 46,115.22  49,854.91  53,594.59  57,334.28  61,073.96  64,813.65  68,553.33  72,293.02  76,024.27  79,733.50  

  6% 37,026.18  40,525.13  44,024.08  47,523.03  51,021.98  54,520.94  58,019.89  61,518.84  65,010.05  68,481.03  

  7% 29,142.98  32,429.20  35,715.43  39,001.66  42,287.89  45,574.11  48,860.34  52,146.57  55,425.68  58,686.21  
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8% 22,283.10  25,380.68  28,478.26  31,575.84  34,673.42  37,771.00  40,868.58  43,966.16  47,057.20  50,131.14  

9% 16,294.25  19,223.95  22,153.65  25,083.34  28,013.04  30,942.74  33,872.44  36,802.14  39,725.81  42,633.75  

10% 11,048.99  13,828.77  16,608.56  19,388.34  22,168.12  24,947.90  27,727.68  30,507.47  33,281.70  36,041.44  

11% 6,440.40  9,085.86  11,731.32  14,376.78  17,022.24  19,667.70  22,313.16  24,958.62  27,598.97  30,225.95  

12% 2,378.51  4,903.23  7,427.95  9,952.66  12,477.38  15,002.09  17,526.81  20,051.52  22,571.52  25,079.20  

13% (1,212.57) 1,203.26  3,619.09   6,034.92  8,450.75  10,866.58  13,282.41  15,698.24  18,109.72  20,509.82  

14% (4,397.06) (2,079.72) 237.61  2,554.94  4,872.28  7,189.61  9,506.95  11,824.28  14,137.59  16,440.40  

15% (7,229.41) (5,001.44) (2,773.48) (545.51) 1,682.46  3,910.43  6,138.39  8,366.36  10,590.61  12,805.15  

16% (9,755.95) (7,609.30) (5,462.65) (3,316.01) (1,169.36) 977.29  3,123.94  5,270.58  7,413.79  9,548.01  

17% (12,016.16) (9,943.72) (7,871.28) (5,798.84) (3,726.40) (1,653.96) 418.48  2,490.92  4,560.17  6,621.11  

18% (14,043.81) (12,039.27) (10,034.74) (8,030.20) (6,025.66) (4,021.13) (2,016.59) (12.06) 1,989.53  3,983.41  

19% (15,867.83) (13,925.60) (11,983.36) (10,041.12) (8,098.89) (6,156.65) (4,214.41) (2,272.17) (332.67) 1,599.69  

20% (17,513.10) (15,628.17) (13,743.23) (11,858.30) (9,973.37) (8,088.43) (6,203.50) (4,318.56) (2,436.16) (560.39) 

  21% (19,001.04) (17,168.94) (15,336.84) (13,504.74) (11,672.65) (9,840.55) (8,008.45) (6,176.35) (4,346.61) (2,523.01) 

  22% (20,350.13) (18,566.87) (16,783.60) (15,000.34) (13,217.08) (11,433.82) (9,650.56) (7,867.29) (6,086.22) (4,310.85) 

  23% (21,576.40) (19,838.37) (18,100.35) (16,362.33) (14,624.31) (12,886.28) (11,148.26) (9,410.24) (7,674.25) (5,943.56) 

  24% (22,693.74) (20,997.71) (19,301.69) (17,605.67) (15,909.65) (14,213.63) (12,517.61) (10,821.58) (9,127.45) (7,438.25) 

  25% (23,714.24) (22,057.29) (20,400.34) (18,743.40) (17,086.45) (15,429.51) (13,772.56) (12,115.62) (10,460.43) (8,809.82) 
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Table 15.  Continued 
       SOCIAL & ENVIRONMENTAL RISK   

   NPVa 45% 46% 47% 48% 49% 50% 51% 52% 53% 54% 

  4% 96,684.97  100,664.88  104,644.79  108,624.70  112,604.61  116,573.18  120,516.88  124,460.58  128,404.28  132,347.98  

  5% 83,442.72  87,151.95  90,861.18  94,570.40  98,279.63  101,978.35  105,654.04  109,329.72  113,005.41  116,681.09  

  6% 71,952.02  75,423.00  78,893.98  82,364.97  85,835.95  89,297.20  92,737.09  96,176.98  99,616.88  103,056.77  

  7% 61,946.73  65,207.26  68,467.78  71,728.31  74,988.84  78,240.33  81,472.01  84,703.70  87,935.38  91,167.07  
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8% 53,205.08  56,279.03  59,352.97  62,426.91  65,500.86  68,566.42  71,613.59  74,660.75  77,707.92  80,755.09  

9% 45,541.70  48,449.64  51,357.58  54,265.52  57,173.47  60,073.62  62,956.69  65,839.77  68,722.84  71,605.91  

10% 38,801.19  41,560.93  44,320.67  47,080.42  49,840.16  52,592.66  55,329.29  58,065.91  60,802.54  63,539.16  

11% 32,852.94  35,479.93  38,106.92  40,733.91  43,360.90  45,981.15  48,586.64  51,192.12  53,797.61  56,403.09  

12% 27,586.87  30,094.55  32,602.23  35,109.90  37,617.58  40,118.99  42,606.65  45,094.31  47,581.97  50,069.64  

13% 22,909.92  25,310.02  27,710.12  30,110.22  32,510.32  34,904.59  37,286.05  39,667.51  42,048.97  44,430.43  

14% 18,743.20  21,046.00  23,348.81  25,651.61  27,954.42  30,251.78  32,537.21  34,822.64  37,108.07  39,393.51  

15% 15,019.68  17,234.22  19,448.75  21,663.29  23,877.82  26,087.29  28,285.62  30,483.96  32,682.30  34,880.63  

16% 11,682.24  13,816.46  15,950.68  18,084.90  20,219.13  22,348.61  24,467.72  26,586.83  28,705.93  30,825.04  

17% 8,682.05  10,742.99  12,803.92  14,864.86  16,925.80  18,982.32  21,029.14  23,075.97  25,122.80  27,169.62  

18% 5,977.30  7,971.18  9,965.06  11,958.94  13,952.83  15,942.58  17,923.28  19,903.98  21,884.68  23,865.38  

19% 3,532.06  5,464.42  7,396.78  9,329.15  11,261.51  13,190.01  15,110.05  17,030.09  18,950.14  20,870.18  

20% 1,315.39  3,191.17  5,066.95  6,942.72  8,818.50  10,690.67  12,554.92  14,419.17  16,283.42  18,147.67  

  21% (699.41) 1,124.19  2,947.79  4,771.38  6,594.98  8,415.20  10,228.02  12,040.83  13,853.65  15,666.46  

  22% (2,535.48) (760.11) 1,015.26  2,790.63  4,566.00  6,338.21  8,103.49  9,868.76  11,634.03  13,399.30  

  23% (4,212.87) (2,482.18) (751.49) 979.20  2,709.89  4,437.62  6,158.85  7,880.08  9,601.31  11,322.54  

  24% (5,749.04) (4,059.84) (2,370.63) (681.43) 1,007.78  2,694.20  4,374.54  6,054.88  7,735.22  9,415.56  

  25% (7,159.22) (5,508.62) (3,858.01) (2,207.41) (556.80) 1,091.20  2,733.49  4,375.78  6,018.06  7,660.35  

aNet present value is calculated assuming a finance period of 20 years 
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reduce the overall payback period one year.  

The impact of the anaerobic digester system on the payback period is very low 

compared to the impact of the dairy and the artisan cheese production enterprises.  

Implementing the production of artisan cheese reduces the economic risk of adopting 

anaerobic digestion and improves the net profit of the overall operation.  Without the 

additional cash flow from the artisan cheese enterprise, the cumulative net cash flow of 

the dairy and the anaerobic digester is never positive when milk prices are US $17 per 

hundred weight.  At this price for milk, a subsidy of 100 percent of the cost of 

investment for an anaerobic digester system is not even sufficient to generate a positive 

cumulative net cash flow without the production of artisan cheese.   
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Table 16.  Total Projected Cumulative Net Cash Flow with No Subsidy (US dollars) 
Year 0 1 2 3 4 5 6 7 8 9 10 

Cumulative Cash Flow                       

Dairya 0.00  (77,912.64) (158,162.65) (240,820.17) (325,957.41) (413,648.77) (503,970.87) (597,002.64) (692,825.35) (791,522.75) (893,181.07) 

Artisan Cheeseb (331,796.91) (209,812.10) (82,732.16) 49,485.83  186,877.28  329,469.15  477,278.98  630,313.72  788,568.60  952,025.76  1,236,781.77  

Digesterc (64,124.22) (71,001.36) (77,301.07) (83,006.04) (88,098.40) (92,559.80) (96,371.30) (99,513.39) (101,966.01) (103,708.46) (104,719.44) 

Cumulative Net Cash Flowd (395,921.13) (358,726.10) (318,195.89) (274,340.38) (227,178.54) (176,739.42) (123,063.19) (66,202.30) (6,222.76) 56,794.55  238,881.26  

aCumulative Cash Flow from Table 12  
bCumulative Cash Flow from Table 13 
cCumulative Cash Flow from Table 14 
dCumulative Net Cash Flow determined by the adding cumulative cash flows for the Dairy, Artisan Cheese and Digester 

 

Table 17. Total Projected Cumulative Net Cash Flow with 15 percent Subsidy (US dollars) 
Year 0 1 2 3 4 5 6 7 8 9 10 

Cumulative Cash Flowa                       

Dairy 0.00  (77,912.64) (158,162.65) (240,820.17) (325,957.41) (413,648.77) (503,970.87) (597,002.64) (692,825.35) (791,522.75) (893,181.07) 

Artisan Cheese (331,796.91) (209,812.10) (82,732.16) 49,485.83  186,877.28  329,469.15  477,278.98  630,313.72  788,568.60  952,025.76  1,236,781.77  

Digester System (54,505.58) (57,464.01) (59,845.01) (61,631.26) (62,804.91) (63,347.59) (63,240.37) (62,463.75) (60,997.65) (58,821.38) (55,913.65) 

Cumulative Net Cash Flow (386,302.50) (345,188.75) (300,739.82) (252,965.60) (201,885.05) (147,527.21) (89,932.26) (29,152.66) 34,745.60  101,681.63  287,687.05  

aSee Table 16 for origin of numbers 
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Table 18.  Total Projected Cumulative Net Cash Flow with 30 percent Subsidy (US dollars) 
Year 0 1 2 3 4 5 6 7 8 9 10 

Cumulative Cash Flowa                       

Dairy 0.00  (77,912.64) (158,162.65) (240,820.17) (325,957.41) (413,648.77) (503,970.87) (597,002.64) (692,825.35) (791,522.75) (893,181.07) 

Artisan Cheese (331,796.91) (209,812.10) (82,732.16) 49,485.83  186,877.28  329,469.15  477,278.98  630,313.72  788,568.60  952,025.76  1,236,781.77  

Digester System (44,886.95) (43,926.66) (42,388.95) (40,256.48) (37,511.41) (34,135.38) (30,109.44) (25,414.10) (20,029.29) (13,934.31) (7,107.86) 

Cumulative Net Cash Flow (376,683.86) (331,651.40) (283,283.76) (231,590.82) (176,591.55) (118,315.00) (56,801.33) 7,896.98  75,713.96  146,568.70  336,492.84  

aSee Table 16 for origin of numbers 

 

Table 19.  Total Projected Cumulative Net Cash Flow with 45 percent Subsidy (US dollars) 
Year 0 1 2 3 4 5 6 7 8 9 10 

Cumulative Cash Flowa                       

Dairy 0.00  (77,912.64) (158,162.65) (240,820.17) (325,957.41) (413,648.77) (503,970.87) (597,002.64) (692,825.35) (791,522.75) (893,181.07) 

Artisan Cheese (331,796.91) (209,812.10) (82,732.16) 49,485.83  186,877.28  329,469.15  477,278.98  630,313.72  788,568.60  952,025.76  1,236,781.77  

Digester System (35,268.32) (30,389.31) (24,932.88) (18,881.70) (12,217.92) (4,923.16) 3,021.49  11,635.54  20,939.07  30,845.18  41,126.38  

Cumulative Net Cash Flow (367,065.23) (318,114.05) (265,827.70) (210,216.04) (151,298.05) (89,102.79) (23,670.41) 44,946.63  116,682.32  191,348.19  384,727.08  

aSee Table 16 for origin of numbers 
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Table 20. Total Projected Cumulative Net Cash Flow with 60 percent Subsidy (US dollars)  
Year 0 1 2 3 4 5 6 7 8 9 10 

Cumulative Cash Flowa                       

Dairy 0.00  (77,912.64) (158,162.65) (240,820.17) (325,957.41) (413,648.77) (503,970.87) (597,002.64) (692,825.35) (791,522.75) (893,181.07) 

Artisan Cheese (331,796.91) (209,812.10) (82,732.16) 49,485.83  186,877.28  329,469.15  477,278.98  630,313.72  788,568.60  952,025.76  1,236,781.77  

Digester System (25,649.69) (16,851.97) (7,476.82) 2,493.08  13,075.58  24,289.05  36,152.42  48,466.33  61,177.50  74,293.56  87,822.06  

Cumulative Net Cash Flow (357,446.60) (304,576.71) (248,371.63) (188,841.26) (126,004.56) (59,890.57) 9,460.52  81,777.42  156,920.75  234,796.58  431,422.76  

aSee Table 16 for origin of numbers 

 

Table 21. Total Projected Cumulative Net Cash Flow with 85 percent Subsidy (US dollars) 
Year 0 1 2 3 4 5 6 7 8 9 10 

Cumulative Cash Flowa                       

Dairy 0.00  (77,912.64) (158,162.65) (240,820.17) (325,957.41) (413,648.77) (503,970.87) (597,002.64) (692,825.35) (791,522.75) (893,181.07) 

Artisan Cheese (331,796.91) (209,812.10) (82,732.16) 49,485.83  186,877.28  329,469.15  477,278.98  630,313.72  788,568.60  952,025.76  1,236,781.77  

Digester System (9,618.63) 5,467.70  20,938.05  36,802.93  53,073.10  69,759.53  86,873.44  104,426.27  122,429.73  140,895.71  159,836.38  

Cumulative Net Cash Flow (341,415.54) (282,257.04) (219,956.77) (154,531.41) (86,007.04) (14,420.09) 60,181.54  137,737.36  218,172.98  301,398.73  503,437.08  

aSee Table 16 for origin of numbers 
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CHAPTER V 

CONCLUSIONS 
 
 

Results reported for the investment analysis indicate that adopting anaerobic 

digestion for waste management on a dairy farm with an artisan cheese plant is feasible 

if sufficient subsidies for the investment are provided.  The investment in an anaerobic 

digester provides some security against potential financial risks faced by farmers 

operating in the urban fringe such as reducing the possibility of fees and tariffs the farm 

might need to pay due to lawsuits, regulations and pollution.  Protection against 

potential financial risks is not measured in the annual net income or projected cash 

flows reported in the results chapter.  But the reduced risks inherent in having an 

anaerobic digester can increase the economic sustainability of the farm.  An investment 

in an anaerobic digester contributes very little to the farming operation in terms of 

directly increasing its profits, but having an anaerobic digester likely contributes largely 

with respect to improving the sustainability of the farm by providing social and 

environmental benefits.   

The amount of profit earned as a result of incorporating the digester system 

enterprise depends largely on the coproducts chosen to be produced and sold as well as 

funds that can be obtained through participation in incentive programs.  It is important 

that the coproducts not used on the farm to produce electricity, bedding or other 

products but rather are marketed and sold.  Otherwise, the probability of the 

investment being feasible is reduced.  The majority of the coproducts can be used on 
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the farm as bedding, fertilizer and energy, but any unused inventory beyond this must 

be sold off-farm.  There is not space for inventory to accumulate on the farm, and profit 

margins are too small for the digester system to not take advantage of every possible 

revenue stream (i.e., selling products off-farm).    

The seasonality associated with the on-farm manure supply increases the need 

for off-farm organic waste and on-farm whey supply to keep the digester operating 

efficiently during the course of the year.  Small-scale dairies near large cities and/or 

resorts have the advantage of more restaurants and other food producers in the local 

area that need to dispose of organic waste than dairies located in more isolated areas.  

Relationships with reliable feedstock suppliers such as local restaurants need to be 

cultivated to obtain a consistent and constant supply of organic material from these 

sources so that the potential of digester system failure is reduced.  Contracts may be 

necessary to secure the supply of additional organic waste to reduce volatility in the 

feedstock supply.  Though an acceptable NPV for adopting anaerobic digestion without 

receipts for whey management can be achieved by increasing the price per pound of 

cheese by only US $0.18, the whey from whey management provides a high energy 

content feedstock that improves the amount of energy produced through anaerobic 

digestion and reduces the effects of seasonality. 

Carbon offsets are sold at an auction to consumers who wish to offset the 

amount of GHG emissions they produce.  The digester enterprise is responsible for 

registering for the auction and meeting the amount of carbon offsets needed by the 
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consumers.  The small-scale dairy does not produce a large amount of carbon offsets 

compared to other green energy projects.  But, a steady stream and sufficient amount 

of carbon offsets produced will be attractive to carbon credit buyers and will improve 

the sustainability of the digester system if the farmer sells carbon credits.  The 

employees of the digester system must remain up-to-date on carbon offset regulations 

and other potential market changes (e.g., program termination).  Any entity producing 

more GHG than regulations permit or that produces more GHG than is morally 

acceptable in the mind of the entity represents the target market for carbon offsets. 

Selecting the right products to produce, use and sell will improve net income and 

ultimately the feasibility of the anaerobic digester system enterprise.  However, the 

digester system is not feasible on its own unless milk prices are at least US $24 per 

hundred weight.  Milk prices are volatile and are rarely at US $24 per hundred weight or 

higher.  However, the adoption of an anaerobic digestion system should not be 

determined based on the potential price of milk.  Small-scale dairies that produce 

artisan cheese have sufficient cumulative cash flow to remain profitable while adopting 

an unsubsidized anaerobic digester system, but this does not reflect a wise investment.  

An investment in unsubsidized anaerobic digestion reduces the economic sustainability 

of an integrated, small-scale dairy and artisan cheese production.   

An investment in an anaerobic digester should only be made when the 

investment analysis indicates an acceptable investment for an individual farm.  The 

conditions for investment should be:  1) the estimated annual net income should be 
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positive and 2) the capital cost of the investment per cow should be approximately US 

$1,500.  It is estimated that the IBR digester system minimizes the capital cost per cow 

sufficiently to meet the US $1,500 target.  The IRR should be equal to or greater than 

the discount rate determined by the investor.  The payback period should be within an 

acceptable amount of time as determined by the investor.  The NPV is the analysis tool 

used in this analysis and the NPV should be greater than US $0. 

The adoption of anaerobic digestion on dairy farms with 210 cows is feasible 

under an appropriate set of conditions outlined in the results chapter.  This includes 

considering the level of risk aversion the farmer has.  Higher risk aversion suggests the 

purchase of an anaerobic digester is risker than if the farmer has a low level of risk 

aversion.   

Small-scale dairy farmers in Utah (i.e., 210 cows) should not adopt anaerobic 

digestion as a means of managing waste unless an appropriate investment subsidy is 

available or unless policies and regulations in Utah mandate circumstances that require 

the implementation of anaerobic digestion for waste management.  It is also possible 

that the pressures of urban encroachment and neighboring residents will force the 

adoption of anaerobic digestion to avoid lawsuits.  In either case, the small-scale 

farmers buying anaerobic digesters will not be profitable unless substantial subsidies are 

made available for adopting the digester.   

The pressures of urban encroachment on dairy farmers are eased when the 

community shares in the cost of urban encroachment through appropriate subsidies 
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that reflect the cost of reducing the negative externalities of dairy farming by the use of 

anaerobic digesters.  Adopting anaerobic digestion due to urbanization pressures is 

done at the discretion of the farmer.  The adoption of anaerobic digestion should not 

occur unless economic conditions are created through subsidization for the digester 

system to be feasible independently of the cumulative cash flows of the dairy and the 

artisan cheese production operations of an integrated farm operation. 

The adoption of anaerobic digestion can improve the sustainability of the farm.  

The farm’s economic sustainability is improved through coproduct revenue streams.  

The farm’s economic sustainability is also improved through reducing the risk of fees 

and tariffs from potential lawsuits and negative policies and regulations.   

Anaerobic digester systems improve the social and environmental sustainability 

of the farm by reducing the negative externalities caused by agriculture, primarily when 

a farm, in this case a dairy farm, is located in close proximity to an urban area.  It does 

this by improving the social acceptability of farms through reducing odors and also 

reducing the quantity of waste stored on the farm.  It provides a socially acceptable 

method of waste management, decreases air pollution (e.g., GHG) and decreases the 

probability of water pollution.  If the cost of making the farm more socially and 

environmentally sustainability is not shared with the community, then the farm will 

suffer from urban encroachment and the probability of the farm’s failure is increased.   

If the community wishes to maintain small-scale dairy farming as part of the 

landscape, it will need to consider subsidizing the adoption of an anaerobic digester for 
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such farms.  However, the level of subsidies should be determined on a case-by-case 

basis.  The subsidy should be adjusted to a level that does not entirely remove all 

financial responsibilities from the farmer but at the same time also makes the 

investment feasible for small-scale farmers.  The level of subsidy should be determined 

by the level of financial risk a particular operation can accept and the level of pressure 

from urban encroachment.  The subsidy level is influenced by the size of the farm, 

especially small-scale production, due to the economies of scale these operation lack 

but which are essential to the financial viability of unsubsidized anaerobic digesters.   

Farmers and community officials must work together to determine the amount 

of compensation needed to ease the pressures of urban encroachment on dairy farms 

and to prevent the loss of the culture and tradition that farming provides to 

communities in Utah.  By subsidizing the investment of anaerobic digester system by at 

least 35 percent of their initial investment cost, the sustainability of small-scale dairy 

farms in close proximity to urban areas in Utah will be improved. 
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