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 ABSTRACT  

 

Comparing Conventional and Noninvasive Monitoring Techniques for Assessing 

Cougar Population Size in the Southern Greater Yellowstone Ecosystem 

 

by 

 

 

Peter D. Alexander, Master of Science 

 

Utah State University, 2016 

 

 

Major Professor: Dr. Eric M. Gese 

Department: Wildland Resources 

 

 

 Cougars (Puma concolor) are difficult to census due to their large home ranges, 

low densities, and cryptic nature. The conventional “gold-standard” method for 

estimating cougar abundance entails the capture and radio-tagging of individuals in a 

study area in an attempt to acquire a direct enumeration of animals in the population. 

While this method provides an accurate abundance estimate, it is logistically challenging 

and prohibitively expensive. Noninvasive survey techniques may offer the ability to both 

accurately and inexpensively monitor cougar populations. While noninvasive techniques 

have been used on cougar populations, there remain questions on their accuracy and 

comparative efficacy. We estimated the density of a cougar population in Northwest 

Wyoming using direct enumeration, and used this estimate as a reference with which to 

evaluate the accuracy and cost-effectiveness of three types of noninvasive surveys 

performed between 2010 and 2014. The noninvasive methods included two annual mark-
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recapture sessions of: 1) remote camera trapping, 2) winter hair-collection transects, and 

3) scat detection dog surveys. 

We GPS tracked 13 adult cougars (males = 5, females = 8) over 3 annual periods (Sep 

2010 – Sep 2013). We used proportional home range overlap to determine density in a 

1,570 km2 area. The average density was 0.82 cougars/100 km2 (± 0.10 SD; n = 3 years). 

The remote camera surveys produced a mean density of 0.60 cougars/100 km2 (n = 2 

years; relative SD = 56.5%). The scat detection dog surveys produced an average density 

of 2.41 cougars/100 km2 (n = 2 years; relative SD = 12.6%). The winter transects failed 

to produce a sample size large enough for an abundance estimate. Due to the inclusion of 

non-adults in the scat sampling, and the fact that the reference estimate was essentially a 

minimum count of adults, we believe that the scat-based estimate was more accurate than 

the lower estimate produced by remote cameras. Additional analysis indicated that 

individual identification of cougars in photographs may not be reliable, challenging the 

validity of photo-based abundance estimates of cougars. On a cost-per-detection basis, 

scat detection dogs were the most cost effective method (scat detection dogs = $341; 

remote cameras = $3,241; winter transects = $7,627). 

(160 pages) 
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PUBLIC ABSTRACT 

 

Comparing Conventional and Noninvasive Monitoring Techniques for Assessing 

Cougar Population Size in the Southern Greater Yellowstone Ecosystem 

 

by 

 

 

Peter D. Alexander 

 

 

 Determining the abundance or density of wildlife populations is needed for 

informed decision-making by wildlife biologists. Cougars (Puma concolor), however, are 

a highly secretive species occurring at very low densities across the landscape, and thus 

their populations are difficult for biologists to accurately assess. The conventional, and 

most trusted, method entails physically trapping and radio-collaring as many cougars as 

possible in a population, and then performing a simple count to determine a minimum 

population size. While accurate, this method is prohibitively expensive, logistically 

challenging, and behaviorally disruptive to the study animal. Many noninvasive 

surveying techniques, such as camera trapping, have been proposed as alternatives for 

cougar populations, with the goal of providing accurate estimates of population size at a 

lower cost and with less impact on the study animal. These methods use detections of 

individual cougars in a mark-recapture framework, as opposed to a simple count, and 

have the benefit of being true, statistically rigorous estimates with confidence intervals. 

However, little research has been done to empirically verify the accuracy of these 

methods, or to determine their comparative cost-effectiveness. We compared the 

accuracy and cost-effectiveness of three types of noninvasive surveys applied on a 
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population of cougars in Northwest Wyoming. Between 2011 and 2014, we applied two 

surveys each of remote camera trapping, winter snow tracking, and scat detection dogs. 

To evaluate these methods, we estimated the density of the same cougar population using 

the conventional “capture-collar-count” method, and then used that estimate as a 

reference. Our research indicated that: 1) on a cost-per-detection basis, scat detection dog 

surveys were almost an order of magnitude less expensive the other methods; and 2) 

remote camera trapping may not be applicable to cougars due to the difficulty of 

distinguishing individual cougars in photographs. Our research should be valuable to 

research biologists, wildlife managers, or conservation entities responsible for monitoring 

cougar populations. 
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CHAPTER 1  

INTRODUCTION 

Several carnivore species have undergone dramatic contractions in their historic 

ranges due to habitat loss or habitat fragmentation (Laliberte and Ripple 2004), and there 

is a call for increased effort in carnivore conservation (Gittleman et al. 2001). Both the 

implementation and evaluation of any conservation efforts require accurate data on 

presence, abundance, and population trends. However, carnivores are generally wide-

ranging and secretive, and their population statuses are often difficult to assess (MacKay 

et al. 2008). Cougars (Puma concolor) are no exception: large home ranges, low 

densities, and a highly cryptic nature make them an especially challenging species to 

monitor (Beier and Cunningham 1996, Logan and Sweanor 2001, Choate et al. 2006). 

Conventional methods for monitoring cougar populations involve capture, tagging, and 

radio-collaring, followed by radio-tracking.  Location data can then be used in various 

approaches, ranging from simple enumeration (Cougar Management Guidelines Working 

Group 2005) to more complex home range analyses used to estimate density (McLellan 

1989, Cooley et al. 2009). These capture-based estimates are considered the “gold 

standard” method for accurately determining cougar abundance or density (Cougar 

Management Guidelines Working Group 2005). However, they are time-consuming, 

prohibitively expensive, and logistically challenging. Furthermore, these methods require 

physical capture and handling (sometimes entailing an exhaustive pursuit with trailing 

hounds), which can be behaviorally disruptive and potentially hazardous to the study 

animal.  Many state wildlife management agencies instead monitor cougar populations 
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with a low-cost framework that uses data from hunter harvests, known mortalities, and 

depredation events in conjunction with empirical knowledge specific to the area of 

interest. Although these harvest indices may provide valuable insight into general cougar 

population trends, they are affected by hunting effort and reporting rates, and do not 

provide a true population estimate (Beier and Cunningham 1996, Anderson and Lindzey 

2005, Wolfe et al. 2015). 

Noninvasive surveys may offer an accurate, low-cost alternative to the 

conventional methods outlined above. Data such as photographs from remote camera 

traps or DNA extracted from cougar scat may 1) be collected relatively cheaply and 

without directly interfering with the behavior of the study animal, and 2) provide the 

information needed for an accurate population estimate using a capture-mark-recapture 

(CMR) framework. Cougars, like many carnivores, may be ideal for noninvasive 

techniques due to traits such as territorial marking behaviors, inclination to respond to 

baited detectors due to curiosity, and unique track morphologies (Mackay et al. 2008). 

While noninvasive population monitoring techniques have been applied to cougar 

populations, there have not been any comprehensive studies in the past decade that have 

attempted to assess and compare the efficacy of several methods a single population. 

The goal of this project was to evaluate and compare the accuracy and financial 

feasibility of several noninvasive cougar population monitoring techniques. We evaluated 

the noninvasive methods using data from a long-term cougar ecology study conducted in 

the Southern Greater Yellowstone Ecosystem (the Teton Cougar Project); this study 

provided a radio-collared cougar population with a capture-based “gold standard” 

estimate of abundance. In the second chapter, we examine the “gold standard” 
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methodology. We review the literature, and identify the various sources of bias and 

ambiguity in this method. We pay special attention to issues that can be problematic 

when comparing capture-based cougar density estimates to noninvasively conducted 

estimates. We then develop a novel method for estimating density from capture data, and 

present density estimates for three years across two neighboring areas of differing cougar 

density. In the third chapter, we review the various noninvasive survey methods that have 

been applied to cougar populations, their potential benefits and shortcomings, and the 

available analysis methods used to determine population density. We apply three types of 

noninvasive surveys to the radio-collared population: scat detection dog surveys 

(Beckmann 1997, Long et al. 2008), winter track transects (Sawaya et al. 2011), and 

remote camera surveys (Kelly et al. 2008, Negrões et al. 2010). We use multiple analyses 

for each type of survey to estimate cougar density in the same two areas for which we 

calculated capture-based density. We then perform a cost-analysis of the three methods. 

In the fourth chapter, we summarize our research and draw conclusions, focusing on 

management implications. 
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CHAPTER 2  

AN ANALYSIS OF INVASIVE TECHNIQUES USED TO DETERMINE 

POPULATION DENSITY OF COUGARS 

ABSTRACT 

Determining population size and density of large carnivores is needed for 

informed decision-making by many conservation groups and wildlife management 

agencies. Many large carnivores, including cougars (Puma concolor), are cryptic, occur 

at low density, utilize large territories, and often occupy habitat characterized by dense 

cover and rugged terrain, making estimates of population size a logistical and economic 

challenge. Consequently, in most studies in North and South America, estimates of 

cougar population density often do not use conventional, statistically-based population 

estimation techniques, but instead employ direct census methods using physical capture, 

radio-tracking, and, essentially, enumeration of known individuals in a defined area. In 

this paper, we examined the sources of bias and uncertainty associated with various 

telemetry-derived techniques for enumerating the number of cougars in a defined area. 

Using various methods to address these issues, we estimated the density of a population 

of cougars in northwest Wyoming. Our methods included the incorporation of remote 

camera data, and a novel method for delineating the spatial denominator used in the 

density calculation. We GPS tracked 13 adult cougars (males = 5, females = 8) over 3 

annual periods (Sep 2010 – Sep 2013). We delineated two effective trapping areas within 

the study area to use for the spatial component of the density calculations. We used 

proportional home range overlap to determine the abundance within the effective 
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trapping areas. The average cougar densities for the two areas, and the combined area, 

were 0.27, 1.07, 0.82 cougars/100 km2, respectively. Of note, the remote cameras 

detected uncollared cougars that would have been otherwise unaccounted for. Inclusion 

of these detections reduced the accuracy of our density estimates by an average of 15.3%, 

and highlighted the potential shortcomings of purported “saturation” trapping. Our 

method for delineating the area of density was particularly applicable to a study area with 

spatially varying cougar density that included areas of relatively low density, 

underscoring the importance of thoughtful design when estimating animal population 

density. This is especially relevant to large carnivore management, given current issues of 

range contraction and expansion. 

INTRODUCTION 

Many carnivore species have undergone dramatic contractions in their historic 

ranges due to habitat loss or fragmentation, and direct human persecution (Laliberte and 

Ripple 2004), resulting in a greater need for expanded efforts in carnivore conservation 

(Gittleman et al. 2001). In recent decades, however, some carnivores have recovered at 

local range levels; examples of such recolonizations include some populations of grizzly 

bears Ursus arctos (Pyare et al. 2004) and cougars Puma concolor (Thompson and Jenks 

2010). Reliable abundance estimates of large carnivores are necessary for identifying 

areas of extirpation or recolonization, and vital for the implementation and evaluation of 

conservation and management efforts. However, estimating abundance of carnivores is 

often hampered by issues that may be less common with other animal taxa (Boitani and 

Powell 2012). For example, cougars, as with many other large carnivores, are a cryptic, 
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sparsely occurring species utilizing large territories often characterized by dense cover 

and rugged terrain (Pierce and Bleich 2003), and thus do not lend themselves to 

conventional wildlife population estimation techniques such as point counts or aerial 

surveys. Classic capture-mark-recapture methods (CMR) or the Lincoln-Peterson Method 

(Seber 1982), are not necessarily appropriate, since these models require several 

assumptions that are rarely met in a cougar population. For example, cougars exhibit 

year-round potential for breeding and dispersal, thus violating the assumption of 

population closure. Capture probability likely varies between individual cougars and 

between subsequent captures of the same cougar, violating the assumption of equal 

catchability (Logan and Sweanor 2001, Amstrup et al. 2005). More sophisticated CMR 

models relaxing assumptions for population closure (Jolly 1965, Seber 1965) may be 

inappropriate given the assumptions that are violated due to the extended time period 

required for trapping and tagging cougars. Although recent developments in CMR 

models and novel methods of detection (such as genetic sampling or camera trapping) 

may resolve these issues, the most widely accepted method for estimating cougar 

population size remains direct counts of known individuals (Cougar Management 

Guidelines Working Group 2005). Indeed, the accepted “gold standard” method for 

estimating cougar density is derived from long-term radio-telemetry studies that attempt 

to radio-collar all or most resident cougars, followed by monitoring of individuals 

(Cougar Management Guidelines Working Group 2005). These types of studies allow 

researchers to identify residents versus transients, monitor births, deaths, immigrations 

and emigrations, and produce an informed enumeration of known resident cougars in a 

given area (e.g., Seidensticker and Hornocker 1973, Ross and Jalkotzy 1992, Spreadbury 
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et al. 1996). Despite the straightforwardness of this method, there are issues related to 

capture effort, spatial scale and certain subjective assumptions that researchers must 

decide (e.g., assigning demographic class). In this paper, we outline the various 

telemetry-derived census methods used in the published literature, including techniques 

used to reduce bias and subjectivity. One important caveat is that almost all published 

density estimates for cougars were calculated for the purposes of multi-seasonal 

demographic analysis within a single study area, and, as most studies acknowledge, are 

not especially useful for direct comparisons with other studies’ population estimates or 

other population estimation methods. After outlining the various advantages and 

disadvantages of the different methodologies, we present a method by which we seek to 

minimize the identified biases and uncertainties. Although our methodology would not 

necessarily aid in direct comparisons with other studies’ density estimates, our goal was 

to allow for comparisons with results from statistically-based noninvasive population 

estimators surveying the same study area. 

Calculating Density 

Often cougar population estimates, especially from earlier cougar studies, are 

simple densities calculated by dividing the count of known marked resident cougars, N, 

by the study area size, A (e.g., Seidensticker and Hornocker 1973, Ross and Jalkotzy 

1992, Spreadbury et al. 1996, Choate et al. 2006). While these measures of density 

appear to be inherently simple, the two variables in this ratio can nonetheless be difficult 

to precisely define and are susceptible to different biases related to capture effort, spatial 

extent, and natural spatial and temporal variation of cougar densities across a landscape. 

In the case of the numerator N, few cougar studies can confidently report to have 
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captured and counted all resident cougars in an area, and the raw count of marked 

cougars is generally considered a minimum known estimate or an underestimate (e.g., 

Neal et al. 1987, Franklin et al. 1999, Logan and Sweanor 2001, Choate et al. 2006). The 

denominator, A, can also be difficult to define objectively, and is prone to biases due to 

spatial inconsistencies and extrapolation issues (Smallwood 1997, Rinehart et al. 2014). 

Hereafter we refer to the spatial area used in calculating density as the “area divisor”, so 

as to avoid confusion in cases when it is not identical to the size of the study area. 

Demographic Class 

Depending on study scope, independent subadult cougars or dependent juveniles 

(i.e., kittens) may or may not be included in population estimates. Choate et al. (2006) 

included subadults in their estimate, under the assumption these individuals were 

potentially available for hunter harvest. This is empirically true in some areas; in 

Wyoming, for example, 49% of cougar harvest across the state (2010-2012) was 

classified as subadult (Thompson 2013). Furthermore, subadults play an ecological role 

equal or similar to resident adults (Knopff et al. 2010), and inclusion of subadults in 

population estimates may be incorporated into management objectives. However, 

uncertainty of residency status, such as in instances when individuals are detected but not 

captured (and subsequently marked and tracked) may introduce problems (see below). 

Studies may not have the capacity for, or interest in, marking and monitoring cougar 

kittens. Maternal status of individual females in a population has important ecological 

implications by influencing kill rate (Knopff et al. 2010) and population growth. 

However, kitten survival rates are often low (Quigley and Hornocker 2010), and unless 
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kittens are rigorously monitored until they reach subadult or adult status, kitten counts 

may not necessarily contribute to a useful population estimate. 

Unmonitored Individuals 

Even rigorous detection and capture efforts are unlikely to radio-collar all cougars 

within a study area. Often, but not necessarily, this shortcoming is confirmed by 

detecting, but failing to capture, unmarked cougars within the study area. These 

unmonitored individuals could either be residents that were missed in capture efforts, or 

transients moving through a study area. The difficulty thus arises on whether to 

incorporate these detections into a population estimate despite the potential for 

misattributing residency status or misidentifying an individual, thus resulting in double-

counting single individuals or under-counting multiple individuals. Hereafter, 

“unmonitored residents” will refer to these detected, but uncollared and untracked, 

cougars. 

 Detections of unmonitored residents can be collected from multiple sources, such 

as mortalities from vehicle collisions or hunter harvest, track/spoor data, remote cameras, 

or other noninvasively collected data (e.g. Choate et al. 2006, Kelly et al. 2008, Sawaya 

et al. 2011). At a minimum, collecting these various types of detections is useful for 

researchers’ assessment of occupancy, movement patterns, and general insights into the 

population. However, the inability to reconcile different detection types (e.g., comparing 

a genetic sample and a camera-trap photograph) may result in a dataset that is less than 

the sum of its parts, and researchers may be limited in their use of these data. 

 Reported mortalities are useful as there is no risk of double counting a single 

individual, although transient status cannot necessarily be verified. In order to prevent 
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double counting, some studies (e.g., Robinson et al. 2008; Cooley et al. 2009a, b) limited 

inclusion of unmonitored residents strictly to reported mortalities. Other studies have 

accepted more ambiguous detections such as snow track detections: Choate et al. (2006), 

for example, assumed that same-sexed tracks repeatedly encountered in a watershed were 

from a single resident individual. While accurately attributing tracks to individuals is 

possible with rigorous field techniques and discriminant analysis (Lewison et al. 2001), 

we found no studies that used these methods and the accuracy of such data remains 

uncertain. This issue may be exacerbated in certain study areas where relatively localized 

“hot spots” of cougar presence occur, and detections of multiple individuals of the same 

sex or age is highly probable. 

 Finally, unmonitored residents (as well as completely undetected resident 

cougars) that are missed by initial capture efforts are sometimes “backlogged” if captured 

in subsequent seasons. Once a cougar was captured and the sex and age was determined, 

the previous enumerations would be adjusted under the assumption that a male likely 

immigrated at a certain age (usually 21 months) and a female cougar was likely a native 

to the area (Neal et al. 1987, Logan and Sweanor 2001, Choate et al. 2006, Cooley et al. 

2009a). 

 Inclusion of unmonitored individuals in a census creates potential for errors and 

the possibility of generating a minimum density estimate that is greater than the true 

density. Despite being prone to error, inclusion of these data sources may nonetheless be 

preferable to the alternative of simply ignoring these individuals, as long as the issues 

outlined above are carefully considered. 
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Proportional Residency 

One technique used for animals with large home ranges is to calculate the 

proportional residency within the boundary of a defined area (i.e., the area divisor), with 

the intent of reducing biases associated with large, unevenly monitored populations and 

increase the precision of the population estimate. This has been done with other large 

carnivores such as grizzly bears (e.g. McLellan 1989) and leopards (Panthera pardus) 

(e.g. Balme et al. 2009), as well as cougars (e.g. Neal et al. 1987; Hopkins and Barrett 

1991; Cooley et al. 2009a, b; Elbroch and Wittmer 2012; Allen 2014). Under this 

method, radio-collared animals contribute the proportion of their home range falling 

within the area divisor to the total count. For example, an animal with 45% of its home 

range overlapping the area divisor would contribute 0.45 individuals to the total count, 

and only animals with their entire home range contained within the area would count as a 

“whole” animal (Fig. 2.1). One benefit of this method is that it allows for the inclusion of 

individuals with home ranges extending beyond the study area or into areas with less 

frequent monitoring, without making any assumptions about the population density in 

those distal areas. Generally, this method assumes that all individuals occurring within 

the area divisor are captured. If unmonitored cougars in the area divisor are detected and 

assumed to be resident, researchers must either ignore this information or assign an 

unmeasured proportional residency. Cooley et al. (2009b) assigned the mean proportional 

residency of all radio-collared cougars to these unmonitored individuals. 

 In recent decades, home range analysis has improved markedly in precision and 

sophistication (Cagnacci et al. 2010, Kie et al. 2010). With modern GPS collars, the 

underlying location data for home range delineation has increased in accuracy and 
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collection rate. Besides allowing for a greater number of more accurate relocations, GPS 

collars can reduce bias in home range estimates for wide-ranging animals such as cougars 

(Kie et al. 2010). For example, older studies that triangulated VHF locations from the 

ground may have overestimated home range sizes for animals distal from human access 

points due to telemetry error (Withey et al. 2001). This bias in home range shape would 

potentially translate to a biased measure of proportional residency, depending on the 

location of VHF triangulation points in relation to the area divisor. Improved location 

data have in turn improved the precision of home range delineation with more 

sophisticated home range estimators such as kernel density estimation (KDE; Worton 

1989) or Brownian Bridge movement models (BBMM; Bullard 1991).  Ostensibly, 

measures of proportional residency would not be greatly affected by the precision of a 

home range estimator, since the proportionality of spatial overlap on the area divisor 

should remain constant between different home range estimators (provided that relocation 

data are spatially unbiased). However, the modern estimators listed above are likely more 

appropriate than traditional minimum convex polygons, since they tend to better exclude 

space unused by animals and reduce the potential for mis-delineating a home range inside 

or outside the area divisor (Walter et al. 2009). See Figure 2.2 for a comparison of 

various home range delineations and corresponding proportional overlap values for a 

hypothetical area divisor. 

Delineating the Area Divisor 

Objectively delineating the spatial area over which animal density is calculated 

can be complicated by several factors. The predefined study area can be used to 

determine the area divisor, but a study area is often defined wholly or partially by 
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political boundaries or other subjectively defined boundaries, and may not be biologically 

appropriate to the study animal or well-suited to animal detection and capture efforts. 

Except in rare cases such as “island” populations of cougars (e.g., Logan and Sweanor 

2001, Bacon 2010), most cougar study areas only encompass a fragment of the spatial 

extent of the population being studied. Calculating the proportional residency may help 

reduce bias related to uneven monitoring across expansive home ranges, but may not 

address issues related to extrapolating density estimates across the greater landscape. For 

example, researchers may “go for the low hanging fruit” by focusing detection and 

capture efforts in areas with high quality cougar habitat relative to the surrounding 

landscape. Consequently, in extrapolating the estimated density to the larger landscape, 

there is a potential for overestimating density (i.e., sampling frame error; Smallwood and 

Schonewald 1996, Rinehart et al. 2014). Conversely, if areas with low detection effort are 

included in the area divisor, there is the potential to underestimate density due to the 

failure to detect resident cougars. 

 There are two techniques commonly cited by cougar studies for delineating the 

area divisor beyond simply using the predefined study area. One method reduces capture 

effort bias through the use of a “trapping area” (McLellan 1989). McLellan (1989) 

estimated grizzly bear density using proportional residency within an area defined by the 

trapping effort (i.e., where the majority of trapping sites were located), as opposed to the 

extent of the entire study area. A second technique attempts to reduce the subjectivity of 

delineating the area divisor by defining boundaries a posteriori around aggregate cougar 

locations. For example, Hopkins and Barrett (1991) proposed an area divisor based on an 

average of a weekly minimum convex polygon enclosing all radio-collared cougars’ 
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locations. More recently, studies have used a composite of cougar home ranges (defined 

by KDEs) to delineate the area (e.g., Cooley et al. 2009a, b; Elbroch and Wittmer 2012). 

These latter methods could be described as “letting the study animal decide”, which 

presumably reduces the bias from subjectively defining the area divisor boundaries. 

However, unless detection and trapping efforts are equivalent across the aggregate home 

ranges, there is the probability of telemetered cougar home ranges extending into areas 

that were not as thoroughly trapped, and where there is a greater chance of undetected 

cougars occurring (Fig. 2.3). Elbroch and Wittmer (2012) essentially combined the two 

techniques by first identifying an area where they believed they had captured all resident 

cougars (analogous to a trapping area), then aggregated the cougar KDE home ranges that 

fell completely within that area. While this method may reduce bias associated with 

uneven detection and capture effort, telemetered cougar home ranges, as a matter of 

course, would exclude areas where cougars were not detected despite equal effort (Fig. 

2.3). Limiting the density estimate exclusively to areas occupied by the study animal may 

not generate a realistic pattern of abundance in the study area as a whole (Smallwood 

1999). For example, certain parts of a study area may have lower cougar abundance 

despite apparent habitat quality. This could be due to factors such as differing hunting 

pressure, human disturbance, prey abundance, or interspecific competition with other 

large carnivores such as wolves (Kortello et al. 2007, Bartnick et al. 2013, Lendrum et al. 

2014). 
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STUDY AREA 

The greater study area encompassed 5,120 km2, including much of the Jackson 

Hole basin and adjacent lands in northwest Wyoming. The area was delineated by the 

Teton Range in Grand Teton National Park (GTNP) on the west, the Gros Ventre Range 

on the east, the Teton Wilderness Area on the north, and on the south by Wyoming state 

highway 22 and the Cache Creek drainage.  Most lands within the study area were 

administered by the U.S. Forest Service (Bridger-Teton National Forest), the National 

Park Service (Grand Teton National Park), and U. S. Fish and Wildlife Service (National 

Elk Refuge). A small percentage (~ 5%) was comprised of privately owned ranches or 

residential areas (Fig. 2.4). Elevations in the study area ranged from ~1,800 m in the 

Jackson Hole basin to >3,600 m in the mountains.  The area was characterized by short, 

cool summers and long winters with frequent snowstorms.  Average monthly temperature 

minimums and maximums ranged from -17.3°C and -3.4°C in January, to 5.3°C and 

26.9°C in July. Precipitation occurred mostly as snow, and mean maximum snow depths 

ranged from 100 cm at lower elevations to >245 cm at intermediate elevations of 2,000 – 

2,400 m (Grand Teton National Park 2015). 

Plant communities included cottonwood (Populus angustifolia) riparian zones 

interspersed by sagebrush (Artemisia spp.) uplands at lower elevations.  At intermediate 

elevations, aspen (P. tremuloides), Douglas-fir (Pseudotsuga menziesii), and lodgepole 

pine (Pinus contorta) were the dominant species.  Spruce (Picea engelmannii) and fir 

(Abies lasiocarpa) were the primary tree species at the higher elevations (Marston and 

Anderson 1991, Knight 1996). 
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Primary prey species available included mule deer (Odocoileus hemionus), elk 

(Cervus elaphus), white-tailed deer (O. virginianus), moose (Alces alces), bighorn sheep 

(Ovis canadensis), and various small to medium sized mammal and avian species.  The 

study area also included all historically occurring large carnivores: grizzly bears (Ursus 

arctos), black bears (U. americanus), and gray wolves (Canis lupus), as well as several 

mesocarnivores, including coyotes (Canis latrans) and red foxes (Vulpes vulpes), and 

possibly two other sympatric felids: bobcats (Lynx rufus) and lynx (Lynx canadensis). 

METHODS 

Cougar Capture and Radio-collaring 

Cougar capture efforts were focused in two areas within the greater study area: 

the Gros Ventre River and Buffalo Valley drainages (Fig. 2.5); capture efforts in these 

areas were used to define the area divisors in order to improve the precision of our 

density estimates, as described above. We captured and radio-collared cougars primarily 

during winter months (November to April) when snow cover facilitated tracking and 

enabled researchers to identify cougar presence. Density estimates were derived from 

radio-collars deployed between 2010 and 2014, although some additional analysis 

utilized telemetry data from as early as 2004. After snowfall events, predetermined 

transects were surveyed on foot, truck or snowmobile to search for cougar tracks. 

Transects were selected based on topographic features characteristic of cougar habitat or 

travel routes, and ease of access for trackers. Once we located tracks and determined 

them to be from an unknown adult cougar without very young kittens (≤4 months old), 

we typically used trailing hounds to pursue the cougar into a tree or rocky outcrops where 
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we could safely approach and immobilize the cougar following procedures outlined by 

Sikes and Gannon (2011), Quigley (2000), and the Jackson Institutional Animal Care and 

Use Committee (Protocol 027-10EGDBS-060210). Occasionally circumstances allowed 

for a walk-in type of cage trap to be used (Tru-Catch Traps, Belle Fourche, South Dakota, 

USA), wherein bait such as road-killed deer was used to lure the cougar. We initially 

administered ketamine at 4.0 mg/kg, followed by medetomidine at 0.07 mg/kg. In the 

case of “treed” cougars, we initially administered the ketamine dose via a CO2 powered 

dart-gun (Dan Inject North America, Fort Collins, Colorado, USA). We then climbed the 

tree and used rope to hobble and lower the semi-immobilized cougar to the ground, 

where upon the medetomidine dose was hand-injected. Once fully immobilized, the 

cougar’s heart rate, temperature, and respiratory rate were monitored every 5 minutes. 

We collected genetic samples (hair and tissue), body measurements, and estimated age 

using tooth condition (Heffelfinger 2010) and a gum line recession metric (Laundre et al. 

2000). We fitted cougars with GPS collars (Lotek, Newmarket, Ontario, Canada; 

Northstar, King George, Virginia, USA; Televilt, Bandygatan, Sweden; Telonics, Mesa, 

Arizona, USA; Vectronics, Berlin, Germany), programmed to collect locations between 4 

and 10 times per day. After animal processing was completed, and sufficient time had 

elapsed to allow for the metabolism of the ketamine (~60 minutes), we administered 

Atipamezole at 0.375 mg/kg to reverse the effects of the medetomidine.  We monitored 

cougars during recovery until they were able to safely depart the area on their own, 

typically 5 – 15 minutes after the reversal drug was administered. 
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Density Estimate 

We used GPS collar data and proportional residency to estimate the minimum 

density of cougars in the area divisor as defined by trapping efforts (McLellan 1989), and 

amended that minimum density with other sources of cougar detections, including remote 

camera detections from a static camera trapping array and remote video detections from 

cameras placed at cougar prey-sites. Although data was available for dependent kittens, 

we limited our enumeration to independent, non-transient adults and subadults, as this 

was more comparable to other density estimates. We chose to use proportional residency 

in an area divisor defined by trapping effort in order to reduce bias created by uneven 

capture effort across the greater study area. We did not delineate sampling area with 

aggregate home ranges (Cooley et al. 2009a, b), as we believed the areas of trapping 

effort better represented the study area as a whole, including areas of apparently suitable 

cougar habitat that had low or zero cougar density, based on the very low detection rates 

of cougars during capture efforts, remote camera surveys, and scat detection dog surveys 

(Chapter 3). 

 We delineated the area divisor based on where the majority of detection and 

capture effort occurred, with the exception of replacing radio-collars or opportunistic 

captures that occasionally occurred outside of this area. We based this boundary around 

the winter transects used by capture teams, and which were rarely or never crossed by 

unknown cougars by the conclusion of a capture season. While McLellan (1989) used a 

minimum convex polygon around point locations of bear trapping stations, our “trapping 

stations” were defined by the 2-dimensional snow transects. To represent the effective 

trapping area of the transects, we buffered the transects by the average female home 
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range radius (analogous to the commonly used  mean-maximum-distance-moved metric) 

during winter trapping months, calculated from all GPS collar data spanning the history 

of the study (Fig.2.2). Home ranges were defined by 95% KDE using the plug-in 

bandwidth (see below). We defined the resulting polygon as a space in which any or 

almost any resident cougar would be detected, captured, and radio-collared. This method 

allowed for a more systematic area divisor than the composite home range method (e.g., 

Cooley et al. 2009a, b; Elbroch and Wittmer 2012; Allen et al. 2015), which gave a less 

biased density estimate across the whole study area (including areas with very low 

density); this method also allowed for the comparison of results from alternative density 

estimators with spatially corresponding extents (i.e., noninvasive sampling and 

population estimators; Chapter 3). 

 Cougar densities were calculated separately and together for the Buffalo Valley 

and the Gros Ventre drainages, for the years 2011 through 2013 (years were defined as 

September 1 to August 30th of the following year). All spatial analysis was done in R (R 

Version 3.0, www.r-project.org, accessed 10 Oct 2013) and Geospatial Modeling 

Environment (Geospatial Modeling Environment Version 0.7.2.0, 

http://www.spatialecology.com/gme, accessed 31 Aug 2012), with visualization of 

processes implemented in ArcMap 10.2 (Environmental Systems Resource Institute 

2013). We delineated home ranges in R with 95% KDEs using the plug-in method for 

bandwidth selection (Jones et al. 1996). This was performed using the adehabitat package 

(Calenge 2011) and the ks package (Duong 2014), as outlined by Walter and Fischer 

(2015). We also used the R packages maptools (Bivand and Lewin-Koh 2014), rgeos 

(Bivand and Rundel 2011), and shapefiles (Stabler 2014) to build trapping buffers and 
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calculate proportional overlap of the resulting polygons. Densities were scaled to 

cougars/100 km2. 

Appropriateness of trapping buffer.— One critical assumption behind our 

selection of the winter trapping buffer as the area divisor was that most or all cougars that 

used the space within the buffer could be detected and captured from the winter trapping 

transects. However, a hypothetical cougar home range could have potentially overlapped 

the trapping buffer, while failing to intersect the transect line (thus preventing the cougar 

from being detected and captured), resulting in an underestimation of cougar density. We 

tested our assumption that the winter trapping transects were adequate in transecting the 

home ranges of cougars that were resident in the area divisor with a resource selection 

function (RSF; Manly et al. 2002). We constructed the RSF under a use-availability 

framework using the R package ResourceSelection (Lele et al. 2013) to compare 

available locations to radio-collared cougar winter locations within the winter trapping 

buffer. We note that these models were not intended to test any underlying ecological 

process, but only to test if there was evidence of cougars avoiding the designated 

transects. 

Unmonitored Individuals  

We followed protocols by  Neal et al. (1987), Logan and Sweanor (2001), Choate 

et al. (2006), and Cooley et al. (2009a) to incorporate detections of unmonitored cougars 

into the yearly enumerations when ≥2 detections could be confidently attributed to a 

single non-transient individual. These protocols also allowed for “backlogging” the 

enumerations in cases when individuals were captured in subsequent years and, 

depending on age and sex, were likely present in previous years. Detections were 
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primarily collected from remote cameras placed within or adjacent to the trapping area. 

Remote camera detections were collected from two sources: remote video cameras placed 

at cougar prey-sites, and remote camera stations setup with scent-lure.  The video data 

was generated by a concurrent study within our study area examining cougar foraging 

behavior using remote video cameras (Bushnell Trophy Cam HD Max, Bushnell Outdoor 

Products, Overland Park, Kansas, USA) placed at cougar prey-sites identified by GPS 

clusters (Anderson and Lindzey 2003). GPS collar data was transmitted via satellite 2 to 

6 times per day, allowing researchers to identify and visit prey-sites to install cameras. 

Generally this could be done within the first 48 hours after a kill, often before the cougar 

had consumed or abandoned a kill. The video data indicated that prey-sites were 

occasionally visited by cougars other than the individual from which the prey-site was 

detected, including uncollared individuals. Uncollared cougars were also detected by 

means of an array of 55 remote camera stations, split between the Gros Ventre and 

Buffalo Valley drainages. Stations were operational from June to September of 2012 and 

2013. The majority of camera stations (n = 43) used a non-reward scent lure comprised of 

aged cattle blood; the additional sites (n = 12) used a cologne based “curiosity” lure and 

were placed along high-use trails where we were restricted from using the blood-based 

lure (see Chapter 3 for more information on the remote camera station study design). We 

identified and distinguished individual cougars in photographs and videos based on 

artificial tags, physical features (i.e., kinked tails, facial features, or size), and 

spatial/temporal distance between detections. Unmonitored cougars were only included in 

the enumeration when multiple detections could be confidently attributed to the same 

individual, indicating non-transient status. We also included detections from hunter 
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harvest and other known mortalities of unmonitored adult cougars. However, we note that 

hunting pressure was relatively low in the study area. The mean harvest rate for the 6,434 

km2 management area (Hunt Area 2) in which the study area was located was 2.0 cougars 

per year between 2009 and 2013 (Thompson 2010, 2013; Clapp 2014). Detections only 

included hunter harvest mortalities that occurred within the Buffalo Valley and Gros 

Ventre drainages, and did not include subadults since non-transient status could not be 

verified (except in cases when residency could be backed up by other sources of 

detection). 

We backlogged newly radio-collared or detected cougars to previous seasons 

following protocols of Logan and Sweanor (2001), Robinson et al. (2008), and Cooley et 

al. (2009a), which assumed that males immigrated at 21 months and females were native 

to the study area. Proportional residency was unknown; we therefore assigned either the 

mean proportion of all radio-collared cougars of the same sex, or, if the cougar was 

captured in subsequent seasons, back-logged that individual’s proportional residency or 

mean proportional residency (if tracked for multiple years).  

Percent accuracy.— We estimated capture success using the percent accuracy 

metric developed by Logan and Sweanor (2001): 

 

PA=[1-BLyear i/(BLyear i+Cyear i)]x100 

where BL is the number of backlogged individuals for year i, and C is the number 

actually tracked and enumerated. We also calculated a modified version of this equation 

that used the proportional residency values instead of the whole number enumerations 

used in the original equation.  
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RESULTS 

Capture, Tracking and Home Range Delineation 

We GPS tracked 13 individual adult cougars over the course of the study from 

September 2011 to August 2014. The trapping events in which these individuals were 

captured and radio-collared occurred between the winters of 2007 and 2014. Trapping 

effort (as expressed in km transected) was only quantified in 2012 and 2013; mean effort 

was 684.5 km (± 197.9 SD, n = 2). We note that all years were similar in capture effort, 

and used the same trapping transects (Table 2.1). The GPS tracked individuals included 5 

males and 8 females; dependent kittens were also marked but not included in this 

analysis. Excluding recaptures or captures of juveniles that were aided by radio-

telemetry, we performed 12 “blind captures” for 11 of the individuals which were 

initiated by track detection along the snow transects. All but one of these were detected 

on the trapping transects. The GPS location data was collected and divided into 3 annual 

time periods covering September 1 – August 30. We calculated annual home ranges for 7, 

8, and 8 individual cougars for each year (2011-2013), respectively.  

 Mean annual home range size for male cougars (weighted by individual) ranged 

from 223.9 km2 to 538.6 km2 (n = 5, 𝑥 ̅= 369.43 ± 134.9 SD). Mean annual home range 

size for female cougars ranged from 67.3 km2 to 219.4 km2 (n = 8, 𝑥̅ = 148.1 ± 67.7 SD). 

One newly independent female (F097) collected 19 locations in 2012, and was excluded 

for that year. One male (M029) was fitted with an advanced radio-collar which collected 

6,270 locations in 2013. Excluding these outliers, quantity of yearly GPS relocations per 

individual ranged from 276 to 1,896 (𝑥̅ = 894.5 ± 445.0 SD). One additional individual 

(M085) was captured in the subsequent 2014 season and was determined to have been a 
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resident cougar in previous seasons based on age and remote camera data. When 

accounting for backlogged home ranges, there were 11, 10, and 9 calculated individual 

home ranges included in each year (2011-2013), respectively. 

Area Divisor Delineation 

To construct the area divisors, we first determined the average home range size 

during winter for females by examining all GPS-based winter home ranges collected as 

early as 2004. Home ranges were only included if the individual’s seasonal home range 

was comprised of a minimum of 50 relocations, as recommended by Seaman et al. 

(1999), and incorporated a minimum of 100 days. The mean female home range size, 

weighted by individual, during winter capture seasons (defined as November 15 to April 

15, based on average monthly snow coverage; Grand Teton National Park 2015) was 

102.4 km2 (± 86.8 SD, n = 9). The resulting geometric radius was 5.7 km, creating area 

divisors of 843.7 km2, 783.1 km2, and 1,570.3 km2 for the Gros Ventre, Buffalo Valley, 

and combined areas, respectively. There was a 5.6% overlap between the two areas. 

Unmonitored Cougars 

We enumerated an additional three unmonitored cougars into the density estimate. 

One female was captured but not tracked due to a failed radio-collar; this individual was 

first captured in early 2010 and visually sighted as late as early 2013. Using photo and 

video data from remote cameras, we identified a minimum of two additional unmonitored 

females that we determined to be adult residents. Outside of these unmonitored residents, 

the remote camera stations collected 17 and 20 detections of uncollared cougars in 2012 

and 2013, respectively. These detections were either determined to be individuals which 
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were captured in subsequent years (and were accordingly backlogged), or could not be 

confidently identified as resident individuals. The three unmonitored residents were 

assigned the average proportional residency value for the sex and area divisor in which 

they were detected. From 2011 through 2014, the Wyoming Game and Fish Department 

reported 10 cougar mortalities in the local management area (Hunt Area 2) due to hunter 

harvest (Thompson 2013, Clapp 2014, Wyoming Game and Fish Department 2015). 

Seven harvests were reported outside of the watersheds in which the area divisor was 

drawn.  The remaining three were radio-collared cougars that were already included in 

the enumeration. 

Density Estimates 

The mean unadjusted density estimates covering all three years were 0.13, 0.85 

and 0.50 cougars/100 km2 for the Buffalo Valley, Gros Ventre, and combined areas, 

respectively. When adjusting for uncollared residents, the estimates averaged 0.27, 1.07, 

0.82 cougars/100 km2 (Table 2.2). To examine the sensitivity of density estimates to 

buffer size, we also calculated density estimates using area divisors based on one 

standard deviation above and below the mean female winter home range (Table 2.3). 

Percent Accuracy.— We estimated capture success using Logan and Sweanor’s 

(2001) percent accuracy method. Before accounting for unmonitored residents (and only 

using radio-collared individuals for backlogging), percent accuracy averaged 74.2% 

across the trapping areas and years. When including uncollared individuals detected from 

video detections, accuracy averaged 58.9%. Similar numbers are reported when using 

proportional residency, averaged with and without the inclusion of unmonitored 

individuals (Table 2.4). 
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Appropriateness of trapping buffer.— Radio-collared cougars selected for lower 

elevations within the trapping buffer (β = -2.979, P < 0.001). Transects were generally 

located along drainage bottoms and lower elevations, suggesting that cougars, if present 

within the trapping buffer, would not avoid the lower elevations and therefore should be 

detectible along transects. We ran a second RSPF using distance-to-transect as an 

attribute, and found that radio-collared cougars selected against areas distal to the winter 

transects themselves (β = -1.364, P < 0.001), suggesting that cougars present within the 

winter trapping buffer should be detected at the transect. 

DISCUSSION 

Our density estimates for the Gros Ventre area were within the range of published 

estimates from other cougar studies in North America (Smallwood 1997, Quigley and 

Hornocker 2010). Our estimates for the Buffalo Valley area were below the lowest 

reported estimates that we found in the literature. The differences in density estimates 

between the Buffalo Valley and Gros Ventre areas were not especially surprising, given 

the former’s lower capture success, as well as the lower detection rates from other 

noninvasive sources of detection (i.e., remote camera and scat detection dog surveys; 

Chapter 3). Possibly, the differences in densities were due to intra-guild competition with 

recently recolonized wolves (Bartnick et al. 2013, Lendrum et al. 2014, Elbroch et al. 

2015) or grizzly bears in the Buffalo Valley area. However, given these carnivores’ large 

home ranges, low densities, and cryptic natures, research on their interactions is 

notoriously difficult (Kortello et al. 2007), and conclusive interpretation may remain 

dubious. 
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Our criteria for including unmonitored residents in the enumeration was more 

conservative than those used by Choate et al. (2006) and Robinson et al. (2008). For 

example, we ignored several remote camera detections that could not be verified as 

resident cougars. This was in part due to the difficulty in identifying individual cougars 

(see Chapter 3), and it was highly possible that some of these detected individual cougars 

were indeed residents. Thus, our estimates were much more likely to have been 

underestimates than overestimates of the true density. Using the Logan and Sweanor 

(2001) method, our mean percent accuracy metric (before adjusting for unmonitored 

residents) was 74.2%.  Logan and Sweanor (2001) reported an average percent accuracy 

of 87.4%, and Sawaya et al. (2011) reported an average of 90.5% accuracy. Critically, 

our average percent accuracy measure dropped 15.3% to 58.9% when including the 

unmonitored resident cougars detected by remote camera. This reduction in accuracy 

likely would not have been realized without the aid of remote cameras and remote video 

surveys, and highlights the difficulties and limitations of purported saturation trapping. 

While this thesis addresses certain biases in cougar trapping and telemetry-based density 

estimation, other biases in trapping effort and capture success likely remain, despite our 

methodology. Cougar trapping was a relatively protracted process with low capture rates. 

It was often dependent on several intangible and interactive factors including weather 

conditions, physical and political accessibility, and the experience and behavior of both 

researchers and trailing hounds. To some degree, it was an inherently opportunistic and 

haphazard process, and precisely quantifying effort was difficult. Nonetheless, we 

recommend careful recording of capture effort to minimize the uncertainties and 

subjectivity that could otherwise bias density estimates.  
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 In this paper, we argue that an area divisor was best defined by the effective 

trapping area, as opposed to the composite home range method used by Robinson et al. 

(2008), Cooley et al. (2009a, b), Elbroch and Wittmer (2012), and Allen et al. (2015). 

Our method reduces bias by 1) preserving the sampling frame near the trapping effort, 

whereas a composite home range could include areas distal from the sampling effort, 

especially given the large home ranges of cougars, and 2) including sampled areas with 

low or no cougar density, which would otherwise be excluded by a composite home 

range. We note the studies by Elbroch and Wittmer (2012) and Allen et al. (2015) 

specifically addressed the issue of uneven sampling effort by restricting the composite 

home range to an area of high trapping effort. However, the area divisors used by Elbroch 

and Wittmer (2012) and Allen et al. (2015) were 450 km2 and 402 km2, respectively. 

These spatial extents were on the lower range of Smallwood's (1997) review of published 

estimates of cougar density, which found a negative correlation between density 

estimates and study area (i.e., area divisor) size. Our combined area divisor was ~8% 

smaller than the mean size of 1,700 km2 as reported by Smallwood (1997). 

Furthermore, the composite home range method may be biased towards “hot spot” 

areas of cougar presence, and may not accurately reflect the natural variations in cougar 

density across a landscape. Indeed, Smallwood (1997) found that almost all published 

density estimates were likely focused at cougar aggregations (i.e., “hot spots”), and called 

for future studies to increase their spatial extent to areas beyond these aggregations. Our 

area divisors included such areas that had very low cougar density. Management or 

conservation efforts may choose to monitor such areas, especially when evaluating 

possible scenarios of recolonization or extirpation, and the methods used by the studies 
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listed above would not necessarily be appropriate. Furthermore, cougar populations at a 

regional scale likely exhibit spatially shifting aggregations over the course of several 

years (Smallwood 1997). As many carnivore populations are currently undergoing 

varying degrees of range contraction and expansion (Laliberte and Ripple 2004), regional 

population densities may be affected by poorly understood inter-specific interactions with 

other newly or formerly sympatric carnivore species (Kortello et al. 2007). Due to these 

issues, cougar density estimates that are spatially limited to high density areas (either due 

to purposely focusing research at population aggregations, or through the use of a 

composite home range based area divisor), may not be representative of the regional 

cougar population on a whole or its long-term trend. Researchers should carefully 

consider the spatial extent of detection or capture efforts and the potential biases related 

to variations in animal density across a landscape. 
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Table 2.1.Winter snow transects for the detection and capture of cougars, listed by mode 

of transect and trapping area, northwest Wyoming, 2011-2013. 

 Distance (km) % of total 

Mode of Transect 

  Foot 42.91 18.97% 

Snowmobile 136.77 60.48% 

Truck 46.46 20.55% 

Total 226.14 100.00% 

Trapping area 

  Buffalo Valley 123.10 54.44% 

Gros Ventre 103.04 45.56% 

Total 226.14 100.00% 

   



 

Table 2.2. Density estimates (cougars/100 km2) for a population of cougars in northwest Wyoming, 2011-2013, using enumeration 

and proportional residency. 

  Enumeration Adjusted enumeration Density Adjusted density 

2011 Buffalo Valley 1.60 2.72 0.20 0.34 

 Gros Ventre 7.91 9.77 0.94 1.16 

 Combined areas 9.26 11.90 0.59 0.91 

      

2012 Buffalo Valley 0.50 1.62 0.06 0.20 

 Gros Ventre 7.91 9.77 0.94 1.16 

 Combined areas 8.22 10.86 0.52 0.84 

      
2013 Buffalo Valley 0.90 2.02 0.11 0.25 

 Gros Ventre 5.68 7.55 0.67 0.90 

 Combined areas 6.25 8.89 0.40 0.72 

 

 

4
3
 

 



 

Table 2.3. Enumerations and density estimates of cougars in Northwest Wyoming, using area divisors based on one standard deviation 

above and below the mean female home range size. Area divisors were drawn by buffering capture transects with the geometric radius 

of the mean female home range. 

  

Adjusted enumeration Adjusted density 

  buffer -1 σ buffer +1 σ buffer -1 σ buffer +1 σ 

2011 Buffalo Valley 1.59 3.13 0.40 0.30 

 

Gros Ventre 6.99 10.68 1.80 0.94 

 

Combined areas 8.47 12.77 1.30 0.75 

  
    

2012 Buffalo Valley 0.90 1.97 0.22 0.19 

 

Gros Ventre 6.47 10.71 1.67 0.95 

 

Combined areas 7.26 11.74 1.14 0.70 

  
    

2013 Buffalo Valley 1.10 2.41 0.27 0.23 

 

Gros Ventre 5.14 8.34 1.33 0.74 

 

Combined areas 6.13 9.68 1.00 0.60 
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Table 2.4. Percent accuracy of density estimates of a cougar population in northwest Wyoming, 2011-2013 using the method 

described by Logan and Sweanor (2001), as well as a modified method using proportional residency. The “adjusted” values include 

residents that were detected, but not radio-collared and tracked. 

  
 

Percent accuracy Adjusted percent accuracy Difference 

Logan-Sweanor method    

2011 63.6% 50.0% 13.6% 

2012 70.0% 53.8% 16.2% 

2013 88.9% 72.7% 16.2% 

    
Proportional residency method 

 
2011 69.5% 54.1% 15.4% 

2012 77.8% 58.9% 18.9% 

2013 89.9% 70.2% 19.7% 

    

4
5
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Figure 2.1. Example of population density estimation using enumeration of proportional 

residency. This example represents 39% of a male home range (green), and 91% of a 

female home range (blue) intersecting an effective trapping area. In this scenario, the 

total density would be 1.3 animals in the trapping area. 
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Figure 2.2. Several home range delineations using location data from one female cougar, 

including Brownian Bridge Movement Model (BBMM), minimum convex polygon 

(MCP), and Kernel Density Estimation (KDE) using both “plugin” and “href” 

bandwidths. Home range delineations are overlaid on a hypothetical study area in which 

proportional residency values are calculated. 
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Figure 2.3. Hypothetical home ranges of telemetered cougars (green) and undetected 

cougars (red), demonstrating the potential to underestimate density when using a 

composite of telemetered home ranges as the area over which to calculate proportional 

residency and density. 
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Figure 2.4. The greater study area in northwest Wyoming, represented by a minimum 

convex polygon of all resident cougar locations over the history of the study. Also shown 

is the Wyoming Game and Fish regional cougar hunting area (Hunt Area 2), and the 

effective trapping areas created by buffering winter track transects by the mean female 

home range radius. 
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Figure 2.5. Effective cougar trapping areas around snow tracking transects in northwest 

Wyoming. These areas were delineated by buffering transects by average female home 

range radius, and used to define the area divisor, or area over which cougar density was 

calculated. 
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CHAPTER 3  

A COMPARISON OF NONINVASIVE TECHNIQUES USED TO DETERMINE 

POPULATION DENSITY OF COUGARS 

ABSTRACT 

Determining the size and trend of an animal population is fundamentally needed 

for making informed management decisions. Most carnivores, such as cougars (Puma 

concolor), occur at low densities, utilize large territories, and are behaviorally and 

morphologically cryptic making counting and estimation of population size extremely 

difficult. Consequently, most carnivores are unsuitable for conventional sight-based 

surveys. In addition, direct census methods involving physical capture and radio-collaring 

of the species are costly, invasive, and logistically challenging. Recent advances in 

noninvasive survey methods may offer solutions to these difficulties, but questions 

remain on their effectiveness and reliability. Our study objectives were to determine the 

density of a cougar population in northwest Wyoming using conventional capture and 

radio-collar methodologies, and then apply three noninvasive survey methods to the same 

population to evaluate and compare their accuracy and efficacy in determining population 

density. The noninvasive field methods included two annual sessions of 1) genetic mark-

recapture using cougar hair collected from snow transects, 2) photographic mark-

recapture using remote camera trapping, and 3) genetic mark-recapture using cougar scat 

collected with detection dogs. We used multiple types of analyses for each method, 

including conventional capture-mark-recapture (CMR) models, spatially explicit capture-

recapture (SECR) models, and capture with replacement (CAPWIRE) models. The 
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reference density estimate was based on the mean count of known resident adult cougars 

in the study area over multiple years (x̄ = 0.82 cougars/100 km2 ± 0.10 SD; n = 3 years). 

We found scat detection dogs produced more plausible density estimates, were less prone 

to violating mark—recapture assumptions, and were more cost-effective than the other 

survey methods examined. The hair collection transects failed to produce a sample size 

large enough for a CMR abundance estimate due to poor success in field collection and 

genotyping. Using a SECR framework, the remote camera surveys produced a mean 

density estimate of 0.60 cougars/100 km2 (n = 2 years; relative SD = 56.5%), and were on 

average 29.2% lower than the reference estimate. Only one of the two annual camera 

surveys produced results with confidence intervals encompassing the reference estimate. 

Additional analysis indicated that individual identification of cougars in photographs may 

not be reliable, essentially violating assumptions of tag loss and challenging the validity 

of photo-based population estimates of cougars. Surveys using a detection dog along 

transects followed by SECR analysis produced an average density of 2.41 cougars/100 

km2 (n = 2 years; relative SD = 12.6%). Both of the detection dog surveys produced 

confidence intervals encompassing the reference estimate, but density results were on 

average 71.8% greater than the reference estimate. Given the reference estimate was, in 

effect, a minimum count of known individuals, the detection dog estimates were more 

plausible than the underestimates produced by the remote camera surveys. The 

overestimation using scats found with detection dogs may be in part due to the detection 

of transient individuals which resulted in a high number of single detections; adjusting 

the timing of surveys may lessen this bias. The scat collection survey using detection 

dogs was also the most cost effective, with a cost-per-detection of $341. Remote camera 
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surveys and hair collection transects had cost-per-detection estimates of $3,241 and 

$7,627, respectively. Our results indicate that scat detection dog surveys are more cost 

effective and reliable than the other methods we examined, and we recommend this 

method for monitoring cougar populations. Furthermore, our findings suggest that scat 

detection dog surveys likewise may be the most feasible method for other wide ranging 

carnivores with a uniform pelage. 

INTRODUCTION 

Throughout the world, many carnivore populations are declining with several 

species becoming threatened or endangered due to a variety of reasons (Ripple et al. 

2014). Accurate data on animal presence, abundance and population trends are essential 

for informed and effective decisions in management and conservation. In North America, 

cougars (Puma concolor) can be particularly difficult to census due to their large home 

range sizes, low densities, and cryptic nature (Beier and Cunningham 1996, Logan and 

Sweanor 2001, Choate et al. 2006). The conventional invasive method for monitoring 

cougar populations involve capture and radio-collaring, followed by radio-tracking to 

verify residency (e.g. Logan and Sweanor 2001; Cooley et al. 2009a, b). The resulting 

data can then be used in various enumerative approaches, ranging from a simple count of 

known individuals to determine abundance, to more precise methods using home range 

analyses to determine proportional residency and density (McLellan 1989, Cooley et al. 

2009a; see Chapter 2). Although these methods have been regarded as the “gold 

standard” in cougar population estimation (Cougar Management Guidelines Working 

Group 2005), these methods are time-consuming, prohibitively expensive, and 
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logistically challenging. Furthermore, the process of live-capturing cougars requires 

direct physical contact, and can be potentially compromising to the natural behavior and 

health of the study animal (Proulx et al. 2012). A low-cost approach commonly used by 

wildlife managers is to monitor populations through data collected from hunter harvest 

reports and other known mortalities (Wolfe et al. 2016). While these data may provide 

general insights into population trends (Wolfe et al. 2016), they are affected by factors 

such as hunting effort and reporting rate, both of which may vary spatially and 

temporally in and between areas of interest (Beier and Cunningham 1996, Anderson and 

Lindzey 2005). Noninvasive survey techniques may offer opportunities to accurately 

monitor cougar population trends at a lower cost and with less impact on the study animal 

than conventional capture-based methods. Many carnivores are ideal for noninvasive 

methods due to traits such as territorial marking behaviors, inclination to respond to 

baited detectors due to curiosity, and scat or track morphologies unique to a species or 

individual (e.g. MacKay et al. 2008, Dempsey et al. 2014). The cougar’s large 

distribution and their role as an umbrella species (Beier 2009) make them an especially 

attractive candidate for a cost effective method of population monitoring. 

Published cougar abundance estimates using or attempting to use noninvasive 

methods include remote camera trapping surveys (Kelly et al. 2008, Negrões et al. 2010), 

DNA collection using winter track transects (Sawaya et al. 2011), hair-snares (Sawaya et 

al. 2011) or scat collection (Ernest et al. 2000, Davidson et al. 2014), and aerial winter 

track surveys (VanSickle and Lindzey 1991, Choate et al. 2006). Other methods include 

population indices using scent-lured track plates and ground-based winter tracking 

surveys (Choate et al. 2006). In our review of the literature, only the studies by Sawaya et 
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al. (2011) and Choate et al. (2006) were applied to marked and enumerated populations 

which allowed for a comparative evaluation of the noninvasive method; only the Choate 

et al. (2006) study attempted a comprehensive comparison of several noninvasive 

techniques. Based on our literature review, certain noninvasive detection techniques 

appeared impractical for cougars. For example, there has been little success in attracting 

cougars to noninvasive detectors using scent–based lures: Sawaya et al. (2011) and 

Choate et al. (2006) were unable to attract cougars to detectors (hair snares, and track 

plates, respectively) using various curiosity scents such as skunk or catnip oil. Long et al. 

(2003) also had little success attracting cougars to remote camera traps using similar 

lures; however, other studies using passive (i.e., non-baited) remote camera arrays 

reported practical detection rates (Kelly et al. 2008, Negrões et al. 2010). Similarly, 

passive genetic sampling also appeared feasible based on studies by Davidson et al. 

(2014) and Russell et al. (2012). Based on the studies above, we focused our research on 

capture-mark-recapture (CMR) analyses as opposed to population indices (Choate et al. 

2006).  

Noninvasive estimates of animal abundance or density are typically achieved 

using capture-mark-recapture based methods (also known as capture-recapture or mark-

recapture; hereafter referred to as capture-mark-recapture or CMR; Otis et al. 1978, Seber 

1982). There exists a wide variety of CMR-based models with different classes of 

statistics and various assumptions of the modeled population and trapping method, and 

relatively recent models have incorporated spatially-explicit data (e.g., Efford 2004, 

Royle et al. 2013). However, all CMR-based models are, in essence, based on 

refinements of the Lincoln-Peterson estimator (Kays and Slauson 2008). Traditionally, 
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CMR analyses require physically capturing animals, affixing a unique mark or tag before 

releasing them, and then carrying out subsequent captures to determine the probability of 

recapturing those individuals. Under a true noninvasive framework, individuals are not 

physically captured; they are instead effectively captured by some type of noninvasive 

encounter or remote detection, allowing for an already-existing and naturally-occurring 

mark to be recorded (hereafter we will use the terms “capture”, “encounter”, and “detect” 

interchangeably). These natural marks can be any physical or genotypic trait, as long as 

that trait is unique to the individual and reliably recognizable with whatever subsequent 

detection method is used. The resulting capture history of noninvasive captures and 

recaptures is recorded and analyzed similarly to traditional CMR methods (e.g., Karanth 

1995, Wasser et al. 2004). 

Among other model assumptions (Williams et al. 2002), conventional CMR 

analyses generally require population closure (i.e., the demographics of a surveyed 

population are assumed to remain constant during a sampling period with no births, 

deaths, immigration or emigration). Cougars, consequently, are particularly problematic 

due to their year-round potential for breeding and dispersal. Ostensibly, the observed 

increase in denning and dispersal during summer months (Logan and Sweanor 2010, 

Ruth et al. 2011), would aid in reducing closure issues when surveys are timed 

accordingly. However, this is somewhat negated since cougars often exhibit a semi-

independent stage before full independence and dispersal (Quigley and Hornocker 2010). 

Population closure issues are further exasperated in areas with high hunting mortality 

(e.g., Cooley et al. 2009a, b). Due to these uncertainties, survey methods using 
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temporally short sampling periods are generally recommended to reduce closure issues 

(Harihar et al. 2009). 

Further underpinning the uncertainties of closure is the problem of spatial scale. 

Spatial scale is a frequently cited issue for estimates of population density (Efford 2004). 

As with traditional trap arrays, the area that is effectively trapped around noninvasive 

detectors (i.e., remote cameras or sampling transects) is difficult to quantify (Wilson and 

Anderson 1985, Efford 2004, Royle et al. 2013). This can be considered an issue of 

population closure since individuals residing on the edge of a trapping grid are, 

effectively, temporary immigrants and emigrants (Kendall et al. 1997). This may be 

especially applicable to cougars due to their large home ranges. A commonly used 

method for determining the effective trapping area is to spatially buffer the trap array by 

some distance, under the assumption the buffer would include any animals that could be 

captured by the trapping array. Often, one half of the average home range diameter of the 

study animal was used to determine the buffer distance (Dice 1938, Karanth and Nichols 

1998). Radio-telemetry data may not be available for determining average home range 

size; it was instead determined by proxy using an individuals’ detection locations on the 

detector array to measure the mean maximum distance moved (MMDM; Wilson and 

Anderson 1985, Karanth and Nichols 1998). Jaguar research by Soisalo and Cavalcanti 

(2006) compared the MMDM derived from camera detections to home ranges determined 

from GPS telemetry, and reported the MMDM method significantly underestimated the 

distances actually moved by jaguars on the trapping array. Using the incorrect measure of 

MMDM created an underestimated effective trapping area, and thus inflated density 
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estimates (Soisalo and Cavalcanti 2006). This error in spatial extent could likely affect 

density estimates for other animals with large home ranges, including cougars. 

A relatively recent solution to the issue of spatial uncertainty in CMR models is 

spatially explicit capture-recapture models (SECR; Efford 2004, Royle et al. 2013). 

These models incorporate the locations of detections into the capture history, resulting in 

a spatially-explicit abundance estimate by which density is directly parameterized. In 

general, SECR models use a hierarchical framework to calculate the probability of 

detection as a function of the distance of an individual’s home range center to a detector 

(Efford 2004, Royle et al. 2013). SECR models have been employed for cougar density 

estimates in scat detection dog surveys (Davidson et al. 2014) and winter hair collection 

surveys (Russell et al. 2012). SECR is advantageous since it eliminates the ad hoc 

spatiality, thereby eliminating the need for a trap buffer and somewhat relaxes the 

assumption of population closure (Gardner et al. 2009). However, this relaxed 

assumption is likely more applicable to the temporary emigrant/immigrant scenario 

outlined above, as opposed to completely transient individuals that do not have a home 

range to be modeled. Therefore, a survey method with a brief sampling period is likely 

still prudent. 

Photographic Mark Recapture 

Automatically triggered cameras have been used in wildlife research since as 

early as the 1920s when biologists used them to document species presence and richness. 

However, their use was somewhat limited until the 1980s when relatively inexpensive 

camera units using motion sensor technology became available (Kays and Slauson 2008). 

In the 1990s, studies began using large arrays of motion sensor cameras to estimate 
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population size for difficult-to-observe species such as grizzlies (Ursus arctos; Mace et 

al. 1994) and tigers (Panthera tigris; Karanth 1995). Tigers, having a unique pelage for 

each individual, were ideal for modern CMR methods since individuals could be 

confidently identified in photographs without the need for artificial tags (Karanth 1995). 

An important assumption of CMR models is that once captured and tagged, individual 

animals are dependably recognized in subsequent captures (Seber 1982). Since tigers are 

naturally “marked”, photographic captures and subsequent re-captures of the same 

individual can be identified (Karanth 1995). However, there has been some debate as to 

whether species without obvious markings, such as cougars, can be reliably identified at 

the individual level in photographs, thereby respecting the identifiable marks assumption 

(Kays and Slauson 2008, Kelly et al. 2008). Some studies have estimated cougar 

population size using remote camera trapping without artificial marks (e.g., Kelly et al. 

2008, Negrões et al. 2010, Soria-Díaz et al. 2010). These studies argued that individual 

cougars could indeed be reliably identified by natural pelage markings, scarring, or 

morphology, and therefore qualified to perform CMR analysis. The work by Kelly et al. 

(2008) specifically examined the extent to which independent investigators agreed with 

one another when identifying individual cougars in remote camera images, and found 

72.9% average agreement between three independent investigator teams. However, 

research on individual identifiability of other animals with a uniform pelage (Yoshizaki et 

al. 2009, Oliveira-Santos et al. 2010) suggested that even small discrepancies in 

encounter histories created large variances in the resulting abundance estimate, and 

stressed caution if relying on this type of identifying mark. Furthermore, investigators 

may identify cougars using physical traits that, while distinctive, may not be unique (e.g., 
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a kinked tail or missing ear). Consequently, as a sample size increases, the likelihood of 

multiple cougars with the same trait would also increase (Harmsen 2006), thereby 

increasing the potential for misidentification. 

Genetic Mark Recapture 

Genetic CMR uses DNA as a captured individual’s identifying mark. In recent 

decades, technological advances in molecular biology and genetics have given 

researchers access to these methods at relatively low cost (Parker et al. 1998). 

Noninvasive sampling techniques typically focus on scat or hair that has been deposited 

by an animal, either naturally or at a predetermined sampling site using an attractant. 

Examples include using trained dogs to locate and collect grizzly bear scat (Wasser et al. 

2004), or setting up hair snares for black bears (U. americanus) and grizzly bears (Woods 

et al. 1999). Samples are then genotyped to determine the individual identity using 

polymerase chain reaction (PCR) and microsatellite analysis (Schwartz and Monfort 

2008), which are then incorporated in the capture history and subsequent CMR analysis. 

An important drawback to these methods is that DNA analysis cannot currently provide 

information on a detected individual’s age (Schwartz and Monfort 2008) or known fate 

(i.e., death or dispersal). Uncertainty in age is problematic for genetic surveys of cougar 

populations, since cougar offspring may remain dependent members of a family group as 

late as two years old (Quigley and Hornocker 2010). Consequently, a noninvasive genetic 

survey would not be able to differentiate members of a single family group from multiple 

independent adults. Depending on research focus and scope, distinguishing these age 

classes may not be important to management decisions, since female kill rate increases 

when caring for dependent young (Knopff et al. 2010), and thereby kittens can play an 



61 

 

 

influential ecological role. However, this uncertainty in age class likely biases CMR 

analyses due to heterogeneity in detection probability between dependent kittens and 

adults: since mother cougars will typically spend part of their time hunting or traveling 

without their kittens, kittens likely have a lower probability of detection than adults 

(Logan and Sweanor 2001, Davidson et al. 2014). Since age class is unknown in a 

capture history, this heterogeneity cannot be explicitly modeled as a covariate into a 

CMR abundance estimate. Furthermore, as kittens grow older, this heterogeneity likely 

changes over a relatively short amount of time, potentially within the temporal sample 

period of a multi-sample genetic survey. It is worth noting that this issue may soon be 

resolved due to research on chromosomal telomere shortening as a function of aging 

(Nakagawa et al. 2004), which may allow for the age of an individual to be reliably 

determined from a genetic sample. 

Genetic CMR via snow tracking for hair samples.— Hair collection has likely 

been used to identify species presence for millennia (Kendall and McKelvey 2008), but 

only with relatively recent technological advances in molecular biology have researchers 

been able to discern individual identity from hair, thus allowing for genetic CMR 

analysis. Kendall and McKelvey (2008) divided hair collection methods into two basic 

categories: baited and passive. Whereas baited methodology involves an attractant and 

usually some type of collector (i.e., a hair snare), passive hair collection attempts to 

locate hair naturally shed by the study animal. Both categories have advantages and 

disadvantages depending on the traits of the study animal and accepted level of 

invasiveness. In cougar research, however, researchers have had little success with baited 

hair snares (Choate et al. 2006, Sawaya et al. 2011). Sawaya et al. (2011) and Russell et 
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al. (2012) used a passive method of following cougar tracks in snow to find and collect 

hair naturally deposited at bedsites and natural vegetative snags. Kendall and McKelvey 

(2008) stressed caution, as extracting DNA from hair at the quality sufficient for 

determining individual identity was difficult, and different species likely shed DNA at 

different rates (Goossens et al. 1998). Felids, in particular, shed low amounts of DNA 

with hair as compared to other carnivores (Kendall and McKelvey 2008). Since there was 

little to no genetic material in a hair shaft, extraction success was dependent on follicles 

being present in the sample (Goossens et al. 1998). Cougars may not regularly shed hair 

that includes follicles, and follicle presence in a sample may not be easily discerned by 

investigators in the field. Russell et al. (2012) and Sawaya et al. (2011) reported between 

13% and 39% success rate for successful DNA extraction from hair to the individual 

level, suggesting that a relatively large sample was required for successful abundance 

estimates. 

Genetic CMR via scat detection dogs.— Scat is probably the most abundant 

animal byproduct collected noninvasively and used for genetic analysis (Wasser et al. 

2004). Genetic analysis of scat is dependent on sloughed epithelial cells from the 

digestive tract, which remain on scat after being defecated. Careful collection and 

extraction of scats can produce high quality DNA markers usable for individual 

identification (Schwartz and Monfort 2008). However, locating scat from cryptic and 

sparsely occurring species such as cougars is often difficult (Harmsen et al. 2010). A 

common solution is the use of scat detection dogs (also known as scat dogs or 

conservation dogs). Domestic dogs (Canis familiaris) have highly sensitive olfactory 

systems relative to that of humans. Combined with their trainability, these traits have 
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long been exploited by humans. Since as early as the 1800s, wildlife biologists have used 

dogs for the detection of wildlife or wildlife sign (Mackay et al. 2008). In recent years, 

researchers have been able to incorporate detection dogs with genetic analysis (e.g., 

Smith et al. 2003, 2005). Davidson et al. (2014) estimated the density of a cougar 

population in Oregon using this method, and found comparable density estimates using 

several CMR-based models. Davidson et al. (2014) was not able to evaluate their result 

with a direct enumerative estimate. One disadvantage to scat surveys relates to the 

uncertainty of the temporal sampling window. Typically, trapping surveys (including 

remote camera surveys) have distinct timeframes of capture. Likewise, genetic surveys 

collecting samples from a target species’ tracks in snow or a baited hair-snare will have a 

temporal window within which the individual was known to be present. However, there 

may not be information about the length of time a scat on a passive transect is detectible, 

creating uncertainty in the sampling window, and potentially violating assumptions of 

population closure. One solution is to initially “clean” (i.e., collect and discard) scats 

along transects before subsequent transects. However, financial cost may prohibit 

multiple transect visits. An upper limit to the sampling window is likely determinable by 

genotyping success: Lonsinger et al. (2015) found PCR success for scat samples collected 

from coyotes (Canis latrans) and kit foxes (Vulpes macrotis) was dependent on the age of 

scat, among other factors. For their target species, PCR success rates dropped below 50% 

after 7-21 days. However, there was also a significant difference in PCR success rates 

between the two canid species, and applying their findings to another species is not 

necessarily appropriate. Similar research on cougar scat might provide a reliable scat 

degradation timeframe, outside of which PCR failure would prevent samples from being 
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incorporated into a genetic detection history regardless of their being detected and 

collected in the field. 

 Our study objectives were to determine the density of a cougar population in 

northwest Wyoming using conventional capture and radio-collar methods (i.e., invasive 

method), and then apply three noninvasive survey methods to the same population and 

area to evaluate and compare their accuracy and efficacy in determining population 

density. The noninvasive field methods included two annual sessions of a) genetic mark-

recapture using cougar hair collected from snow transects, b) photographic mark-

recapture using remote camera trapping, and c) genetic mark-recapture using cougar scat 

collected with detection dogs. We used multiple types of analyses for each method, 

including conventional capture-mark-recapture (CMR) models, spatially explicit capture-

recapture (SECR) models, and capture with replacement (CAPWIRE) to determine 

population size and density. 

STUDY AREA 

The study area encompassed ~5,120 km2, including much of the Jackson Hole 

basin and adjacent lands in northwest Wyoming. The area was delineated by the Teton 

Range in Grand Teton National Park (GTNP) on the west, the Gros Ventre Range on the 

east, the Teton Wilderness Area on the north, and on the south by Wyoming state 

highway 22 and the Cache Creek drainage (Fig. 3.1). Most lands within the study area 

were administered by the U.S. Forest Service (Bridger-Teton National Forest), the 

National Park Service (Grand Teton National Park), and U.S. Fish and Wildlife Service 

(National Elk Refuge). A small percentage (~ 5%) was privately owned ranches or 



65 

 

 

residential areas. Elevations in the study area ranged from ~1,800 m in the Jackson Hole 

basin to >3,600 m in the mountains. The area was characterized by short, cool summers 

and long winters with frequent snowstorms. Average monthly temperature minimums 

and maximums ranged from -17.3°C and -3.4°C in January, to 5.3°C and 26.9°C in July. 

Precipitation occurred mostly as snow, and mean maximum snow depths ranged from 

100 cm at lower elevations to >245 cm at intermediate elevations of 2,000 – 2,400 m 

(Grand Teton National Park 2015). 

Plant communities included cottonwood (Populus angustifolia) riparian zones 

interspersed by sagebrush (Artemisia spp.) uplands at lower elevations.  At intermediate 

elevations, aspen (P. tremuloides), Douglas-fir (Pseudotsuga menziesii), and lodgepole 

pine (Pinus contorta) were the dominant species. Spruce (Picea engelmannii) and fir 

(Abies lasiocarpa) were the primary tree species at higher elevations (Marston and 

Anderson 1991, Knight 1996). 

Primary prey species available to cougars included mule deer (Odocoileus 

hemionus), elk (Cervus elaphus), white-tailed deer (O. virginianus), moose (Alces alces), 

bighorn sheep (Ovis canadensis), and various small to medium sized mammal and avian 

species. The study area also included all historically occurring carnivores: grizzly bears, 

black bears, and gray wolves (Canis lupus), as well as coyotes and red foxes (Vulpes 

vulpes), and possibly bobcats (Lynx rufus) and lynx (Lynx canadensis). 

METHODS 

Our research was part of a long-term cougar ecology study in northwestern 

Wyoming that incorporated the capture and GPS-tracking of resident adult cougars. We 
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previously reviewed various methods to enumerate cougars in a defined area (Chapter 2). 

We then determined an estimate of density for the core region of the study area, 

delineated by the effective trapping area or “area divisor”. Our method used GPS-

telemetry data to enumerate the proportional residency of cougars in the area divisor 

(McLellan 1989, Cooley et al. 2009a) for the years 2011, 2012, and 2013 (defined 

annually as Sept 1 – Aug 31). We also included detected-but-unmarked cougars (based 

on remote video and photo detections) when residency could be confidently assigned, and 

backlogged subsequently captured cougars to previous years based on age and sex 

(Logan and Sweanor 2001). Density estimates were scaled to cougars per 100 km2. The 

mean of these density estimates constituted our reference estimate to which we compared 

the noninvasive results. 

We delineated the noninvasive survey areas to correspond approximately with the 

area divisor from Chapter 2 (Fig. 3.2). These survey areas encompassed ~1,600 km2, and, 

as with the area divisor, were defined generally by the Gros Ventre and Buffalo Valley 

drainages where the majority of cougar detection and trapping efforts occurred. Over the 

history of the long-term cougar ecology study (2001 – 2013), 93% of cougar capture 

locations (n = 154 cougars) and 80% of GPS telemetry locations (n = 47,563 locations) 

occurred within this core area. We employed three types of noninvasive surveys: remote 

camera surveys, winter tracking for genetic sampling, and genetic sampling using scat-

detection dogs. We limited our CMR analyses to relatively well known methods that 

were readily accessible to wildlife managers. 

 Cost comparison.— We compared the resource requirements of each survey type 

using the rate of animal detection as the unit of measure. We only included detections 
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used in final population estimates (i.e., genetic samples that were collected but did not 

yield individual identity did not count in the cost analysis). We calculated cost-per-

detection in dollars, and effort-per-detection in person-days of labor. We estimated the 

true costs of donated equipment and volunteer labor to the best of our knowledge, 

referencing similar, commercially available equipment or median salaries for comparable 

positions (Bureau of Labor Statistics 2015) 

Detections of radio-collared cougars.— CMR analysis produced estimates of 

detection probability for each survey; we also produced alternate estimates of detection 

probabilities based on noninvasive detection of radio-collared individuals. We applied a 

simple two-sample Lincoln Peterson estimator (Krebs 2001), using the Chapman 

estimator for small samples (Chapman 1951). We used captured and radio-collared 

animals as the first sample, and noninvasive survey detections as the second sample: 

 

 𝑁̂ = (
(𝑛1 + 1)(𝑛2 + 1)

𝑚2 + 1
) − 1 

 

where N̂ is the abundance estimate, n1 and n2 are animals captured or detected in the two 

sampling sessions, and m2 is the number of radio-collared animals detected in the second 

sample. We then solved for p̂ using the formula: 

 

𝑝𝑖 =
𝐶𝑖

𝑁̂
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where p is the probability of detection, C is the number of animals detected, and i is the 

sample occasion. 

We also examined detection success using Poisson regression analysis to examine 

the number of detections of radio-collared cougars as a function of density of detectors 

per individual home range. Density of detector ddi was defined for cameras as the number 

of camera stations per km2 of home range i (defined by 95% kernel density estimation; 

see Chapter 2). For transect based surveys, we measured ddi by kilometers surveyed per 

km2 of home range i. Home ranges were delineated annually by 95% KDE (see Chapter 2 

for details on home range calculation). 

 Photographic Sampling 

Field methods.— We established an array of remote cameras stations across the 

core study area during the summer months of 2012 and 2013, using two types of camera 

station design. The majority of sites (n = 43) used a blood-based non-reward lure; the 

remaining sites (n = 10 in 2012; n = 12 in 2013) were set up using conventional camera 

survey methods with cameras placed along high-use trails (e.g., Karanth 1995, Negrões et 

al. 2010). For the blood-lure stations, we first divided the core study area (described 

above) into 36 km2 cells. This cell size was based on the low densities of the target 

animal (Rovero et al. 2013), and chosen so an average home-range size of a female 

cougar would overlap the spatial equivalent of four cells. This resulted in 43 contiguous 

sampling cells covering 1,548 km2, divided between the Gros Ventre (n = 21 sampling 

cells) and Buffalo Valley (n = 22 sampling cells) drainages. One camera station was 

setup for each cell. Camera stations were active from approximately June 15 to 

September 15 for each year. We selected the exact locations of the camera stations within 
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each cell based on topographic or vegetative features typical of cougar habitat or travel 

routes. These sites were typically characterized by ridgelines, drainage bottoms, or edge 

habitat where cougars were either known (via telemetry or natural sign) or suspected to 

travel (Fig. 3.2). Due to our choice of blood-based attractant (see below) and the potential 

for human-bear conflict, we were restricted from placing camera stations near roads, 

human development, or high-use trails where humans regularly traveled. We installed 

two models of motion-activated cameras at each station. The first type was a non-

commercial model designed by Panthera (Panthera Inc., New York, NY), which used a 

visual-light xenon flash for nighttime images. The second camera type was a 

commercially available infrared model: either the Reconyx PC800 or Reconyx Silent 

Image (Reconyx, Inc., Holmen, WI). All camera models used a passive infrared sensor 

for motion-triggered activation. The Reconyx camera used infrared lighting at night, 

which resulted in black and white images. The Panthera model always used visual light, 

either from ambient daytime light or from the xenon flash, and thus produced color 

images. The xenon flash was relatively slow to recharge, so the Panthera cameras 

generally produced fewer night images than the Reconyx cameras. We fixed the cameras 

to tree trunks approximately 50 to 80 cm off the ground and 10-15 m apart, with both 

cameras aimed in a manner to capture two sides of an animal as it passed through the site. 

We placed an 80 cm high wood post between the cameras marked at 10 cm increments to 

help estimate animal height and aid in individual identification (Fig. 3.3). To increase 

detection probability and number of photos per event, we used a non-reward lure 

comprised of aged cattle blood. This type of attractant was chosen based the low success 

rate of non-food based scent attractants reported by Long et al. (2003), Choate et al. 
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(2006), and Sawaya et al. (2011), and anecdotal evidence that cougars responded to 

blood-based attractants at grizzly bear trapping sites (D. Thompson, Wyoming Game and 

Fish Department, pers. comm.). The lure was suspended in an open container (a 

repurposed laundry detergent jug) between trees by rope at least 4 m above the ground, 

directly above the measurement post. Sodium citrate was mixed with the blood to prevent 

coagulating and thus retain odor (Haroldson and Anderson 1996). We also suspended a 

repurposed compact-disc to act as a visual attractor. We use the terms “lure” and 

“attractant” loosely, in that the blood mixture and the compact disc were used in order to 

provoke the curiosity of any cougar already passing through the area, as opposed to 

attracting cougars from large distances. We hoped this would in turn generate a 

maximum number of photos, based on the assumption that additional photos would 

increase our ability to individually identify cougars.  

 The second type of camera station (hereafter referred to as “trail camera stations”) 

was setup at an additional 10 -12 sites. The trail camera stations were setup as a method 

to compare detection rates of our novel blood-lure technique with the conventional 

placement method used in other cougar camera trapping studies (e.g., Kelly et al. 2008, 

Negrões et al. 2010). These trail cameras used a single Panthera or Reconyx camera, 

fixed approximately 50 to 80 cm off the ground. A small amount of cologne-based lure 

comprised of “Calvin Klein Obsession for Men” (Calvin Klein Inc., New York City, NY) 

and synthetic civet musk or catnip oil (Grawe’s Lures, Wahpeton, ND) was placed in 

front of the camera. Field crews visited stations at a minimum of every two weeks to 

download images and perform any needed site maintenance. We replenished the blood 

lure every 4 weeks, or as needed. 
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Density estimate.— Photographic captures of cougars at camera stations were 

cataloged as “events” and generally consisted of multiple, sequential images of the 

captured individual. Events were considered separate if >6 hours elapsed between photos 

of the same cougar. We identified and distinguished individual cougars in photographs 

based on artificial tags, physical features (i.e., kinked tails, pelage markings, facial 

features, or size), and spatial/temporal distance between detections. We used resulting 

capture data to run conventional closed capture models (Otis et al. 1978; see Karanth 

1995, Kelly et al. 2008) and spatially explicit capture-recapture methods (SECR; Efford 

2004, Royle and Nichols 2009) to calculate densities, both separately and together for the 

Buffalo Valley and the Gros Ventre drainages. 

For the conventional closed model, we used program MARK (White 2008), 

implemented through the R package RMark (Laake and Rexstad 2008). Detections were 

organized into capture histories of 8 occasions. In order to calculate density estimates, we 

estimated the effective trapping area of the camera station array by buffering camera 

station locations by the average female home range radius (analogous to the commonly 

used MMDM metric; see Soisalo and Cavalcanti (2006); see Chapter 2). To calculate the 

buffer distance, we calculated female home ranges during the remote camera survey 

months (June – September) from all GPS-collar data spanning the history of the study. 

Home ranges were only calculated if the individual’s seasonal home range was comprised 

of a minimum of 50 relocations, as recommended by Seaman et al. (1999), and 

incorporated a minimum of 100 days. Home ranges were defined by 95% kernel density 

estimation (KDE) using the plug-in bandwidth (Jones et al. 1996). We used the geometric 

radius of the average female seasonal home range, weighted by individual, to determine 
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the buffering distance. All spatial analyses were completed in the R programming 

environment (R Version 3.0, www.r-project.org, accessed 10 Oct 2013), using the 

adehabitat package (Calenge 2011) and the ks package (Duong 2014), as outlined by 

Walter and Fischer (2015). We also used the R packages maptools (Roger et al. 2014), 

rgeos (Bivand and Rundel 2011), and shapefiles (Stabler 2014) to construct trapping 

buffers. Visualization of processes were implemented in ArcMap 10.2 (Environmental 

Systems Resource Institute 2013). 

To estimate density directly, we used a Bayesian inference model designed for 

mark-recapture studies (Royle et al. 2009) in the R package SPACECAP (Gopalaswamy 

et al. 2012a). SPACECAP is designed specifically for noninvasive surveys with a user-

friendly platform with a graphical user interface. SPACECAP has been used to estimate 

density for other elusive felids using remote camera surveys, including leopards 

(Panthera pardus fusca; Thapa et al. 2014), Scottish wildcats (Felis silvestris silvestris; 

Kilshaw et al. 2014), and Amur tigers (Panthera tigris altaica; Hernandez-Blanco et al. 

2013). SPACECAP employs Bayesian inference by Markov chain Monte Carlo (MCMC) 

methods, using the Metropolis algorithm (Gelman et al. 1996) to estimate parameters: 

notably density D, probability of detection at an individual’s home range center λ0, and a 

measure of an individual’s home range size as probability of detection decreases towards 

zero σ. The model used by SPACECAP applies to binary observations y(i,j,k) for 

individual i, trap j, and sample occasion k. The model is a binary regression model in 

which y(i,j,k) ~ Bernoulli(p(i,j,k)), where p is the probability of detection; see 

Gopalaswamy et al. (2012a) and Royle et al. (2009) for more information on the 

modeling details. We input encounter histories, camera station locations, and a spatial 
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mask layer of potential home range centers representing the state-space S. Since spatially 

explicit models incorporate trap location, we ran the SPACECAP models using the 

additional trail camera detections despite the non-uniform trap spacing that would not 

have been suitable for conventional CMR models. The mask layer was a grid of points 

spaced evenly at 2,236 m, with each point representing a “pixel” of 5 km2. SPACECAP 

produced an estimated density at each pixel. Pixel size was approximately 1/32nd of the 

target animal’s home range, following protocols suggested by Gopalaswamy et al. 

(2012b). The state-space S extended 20 km around the camera station array, in order that 

it included all potentially existing cougar home ranges that could be detected at camera 

stations (see below for details on delineation of state-space). We extracted a canopy cover 

value to the mask layer, and assigned ‘1’ to all points that had no canopy cover (defined 

as percent canopy cover <1%), effectively eliminating open water and open sage habitats 

from the array of potential home range centers. We ran models with and without a 

behavioral trap response. SPACECAP allows for two types of detections functions: half-

normal and the negative-exponential. We used the default half-normal function (see 

below for details on detection function selection). We performed a minimum of 200,000 

MCMC iterations with a burn-in period of 50,000, and a thinning rate of 1 for each 

model. Iterations and burn-in were increased if models did not perform adequately. 

Model convergence was evaluated using the Geweke diagnostic statistic (Geweke et al. 

1997), with z-scores between -1.6 and 1.6 indicating reasonable model performance. 

Model fit was evaluated using the Bayesian P-value (Royle et al. 2011), with values close 

to 0 or 1 indicating poor model fit. Models were also evaluated with a measure of 
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effective MCMC sample size adjusted for auto-correlation (Martyn et al. 2015). All 

evaluators were calculated within the SPACECAP platform. 

Selection of detection function and delineation of state-space.— To evaluate the 

appropriateness of SPACECAP’s available detection functions, we plotted the density of 

cougar locations as a function of distance from home range center. We performed this 

using the R packages maptools (Bivand and Lewin-Koh 2014), rgeos (Bivand and Rundel 

2011), raster (Mattiuzzi et al. 2015) and unmarked (Fiske and Chandler 2011). We first 

separated all available GPS locations by individual and year (as defined by remote 

camera survey months June 15 to September 15). Remaining location sets were discarded 

if the number of locations was <50 and the time range was <30 days. We assumed an 

unprojected Cartesian coordinate system and re-referenced each location set around its 

geometric center defined as x = 0 and y = 0. We combined all re-referenced location sets 

and extracted distance-to-center for each GPS location (Fig. 3.4). The resulting density 

plot suggested that the half-normal detection was more appropriate than the negative 

exponential (Fig. 3.5). The density plot also suggested a low likelihood of encountering a 

cougar further than 20 km from its home range center, and we delineated the state-space 

S accordingly. 

Reliability of identifying individual cougars in photographs.— Unlike certain 

other large felids, cougars do not exhibit unique pelage markings and there is some 

debate whether cougars are appropriate for photographic CMR methods (Kelly et al. 

2008, Oliveira-Santos et al. 2010). Reliably identifying individual cougars in photo-

captures was an important component of our measure of feasibility; however, our results 

were likely biased in this regard since at least a portion of the target population was 
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visually identifiable due to GPS-collars and ear tags. To examine the issue of 

identifiability in an uncollared population, we tested the agreement to which independent 

investigators distinguished individual cougars in our photographic captures without the 

aid of artificial marks. We designed a photo database and electronic form in Microsoft 

Access (Microsoft Corporation, Redmond, WA) that allowed independent investigator 

participants to sort through photographic capture events and assign individual identity. 

We selected a subsample of events from the 2013 survey, which included events from 

both camera station designs. To create the subsample, we discarded events that had radio-

collared cougars or very poor photo quality. The Access form displayed events in pairs, 

with an event displayed on each side of the computer monitor. The form allowed 

investigators to scan through events on each side independently, as well as to sort through 

the multiple images associated with each event (Fig. 3.6). For each event pairing, the 

investigator was prompted to classify the pair as being from the same individual cougar, 

or two different cougars. Also included were spatial and temporal data for each event, 

with the spatial and temporal separation between the paired events automatically 

calculated and displayed (e.g., “events A and B were 10.5 km and 51.3 hours apart”). We 

considered this information “fair game”, because we believed these data would logically 

be included in a similar real-world research scenario, and should therefore not be ignored. 

All combinations of event pairings were evaluated. Note that this method can result in a 

large sample if a sufficient number of events are compared: 

 

C = 
𝑛!

2!(𝑛−2)!
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where C is the number of combinations to evaluate, and n is the number of events. 

We distributed the Access database to independent participants. Only wildlife 

researchers with considerable experience with cougars were considered for participation. 

A segment of the participants included biologists who performed cougar research in the 

study area and were familiar with the individual cougars in the photo database. 

Participants were not privy to our own identification assessment, capture history, or CMR 

results. We used the R package irr (Gamer et al. 2014) to calculate agreement level. We 

used simple percent agreement, similar to the metric that Kelly et al. (2008) used, as well 

as Fleiss’s kappa (Fleiss 1971). We included Fleiss’s kappa as it was a more statistically 

rigorous metric of agreement between assessors than simple percent agreement (Gwet 

2010). A kappa of 1 indicated perfect agreement, and 0 indicated a level of agreement 

consistent with completely random assessments by participants. We stress the above 

analysis was not intended to confirm whether participants were correct in their 

assessment of individual cougar identity; our goal was to test for disagreement, thereby 

suggesting photographic CMR results may not be suitable for cougars due to an inability 

to reliably identify individuals. We also examined our hypothesis that a greater number of 

photos per detection would increase our ability to identify individuals. We used Poisson 

regression to examine the count of participants in agreement for each event pairing as a 

function of the total number of photos in the event matching. 

Genetic Sampling 

Field methods for winter tracking transects.— We delineated 226 km of transects 

across the study area, split between the Buffalo Valley (54%) and the Gros Ventre (46%) 

drainages. Transects were performed during the winters of 2011-2012 and 2012-2013. 
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Transects were performed by truck (21%), snowmobile (60%), or on snowshoes/skis 

(19%). Transects were selected based on topographic features characteristic of cougar 

habitat or travel routes, and ease of access for trackers (Fig. 3.2). Transects were the same 

routes that were used for detecting and capturing study animals for radio-collaring (see 

Chapter 2). Snowshoe/ski transects were typically characterized by ridgelines, drainage 

bottoms, or edge habitat where cougars were either known (via telemetry) or suspected to 

use. Truck and snowmobile transects were based additionally on accessibility and ability 

of researchers to quickly transect large amounts of terrain. We attempted to schedule 

transects at least 24 hours after a snowfall, but not later than 72 hours. This schedule was 

chosen in order to maximize the sampling window of time when cougars were potentially 

traveling, without compromising an observer’s ability to detect tracks due to being 

obscured by other animal tracks or wind/weather. When cougar tracks were detected, 

researchers backtracked (or forward tracked if backtracking was not feasible) until a 

genetic sample (either hair or scat) could be collected. Hair was collected at bedsites, 

vegetative snags, or within tracks. We followed general collection recommendations 

outlined by Schwartz and Monfort (2008). To avoid genetic cross-contamination, each 

sample was collected using fresh latex gloves and sterilized thumb forceps. Hair samples 

were stored in small paper envelopes, which were then placed in 50 mL plastic 

FALCON® tubes, each with approximately 20 mL of silica gel. Scat samples were 

collected in unused “ziplock” type bags with silica gel (silica gel was added at 

approximately 2 times the estimated weight of the scat sample). All samples were stored 

out of direct sunlight at room temperature before being transferred to a laboratory for 

genetic analysis. 
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Field methods for scat detection dogs.— We used a single handler/dog team (Find 

It Detection Dogs, Walden, CO) to survey 20 transects across the core study area, divided 

between the Buffalo Valley (n = 8) and Gros Ventre (n = 12) drainages. Transects were 

run in late summer of 2013 and 2014. Transects were chosen based on terrain features 

characteristic of cougar habitat (similar to winter track transect selection described 

below), as well as accessibility. Detection dogs were restricted from entering Grand 

Teton National Park, which limited our ability to run transects in certain areas in the 

western portion of the area divisor (see Chapter 2). The initial transect delineations were 

course and approximate; these course transect lengths totaled 140 km (55 km in the 

Buffalo Valley drainage; 85 km in the Gros Ventre drainage), with an average transect 

length of 7.0 km. The dog handler team followed these transects using a handheld GPS 

device, but was given flexibility to choose exact routes while in the field (Fig. 3.2). Dogs 

were primarily trained using cougar scat collected from other regions, with a “refresher” 

training using locally collected scat performed immediately prior to our survey. Detection 

dogs were trained to walk off leash while searching for cougar scat, staying within 

approximately 25 m of the handler. When scat was detected, dogs were trained to signal 

the handler without touching the scat, allowing the handler to approach and verify. 

Unless scat was unmistakably a non-target species, all scat indicated by the dog was 

assumed to be cougar. Scat was sampled using sterile thumb forceps to collect 

approximately 0.5 mL of fecal material from the outside of the scat (Stenglein et al. 

2010). The sample was placed in a 2 mL screw-top plastic tube containing 1.5 mL of 

DET buffer (Davidson et al. 2014), and agitated to saturate the sample. We stored 



79 

 

 

samples at room temperature and out of direct sunlight until transferring them to a 

genetics laboratory. 

DNA extraction and analysis.— Analysis of genetic samples was split between 

two labs depending on the year of collection. Hair samples and scat samples collected in 

2013 were analyzed at the Sackler Institute for Comparative Genomics (Center for 

Conservation Genetics,  American Museum of Natural History, New York) as follows: 

genomic DNA from scat samples was extracted using the QIAmp DNA Stool Mini Kit 

(QIAGEN, Valencia, California) with modifications as outlined in Caragiulo et al. 

(2013). Genomic DNA from hair was extracted with the DNeasy Blood and Tissue Kit 

(QIAGEN, Valencia, California), using the manufacturer’s recommended protocols. All 

samples were initially tested for species identification as described in Caragiulo et al. 

(2014), and screened out of further analysis if not identified as cougar. We used 21 

cougar specific microsatellite primers which were developed by Kurushima et al. (2006). 

Polymerase chain reactions (PCR) were carried out in 12.5 L multiplex reactions 

containing 2 to 5 L of extracted DNA, 0.65 L of each forward and reverse 10 M 

primer, and 5 L Qiagen Mutliplex PCR Master Mix, 1 L Q-solution, and the remaining 

volume was RNAse-Free water (QIAGEN, Valencia, California, USA). We grouped 

primers into four multiplex reactions based on fluorescent tag and amplicon size. 

Thermocycling conditions were the same for all primers and multiplexes: initial 

denaturation for 15 minutes at 95 °C, 13 cycles of denaturation at 94 °C for 30 seconds, 

annealing with touchdown at 62.4 -0.3 °C for 90 seconds, and elongation at 72 °C  for 60 

seconds, followed by 32 cycles of denaturation at 94 °C for 30 seconds, annealing at 60 

°C for 90 seconds, and elongation at 72 °C  for 60 seconds, followed by a final elongation 
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at 60 °C  for 30 minutes. We prepared samples for analysis by mixing 1 µL of PCR 

product with 9 µL of an 8.82 µL: 0.18 µL mixture of Hi-Di formamide: GeneScan 500 

LIZ size standard (Applied Biosystems, Carlsbad, California, USA). Samples were heat-

shocked for 3 minutes at 95 °C and genotypes were analyzed using an ABI 3730xl DNA 

analyzer (Applied Biosystems, Carlsbad, California, USA). We scored genotypes with 

GeneMapper v. 4.0 software (Applied Biosystems, Carlsbad, California, USA) and 

individually verified them by visual inspection. To identify possible allelic dropout, we 

performed all microsatellite amplifications at least four times using the multi-tube 

approach (Taberlet et al. 1996). Allelic dropout and PCR success was quantified per 

locus, based upon sample type (scat vs. blood/tissue vs. historic specimen) using the 

program GIMLET (Valière 2002) and manual inspection. Consensus genotypes were 

defined for each sample by comparing results from a consensus genotype inference 

method using program GIMLET (Valière 2002), as well as manual inspection. Samples 

that did not produce reliable consensus genotypes for at least 10 loci were excluded from 

further analyses. 

The 2014 scat survey samples were analyzed at the Laboratory for Ecological, 

Evolutionary and Conservation Genetics (University of Idaho, Moscow, Idaho)  using 

protocols outlined by Davidson et al. (2014). Protocols were similar to those outlined 

above, apart from the main difference of using 10 microsatellite loci from the domestic 

cat (Felis catus) for individual identification (Menotti-Raymond et al. 1999, 2005), as 

opposed to the Kurushima et al. (2006) microsatellites. 

Statistical Analysis.— We analyzed consensus genotypes in the R package 

allelematch (Galpern 2015) to determine the individual identities of cougars represented 
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in the samples. Noninvasively collected genetic data can be especially prone to 

genotyping errors and missing data (Waits and Paetkau 2005); allelematch was written 

specifically for analyzing this type of data for the purpose of identifying unique 

individuals in a population of unknown size (Galpern et al. 2012). Allelematch 

accommodates these imperfect datasets by calculating a pairwise similarity score between 

genotypes, and then identifying an optimal parameter of acceptance for imperfect allele 

matches (or a “mismatch tolerance”; see Fig. 3.9). Allelematch then produces an estimate 

of the number of unique genotypes represented in the sample. See Galpern et al. (2012) 

for details on the framework and application of the software. 

Density estimation.— The resulting capture histories were comprised of one 

sampling occasion. Consequently, we were limited to single-occasion approaches such as 

the abundance estimator CAPWIRE (Miller et al. 2005) or certain SECR models. 

CAPWIRE was designed specifically for genetic sampling under the concept that this 

type of sampling is often “approximately done with replacement” (Miller et al. 2005), 

and usually performed on a single sampling occasion. CAPWIRE may be ideal for 

genetic sampling techniques such as ours, in which 1) there is only one sample occasion, 

2) sampling is completely passive, and modeling for trap response behavior is not 

applicable, and 3) the sampled population is relatively small. Small population size is 

significant in that detections may be relatively rare, and therefore more informatively 

valuable. CAPWIRE retains all capture data, whereas traditional CMR techniques often 

must pool captures of an individual into a finite number of occasions, potentially 

squandering information. We note that Bromaghin (2007) critiqued CAPWIRE for 

utilizing a mathematically invalid likelihood function. However, this may be a minor 
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issue, as repairing the likelihood function does not alter CAPWIRE’s abundance 

estimation (Bromaghin 2007). Furthermore, a genetic mark-recapture study by Davidson 

et al. (2014) used CAPWIRE to produce abundance estimates of cougars that were 

comparable to more traditional CMR methods. We ran CAPWIRE as implemented in the 

R package capwire (Pennell et al. 2013) using two models: the “equal catchability model” 

(ECM) and the “two innate rates model” (TIRM), and evaluated them using a likelihood-

ratio test. The ECM and TIRM are analogous to homogenous and heterogeneous 

probabilities of detection in the traditional CMR framework. We calculated 95% 

confidence intervals for the model results using a parametric bootstrap, as implemented 

in the CAPWIRE package. To convert CAPWIRE abundance estimates into density, we 

delineated an effective trapping area around the sampling transects. The effective 

trapping area for the winter tracking transects was identical to the area divisor (Chapter 

2). The effective trapping area for the detection dog survey was calculated identically to 

the method for the remote camera survey, using the geographic centers of scat transects 

as the buffering points. 

We used the R package secr (Efford 2015) to estimate population density directly. 

The secr package allowed for single occasion detection histories, as well as the use of 

transect lines as the detector, whereas SPACECAP was limited to point-based trap arrays. 

Package secr uses spatially explicit capture-recapture models analogous to SPACECAP, 

but instead of a Bayesian framework, secr implements maximum likelihood to determine 

the spatial detection model. Parameters estimated were analogous to SPACECAP, but 

secr uses the notation g0 instead of λ0. We inputted the trap transects as a single-occasion 

detection history, and a spatial mask layer of potential home range center points, spaced 
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at 5 km, analogous to the SPACECAP methods outlined above. We ran the null secr 

models, as well as models that incorporated a spatially varied density estimate that 

attempted to fit a gradient in cougar density along latitude or longitude (as was observed 

between the Buffalo Valley and Gros Ventre sampling areas). We also ran group models 

based on sex class, when that information was available. Behavioral models were not 

applicable due to our use of a single occasion. Models were evaluated using the corrected 

Akaike’s Information Criterion (AICc; Burnham and Anderson 2002). 

Demographic correction factor.— Since genetic surveys are not able to 

distinguish age classes, our genetic surveys essentially used a different sampling frame 

than that for the photographic and reference methods. To address this issue in the context 

of comparing photographic and genetic sampling results, we estimated a correction factor 

based on likely number of dependent juveniles in the population. Based on average male 

to female ratios and number of dependent young observed in several cougar populations 

(Quigley and Hornocker 2010), we used a male : female : juvenile age class ratio of 1.0 : 

2.5 : 2.5  to estimate that the total population (as estimated by the genetic sampling 

efforts) was 1.7 times greater than the adult population (as estimated by photographic and 

reference methods). 

RESULTS 

Photographic Sampling 

Blood lure detections.— We were logistically constrained by the size of and 

number of stations in the camera trap array, and camera stations were not all active for 

the exact same time period or number of days. For the respective years, the average 
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number of days sampled per blood-lure camera station were 73.5 (± 3.9 SD) and 79.4 (± 

8.1 SD), and the total number of sampling days were 3,160 and 3,414. The mean total 

length of the sampling windows (calculated from the first camera activation to last 

deactivation) was 100.0 days (± 5.0 SD, n = 2). We recorded 17 and 16 cougar photo-

events in 2012 and 2013, respectively (Table 3.1). The average detection rate for the 

blood-lure stations was 0.15 detections per 30 sampling days. There was an average of 

17.03 (± 9.67 SD) photos per detection event. Based on physical characteristics 

(including artificial tags) and spatial/temporal distances between detections, we identified 

5 and 7 unique individuals, respectively. Based on detections per sampling day, 

detections were significantly more likely to occur in the Gros Ventre (n = 25) than the 

Buffalo Valley (n = 7; two sample test for equality of proportions: χ2 = 7.74, df = 1, P < 

0.01). The mean number of recaptures per cougar was 3.0 (± 2.3 SD) for 2012, and 2.3 (± 

1.1 SD) for 2013. 

Trail cameras.— The trail camera arrays recorded 6 and 9 additional cougar 

detection events for 2012 and 2013, respectively (Table 3.1). For the respective years, the 

average number of days sampled per camera station were 34.9 (± 9.7 SD) and 52.6 (± 9.2 

SD), and the total number of sampling days were 349 and 579. The average detection rate 

was 0.52 detections per 30 days, significantly higher than that of the blood cameras (two 

sample test for equality of proportions: χ2 = 13.90, df = 1, P < 0.001). There was an 

average of 5.6 (± 6.3 SD) photos per detection event, significantly lower than that for the 

blood cameras (Welch two-sample test; P < 0.001). 

Conventional CMR.— Due to low numbers of detections and unique individuals, 

we were limited to relatively simple closed-population CMR models. We applied the null 
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model (M0), behavioral model (Mb), and the heterogeneity model (Mh). Likely due to the 

low numbers of detections and of unique individuals, the models essentially produced the 

minimum abundances: all models for 2012 produced abundance estimates of 5 cougars, 

and all models for 2013 produced abundance estimates of 7 cougars. Confidence intervals 

were close to zero for all models except for the behavioral model in 2012; this model 

found a relatively strong “trap happy” response with low initial capture probability, thus 

increasing the abundance estimate. However, the behavioral model for 2013 indicated a 

“trap shyness” response (Table 3.2). The average female home range size during camera 

trapping months was 190.0 km2 (± 109.3 SD, n = 15). The effective trapping area was 

thus calculated with a buffering distance equal to the radius of this area: 7,769 m. This 

resulted in effective trapping area sizes of 1,215 km2, 1,474 km2, and 2,333 km2 for the 

Buffalo Valley, Gros Ventre, and combined areas, respectively. The abundance estimates 

calculated in program MARK converted to density estimates of 0.21 cougars per 100 km2 

for 2012 and 0.30 cougars per 100 km2 for 2013. We also note here that the detector 

generated ½ MMDM (based on our assessment of individual identity) was 4,825 m in 

2012 and 2,519 m in 2013. The ½ MMDM metric was significantly lower than the 

telemetry derived buffer amount, consistent with findings for jaguars by Soisalo and 

Cavalcanti (2006). Due to poor model performance, we limited the density estimate to the 

combined area and did not attempt to subdivide abundance estimates for the Buffalo 

Valley or Gros Ventre areas. 

Spatially explicit model.— Based on the Geweke diagnostic, models that 

incorporated a behavioral response performed poorly and were discarded. For 

behaviorally null models, SPACECAP produced posterior mean densities of 0.36 (95% 
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HPD = 0.18 – 0.64) and 0.84 (95% HPD = 0.40 – 1.40) cougars per 100 km2 for 2012 

and 2013, respectively (Table 3.3). Models restricted to the Gros Ventre were not 

consistent in performance, and models restricted to the Buffalo Valley were not run due 

to low numbers of detections.  Density estimates were generally in agreement with home 

range centers (Fig. 3.7) as calculated in SPACECAP.  

Detections of radio-tagged cougars.— In the 2012 season, 7 of the 23 total photo 

detections (29.2%) were detections of radio-collared cougars. In 2013, 5 of the 25 total 

photo detections (20.0%) were radio-collared. There were 8 radio-collared individuals 

present on the remote camera array in 2012. Based on our assessment of individual 

identity, 5 out of the 8 individuals photographed were not collared (62.5%). There were 7 

radio-collared individuals on the remote camera array in 2013. Of the 12 photo-detected 

individuals, 8 were uncollared (66.7%). The two-sample Lincoln-Petersen estimator 

produced abundance estimates of 19.25 (95%CI = 9.39 – 29.11), with photo detection 

probability (p2) of 0.42 (given p1 of 0.42), and 19.80 (95%CI = 11.80 – 27.80), with 

photo detection probability of 0.61 (given p1 of 0.35), for the respective years. 

 We used a generalized linear mixed-effect model (GLMM) with a Poisson 

distribution to examine if the density of camera stations within an individual’s home 

range was related to the count of that individual’s detections. We used the GLMM 

framework in order to add individual ID as a random effect and account for the 

variability between and autocorrelation within the individuals’ location sets. We found a 

negative but insignificant correlation between number of detections and detectors per km2 

(β = -15.31, SE = 14.2, P = 0.28). 
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Reliability of identifying individual cougars in photographs.— We subsampled 15 

events (resulting in 105 combinations of event pairs) from the 2013 remote camera 

survey to distribute to independent participants. We collected results from 7 participants. 

Each set of results included the list of 105 event pair combinations with participants’ 

scoring of each pairing as “same cougar” or “different cougars”. The number of unique 

individuals identified by participants ranged from 4 to 13. The mean number of identified 

individuals was 9 (± 3.5 SD). Using the R package irr (Gamer et al. 2014), we found a 

46.7% simple agreement between participants. Using Fleiss’s kappa, we found a kappa 

value of 0.183 (P = 0). Although interpretation of kappa values is somewhat subjective 

(Gwet 2010), this value would usually be categorized as “slight” (Landis and Koch 1977) 

or “poor” agreement (Fleiss et al. 1981). Of the event pairings with full participant 

agreement, 100% were for differentiated individuals; there were no cases of full 

agreement when ascribing the paired events to the same individual. Out of the 105 event 

pairings, there were only 6 with >50% of participants ascribing them as “same”. The 

mean distance between pairings with >50% of participants differentiating individuals was 

18.1 km (± 8.4 km SD, n = 99), and the mean distance between pairings with >50% of 

participants ascribing “same” status was 1.3 km (± 3.1 km SD, n = 6). Of the 6 pairings 

with >50% “same” agreement, 4 were from event pairs occurring at the same camera 

station. Our simple agreement level of 46.7% was much lower than a similarly derived 

agreement level of 79.3% reported by Kelly et al. (2008). Of note, Kelly at al. (2008) 

used approximately three times as many detection events in their survey, despite a similar 

average number of identified individual cougars. Interestingly, we used 7 independent 

investigators, and Kelly et al. (2008) used 3 independent teams. This is notable because 
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we found that percent agreement decreased as the number of investigators increased: we 

reran our calculations for percent agreement using all possible combinations and subsets 

of the participant pool. The mean percent agreement for any subset of three investigators 

increased to 71.4% (± 13.5 SD) and ranged from 54.3% - 91.4% (Fig. 3.8). 

 To examine our hypothesis that a greater number of photos per event would aid in 

identification, we performed a generalized linear model with a Poisson distribution to 

examine the level of agreement for an event matching as a function of the number of 

photos used in the matching. We found no significant correlation (β = -0.009, SE = 0.008, 

P = 0.24). We also used a spatial-temporal measure of the minimum speed required for 

an individual cougar to be present at both events in a matching. We used the natural log 

transformation to normalize the value and found a significant negative correlation (β = -

0.21, SE = 0.03, P < 0.001) between higher minimum speed and count of “same” 

designations indicating that distance and time were likely important in participant’s 

assessments, although it is uncertain if participants made decisions mainly based on 

spatial-temporal data, or if participant’s decisions were correct, and supported by the 

spatial-temporal data. 

Genetic Sampling 

Winter tracking transects.— We surveyed 454 km of transects in the 2012 season, 

and 824 km in the 2013 season, totaling 1,276 km. The mean survey length was 102.0 

days (± 17.0 SD, n = 2). The mean sampling window was 2.21 days of cougar travel time 

after snowfall per transect (± 1.04 SD). Between 1 and 8 observers participated in 

transects per snowfall event (n = 13, x̄ = 3.6 ± 1.8 SD). We encountered 11 and 8 

suspected cougar tracks for the two seasons, respectively. Over the course of the study, 
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tracks were encountered on average once per 67.26 km transected, and once per 0.68 

days of sampling. Based on sampling effort, tracks were more likely to be encountered in 

the Gros Ventre than the Buffalo Valley area (n = 5 in Buffalo Valley; n = 14 in Gros 

Ventre; two sample test for equality of proportions: χ2 = 4.71, df = 1, P < 0.05). We 

collected usable hair samples from 9 of these encounters. Using mitochondrial analysis, 6 

samples were identified as cougar hair. The other three were identified as Canid (n = 2) 

or “unknown species” (n = 1). Only 2 of the samples were amplified to the individual 

level, negating any subsequent mark-recapture analysis. 

Scat detection dogs.— We completed 20 transects across the study area both in 

2013 and 2014. The mean survey length was 26.0 days (±1.4 SD, n = 2), although, due to 

the uncertainty of scat DNA degradation, this should not be interpreted as the sampling 

window. Based on handheld-GPS data, handlers transected approximately 199 km per 

year (76.5 km in the Buffalo Valley, 106.3 km in the Gros Ventre). The mean transect 

length was 9,928 m (± 1,633.7 SD). A total of 219 scat samples were collected: 129 in 

2013 and 90 in 2014. The mean number of scats collected per transect was 5.4 (± 5.2 

SD), with 3.4 (± 2.1 SD) in the Buffalo Valley and 6.8 (± 6.2 SD) in the Gros Ventre. Of 

these, 78.1% were determined to be cougar scat based on mDNA analysis. The remaining 

scat samples were either non-target species or were unable to be verified due to poor 

quality of sample (86.4% success rate for field detection when excluding those samples 

that failed to yield a species identification). Non-target species were generally identified 

as canid (red fox, coyote, grey wolf, or unknown canid). Two samples were identified as 

ursid, one as cervid, and 15 samples were identified as unknown, non-target species. 

After discarding non-target scats via mDNA analysis, the number of cougar scats 
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collected for each year differed by only 3.6% (n = 87 in 2013; n = 84 in 2014). This may 

have indicated an improvement in detection ability between the two years: of the samples 

that provided an mDNA-based species identification, 29.9% were non-target in 2013, and 

1.2% were non-target in 2014. However, since two different labs and lab analyses were 

used in the two years, this comparison is not necessarily appropriate. Based on scats 

detected per length of transect, there were significantly more cougar scats detected in the 

Gros Ventre than the Buffalo Valley (n = 40 in Buffalo Valley; n = 131 in Gros Ventre; 

two sample test for equality of proportions: χ2 = 17.223, df = 1, P < 0.001). Of these 

verified cougar scats, 83 were genotyped (48.5% success rate for microsatellite analysis 

of confirmed cougar scat) and analyzed with the R package allelematch. In 2013, 

allelematch determined an optimum mismatch tolerance parameter of 6 (Fig. 3.9). Using 

this parameter, allelematch identified 28 unique genotypes within 50 of the genotyped 

scats. Two genotypes were discarded due to missing alleles which created high ambiguity 

of identity. Of the 28 unique genotypes, 22 were in the Gros Ventre (78.6%), 5 were in 

the Buffalo Valley (17.9%), and 1 was detected in both areas (3.6%). In 2014, 

allelematch determined an optimum mismatch tolerance parameter of 4, and identified 17 

unique genotypes within the 32 genotyped scats. Of the 17 unique genotypes, 9 were in 

the Gros Ventre (52.9%) and 8 were in the Buffalo Valley (47.1%). The relatively similar 

number of individuals detected between the Gros Ventre and Buffalo Valley in 2014 was 

surprising. However, this was likely due to the uneven PCR success rate between the two 

areas: the Gros Ventre samples were 28.1% successful in individual genetic 

identification, and Buffalo Valley samples were 50.0% successful. As a comparison, 

these values in 2013 were 42.3% and 32.0%, respectively. 
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CAPWIRE models.— The CAPWIRE equal catchability model (ECM) produced a 

maximum likelihood abundance estimate of 38 (95% CI = 29 – 50) in 2013, and 27 (95% 

CI = 19 – 38) in 2014. The two-innate rates model (TIRM) produced abundance estimate 

of 55 (95% CI = 42 – 89) in 2013 and 48 (95% 34 - 98) in 2014. The model fit 

comparison tests produced high values for the likelihood ratio: in 2013 the likelihood 

ratio was 12.94 (P < 0.05), and in 2014 the likelihood ratio was 13.98 (P = 0), strongly 

suggesting that we could reject the null equal catchability model. In order to calculate 

density, we buffered transects from their geographic centers by 7,769 m (similarly to the 

remote cameras) to delineate the effective trapping areas. The Buffalo Valley, Gros 

Ventre, and combined areas were 648 km2, 816 km2, and 1,401 km2, respectively. The 

resulting TIRM density estimates for the Buffalo Valley, Gros Ventre, and combined 

areas, respectively, were 2.78, 5.51, and 3.93 cougars per 100 km2 in 2013, and 2.78, 

4.04, and 3.43 cougars per 100 km2 in 2014 (Table 3.4). 

 Spatially explicit models.— Based on AICc ranking, the top SECR model in 2013 

incorporated a density gradient along north-south and east-west lines, reflecting the 

different cougar densities in the Buffalo Valley and Gros Ventre areas (Table 3.5). For 

the Gros Ventre area, the top 2013 model was the null model. Due to lack of re-detections 

in the Buffalo Valley in 2013, we could not run any SECR models. In 2014, the top 

model for the Gros Ventre, Buffalo Valley, and combined areas was the null model 

(Table 3.6). In 2014 we also ran group models incorporating the genetically determined 

sex of the individuals. Genetic classification of sex was 10.4% unsuccessful, and 

detections with unknown sex had to be excluded from the group models. Due to small 

sample size, we discarded models with greater than 6 parameters; these models 
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performed poorly, and failed to produce AICc scores. The null models were the highest 

ranked for the Gros Ventre and Buffalo Valley. For the combined areas, there was 

approximately equal evidence for a group effect for g0 (Table 3.7) indicating a higher 

probability of detection for males, which is possible given that transect routes generally 

followed ridgelines and travel routes where cougar scrape sites were common, and where 

males may be more likely to deposit scat (Harmsen et al. 2010). We used model 

averaging, as implemented in Package secr, to determine results for the combined area 

(Table 3.8). 

Detections of radio-tagged cougars.— Due to differing lab protocols, we were 

only able to cross-reference genetic samples collected directly from radio-collared 

animals to the scat data collected in 2013. Of the 28 unique genotypes detected in the scat 

samples from 2013, 4 were identified as previously captured and radio-collared 

individuals. We determined there were 7 radio-collared individuals on the transect array 

during 2013. We used a generalized linear mixed-effect model (GLMM) with a Poisson 

distribution to examine if the density of scat detection transects within an individual’s 

home range was related to the number of times an individual was detected. We found a 

positive but nonsignificant correlation between the number of detections and detectors 

per km2 (β = 0.531, SE = 0.486, P = 0.275). 

Comparisons with Reference Estimates 

Expressed as a density estimate of cougars per 100 km2, the mean of the 

telemetry-derived density estimates for 2011 – 2013 was 1.07 in the Gros Ventre area (n 

= 3, ± 0.15 SD), 0.26 in the Buffalo Valley area (n = 3, SD = 0.07), and 0.82 for the 

combined areas (n = 3, ± 0.10 SD)  (Chapter 2). After adjusting to include the non-adult 
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residents that were likely in the population and detected in genetic sampling, the 

respective estimates were 1.82 (n = 3, ± 0.26 SD), 0.45 (n = 3, ± 0.12 SD), and 1.40 (n = 

3, ± 0.16 SD). Density estimates from the noninvasive techniques varied spatially and 

annually (Table 3.9) with some in agreement to density estimates derived from the radio-

collared sample of cougars (Fig. 3.10).  

 Our survey of independent investigators (see above) suggested that our 

photographic detection histories were likely unreliable, due to inability to accurately 

assign individual identification to cougars. For the moment we ignore this caveat, and 

report the following comparisons under the assumption that our photographic tagging 

process was accurate. Our conventional CMR (MARK) based analysis of photographic 

captures produced results that were on average 68.3% lower than the reference estimate. 

Since our reference estimate included a small number of uncollared individuals for whom 

we were not 100% certain of residency (see Chapter 2), it was not categorically a 

minimum count. Nonetheless, it remains unlikely that the true density was lower than this 

reference estimate. The SECR-based models using SPACECAP produced more plausible 

results, likely in part due to our inclusion of trail camera photos in the encounter histories 

which increased the number of detections by an average of 45.8% per year. Promisingly, 

the 2013 SPACECAP estimate (D = 1.1) was less than 2% different than the reference 

estimate (D = 1.07). However, SPACECAP results had relatively high variance between 

the two seasons (relative SD = 56.5%), and, despite the greater number of detections, 

there were still issues of low sample size. The number of independent MCMC chains 

modeled (a measure of effective sample size for each model parameter) were especially 

problematic for σ, likely due to the low number of multi-detector recaptures (see Table 
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3.3). Both remote camera surveys coincided with telemetry-based surveys (2012 and 

2013). We overlaid concurring annual home ranges of GPS-collared cougars on the pixel 

density maps produced by SPACECAP (Fig. 3.7). Home ranges were delineated by 

kernel density estimation, using the plugin bandwidth (Chapter 2). 

Due to poor collection rates and genotyping success, the winter tracking transects 

did not provide density estimates with which to compare to the reference estimate. For 

the genetic sampling using scat detection dog surveys, the SECR-based density estimates 

were 71.8% greater than the adjusted telemetry-based reference estimates. The 

CAPWIRE estimates were on average 162.9% greater. Of note, the CAPWIRE equal 

catchability model (ECM) produced estimates closer to those for the reference estimate. 

However, based on the likelihood ratio test, the two innate rates model (TIRM) was more 

likely. Indeed, the TIRM was also more biologically appropriate given the high 

probability that a subset of the population included dependent young with lower innate 

capture probabilities than adults. Conversely, the AICc scores as implemented in Package 

secr favored models that generally did not incorporate heterogeneous mixtures for any of 

the parameters (including capture probability), despite their biological plausibility. 

Cost Comparison 

Estimated costs for the noninvasive surveys varied widely (Table 3.10). Some 

costs had to be estimated due to our use of volunteer support, as well as equipment and 

lab analysis that was donated in-kind. Outside of fuel costs, we did not account for the 

costs of trucks, snowmobiles, or ATVs. Remote camera surveys and winter tracking 

transects were intensive in their vehicle requirements, generally needing multiple 

vehicles per day of effort. The detection dog team provided its own vehicle, which was 
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accounted for in the personnel cost. Also, we did not include time spent on data analysis; 

this is especially relevant to the remote camera surveys, for which considerable time was 

spent in the process of sorting photographs and individually identifying cougars. 

As a point of interest, we also report an estimate of the telemetry based “cost per 

enumeration” (i.e., the physical capture, tagging and radio-collaring as described in 

Chapter 2). We added the amount spent on GPS collars, collar refurbishments, 

houndsman services, immobilization drugs, and capture equipment over the course of 18 

captures (including recaptures for collar replacement) that occurred between 2011 and 

2014. Divided between the 14 individuals tracked, this results in a cost per enumeration 

of $5,426. This amount does not include general overhead costs: since captures were 

performed as part of a large scale ecological study on cougars, we were unable to parse 

out the costs of personnel, vehicles, and gas used in capture efforts from those of the 

wider study, and this estimate should be considered a minimum. Furthermore, we stress 

that it is not necessarily appropriate to directly compare this amount to the cost per 

noninvasive detection described above. 

DISCUSSION 

Using our techniques and analyses, scat detection dogs were more efficient in 

generating detections of cougars than the other methods attempted. Based on our survey 

of independent investigators’ agreement in identifying photo-captured cougars, scat 

detection dogs were also less prone to error. More research is needed to determine the 

effective sampling window of scat detection dogs, although, based on work by Lonsinger 

et al. (2015), the sampling window of our scat detection dog survey was unlikely greater 
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than that for the remote camera or winter tracking surveys. Based on the detections of 

collared individuals, the scat detection surveys were slightly more effective: the 2013 scat 

survey detected 4 out of the 7 collared individuals (57.1%) present on the trapping array. 

The remote cameras detected 3 out of 8 and 4 out of 7 for the respective years, for an 

average of 47.3%. Based on our regression analyses of detectors per individual home 

range, there was no significant relationship between the density of detectors (either 

remote camera or scat transect) in a home range and the probability of being detected. 

Possibly a more important factor for remote camera detections was the placement of 

camera stations as opposed to the number of stations (i.e., one well-placed camera along 

a travel route will outperform several camera stations placed in less traveled locations). 

This highlights the difficulties in point-trapping animals with large home ranges over 

heterogeneous terrain, for which the detection probability of individual traps will vary 

significantly. Our analysis of density of scat transects per home range also failed to show 

any significant association. However, the relationship was nonetheless positive, and the 

model was limited to a single season. 

For both remote cameras and scat detection dogs, SECR–based analyses produced 

results more comparable to the reference estimate than non-SECR analyses. Presumably, 

SECR has better applicability to cougar populations because conventional CMR 

assumptions for cougars are particularly problematic, such as closure issues related to 

large home ranges extending beyond the edge of the trapping array. Large home ranges 

were also problematic for determining the trapping buffer for non-SECR methods. We 

used GPS telemetry data to determine the buffer length, whereas a naively determined 

buffer width would have used the ½ MMDM metric determined from trap locations. The 
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mean remote camera generated estimate was 52.7% less than the telemetry-derived home 

range radius; the estimate from the scat detection dog transects was 51.5% less. 

Alternative field techniques for the surveys may have changed their resulting 

estimates to some degree. For example, problems for the winter tracking transects 

included both very low detection rates and low success in genotyping samples. Sampling 

rate issues were possibly due to having too strict of protocols for the timing of transects: 

weather conditions were rarely ideal, and often did not provide a distinct sampling 

window with 2-3 days of calm tracking conditions. In addition, winter travel restrictions 

were in effect in certain parts of the study area, thereby limiting access to backtrack and 

collect hair samples. A subset of samples was identified as a canid species using mDNA 

analysis. All investigators were well trained in identifying cougar tracks; therefore this 

was most likely due to cross contamination at bedsites or in snow tracks as opposed to 

misidentification of tracks. Poor genotyping success was likely due to insufficient hair 

quantity, reinforcing statements by Kendall and McKelvey (2008) and genotyping 

success rates reported by Sawaya et al. (2011) and Russell et al. (2012). Potentially, the 

low rates of genotyping success accompanying shed cougar hair are not appropriate to 

relatively low density cougar populations such as ours. Based on our research, we would 

recommend that winter transects be performed with greater than our average of 3.5 

observers per sampling stint. Observers should also collect a greater amount of hair (our 

samples were generally 4 – 5 hairs per sample), or increase tracking length to collect a 

more viable scat sample. Regardless, the scat detection dog surveys were 127.4 times 

more fruitful than the winter track transects in terms of detections per person-day of 

effort. This is in part due to the poor genotyping success of the collected hair samples: 
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winter transects only yielded a track-detection-to-individual-identity ratio of 11%. Given 

a hypothetical scenario of 100% genotyping success with all collected samples, the scat 

detection dog team would have still generated 33.3 times as many genotypes per person-

day as the winter transects. 

For the remote camera surveys, the most critical finding was that our 

photographic survey estimates were unreliable, mainly due to the inability to reliably 

identify individual cougars. Conceivably improved photo quality, either using improved 

camera technology or field techniques, would alleviate this problem. This issue has 

important implications regarding other remote camera density estimates for cougars that 

rely on photographic identification of individuals (e.g., Kelly et al. 2008, Negroes et al. 

2010, Urios et al. 2010). Conceivably, these studies’ use of conventional camera station 

setups (one or two cameras placed along high use trails without a lure to prolong 

detection events and increase photo quantity) resulted in more accurate individual 

identification. However, we found no correlation between investigator agreement and 

number of photos within a detection event. Kelly et al. (2008) also found no significant 

relationship between photo quality and ability of investigators to assign identification. 

Nevertheless, given the success of camera trapping studies on other felids (e.g., Karanth 

1995, Trolle and Kéry 2003, Soisalo and Cavalcanti 2006), further research on the field 

techniques of photo-trapping cougars is still warranted. Disregarding the issue of 

identifiability, we found a 71% higher rate of detection for the trail sites over the blood 

lure stations, suggesting the trail camera setup was a more efficient method for generating 

detections. This discrepancy was possibly due in part to the blood stations being 

restricted from human use trails, which often overlapped topographic features where 
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cougars were more likely to be detected (e.g., ridgelines, drainage bottoms), supporting 

our impression that well-placed passive detectors may be more effective than less ideally 

placed baited detectors. Trail sites were also less costly; the blood lure camera stations 

had a higher maintenance cost than the trail cameras due to the need to regularly replace 

the blood lure. Furthermore, due to the possibility of bear encounters, safety protocols 

prohibited visits to blood lure stations with fewer than two technicians, whereas trail sites 

could be visited solo. Regardless, the scat detection surveys produced 730% more 

detections per unit of survey length than the trail cameras and at a lower cost. We did not 

calculate the trail cameras’ detections per person day of effort. The blood-lure sites had a 

261% greater number of photos taken per detection event over the trail sites, supporting 

our hypothesis that cougars would spend more time investigating the site because of the 

lure. However, we were wrong in our hypothesis that a greater number of photos would 

increase an observers’ ability to identify unique individuals. There was a promising 

spatial correlation between the SPACECAP produced estimates of density and the 

concurrent GPS-collar derived home ranges. Although the reliability of our density 

estimates was uncertain, this spatial correlation suggested some promise assuming 

resolutions to the issues outlined above. 

Our survey methods were not necessarily comparable to work by Davidson et al. 

(2014), due to that study’s greater survey effort, smaller sampling area, and use of 

multiple sampling occasions of scat dog transects allowing for conventional CMR using 

program MARK. However, it is worth noting that Davidson et al. (2014) reported a 

similar scat collection rate, number of unique genotypes, and genotyping success. Of 

note, Davidson et al. (2014) reported some of the largest capture probabilities published 
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for felids (0.25-0.99), whereas our SECR based capture probabilities ranged from 0.03-

0.05 (Table 3.6). Our sampling transects were sparse relative to the Davidson et al. 

(2014) study; however, the average spacing between nearest transect neighbors 

(calculated from transect center points) was 4,028 m and unlikely to only cover a single 

cougar home range. The scat detection dog encounter histories nevertheless had a high 

number of singletons (i.e., unique genotypes that were only encountered once): 60.7% 

and 70.6% of individual genotypes were detected only once in 2013 and 2014, 

respectively. These singletons could be explained by low sampling effort, inherently low 

detection probabilities for some portion of the population, or both. An increase in 

sampling effort would very likely increase our estimated capture probabilities, and 

potentially reduce singleton detections. However, another explanation is that the 

population during the sample included a high number of transient cougars. In this 

scenario, there would be erroneously inflated population estimates to some degree, due to 

transient individuals’ inherently low detection probability, depending on the length of 

time spent on the transect array. To examine this, we reran the top SECR models for the 

combined areas, excluding the singleton detections. The 2013 model estimated a density 

of 0.81 cougars/100 km2 (95% CI = 0.32 – 2.06); the 2014 model estimated 0.50 

cougars/100 km2 (95% CI = 0.19 – 1.30). These estimates were low compared to the 

reference estimate of 1.40 cougars/100 km2. Although detection count was probably 

related to residency status, the singletons in our sample likely included residents as well 

as transients, given the relatively low recapture counts: the mean detection count per 

individual was 1.78 (n = 45, ± 1.43 SD), and the mean detection count for non-singleton 

individuals was 3.33 (n = 15, ± 1.59 SD). The inclusion of transients in the sample is 



101 

 

 

essentially an issue of population closure; despite SECR models’ relaxed assumptions of 

closure, truly transient individuals (as opposed to temporary immigrants or emigrants; see 

Kendall et al. (1997); Gardner et al. (2009)) are problematic given there would not be any 

home range to be modeled. Survey timing may help with this issue. Ruth et al. (2011) 

found >90% of dispersing subadult cougars in the Greater Yellowstone Ecosystem 

migrated between April and September. Our surveys were performed in the late summer 

months; depending on the temporal sampling window, we likely sampled from this 

migratory period. This issue reiterates the issue of uncertainties in the temporal sampling 

window for cougar scat surveys given different environmental conditions that likely 

affect scat detectability and DNA integrity at various rates (Lonsinger et al. 2015). We 

recommend timing detection dog transects after spring snowmelt, but before the 

likelihood of detecting transient individuals increases. An ideal collection time may be 

further refined given more information on the DNA degradation rate for cougar scat 

samples. 

Many carnivore species have undergone significant contractions in their historic 

distributions due to habitat loss, habitat fragmentation, or direct persecution by humans 

(Laliberte and Ripple 2004), resulting in a call for increased effort in carnivore 

conservation (Gittleman et al. 2001).  Reliable population estimates are vital for the 

implementation and evaluation of any conservation effort, and noninvasive methods to 

determine these estimates may provide researchers the ability to measure population size 

at relatively low cost. In this thesis, we examined a current issue related specifically to 

the management and conservation of cougars: the need for a low cost alternative to the 

costly “gold standard” method of capturing and radio-collaring all individuals in a 
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population to determine its size. We examined several noninvasive techniques which 

have been used to survey cougar populations, but not necessarily in conjunction with 

other noninvasive methods or a comparative “gold standard” estimate. Based on our 

“gold standard” estimate (Chapter 2), the remote camera surveys and scat dog surveys 

both produced plausible density estimates. However, financial cost being a chief 

motivation behind the need for accurate noninvasive survey methods, we emphasize that 

our scat detection dog surveys were an order of magnitude less expensive than the other 

types of surveys (in terms of cost per detection). Future research should address the 

timing, temporal sampling window, and statistical power of this method. We also 

determined that photographic detections of cougars are likely unsuitable for CMR 

analyses, demonstrating a critical difference between survey options for cougars and 

other conspicuously pelaged felids such as tigers, leopards and jaguars.  However, some 

researchers may prefer to use remote cameras, for reasons such as being able to detect 

multiple species without the need for scent training a dog to specific species. Therefore, 

future research is warranted provided that consideration is given to the issue of 

identifiability, as well as the method’s relatively lower detection rate.
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Table 3.1. Comparison of detection and photo rates for blood lure camera stations and conventional trail cameras for sampling cougars 

noninvasively, northwestern Wyoming, 2012-2013. 

Camera station 

design Year 

Number of 

camera stations 

Number of 

detections 

Total sampling 

days 

Detection rate per 

30 days 

Mean photos per 

event 

± SD photos 

per event 

Blood lure sites 2012 43 17 3160 0.149 16.8 10.7 

 

2013 43 16 3414 0.141 27.3 8.8 

Trail sites 2012 10 6 348 0.517 8.6 9.0 

  2013 12 9* 579 0.466 3.6 2.7 

                

*one detection event comprised 2 kittens with an adult; the kittens were not included 

in the total 

    

  

1
1
8
 

 



 

 

Table 3.2. Parameter estimates for cougars sampled noninvasively in northwestern Wyoming, as determined from program MARK. 

Density was calculated using the effective trapping buffer determined from mean home range size. 

Year Model Parameter Estimate SE 

95%Lower 

CI 

95%Upper 

CI Density Density range 

2012 M0 N 5.00 0.00 5.00 5.00 0.21 (0.21-0.21) 

  
p 0.33 0.07 0.20 0.48 - - 

 
Mb N 5.88 3.49 5.03 28.62 0.25 (0.22-1.23) 

  
p 0.17 0.18 0.02 0.71 - - 

  
c 0.44 0.12 0.24 0.67 - - 

 
Mh N 5.00 0.00 5.00 5.00 0.21 (0.21-0.21) 

  
p 0.33 0.07 0.20 0.48 - - 

  
π 0.50 0.00 0.50 0.50 - - 

2013 M0 N 7.00 0.00 7.00 7.00 0.30 (0.30-0.30) 

  
p 0.29 0.06 0.18 0.42 - - 

 
Mb N 7.00 0.00 7.00 7.00 0.30 (0.30-0.30) 

 
 

p 0.35 0.11 0.18 0.57 - - 

 
 

c 0.25 0.07 0.14 0.41 - - 

 

Mh N 7.00 0.00 7.00 7.00 0.30 (0.30-0.30) 

 
 

p 0.29 0.06 0.18 0.42 - - 

 
 

π 0.50 0.00 0.50 0.50 - - 

 

1
1
9
 

 



 

 

Table 3.3. Parameter estimates for a cougar population in northwestern Wyoming, as determined from remote camera 

surveys using spatially explicit models as implemented in SPACECAP. 

Year Area 
Camera 

array 
Parameter 

Posterior 

mean 

Geweke 

diagnostic 

Effective 

sample 

size 

Posterior 

SD 

95% Lower 

HPD level 

95% Upper 

HPD level 

2012 Total 

Study 

Area 

Blood 

lure 

cameras 

σ 6,058 -0.33 455.3 3,087 2,925 10,891 

 λ0 0.077 0.27 1,023.6 0.047 0.011 0.169 

   ψ 0.238 -0.73 2,617.1 0.115 0.049 0.462 

   N 14.979 -0.69 2,239.2 6.932 5.000 28.000 

   D 0.331 - - 0.153 0.110 0.618 

   p 0.073 - - 0.042 0.011 0.155 

          

  All 

cameras 

σ 10,254 -0.43 512.4 4,160 5,329 1,6391 

   λ0 0.032 -0.54 1,731.8 0.015 0.007 0.062 

   ψ 0.247 0.45 2,889.6 0.105 0.076 0.452 

   N 16.278 0.31 2,367.3 6.482 8.000 29.000 

   D 0.359 - - 0.143 0.177 0.640 

   p 0.031 - - 0.015 0.007 0.060 

          

 Gros 

Ventre 

Blood 

lure 

cameras 

σ 258,423 -1.18 6.0 301,789 2,827 862,310 

  λ0 0.056 4.79 1,780.3 0.064 0.004 0.179 

   ψ 0.141 3.33 3,635.1 0.094 0.021 0.335 

   N 6.894 3.23 2,617.9 4.596 4.000 17.000 

   D 0.210 - - 0.140 0.122 0.518 

1
2
0
 

 



 

 

   p 0.053 - - 0.056 0.004 0.164 

          

  All 

cameras 

σ 10,652 0.40 1,105.3 4,812 5,472 17,572 

   λ0 0.029 -1.37 3,554.7 0.013 0.007 0.056 

   ψ 0.221 0.62 10,619.3 0.085 0.078 0.391 

   N 14.466 0.65 7,893.7 4.903 8.000 24.000 

   D 0.441 - - 0.149 0.244 0.732 

   p 0.028 - - 0.013 0.007 0.054 

          

 Buffal

o 

Valley 

Blood 

lure 

cameras 

N/A N/A N/A N/A N/A N/A N/A 

         

  All 

cameras 

N/A N/A N/A N/A N/A N/A N/A 

          

2013 Total 

Study 

Area 

Blood 

lure 

cameras 

σ 5,924 -0.84 653.3 1,953 3,198 9,646 

 λ0 0.062 1.10 1,220.6 0.031 0.013 0.124 

   ψ 0.321 -0.47 3,753.1 0.131 0.097 0.582 

   N 21.195 -0.46 2,893.0 8.212 8.000 37.000 

   D 0.468 - - 0.181 0.177 0.817 

   p 0.060 - - 0.029 0.013 0.117 

          

  All 

cameras 

σ 6,437 -0.25 738.2 1692 3872 9,872 

   λ0 0.034 -0.93 1,657.4 0.014 0.011 0.063 

   ψ 0.526 0.37 2,291.4 0.170 0.222 0.875 

   N 37.906 0.33 2,166.3 11.929 16.000 61.000 1
2
1
 

 



 

 

   D 0.837 - - 0.263 0.397 1.391 

   p 0.034 - - 0.014 0.011 0.061 

          

 Gros 

Ventre 

Blood 

lure 

cameras 

σ 22,926 -0.29 30.8 45,443 2,891 119,292 

  λ0 0.062 -1.56 1,630.5 0.043 0.004 0.144 

   ψ 0.224 -1.05 2,611.2 0.137 0.031 0.498 

   N 13.974 -1.02 2,266.4 8.604 5.000 31.000 

   D 0.426 - - 0.262 0.152 0.945 

   p 0.059 - - 0.040 0.004 0.134 

          

  All 

cameras 

σ 4,481,923 -9.76 1,169.0 612,443 2,938,274 5,404,512 

   λ0 0.008 1.04 21,628.5 0.002 0.003 0.012 

   ψ 0.222 -0.47 39,325.2 0.076 0.089 0.370 

   N 12.565 -0.73 24,531.4 3.396 9.000 19.000 

   D 0.004 - - 0.001 0.003 0.006 

   p 0.008 - - 0.002 0.003 0.012 

          

 Buffal

o 

Valley 

Blood 

lure 

cameras 

N/A N/A N/A N/A N/A N/A N/A 

         

  All 

cameras 

N/A N/A N/A N/A N/A N/A N/A 
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Table 3.4. Cougar density as estimated by CAPWIRE, comparing the equal catchability model (ECM) and two innate rates 

model (TIRM). Density was estimated using the ad hoc buffering method. Northwest Wyoming. 

    

Trap 

area ECM CI95% CI95% 

ECM 

density CI95% CI95% TIRM CI95% CI95% 

TIRM 

density CI95% CI95% 

2013 GV 816 30.00 23.00 39.00 3.68 2.82 4.78 45.00 35.00 73.00 5.51 4.29 8.95 

 

BV 648 11.00 6.00 ∞ 1.70 0.93 ∞ 18.00 7.00 ∞ 2.78 1.08 ∞ 

 

TSA 1,401 38.00 29.00 50.00 2.71 2.07 3.57 55.00 42.00 89.00 3.93 3.00 6.35 

2014 GV 816 16.00 11.00 24 1.96 1.35 2.94 33.00 19.00 156 4.04 2.33 19.12 

 

BV 648 10.00 8.00 18 1.54 1.23 2.78 18.00 9.00 45 2.78 1.39 6.94 

 

TSA 1,401 27.00 19.00 38 1.93 1.36 2.71 48.00 35.00 98 3.43 2.50 7.00 
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Table 3.5. AICc ranking for SECR models for cougar scat collection surveys in Northwest Wyoming, without sex 

grouping. x and y indicate a latitudinal or longitudinal gradient to density. ~1 indicates parameters that are held 

constant. 

Year Area Model K logLik AICc dAICc AICcwt 

2013  Combined areas D~x + y g0~1 σ ~1 5 -198.889 410.506 0 0.653 

  

D~x g0~1 σ ~1 4 -201.579 412.897 2.391 0.1976 

  

D~y g0~1 σ ~1 4 -202.305 414.349 3.843 0.0956 

  

D~1 g0~1 σ ~1 3 -204.249 415.498 4.992 0.0538 

2013  Gros Ventre D~1 g0~1 σ~1 3 -164.446 336.154 0 0.3806 

  

D~x g0~1 σ~1 4 -163.273 336.768 0.614 0.28 

  

D~y g0~1 σ~1 4 -163.288 336.799 0.645 0.2757 

  

D~x + y g0~1 σ~1 5 -163.099 339.728 3.574 0.0637 

2014  Combined areas D~1 g0~1 σ~1 3 -125.071 257.988 0 0.7038 

  

D~y g0~1 σ~1 4 -124.855 261.044 3.056 0.1527 

  

D~x g0~1 σ~1 4 -125.065 261.464 3.476 0.1238 

  

D~x + y g0~1 σ~1 5 -124.842 265.139 7.151 0.0197 

2014  Gros Ventre D~1 g0~1 σ~1 3 -70.2986 151.397 0 0.9456 

  

D~x g0~1 σ~1 4 -70.2223 158.445 7.048 0.0279 

  

D~y g0~1 σ~1 4 -70.2704 158.541 7.144 0.0266 

  

D~x + y g0~1 σ~1 5 -69.9603 169.921 18.524 0 

2014  Buffalo Valley D~1 g0~1 σ~1 3 -53.4806 118.961 0 0.9905 

  

D~x g0~1 σ~1 4 -53.4613 128.256 9.295 0.0095 

  

D~x + y g0~1 σ~1 5 -53.1118 146.224 27.263 0 

  

D~y g0~1 σ~1 4 -70.2704 158.541 39.58 0 

                

 1
2
4
 

 



 

 

Table 3.6. Population parameter estimates from top SECR models based on cougar scat collection (non-sex grouping models) 

in Northwest Wyoming. Data was not sufficient for the Buffalo Valley in 2013. Density estimates are in cougars per 100 km2. 

Estimates for σ are in meters. 

Year Area Top model Density SE 95% CI G0 SE 95% CI σ SE 95% CI 

2013 Combined area D ~ lat long 2.19 1.01 (0.92 - 5.19) 0.03 0.01 (0.01 - 0.05) 5,233 931 (3,702 - 7,396) 

 

Gros Ventre null 5.70 2.25 (2.70 - 12.02) 0.03 0.01 (0.01 - 0.04) 4,409 1,054 (2,777 - 7,000) 

  Buffalo Valley null - - - - - - - - - 

2014 Combined area null 2.62 0.97 (1.30 - 5.28) 0.02 0.02 (0.02 - 0.10) 3,920 817 (2,617 - 5,873) 

 

Gros Ventre null 2.98 1.60 (1.11 - 8.00) 0.05 0.03 (0.02 - 0.13) 3,020 907 (1,698 - 5,372) 

  

Buffalo Valley null 

1.94 1.71 (0.44 - 8.56) 0.05 0.03 (0.01 - 0.13) 4,754 2,399 

(1,870 - 

12,090) 

                        

1
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Table 3.7. AICc ranking for SECR models using genetics collected from cougar scat in 

Northwest Wyoming. Models incorporate a sex grouping (2014). ~g indicates a 

parameter with a group effect. x or y indicate a latitudinal or longitudinal gradient to the 

density estimate. 

Area model K logLik AIC AICc dAICc AICcwt 

Combined 

areas D~1 g0~1 σ~1 3 -128.425 262.85 265.032 0 0.3249 

 

D~1 g0~g σ~1 4 -126.909 261.819 265.819 0.787 0.2192 

 

D~+g g0~g σ~1 5 -125.517 261.035 267.701 2.669 0.0856 

 

D~1 g0~g σ~g 5 -125.905 261.81 268.477 3.445 0.058 

 

D~1 g0~1 σ~g 4 -128.267 264.534 268.534 3.502 0.0564 

 

D~y g0~1 σ~1 4 -128.356 264.712 268.712 3.68 0.0516 

 

D~x g0~1 σ~1 4 -128.372 264.745 268.745 3.713 0.0508 

 

D~g g0~1 σ~1 4 -128.392 264.783 268.783 3.751 0.0498 

 

D~y g0~g σ~1 5 -126.839 263.679 270.345 5.313 0.0228 

 

D~x g0~g σ~1 5 -126.864 263.728 270.395 5.363 0.0222 

 

D~1 + g g0~1 σ~g 5 -127.716 265.432 272.099 7.067 0.0095 

 

D~y g0~1 σ~g 5 -128.197 266.395 273.061 8.029 0.0059 

 

D~x g0~1 σ~g 5 -128.211 266.422 273.089 8.057 0.0058 

 

D~x + y g0~1 σ~1 5 -128.29 266.58 273.247 8.215 0.0053 

 

D~y + g g0~1 σ~1 5 -128.323 266.645 273.312 8.28 0.0052 

 

D~x + g g0~1 σ~1 5 -128.339 266.678 273.345 8.313 0.0051 

 

D~y + g g0~g σ~1 6 -125.422 262.845 273.345 8.313 0.0051 

 

D~1 + g g0~g σ~g 6 -125.423 262.847 273.347 8.315 0.0051 

 

D~x + g g0~g σ~1 6 -125.452 262.903 273.403 8.371 0.0049 

 

D~y g0~g σ~g 6 -125.82 263.641 274.141 9.109 0.0034 

 

D~x g0~g σ~g 6 -125.856 263.712 274.212 9.18 0.0033 

 

D~x + y g0~g σ~1 6 -126.782 265.563 276.063 11.031 0 

 

D~y + g g0~1 σ~g 6 -127.641 267.283 277.783 12.751 0 

 

D~x + g g0~1 σ~g 6 -127.645 267.29 277.79 12.758 0 

 

D~x + y g0~1 σ~g 6 -128.128 268.255 278.755 13.723 0 

  D~x + y + g g0~1 σ~1 6 -128.257 268.513 279.013 13.981 0 

Gros 

Ventre D~1 g0~1 σ~1 3 -71.8947 149.789 155.789 0 0.9385 

 

D~1 g0~g σ~1 4 -71.0782 150.156 163.49 7.701 0.02 

 

D~g g0~1 σ~1 4 -71.642 151.284 164.617 8.828 0.0114 

 

D~1 g0~1 σ~g 4 -71.6513 151.303 164.636 8.847 0.0113 

 

D~x g0~1 σ~1 4 -71.7595 151.519 164.852 9.063 0.0101 

 

D~y g0~1 σ~1 4 -71.8945 151.789 165.122 9.333 0.0088 
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D~g g0~1 σ~g 5 -68.6729 147.346 177.346 21.557 0 

 

D~g g0~g σ~1 5 -69.3885 148.777 178.777 22.988 0 

 

D~1 g0~g σ~g 5 -70.3438 150.688 180.688 24.899 0 

 

D~x g0~g σ~1 5 -70.9558 151.912 181.912 26.123 0 

 

D~y g0~g σ~1 5 -71.068 152.136 182.136 26.347 0 

 

D~x + g g0~1 σ~1 5 -71.5069 153.014 183.014 27.225 0 

 

D~x g0~1 σ~g 5 -71.5258 153.052 183.052 27.263 0 

 

D~x + y g0~1 σ~1 5 -71.6329 153.266 183.266 27.477 0 

 

D~y + g g0~1 σ~1 5 -71.6419 153.284 183.284 27.495 0 

 

D~y g0~1 σ~g 5 -71.648 153.296 183.296 27.507 0 

 

D~g g0~g σ~g 6 -68.3351 148.67 232.67 76.881 0 

 

D~x + g g0~1 σ~g 6 -68.5089 149.018 233.018 77.229 0 

 

D~y + g g0~1 σ~g 6 -68.6635 149.327 233.327 77.538 0 

 

D~x + g g0~g σ~1 6 -69.2373 150.475 234.475 78.686 0 

 

D~y + g g0~g σ~1 6 -69.3614 150.723 234.723 78.934 0 

 

D~y g0~g σ~g 6 -70.0387 152.077 236.077 80.288 0 

 

D~x g0~g σ~g 6 -70.1548 152.31 236.31 80.521 0 

 

D~x + y g0~g σ~1 6 -70.7602 153.52 237.52 81.731 0 

 

D~x + y + g g0~1 σ~1 6 -71.3802 154.76 238.76 82.971 0 

  D~x + y g0~1 σ~g 6 -71.3895 154.779 238.779 82.99 0 

Buffalo 

Valley D~1 g0~1 σ~1 3 -71.8947 149.789 155.789 0 0.9385 

 

D~1 g0~g σ~1 4 -71.0782 150.156 163.49 7.701 0.02 

 

D~g g0~1 σ~1 4 -71.642 151.284 164.617 8.828 0.0114 

 

D~1 g0~1 σ~g 4 -71.6513 151.303 164.636 8.847 0.0113 

 

D~x g0~1 σ~1 4 -71.7595 151.519 164.852 9.063 0.0101 

 

D~y g0~1 σ~1 4 -71.8945 151.789 165.122 9.333 0.0088 

 

D~g g0~1 σ~g 5 -68.6729 147.346 177.346 21.557 0 

 

D~g g0~g σ~1 5 -69.3885 148.777 178.777 22.988 0 

 

D~1 g0~g σ~g 5 -70.3438 150.688 180.688 24.899 0 

 

D~x g0~g σ~1 5 -70.9558 151.912 181.912 26.123 0 

 

D~y g0~g σ~1 5 -71.068 152.136 182.136 26.347 0 

 

D~x + g g0~1 σ~1 5 -71.5069 153.014 183.014 27.225 0 

 

D~x g0~1 σ~g 5 -71.5258 153.052 183.052 27.263 0 

 

D~x + y g0~1 σ~1 5 -71.6329 153.266 183.266 27.477 0 

 

D~y + g g0~1 σ~1 5 -71.6419 153.284 183.284 27.495 0 

 

D~y g0~1 σ~g 5 -71.648 153.296 183.296 27.507 0 

 

D~g g0~g σ~g 6 -68.3351 148.67 232.67 76.881 0 

 

D~x + g g0~1 σ~g 6 -68.5089 149.018 233.018 77.229 0 

 

D~y + g g0~1 σ~g 6 -68.6635 149.327 233.327 77.538 0 

 

D~x + g g0~g σ~1 6 -69.2373 150.475 234.475 78.686 0 

 

D~y + g g0~g σ~1 6 -69.3614 150.723 234.723 78.934 0 
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D~y g0~g σ~g 6 -70.0387 152.077 236.077 80.288 0 

 

D~x g0~g σ~g 6 -70.1548 152.31 236.31 80.521 0 

 

D~x + y g0~g σ~1 6 -70.7602 153.52 237.52 81.731 0 

 

D~x + y + g g0~1 σ~1 6 -71.3802 154.76 238.76 82.971 0 

 

D~x + y g0~1 σ~g 6 -71.3895 154.779 238.779 82.99 0 



 

 

Table 3.8. Results from top ranked SECR models using genetics collected from cougar scat in Northwest Wyoming. Models 

incorporate a sex grouping (2014). The combined area model was a model average. Density estimates are in cougars per 100 km2. 

Estimates for σ are in meters. 

Area Top model Sex Density SE 95% CI G0 SE 95% CI σ SE 95% CI 

Combined 

area 

(null)+ 

(g0~sex) 
Males 1.09 0.40 (0.54 - 2.2) 0.06 0.28 (0.03 - 0.14) 3,918 792 (2,645 - 5,802) 

  
Females 1.09 0.40 (0.54 - 2.2) 0.04 0.21 (0.02 - 0.11) 3,918 792 (2,645 - 5,802) 

Gros Ventre null Males 1.22 0.66 (0.04 - 3.30) 0.05 0.03 (0.02 - 0.15) 3,012 901 (1,698 - 5,345) 

  
Females 1.22 0.66 (0.04 - 3.30) 0.05 0.03 (0.02 - 0.15) 3,012 901 (1,698 - 5,345) 

Buffalo 

Valley 
null Males 

0.73 0.78 (0.13 - 4.05) 0.05 0.03 (0.02 - 0.14) 5,081 2,957 (1,762 - 14,646) 

    Females 0.73 0.78 (0.13 - 4.05) 0.05 0.03 (0.02 - 0.14) 5,081 2,957 (1,762 - 14,646) 
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Table 3.9. Density estimates for a population of cougars in Northwest Wyoming in cougars per 100 km2. Columns 1-3 compare 

camera trapping estimates to a telemetry-based reference estimate; Columns 4-6 compare scat collection estimates to the telemetry-

based estimate after being adjusted to estimate additional non-adults. We did not estimate a reference or perform camera trapping in 

2014; we did not collect scat in 2012. Other missing values are due to inadequate sample size. 

        

Year Area 

Reference 

est. 

SPACECAP cameras 

(95% HPD) 

MARK cameras 

(95% CI) 

Adj. reference 

est. 

SECR scat        

(95% CI) 

CAPWIRE scat 

(95% CI) 

2012 Gros Ventre 1.16 0.57 (0.4 - 0.9) - 1.97 - - 

 
Buffalo Valley 0.34 - - 0.58 - - 

 
Combined areas 0.91 0.57 (0.4 - 0.8) 0.21 (0.21 - 0.21) 1.55 - - 

2013 Gros Ventre 0.90 0.95 (0.4 - 0.8) - 1.53 5.70 (2.70 - 12.02) 3.44 (2.68 - 5.59) 

 
Buffalo Valley 0.25 - - 0.43 - 1.74 (0.68 - ∞) 

 
Combined areas 0.72 1.1 (0.7 - 1.6) 0.3 (0.3 - 0.3) 1.22 2.19 (0.92 - 5.19) 2.46 (1.88 - 3.97) 

2014 Gros Ventre - - - - 2.98 (1.11 - 8.00) 4.04 (2.33 - 19.12) 

 
Buffalo Valley - - - - 1.94 (0.44 - 8.56) 2.78 (1.39 - 6.94) 

 
Combined areas - - - - 2.62 (1.30 - 5.28) 3.42 (2.56 - 7.00) 
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Table 3.10. Cost comparison for noninvasive survey methods used to determine population estimates of cougars, northwestern 

Wyoming. 

Survey 

Method 

Equipment 

cost Lab cost Fuel cost 

Personnel 

cost** Total cost 

Number of 

detections 

Person-

days of 

effort 

Detections 

per person-

day 

Cost per 

detection 

Remote 

Cameras $57,770.00 N/A $4,200.00 $93,600.00 $155,570.00 48 650 0.0738 $3,241.04 

Detection 

Dogs N/A $8,895.00 N/A $19,378.07 $28,273.07 83* 40 2.0750 $340.64 

Winter 

Transects N/A $450.00 $260.64 $14,544.00 $15,254.64 2* 101 0.0198 $7,627.32 

                    

*Total detections used in analysis; does not include encounters that failed to yield a genetic identification (219 scat samples were collected from detection 

dogs ; 19 sets of tracks were encountered in winter transects) 

**Based on person-days of work at a wage of 

$144 per day 

       

1
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Figure 3.1. The study area, as defined by a minimum convex polygon of all recorded 

cougar locations over the course of the broader cougar ecology study (in red), 

northwestern Wyoming. The blue and green polygons delineate the area divisors for 

determination of the reference density. 
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Figure 3.2. Locations of noninvasive detectors and the effective trapping area (area 

divisor) for detecting cougars, northwestern Wyoming. 
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Figure 3.3. An example of a photo detection of a cougar at a blood-lure station, 

northwestern Wyoming. This photo was one of several photos associated with this 

detection event. 
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Figure 3.4. Multiple sets of cougar GPS locations, with each annual location set re-centered 

around the centroid of its respective home range, northwestern Wyoming. 
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Figure 3.5. Density function for cougar GPS locations as a function of distance from individual 

home range center. The solid line represents the GPS locations. Heavy dashed line is a half-

normal function. The light dashed line is the negative-exponential function.



 

 

 

Figure 3.6. A screenshot of the MS Access comparison form used to assess the agreement to which independent observers 

identified individual cougars photo-captured in northwest Wyoming. Users compared the two displayed events and assessed 

if the cougars were the same or different individuals. 1
3
7
 

 



 

 

 

Figure 3.7. Maps with pixel density estimates for photo-captured cougars in northwest Wyoming, produced by 

SPACECAP. The top map displays the grid of empty 5 km2 pixels representing potential home range centers. The 

bottom maps display 2012 and 2013 pixel density estimates, overlaid with home ranges derived from GPS telemetry. 1
3
8
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Figure 3.8. Percent agreement for identifying individual cougars from photographs as a 

function of the number of investigators queried; error bars indicate the standard deviation 

of the agreement level.
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Figure 3.9. Output from the R package allelematch, indicating the optimum mismatch 

tolerance for determining matched genotypes of cougars sampled noninvasively by scat 

detection dogs in northwest Wyoming, 2013.



141 

 

 

 

Figure 3.10. Yearly density estimates of cougars sampled noninvasively as determined by 

SECR, CAPWIRE, SPACECAP, and MARK in northwest Wyoming. The dotted line 

indicates the mean reference estimate (or adjusted mean reference estimate for genetic 

surveys), determined from 3 annual telemetry-based enumerations (2011 – 2013).  
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CHAPTER 4  

CONCLUSIONS 

This research should prove valuable to management and conservation entities 

responsible for monitoring cougar (Puma concolor) populations. In Chapter 2, we 

outlined the difficulties and biases associated with the “gold standard” methodology of 

determining cougar population size or density (i.e., capturing, collaring, and directly 

counting individuals; Cougar Management Guidelines Working Group 2005). Firstly, this 

research highlighted the potential for these capture based methods to underestimate 

cougar densities: acknowledging that different studies will have varying levels of capture 

effort and ability, our density estimates (for the combined area divisors) increased by an 

average of 65.2% (n = 3) when including resident cougars that were detected by remote 

camera, but missed by capture efforts. Secondly, we argued that these enumerative 

methods should be used in conjunction with an area divisor (i.e., the area over which 

population size is divided to compute density) that is based on capture-effort (e.g., 

McLellan 1989) as opposed to animal location (e.g., Cooley et al. 2009a, b; Elbroch and 

Wittmer 2012). This method reduces bias associated with “cougar aggregations” 

(Smallwood 1997), and is more informative when making comparisons to other survey 

methods covering the same area. Using this method, we estimated the density of a 

population of cougars in Northwest Wyoming, which was spatially comparable to the 

noninvasive densities estimated in Chapter 3. 

In Chapter 3, we examined three types of noninvasive survey methods to estimate 

cougar density: winter tracking transects, remote camera surveys, and scat detection dog 

surveys. Most importantly, our results demonstrated that scat detection dogs were an 
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order of magnitude less expensive than the other methods, in terms of cost-per-detection. 

The scat detection dog surveys also produced a greater number of detections in a shorter 

collection time, although the true sampling window (i.e., the temporal window in which 

an individual cougar could be detected) was not known with certainty. The winter 

tracking surveys did not yield enough detections for any useful population analysis; we 

recommend careful consideration of the issues outlined in our discussion, as well as 

similar studies’ results (e.g., Sawaya et al. 2011, Russell et al. 2012). The remote camera 

survey produced fewer detections over a greater time span, and, most importantly, our 

analysis of human ability to identify individual cougars in photographs indicated that this 

method is not reliable in a capture-mark-recapture framework. We also demonstrated that 

SECR models (Efford 2011, Royle et al. 2011) may be more applicable to cougar 

populations than conventional CMR models, due to cougars’ large home ranges that can 

extend beyond the boundaries of a survey area. 

Cougars, as with many large carnivores, have undergone major population 

declines and range contractions over the past century due to habitat loss, habitat 

fragmentation, and direct human persecution (Ripple et al. 2014). In recent decades, 

many cougar populations have exhibited signs of recovery at local range levels 

(Thompson and Jenks 2010, LaRue et al. 2012, Knopff et al. 2014), while others may still 

be susceptible to decline (Laundre et al. 2007, Knopff et al. 2010). Given cougars’ vast 

historic range, and potential role as both a top-down regulator (Ripple and Beschta 2006) 

and an umbrella species (Beier 2009), identifying these areas of extirpation or 

recolonization should be a priority for conservationists and managers. In this thesis, we 

learned important lessons on the applicability and efficacy of three commonly proposed 
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noninvasive survey techniques for cougars. We also addressed several issues and 

difficulties that can hamper monitoring efforts, including those related to cougars’ large 

home ranges (i.e., temporary immigration/emigration; Kendall et al. 1997) and tendency 

to shift in population aggregations over time (Smallwood 1997). 
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