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ABSTRACT 

 
Development of Genetic Goat and Hamster Models of Atrial Fibrillation and Long QT 

Syndrome; and Genetic Hamster Models of Middle East Respiratory Syndrome 

 

by 

 

Dane A. Rasmussen, Master of Science 

Utah State University, 2015 

 

Major Professor: Dr. Zhongde Wang 
Department: Animal, Dairy and Veterinary Science 

 

 Atrial fibrillation, long QT syndrome, and Middle East Respiratory Syndrome are three 

deadly human diseases for which genetic animal models are needed. From elucidating disease 

pathogenesis to facilitating the development of treatments, animal models are crucial for studying 

human disease. One of the most effective ways to generate specific animal models is through 

genetic modification. Historically, mice have been most widely used as genetically modified 

models, despite a number of limitations. New gene editing technologies such as CRISPR/Cas9 

have made developing alternative genetic models that better recapitulate some human diseases 

better and more feasible. In this thesis, I describe my efforts to develop genetically modified goat 

and hamster models for atrial fibrillation and long QT syndrome, and genetically modified 

hamster models for Middle East Respiratory Syndrome. For long QT syndrome model 

development, I knocked out the KCNQ1 gene in goat fetal fibroblast cells and baby hamster 

kidney cells using the CRIPSR/Cas9 system. The knockout results in loss-of-function mutations, 

a known cause of human long QT syndrome. The edited goat fibroblast cells will be nuclear 

donors for future cloning experiments to produce live goats possessing the KCNQ1 knockout. The 
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CRISPR gene targeting sgRNA/Cas9 vector, specific for the hamster KCNQ1, has been used for 

pronuclear injections to produce KCNQ1 knockout hamsters. For atrial fibrillation model 

development, I designed a single-stranded donor oligonucleotide that generates a KCNQ1 gain-

of-function mutation resulting in the disease. This oligonucleotide was injected into hamster 

embryos along with the KCNQ1 sgRNA/Cas9-expressing vector to generate hamsters containing 

the gain-of-function mutation. Finally, for Middle East Respiratory Syndrome model 

development, I established a breeding colony of human DPP4 transgenic hamsters in the STAT2 

knockout background. Human DPP4 transgenic hamsters are susceptible to MERS-CoV infection, 

showing mild clinical signs and allowing viral replication in lung tissue. Giving these hamsters a 

STAT2 knockout background should promote a more severe disease progression. For all three 

diseases, the foundations for the development of genetic animal models have been laid. 

(81 pages) 
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PUBLIC ABSTRACT 

 

Development of Genetic Goat and Hamster Models of Atrial Fibrillation and Long QT 

Syndrome; and Genetic Hamster Models of Middle East Respiratory Syndrome 

 

Dane Rasmussen 

 

 Atrial fibrillation (AF) and long QT syndrome (LQTS) are potentially lethal heart rhythm 

disorders that can be caused by mutations in the potassium channel gene KCNQ1. Middle East 

Respiratory Syndrome (MERS) is a viral infection with the potential to replicate the devastating 

effects of the SARS outbreak in 2003. All three of these diseases are in need of genetic animal 

models. 

 To address these needs, my thesis project focused on the development of genetic goat and 

hamster models of AF and LQTS, and genetic hamster models of MERS. Because of the goat’s 

similar organ size/physiology and the hamster’s similar lipid metabolism to that of humans, we 

believe that these animals will make better models of these diseases than more common animals. 

 Utilizing the gene-editing technology CRISPR/Cas9, I knocked out the KCNQ1 gene 

leading to a loss-of-function mutation known to cause LQTS, in goat and hamster cells. I also 

introduced a KCNQ1 gain-of-function mutation, known to cause AF, into hamster cells. These 

KCNQ1-edited cells are currently being used to develop animals susceptible to AF and/or LQTS 

for these heart diseases. 

 I also developed a DPP4 transgenic hamster in a STAT2 knockout background. The DPP4 

transgene, encoding the human cell receptor for MERS virus entry, makes hamsters susceptible to 

MERS infection. The STAT2 knockout may increase disease severity, more closely mimicking the 

human disease. These hamsters may be ideal animal models for MERS. The models developed 

from this work will be used to develop life-saving treatments for these three diseases. 
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CHAPTER I 

INTRODUCTION 

 

Utility and Importance of Animal Models 

 

 Animal models are a key aspect in the study of virtually any disease [1]. Their utility can 

range from simply observing disease pathology to treatment testing. Testing novel treatments on 

animals first allows us to avoid the ethical concerns of testing potentially harmful substances on 

humans [2]. When human clinical drug trials are unethical or not feasible, the FDA will use data 

from an animal model when approving a new drug or vaccine. This is referred to as “The Animal 

Rule” [2, 3].  

 In some situations, wild type animals can be directly used as models for the study of 

certain human diseases. This was the case in using the nine banded armadillo (Dasypus 

novemcinctus) to model leprosy. Besides humans, the armadillo is the only organism susceptible 

to this disease, and the armadillo leprosy disease model has a disease progression similar to 

humans. Armadillos develop neurological involvement with M. leprae, the bacterial species that 

causes leprosy, which allows researchers to model the neuropathogenesis of leprosy. For these 

reasons, the armadillo has been the standard leprosy model for over forty years [4, 5]. 

 Unfortunately, not all human diseases have a readily available wild type animal model. 

Because of this, the ability to generate specific genetic changes is essential for most animal model 

development. By altering the genetics of animals, disease susceptibility or resistance can be 

induced by inserting transgenes, altering a gene, or knocking out a gene’s function entirely. 

Genetically engineered mouse models (GEMM’s) have been extensively used to study a wide 

variety of diseases including cancer and neurodegenerative diseases [6-8]. Other genetic 

modifying techniques allow for increased control over gene expression. Tissue-specific and 
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temporal gene knockouts have been made possible by techniques such as the Cre-loxP 

recombination, and tetracycline- or tamoxifen-induced systems [1, 9]. 

 After initial use in mice, genetic modification technologies have extended to other 

animals such as rats, hamsters, goats, pigs, cattle, sheep, and non-human primates [1]. It is worth 

noting that site-specific genetic modifications were still impossible for some of these species, 

such as hamsters and non-human primates. Although the mouse continues to be a powerhouse 

model, the translatability to human conditions can sometimes be questionable. For example, 

preclinical cancer drugs, usually tested in mouse models, have a poor track record in clinical trials 

[10, 11]. Even though these drugs show promise in mouse models, the response rates to these 

drugs are only 3.8% in patients [11].  

 The capability to develop genetically modified models in non-murine species has 

improved  human disease modeling, especially for the human diseases that cannot be adequately 

modeled by mouse models. Take artherosclerosis for example. Mouse models have been widely 

used for this disease, but lack key human lipid metabolism proteins [12]. Their coronary arteries, 

the typical site of human artherosclerosis, are also too small to be investigated [13]. Pig models 

have a similarly sized coronary artery to humans, allowing for mechanistic insights that could not 

be previously investigated with mice [13]. Hamsters have provided another alternative 

artherosclerosis model. Their lipid metabolism is more similar to humans, making them a better 

model to study certain proteins involved in the artherosclerosis disease pattern [12].  

 This thesis focuses on the development of genetically engineered animal models for three 

deadly human diseases: atrial fibrillation, long qt syndrome, and Middle East respiratory 

syndrome. Both large animal and mouse models have been previously developed for atrial 

fibrillation and long qt syndrome, but most current models do not address the role genetics play in 

these diseases. There are some genetically modified mice of these diseases, but they are severely 

limited by their small heart size and dissimilar physiology compared to humans. Making a large 
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genetic animal of these heart conditions, such as a goat, would address this limitation. An 

alternative small model with a more similar physiology to humans may also prove more useful 

than mice. 

 Recent efforts have led to some promising models for MERS. These models have 

demonstrated infectivity and have developed the disease, but so far it is unclear if they can be 

used for drug and vaccine testing. Additionally, developing another reliable model would likely 

improve our understanding of the disease, and would also potentially allow for the testing of 

MERS drugs and vaccines. 

 Due to the recent development of efficient genome editing technologies, the focus of my 

thesis was on using the CRISPR/Cas9 genome editing technology to generate these new animal 

models. 

 

Heart Diseases to Be Modeled 

 

Atrial Fibrillation 

 Atrial fibrillation (AF) is one the most common cardiac rhythm disorders seen in U.S. 

clinics [13]. It is a cardiac rhythm disorder characterized by “irregular and rapid electrical activity” 

in the atria [14]. Affecting mostly older people over 55, symptoms of AF include heart 

palpitations, fatigue, lightheadedness, and labored breathing [13]. There are also cases where AF 

occurs without presentation of apparent AF symptoms or other disease. This is referred to as Lone 

AF, and is more prevalent in younger patients [15]. Typically the irregular electrical activity 

progresses from paroxysmal, to persistent to permanent [16]. This progression can partially occur 

because of electrical and structural remodeling that occurs in the atria shortly after the first 

incidence of AF. This remodeling increases the likelihood of subsequent incidences of AF. 

Shortly put, “atrial fibrillation begets atrial fibrillation” [16-18]. 
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 Atrial Fibrillation has many risk factors including age. The risk of developing AF 

significantly increases after age 60, and this risk doubles with each decade of age [13]. AF is also 

more prevalent in males than in females [13]. Genetics is also a major risk factor for AF. When a 

parent has AF, the chance of their offspring also developing AF increases 2-3 fold [13]. Inherited 

atrial fibrillation is often referred to as “Familial AF” [15]. Like lone AF, familial AF seems to 

manifest itself at younger ages. Mutations of various ion channel genes have been observed in 

families with a history of AF [13, 15, 19]. One of the most commonly mutated genes leading to 

AF is the KCNQ1 gene, which will be discussed later. 

 Atrial fibrillation is very prevalent in the United States. In 2009 about 2.3 million people 

were affected, and this number is expected to grow to 5.6 million by 2050 [13]. Originally 

thought to be benign in the absence of other heart conditions, AF has been found to be deadly on 

its own. In the absence of co-morbidity factors, AF was associated with nearly a two-fold 

increase in mortality from non-natural causes [20]. Additionally, AF can exacerbate other cardiac 

conditions and can increase the odds of their development. 

 One of the biggest concerns with AF is an increased incidence of ischemic strokes. About 

75,000-100,000 strokes per year can be attributed to AF [13]. It is the most significant risk factor 

among all studied cardiac conditions, associated with a five-fold increase in the risk of 

developing a stroke compared to patients without AF [21]. Atrial fibrillation is also associated 

with congestive heart failure (CHF) [22]. Patients with AF have an increased risk of developing 

subsequent CHF. Likewise, patients with CHF have an increased risk of developing AF [13, 22]. 

 The financial burden of AF can be staggering as well. In the United States the direct cost 

of AF in 2005 was estimated to be 6.65 billion USD. The cost of hospital visits alone was 2.93 

billion USD where AF was the primary diagnosis [23]. Other countries have noticed a significant 

financial impact caused by AF as well. In 2000 the total estimated direct cost of AF in the UK 

was 459 million pounds, about 356 million USD during that year. [24]. 
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Long QT Syndrome 

 Long QT syndrome (LQTS) is a cardiac arrhythmia characterized by a lengthened 

depolarization and repolarization phase of the cardiac action potential, or QT interval. Considered 

a relatively rare condition, LQTS is estimated to occur in between 1:2000 and 1:2500 births [25-

26]. Left untreated, these episodes of lengthened QT intervals lead to syncope, seizures, and 

sudden cardiac death (SCD) [25]. There are two major variants of LQTS, Jervell & Lange-

Nielsen syndrome and Romano-Ward syndrome. Both conditions cause lengthened QT intervals, 

and can lead to SCD. However, there are subtle differences in their clinical presentations, among 

which are that Jervell Lange-Nielsen syndrome is characterized by deafness, while Romano-Ward 

syndrome does not include deafness as a symptom [25]. 

 There is a strong relationship between genotype and phenotype in LQTS patients. 

Currently LQTS is organized into 13 categories, designated LQT1 through LQT13. Each category 

of disease is caused by a mutation in a different gene [27]. The three most common forms of 

LQTS are LQT1, LQT2, and LQT3, caused by mutations in the KCNQ1, KCNH2, and SCN5A 

genes, respectively [26-27]. About 75% of all LQTS cases are caused by mutations in one of 

these three genes [26]. 

 Age and gender factors are known to influence LQTS-associated SCD. Fatal cardiac 

events occur more frequently in children, particularly in preadolescence for boys and in 

adolescence and later for girls [28]. Zareba et al. reported that boys with LQT1, one of the most 

prevalent categories of LQTS, have a 71% higher risk of a cardiac event than girls [29]. SCD in 

LQT1 individuals is most often triggered during stressful or exertional situations such as 

swimming or emotional disturbances, but may also occur during rest [25]. LQTS can also be 

induced by certain medications, such as β-adrenergic agonists [30]. These factors can complicate 

LQTS diagnosis [25]. 
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Genetics of AF and LQTS: 
The KCNQ1 Gene 

 As discussed briefly above, genetics is a key risk factor for both AF and LQTS. Genotype 

can greatly increase the likelihood of developing AF, especially in the cases of familial and lone 

AF [13, 15]. Although stress and medication help trigger syncope episodes from long QT 

syndrome, genetics is the main predisposing factor [25]. There are three major genes that 

contribute to LQTS susceptibility [25-27]. One of the most extensively studied genes associated 

with AF and LQTS is the potassium channel, voltage-gated KQT-like subfamily Q, member 1 

(KCNQ1) gene. KCNQ1 has been implicated in over 240 mutations causing AF, LQTS 

(specifically LQT1), and other heart conditions [31]. 

 KCNQ1 codes for a voltage-gated potassium channel subunit found in many tissues such 

as heart, brain, and kidney [31]. The KCNQ1 subunit consists of six transmembrane domains (S1-

S6) [31]. The S1-S4 domains make up the voltage-sensing domain (VSD). This domain is 

responsible for detecting changes in membrane potential leading to a change in channel structure. 

The S5 and S6 domains form a pore region, where potassium ions are selectively allowed to flow 

in or out of the cell [31-32]. These subunits form a tetrameric pore-forming α-subunit. The 

architecture of this subunit is consistent with other voltage-gated potassium channels [32]. In 

heart tissue, the α-subunit combines with an auxiliary β-subunit, such as KCNE1; to form 

specialized voltage gated potassium channels. These specialized channels help form the current 

known as the slow delayed rectifier potassium current, which plays a major role in cardiac action 

potential repolarization [33]. In response to depolarization, the voltage-sensing domains change 

their structure, causing the pore region to open. This action allows potassium ions out of the cell. 

Once the cell membrane repolarizes, the VSD swings the pore region shut, halting potassium flow 

until the next depolarization [34]. 
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 Gain-of-function mutations have been associated with atrial fibrillation. For the last 

twelve years, a wide variety of KCNQ1 gain-of-function mutations have been discovered. Two of 

the earliest mutations discovered, S140G and V141M, were point mutations located in S1 of the 

VSD [35-36]. Patch-clamping studies determined that these mutations slow channel inactivation 

when expressed with KCNE1 in Xenopus oocytes [37]. After these studies, another point mutation, 

Q147R, was discovered. Similar patch-clamping studies found that this mutation could result in 

either an AF-like gain-of-function mutation or a loss-of-function mutation, depending on which 

β-subunit was co-expressed with the mutated gene [38]. 

 Conversely, loss-of-function mutations at KCNQ1 can be associated with LQTS, 

specifically LQT1 [31, 39-40]. KCNQ1 mutations account for 40-55% of all cases of LQTS [27]. 

Mutation of one allele usually results in the development Romano-Ward syndrome. Biallelic 

mutations result in the more severe Jervell & Lange-Nielsen syndrome [25]. The different disease 

presentations between monoallelic and biallelic mutations in KCNQ1 is consistent with the fact 

that KCNQ1 is tissue-specifically imprinted. As KCNQ1 is not imprinted in cardiac muscle, 

mutations on either alleles, depending on gain of function or loss of function mutations, should 

result in disease phenotypes (AF or LQTS) [41]. The types of KCNQ1 loss-of-function mutations 

vary. While most of these mutations are single base pair substitutions or small insertions/deletions, 

there have been instances large deletions, duplications, and splicing mutations [26]. Novel 

KCNQ1 mutations are still being uncovered [42]. 

 The genetic knowledge of both AF and LQTS builds a bridge between molecular biology 

and clinical cardiology. Genetically modified animal models have played a critical role in 

establishing the current understanding of LQTS genetics. Yet, due to the significant limitations of 

the currently available animal models (discussed below), the ability to leverage this genetic 

knowledge into effective treatments and management strategies for these diseases is lacking. 

Because of the importance of KCNQ1 to both AF and LQTS development, part of my project 
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focused on modifying KCNQ1 in suitable animals to improve upon current models for these 

diseases. 

 

Current Animal Models for AF and LQTS 

 

Current Models of AF 

 In order to better understand the connections between genetics and disease symptoms of 

atrial fibrillation, developing animal models is vital. A wide variety of both small and large 

animal models have been developed previously for AF including: goats, dogs, pigs, sheep, rabbits, 

and mice [43]. Many techniques have been used to create these models. Large animal models 

have been primarily generated by surgical means, while mouse models have largely been 

produced through genetic techniques. 

 One of the first surgically induced large animal AF models was the sterile pericarditis 

dog model [43-44]. Sterile pericarditis, or surgical enlargement of the atria, was achieved by 

placement of wire electrodes on select areas of the atria. Using these animals, researchers could 

induce both AF and atrial flutter, a similar atrial arrhythmia [44]. 

 Wijffels et al produced a goat model by surgical implantation of silicon strips containing 

electrodes on the atrial walls. With these implants, AF could be induced in these goats 

electronically by rapid atrial pacing [18, 45].  Sustained stimulation in this manner dangerously 

lowered atrial refractory periods in these goats [18]. This model contributed to the understanding 

that an episode of AF greatly increases the chances of additional AF episodes, and the phrase, 

“atrial fibrillation begets atrial fibrillation” was coined [18]. This conclusion has since been 

confirmed in dogs, sheep, and pigs [45]. 

 Another dog model was made using similar surgical techniques i.e. surgical implantation 

of a pacemaker [46]. Studies using this model examined the effect of inducing AF on healthy 
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dogs compared to dogs with congestive heart failure (CHF), which has been previously 

associated with AF [22]. Atrial fibrillation was maintained in a greater number of CHF dogs than 

healthy dogs after electrical stimulation, further confirming the connection between CHF and AF 

[46]. 

 In the above large animal models, atrial fibrillation is induced by electrical stimulation of 

the atria via surgically implanted pacemaker electrodes. Other manual surgical techniques have 

been utilized to induce AF including atrial volume overload, mitral regurgitation, and 

aortopulmonary shunts [43]. Since these models use surgical techniques that alter heart structure, 

they do not reliably present with a disease progression caused by genetic mutations. Additionally, 

these surgeries can be expensive and labor intensive. For these reasons there is a need for genetic 

animal models of atrial fibrillation. 

  Using a genetic manipulation approach, Marx et al produced a transgenic mouse 

expressing a hKCNQ1-hKCNE1 fusion protein under the control of an α-myosin heavy chain 

promoter, which is expressed exclusively in cardiac tissue [47]. Although this group did not use 

this model to investigate AF directly, Sampson et al were able to produce AF-like arrhythmias in 

these mice [48]. Administration of isoprenaline, a β-adrenergic agonist, followed by atrial 

electrical stimulation induced prolonged atrial arrhythmias in these mice [48]. In another mouse 

genetic model, the mouse KCNE1 gene was knocked out [49]. In these mice, spontaneous 

episodes of AF occurred in all KCNE1 KO mice [50]. 

 In addition to ion channel knockout models, other mechanisms have been used to 

generate AF models. Various connexin knockout mouse models have been used with varying 

success [51]. Overexpression of various genes to induce predisposing conditions of AF has also 

been used extensively [17]. For example, a mouse TGF-β1 overexpression model was created to 

induce atrial fibrosis, a condition suspected to be a risk factor for AF [52]. Subsequent studies 
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with this model demonstrated an association between atrial fibrosis and an increased risk of AF 

[52]. 

 Mouse models, though useful for studying some genetic causes of AF, have major 

limitations as AF models. Their heart size is considerably smaller than humans [53], and their 

cardiac channel physiology makes translating results from mouse studies to the human disease 

difficult. For example, the IKS current in mice is not a main repolarizing current as it is in humans 

[48, 54]. This may be the reason why the severity of the AF phenotype is low in these models. 

 Many of the models mentioned above have contributed greatly to our understanding of 

the disease. However, there are questions about AF that current models are not suited to answer. 

Currently there are no genetically engineered large animal models available [43, 45]. As 

mentioned above, most large animal models were made by electric stimulation of surgically 

implanted electrodes. These procedures can be very invasive, and labor intensive. Having a 

genetically modified large animal model would be advantageous because model generation would 

be less invasive, and would allow us to do genotype-phenotype studies in animals with organ 

sizes and physiology more similar to that of humans. 

 

Current Models for Long QT Syndrome 

 There have also been efforts towards generating long QT syndrome models. Rabbit, dog, 

and guinea pig hearts have been used as platforms to test drugs’ potential to induce LQTS and 

associated arrhythmias such as Torsade de Pointes. In these models, ventricular wedges or whole 

hearts are isolated and perfused, treated with a candidate drug, and the resulting EKG’s are 

examined for prolonged QT intervals, or other arrhythmias [55-57]. A dog atrioventricular block 

model was also made, and was also used to assess drug potentials’ to induce LQTS [58]. These 

types of models have greatly helped our understanding of the disease. However these models are 

severely limited in that they can only be used to model drug-induced LQTS. Additionally, the 
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techniques mentioned above require either heart isolation resulting in animal sacrifice, or 

invasive surgical techniques to produce the model. 

 Much effort has been made into developing genetic mouse models of LQTS [54]. Of 

particular interest are the two KCNQ1 KO models. Lee et al interrupted exon 1 of KCNQ1 

through insertion of a neomycin gene [59]. The resulting F2 and F3 animals showed no increase 

in QT interval, but mice homozygous for the interruption did display deafness, a key symptom of 

Jervell and Lange-Nielsen syndrome [59]. Another genetic mouse model was created by 

interrupting KCNQ1 exon 2 through the insertion of a PKG-neomycin fusion cassette. Deafness 

manifested in all targeted animals, and prolonged QT intervals were observed in vivo but not in 

isolated hearts [60]. There is also a naturally occurring genetic mouse model for LQTS, the 

vertigo 2 Jackson mouse line that contains a spontaneous KCNQ1 mutation. These mice are deaf, 

with gastric defects, and have a prolonged QT interval. However, there are no reports of SCD or 

any other severe LQTS clinical manifestations resulting from this spontaneous mutation [61]. 

 The above examples highlight the limitations of mouse models in recapitulating SCD 

associated with LQTS. As analyzed by Nerbonne [53], the physiology of the mouse and human 

hearts differ. For example, the average human heart beats at 60-70 beats per minute, while the 

mouse heart beats about 10 times faster [53]. The driving forces of repolarization in the human 

and mouse hearts are also different, occurring through the delayed rectifier currents in humans 

but through transient outward currents in mice [48, 54]. Mouse cardiac action potentials and 

surface electrocardiograms also exhibit major differences from those of the human heart. Another 

sharp contrast between human and mouse hearts is anatomical: the size and overall shape of these 

hearts is vastly different [62]. 

 To address some of the limitations of these mouse models, alternative models, such as 

rabbits have been explored. In rabbits, the advantages include the structural similarity of rabbit 

and human hearts [66], and similarities in electrophysiology, including the same potassium 



 12	

current-based system for repolarization of the action potentials [63]. To exploit these strengths, 

a rabbit model for LQT1 was developed in which the mutation that affects channel pore function 

in human KCNQ1 (KvLQT1-Y315S) was expressed in the rabbit heart under control of the rabbit 

β-myosin heavy chain promoter [64]. This mutation prolonged the QT interval in rabbits similarly 

to what occurs in LQT1 human patients. However, as in the mouse model, SCD was not observed 

[64]. 

 

Middle East Respiratory Syndrome 

 

Prevalence and Manifestations 

 MERS is an upper respiratory infection caused by the Betacoronavirus MERS-CoV [65-

67]. This disease has been shown to be especially dangerous to the elderly and the 

immunocompromised [66-67]. Less commonly, MERS infects children, especially those with 

underlying medical conditions [67-68]. Since November 11, 2015, there have been 1,611 

laboratory-confirmed cases worldwide, with 575 confirmed deaths [69]. The clinical presentation 

varies widely among individuals, ranging from an asymptomatic infection to fatal pneumonia 

[67]. The common symptoms of MERS include: fever, cough, sore throat, headache, nausea, 

vomiting, abdominal pain, diarrhea, muscle pain, and occasionally renal failure [66-67]. The 

mode of transmission is not completely understood, but direct contact with infected individuals 

and/or camels may be the predominant route [67]. Viral spread seems to be more efficient in 

nosocomial settings, making hospital patients and healthcare workers especially vulnerable to 

infection [67]. 

 Genetically, MERS-CoV is most similar to a variety of bat coronaviruses including 

HKU4 and HKU5 [66]. The dromedary camel is suspected to be the intermediate host of the virus, 

though it is unclear if they are capable of virus transmission to humans [66]. MERS-CoV is very 
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similar to the coronavirus SARS-CoV, responsible for the SARS scare that occurred in 2003. 

SARS has similar clinical presentations to MERS, including severe respiratory tract disease and 

pneumonia [69]. During the SARS epidemic, just over 8000 patients spread out over 30 countries 

were infected with an overall mortality rate of 9.5% [69-70]. 

 MERS has the potential to devastate parts of the world much like SARS did in 2003. 

Originally discovered in one man in Saudi Arabia [65], MERS cases have now been reported in 

26 countries [69]. Most of these cases originated from people who had recently traveled to the 

Middle East [66]. Although no major epidemics have occurred to date [69], the recent outbreak in 

South Korea demonstrates the potential dangers of this virus. In July 2015, an outbreak affected 

186 people, mostly via three major hospitals [71]. During that outbreak, more than 2,700 schools 

were forced to close, and over 16,000 people were put under quarantine [71]. The potential 

consequences of such an outbreak expanding into an epidemic are serious. 

 Although much is now known about the disease, there are still significant knowledge 

gaps. As mentioned previously, the mode of transmission is not well understood [67]. Another 

major knowledge gap is in the development of treatments to combat MERS-CoV. Currently, no 

approved antivirals or vaccines exist for MERS [67]. Over the years, a variety of candidates have 

arisen. Most notable is the monoclonal antibody m336, which demonstrates a potent ability to 

neutralize psuedoviral infection in cultured cells [72]. Unfortunately, until researchers are able to 

test these drug/vaccine candidates in a reliable animal model, development efforts will be 

severely hindered. This is why efforts to find or develop MERS models closely mimicking the 

human disease have increased dramatically over the past three years. 

 Because of the potential threat MERS poses, much work has been put into understanding 

how the virus infects host cells. Dipeptidyl pepdidase 4 (DPP4) was discovered as the receptor 

for MERS-CoV viral entry [73]. Since this initial discovery, crystal structures of the MERS-CoV 

receptor-binding domain (RBD) from the MERS spike protein, and the RBD in complex with 
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DPP4 have been solved [74-76]. The RBD consists of two subdomains. One subdomain is a 

structural core that is structurally similar to SARS-CoV. The other subdomain is used for receptor 

binding, and deviates significantly from the receptor binding subdomain structure of SARS-CoV 

[74-76]. There is a species tropism for MERS-CoV, and DPP4 plays a critical role in it [77]. 

Because of this, MERS-CoV is unable to infect common wild type rodents such as mice, 

hamsters, and ferrets [77]. 

 

Current Animal Models for MERS 

 Since MERS was only just discovered in 2012 [65], few MERS animal models are 

currently available. The first models developed and used were nonhuman primates (NHP). 

Rhesus macaques infected with MERS virus developed lower respiratory infections along with 

other clinical signs such as viral shedding, and slightly increased body temperatures [78-79]. 

These infections were generally mild and transient, with clinical signs beginning to resolve no 

later than 3 days post infection [78-79]. Lung pathology was mild to moderate. Thus, these 

Rhesus models are useful for studies of infection and mild to moderate disease, but are less useful 

in studies of the severe form of the disease seen in humans [78]. 

 Marmosets were also tested as a nonhuman primate MERS model. These animals 

developed severe and persistent disease, with some animals needing to be euthanized due to 

disease severity. The lung pathology was moderate to severe, and virus was detected in lung, 

kidney, heart, and other tissues [80]. Conversely in another study that used two different isolates 

of MERS-CoV, marmosets showed only mild to moderate signs of respiratory disease 

accompanied by mild to moderate lung pathology. This study also saw no evidence of viral 

dissemination unlike the first study [81]. Thus, the marmoset has been an inconsistent model for 

MERS infection. For these reasons, the ethical concerns in using NHPs, and the high cost that 
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comes with NHP studies, there are extreme limitations in utilizing non-human primates to 

model MERS. 

 To address these limitations, work has been put into developing mouse models, which are 

less expensive to house and maintain. Unfortunately, as mentioned above, MERS is unable to 

bind to mice and other rodents’ DPP4 receptor [77]. In order to use mice or other rodents as a 

MERS model, a human DPP4 needs to be expressed and present in lung tissue. The first hDPP4-

MERS mouse model was made by transduction of adenovirus (Ad5) vectors expressing the 

hDPP4 gene into mouse lung tissue. These mice developed interstitial pneumonia post infection 

[82]. The severity of the clinical presentation was dependent on the strain of mouse used, but 

ranged from mild to moderate. With this method, MERS mouse models could be generated in 2-3 

weeks [82]. The labor and expenses involved in generating and housing these mice is much less 

than that of the non-human primate models. The main disadvantage to this model is that the 

infection is very short-lived. Even in immunocompromised mice, the MERS virus was cleared in 

8-10 or 10-14 days, depending on the age of the animal [82]. Viral infection was also not fatal in 

these mice. This transient infection does not properly reflect the potentially deadly disease 

progression found in many human cases. 

 To generate a more severe model of the disease, two transgenic mouse models of MERS 

were developed. The first model contains an hDPP4 transgene under the control of a CAG 

promoter resulting in global expression [83]. Transgenic mice developed moderate to severe 

clinical signs of pneumonia accompanied by progressive weight loss. Most mice died within 1 

week post-infection [84]. Unlike the transduced model, this transgenic mouse model had a rapid, 

severe, and fatal disease progression. This progression is very useful in modeling severe human 

cases, but its usefulness in modeling moderate cases is limited. In addition to the lung, virus was 

also detected in the brain of these animals [84]. Although considered a respiratory disease, 
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neurological conditions have been observed in some severe human cases of MERS. It is still 

unclear if neural infection is a common aspect of the human disease [67, 85]. 

 The second transgenic MERS mouse model contains a keratin 18 (K18) promoter 

controlling the hDPP4 transgene [86]. This promoter preferentially expresses genes in epithelial 

cells, the primary cell types MERS-CoV infects in the lung [86]. K18-hDPP4 positive mice 

presented with a lethal disease, dying 6-7 days post infection. Before death, these mice showed 

weight loss and a decrease in body temperature [86]. Both titers and viral RNA were detected at 

high levels in the brain and lungs [86]. There was a correlation between brain tissue infection and 

mortality in these studies [86]. Viral RNA but not virus titers was detected in the kidneys. Just 

like in the CAG-controlled transgenic mice, the K-18 controlled mice demonstrated lung and 

brain pathology after MERS infection [84, 86]. 

 Currently there is one other MERS mouse model. Instead of transgenic, these mice were 

made susceptible to MERS by humanizing the mouse DPP4 gene [87]. Lung pathology but not 

lethality was observed in this model after MERS infection. The presence of virus was limited to 

the lung, with no virus or pathology detected in the brain [87]. Overall this humanized mouse 

model seems to be a model of mild to moderate disease localized in lung tissue similar to the viral 

transduced model [82]. One thing to note about these animals is that these studies were only taken 

to 4 days post-infection. Other MERS model studies were taken to at least day 7 [87]. Because 

the humanized mouse studies were ended so quickly, it is unclear if these animals would develop 

a more severe disease with viral dissemination like in the transgenic mice [84, 86]. While these 

mouse models provide the opportunity to study the pathogenesis of MERS-CoV, knowledge 

learned from using this species cannot always be translated into humans [88]. Therefore, a 

hamster model for this emerging infectious disease will help to validate some of the findings 

made in mice and may provide some novel insights into the disease process. Furthermore, 
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creating an hDPP4/STAT2-/- hamster model will allow scientists to address the roles of 

STAT2-mediated innate immunity on virus control and disease progression. 

 

Goats as Animal Models 

 

  The goat (Capra hircus) has proven to be a useful large animal model. Production of 

goat models is very reliable because techniques in husbandry and veterinary medicine are well 

established [89-91]. Additionally, the reproductive biology of goats is well understood [91]. 

Finally, the physiology and organ size between goat and humans are very similar [92]. Utilizing 

these advantages has resulted in the production of some useful disease models. 

 As summarized previously, goats have been used extensively in studying human heart 

diseases, especially AF [45]. Goats are also frequently used as models for human orthopedic 

conditions. Because of the similarity between the goat stifle and the human knee, they are 

considered one of the best models of ACL repair. They are also used to study other joint 

conditions such osteoarthritis [93]. The similarity between the goat stifle and the human knee 

have also allowed for the study of meniscal repair. Recently, the goat meniscus was used as a 

proof of concept for the use of guided tissue regeneration [94]. Goat scoliosis models have also 

been created [95]. 

 Along with scoliosis, goats have been used to study other back conditions. The cauda 

equina is a bundle of nerves located in the lumbar vertebrae. Developing surgical techniques to 

repair injured cauda equina in smaller animals such as rats is difficult. Goats have a similarly 

sized cauda equina to humans that allowed for the development of a goat cauda equina repair 

model. In this model researchers were able to monitor the post-operative repair process more 

closely than in previous models [96]. 
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 Although orthopedics and surgical technique development has been the main use for 

goat models, they have also been used to study acute lung injury. The goat lung shares some 

similarity to the human one. For example, goat macrophages produce very little nitrous oxide just 

like human macrophages do [97]. Additionally, measuring protein concentration in blood lymph, 

a key parameter in assessing acute lung injury, is well established in goats [98]. Some bacterial 

infections have also been studied in goat models. Goat models have been developed for both 

listerosis and Clostridium perfingens infection. In both of these models, disease progression and 

pathology was extensively studied [99-100]. 

 

Hamsters as Animal Models 

 

 The original stock of golden Syrian hamsters (Mesocritus auratus) was acquired from 

Jerusalem in the 1930s. Since their initial capture a variety of colonies have been developed [101-

102]. These colonies have been used to study a wide variety of diseases such as dental caries, 

diabetes, hypertension, and muscular dystrophy [102]. Hamsters can be generated relatively 

quickly because of their 15-18 day gestation period [103-104]. They are also easy to handle, 

usually showing aggression only when startled or woken suddenly [104]. 

 One of the most advantageous aspects of using the hamster model is how closely their 

disease progressions are to those of humans for many conditions. For example, in the hamster 

cheek pouch oral cancer model, many of the disease stages match the human progression [105-

106]. The cardiomyopathic model (CM) hamsters are another set of well-established specialized 

hamster models. These lines of hamsters all exhibit a similar disease progression, and have been 

used to study a variety of cardiac conditions such as cardiomyopathy and atherosclerosis [107-

108]. Recently the BIOF1B hamster, one of these CM colonies, has been of particular interest. 

These animals have been used to study artherosclerosis, the effects of fish oil on lipid metabolism, 
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and the contribution of inhibitory G-proteins in the development of heart disease [12, 109-110]. 

This line of hamsters is especially advantageous because, unlike mouse atherosclerosis models, 

hamster lipid metabolism is very similar to humans, involving many of the same enzymes. These 

include the LDL receptor, apolipoprotein E, and CETP [12].  

 Wild type golden Syrian hamsters are also being extensively used in modeling human 

viral infections. They have been previously used to study the deadly SARS coronavirus [111], 

and are showing promising signs for use in Ebola and other hemorrhagic fevers [112]. Hamsters 

infected by mouse adapted Ebola virus show hallmark symptoms and pathology as compared to 

humans [113].  

 In addition to hemorrhagic fevers, hamsters have also shown promise in being better 

models of adenovirus infections. Hamsters have been shown to be susceptible to adenovirus 

infection, and also allow viral replication [114]. Oncolytic adenoviruses have recently shown 

promise in becoming a cancer treatment. Because of their susceptibility to adenoviral infection, 

and their ability to allow robust replication, hamsters have also become a frontrunner for testing 

oncolytic viral treatments for various types of cancer [114]. 

 Despite their many advantages, there have been major limitations preventing the more 

extensive use of hamsters as animal models. The first is the lack of hamster specific 

immunological assays, which may limit researchers in their abilities to study disease progression, 

immune response, and pathology [114]. Currently work is being done to overcome this setback. 

qRT-PCR assays for various hamster host response genes have been developed and validated 

[115]. The Wang laboratory is currently leading an effort to form an international golden Syrian 

hamster consortium to develop and share hamster-specific reagents for use in hamster modeling 

studies. 

 Another roadblock that is currently being overcome is the lack of a complete hamster 

genomic sequence. A complete transcriptome is now available [116], but there is no complete 
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hamster genomic sequence. This limitation is being addressed by choosing the Syrian hamster 

as one of the 27 high priority Eutherian mammals for whole-genome sequencing by the Genome 

10K project. The first draft assembly was recently completed [117]. 

 The most significant roadblock in using hamster models more extensively was the lack of 

gene-targeting tools in this species, which has been recently overcome by the Wang laboratory 

[118]. Up until recently, there was no gene-targeting system to use in hamsters. From a genetic 

standpoint, this limited the use of hamster models to diseases that can be mimicked in the wild 

type hamsters. In 2014, Fan, et al was able to generate genome-edited hamsters using the 

CRISPR/Cas9 system. They were able to target a few different genes, but the highlight from this 

work was the generation of the STAT2 knockout hamster [118]. 

 STAT2 is a signaling protein in the type I interferon (IFN) pathway, a key component in 

the innate immune response. The previously mentioned STAT2 KO hamster contained a 1-

nucleotide insertion in the N-terminal domain of the STAT2 gene, which fully abolishes the 

expression of STAT2 protein. When these hamsters were infected with human adenovirus 5 (Ad5), 

they showed higher viral loads in the liver, lungs, and kidneys compared to wild type controls. 

The STAT2 KO hamsters also had a much higher mortality rate as a result of infection [119]. This 

was the first study in which researchers could investigate the immune responses relevant to late-

phase Ad infection in animal models, as previous mouse models were unable support adenoviral 

replication [119]. The STAT2 KO hamsters also demonstrated the importance of type I IFNs in 

the immune response against adenoviral infection [119]. 

 The STAT2 KO hamster is the first example of a genetically modified Syrian golden 

hamster [118]. This is a major breakthrough in studying adenovirus pathology, but more 

importantly, in the use of hamster disease models. With this newly developed hamster gene-

modifying platform, hamster animal models can be generated to precise specifications. 
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CRISPR/Cas9: A New Tool to Efficiently  
Develop Precise Animal Models 

 

 In the past, gene targeting has been inefficient and labor intensive. Traditional gene 

targeting requires the generation of a targeting vector containing a modification of choice, and 

homologous arms at least thousands of nucleotides long. This vector is inserted into cells and 

relies on homologous recombination to modify DNA. This process is labor intensive, and 

inefficient. Modification efficiency has been reported to be as low as <1%, and as high as 10% 

[120-121] This technique requires selection of edited cells, which often requires the insertion of 

foreign components such as a GFP gene or an antibiotic resistance gene to facilitate selection 

[122-124]. 

 One of the greatest innovations in gene functional studies and animal model generation 

has been the development of precise gene-targeting technologies. Zinc finger nucleases, TALEN, 

and CRISPR/Cas9 have all made genome editing both rapid and customizable [125-126]. The 

principle components behind these technologies are protein-DNA or RNA-DNA interactions for 

precise targeting, and an endonuclease that makes a double stranded break at the DNA target 

[126]. After the double stranded break, the cell repairs itself via non-homologous end joining 

(NHEJ) or homologous recombination (HR). When NHEJ is used, frameshift mutations are 

induced. These mutations often result in the formation of a premature stop codon, thereby 

producing a gene KO. Introducing a donor oligonucleotide containing homologous arms will 

induce HR. The center of this donor sequence will contain mutations ranging from single point 

mutations to mutations many nucleotides long [126]. 

 Originally found in bacteria as a viral defense mechanism, CRISPR/Cas9 (Clustered 

Regularly Interspaced Short Palindromic Repeats) has been utilized as a genome editor that has 

been widely used in many organisms including: mice, rats, goats, and human embryonic stem 

cells [127-130]. The guide RNA sequence (sgRNA or gRNA) acts as the DNA binder, interacting 
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with its target via complimentary base pairing. The endonuclease in this system is Cas9, which 

is guided to the target site by forming a complex with the sgRNA [127-128]. The only constraint 

on what sequences CRISPR can target is the PAM (Protospacer Adjacent Motif) sequence. 

Recognition of this three-nucleotide long sequence is required for Cas9 binding and cleavage 

[131-132].  In order for a gRNA sequence to bind to its target, the target must be followed by a 

PAM sequence on the 3’ end. The exact sequence of the PAM can vary, but in the most 

commonly used CRISPR systems the PAM is any nucleotide followed by two Gs (NGG) [127].

 CRISPR/Cas9 genome editing is rapid and efficient with reported efficiencies being as 

high as 65-77% [133-135]. This system is also customizable, unlocking the potential for precise, 

efficient, and quick generation of animal models. Currently, there are two commonly used ways 

to generate animal models using CRISPR/Cas9. The first is via cloning by somatic cell nuclear 

transfer (SCNT). In this procedure, a population of cells is first edited by CRIPSR/Cas9. Next, 

cell lines from these populations are established via serial dilution. Once cell lines are screened 

for a mutation of interest, positive colonies can be used as nuclear donors for SCNT. The 

resulting cloned animals will contain the genomic modification induced by CRISPR/Cas9 [133]. 

Using this technique, CRISPR/Cas9 edited goats and pigs have been generated [129, 133]. 

CRISPR/Cas9 edited bovine cells have also been used for SCNT. These clones could be cultured 

to the blastocyst stage allowing for the potential to produce genetically engineered cows using 

this method [134].	

 The second strategy commonly used is direct editing of the zygote. In this strategy, the 

CRISPR/Cas9 components are directly injected into a zygote by a procedure known as pronuclear 

(PN) injection. The zygote is microinjected with either the sgRNA/Cas9 plasmid or mRNA of 

both Cas9 and the sgRNA [135-137]. After injection, embryos are implanted into a female 

recipient. Since the single-celled zygote is edited, all daughter cells contain the same modification. 

This strategy was used to generate the STAT2 KO hamsters discussed above [118]. This strategy 
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has been used in smaller organisms including mice previously [133-137], but has recently been 

adopted for use in larger animals including sheep, goats, and pigs [138-141]. Considering the fact 

that SCNT technology has not been successfully applied to some animal species, such as the 

Syrian hamster, conducting gene editing in zygotes made it possible to create genetically 

engineered animals in these species.	

 With the development of genome engineering technologies such as CRIPSR/Cas9, it has 

never been easier to efficiently produce genetically engineered animals for use in gene studies 

and animal model development. Atrial fibrillation, long qt syndrome, and MERS are all deadly 

diseases with a need for the development of alternative genetically engineered animal models. In 

this thesis project I have laid the foundations for producing LQT1 goat models, LQT1 and AF 

hamster models, and MERS-CoV hamster models.	
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CHAPTER II	

OBJECTIVES	

	

• Generate KCNQ1 knockout mutations using CRISPR/Cas9 for the purpose of generating 

LQTS animal models: 

o In goat fibroblast cells  

o In hamsters 

• Use CRISPR/Cas9 to induce the KCNQ1 gain-of-function knockin mutation, Q147R, in 

hamster cells to produce a hamster model of AF. 

• Establish hDPP4 positive hamsters in the STAT2 KO background via crossing hDPP4+ 

hamsters with STAT2 knockout hamsters to produce a hamster model of MERS-CoV. 
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CHAPTER III 

METHODS 

 

AF and LQTS Model Development 

 

Cell Culture 

 For in vitro KCNQ1 knockout and gain-of-function knockin, goat fetal fibroblast (GFF) 

cells (provided by Dr. Irina Polejeva) established from gestation day 40 to day 60 fetuses and 

baby hamster kidney cells (BHK-21 (C-13; ATCC) were used. These cells were grown and 

maintained in Dulbecco Modified Eagle Medium supplemented with 10% fetal bovine serum 

(v:v), 1% penicillin/streptomycin, and 1% non-essential amino acids (Life Technologies). Cell 

incubation temperatures were 37.5 and 37 degrees Celsius for the goat cells and hamster cells, 

respectively. Both incubation environments contained 5% CO2 in the air. 

 

Animal Work/Ethics Statement 

 Golden Syrian hamster production, maintenance, and PN embryo manipulations are 

described in Fan et al [118]. Briefly, founder animals were purchased from Charles River 

Laboratories. Hamsters used for PN embryo production were bred in-house. Wild type females 

used as embryo transfer recipients were generated from a breeding colony established in the 

Wang laboratory. Hamsters were raised in an air-conditioned room with a 14-hour light and 10-

hour dark light cycle (14L:10D; 6:00 am light on, 8:00 pm light off). The experiments performed 

were in accordance with guidelines of the AAALAC-accredited Laboratory Animal Research 

Center at Utah State University and approved by the Institutional Animal Care and Use 

Committee of Utah State University (IACUC Protocol: 2484). 
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KCNQ1 Characterization 

 Genomic DNA isolation was performed on cultured cells using the Puregene Core Kit A 

according to the manufacturer’s instructions (Qiagen). Published KCNQ1 genomic sequences of 

hamster (NW_004801604.1) and goat (NC_022321.1) were used to design PCR primers that 

amplify regions of hamster KCNQ1 exon 2 (HaKCNQ1F1: 5’tgagtgcactagctgaggga3’; 

HaKCNQ1R1: 5’aatctgggctgggacacttg3’) and goat KCNQ1 exons 1 (KCNQ1Ex3F: 

5’ttgtcctggcctgcctcatc3’; KCNQ1KIR1: 5’ccgtcattcttccgccttctca3’) and 2 (Kcnq03: 

5’gagatcgtcctggtggtgttcttcg3’; gsR1: 5’cagtggacactcctattgtgctgag3’). 50-200 ng of genomic DNA 

isolated from goat fetal fibroblasts was amplified by polymerase chain reaction (PCR) using 

ExTaq (Takara) with 10 pmol of forward primer and 10 pmol reverse primer in each PCR 

reaction. Thermocycler protocol started with a 3 min. melting step (94° C), followed by 38 cycles 

of melting (94° C for 30 s), annealing (60° C for 30 s), and extension steps (72° C for 30 s). A 

final extension step was used (10 min. at 72° C). 10 pmol of each primer pair was used in each 

reaction. 

 BHK genomic DNA was PCR amplified in a similar fashion as in the goat. ExTaq was 

used to amplify 50-200 ng of template using 10 pmol of each KCNQ1 exon 2-specific primer. 

Thermocycler protocol was exactly the same as the above goat protocol except that the annealing 

temperature was 64° C, and the extension time was for 1 min instead of 30 s. Depending on the 

specificity of the PCR reaction, the resulting PCR products were purified by either gel extraction 

or PCR purification according to manufacturer’s instructions (Qiaquick kits, Qiagen). Purified 

PCR products from both goats and hamsters were then sequenced via Sanger sequencing. These 

sequences were used to design sgRNA targets for the above loci. These targets were found 

according to the G(N)20GG motif. 

 

 



 27	

Gene Targeting in GFF and BHK Cells 

 To target the KCNQ1 genomic loci mentioned above in GFF and BHK cells, pX330-U6-

Chimeric_BB-CBh-hSpCas9 plasmids (Addgene ID: 42230) were constructed as described 

previously [127]. DNA oligo templates for the sgRNA targeting sites were synthesized by 

Integrated DNA Technologies (IDT, Iowa, USA).  Between 7.5 X 105 and 106 cells were 

transfected with 5 µg (GFF cells) or 2-4 µg (BHK cells) of sgRNA/Cas9 vector plasmid DNA. 

Transfections were performed using AMAXA 4D nucleofection (Program EN-150). For gain-of-

function knockin experiments on BHK cells, 26 µg of PAGE purified single stranded DNA donor 

oligo (IDT) containing the one nucleotide mutation of interest, a one nucleotide mutation to 

disrupt the PAM sequence, and 142 nucleotides of homologous arms was cotransfected with the 

sgRNA/Cas9 vector into the cells. 48-72 hours post-transfection, cells were harvested and 

isolated for genomic DNA using the Puregene Core Kit A according to the manufacturer’s 

protocol (Qiagen). Isolated genomic DNA was amplified for the above genomic loci using the 

same PCR protocols described earlier. 

 If the resulting PCR products were a single intense band of the correct size, then they 

were digested directly by restriction enzyme without prior purification. The digested products 

were resolved on 2% agarose gel stained with SYBR Safe DNA stain (Life Technologies). Since 

CRISPR/Cas9 targeting abolishes the chosen enzyme sites, the PCR product’s ability to resist 

digestion determined weather gene knockout events occurred. Conversely, the gain-of-function 

mutation in BHK cells creates a new enzyme site (BsrBI) leading to the presence of digest 

products. Targeting efficiency was estimated by measuring the relative intensity of the digest-

resistant band to the digested bands. This measurement was determined using Image J software 

(1.47p, NIH). 
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SURVEYOR Nuclease Assay 

 SURVEYOR Nuclease assay was also used to detect knockout events in BHK cells. 

KCNQ1 targeted and wild type PCR fragments were mixed together and run on a hybridization 

reaction according to manufacturer’s protocol. The resulting heterogeneous dihybrids were 

digested with SURVEYOR nuclease at 42° C for 1 hour. After stop solution was added to the 

hybrids, digested products were resolved on a 1.5% agarose gel stained with SYBR Safe. Hybrids 

that included a strand that had been edited would produce mismatches in the hybrids that 

SURVEYOR nuclease exclusively cuts. 

 

PCR Based Detection of KCNQ1 Gain-of-Function  
Mutations in BHK Cells 

 In addition to enzyme digest, KCNQ1 gain-of-function knockin mutations were also 

detected using PCR. A new forward primer containing the KCNQ1 gain-of-function substitution 

at the 3’ clamp allowed it to amplify BHK genomic DNA with the substitution mutation, but not 

wild type DNA (HaKCNQ1 KI Q147R: 5’ctgtccactattgagcg3’). Using this primer and primer 

HaKCNQ1R1, wild type BHK genomic DNA was subjected to PCR amplification according to 

the protocol described above using a gradient of annealing temperatures (Ta’s shown in Figure 

16) to establish its selectivity against wild type DNA. I established a PCR-based assay that a 380 

nucleotide PCR product was generated from genomic DNA with the gain-of-function knockin 

mutation, but no PCR product resulted from wild type genomic DNA at an annealing temperature 

of 58° C. 

 

Cell-Line Establishment 

 48 hours post-transfection, GFF and BHK single cell derived colonies were established 

via limiting dilution. The diluted cells, at the concentration of 10-15 cells per ml, were plated into 

96-well plates with each well receiving 200 µl of cell suspension. Cell culture plates were 
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checked under inverted microscope every 2-3 days to identify and mark the wells containing 

single cell colonies. After 10-14 days (media changed every 4 days), single cell derived colonies 

that reach confluency were transferred to 24-well plates, and grown to 80-90% confluency. At 

this point, half of the cells were harvested for genomic DNA isolation and screened for mutations 

by PCR followed by enzyme digest using the techniques described above, or by directly 

sequencing the PCR products. The other half were passaged into either fresh 24-well plates or 12 

well plates. After the passaged cells were grown to 80-90% confluency, cells that were positive 

for knockout mutations were cryogenically frozen in liquid nitrogen. To determine the exact types 

of mutations produced in both GFF and BHK cells, PCR products of cell lines that were knockout 

positive were cloned into TA vectors (Invitrogen). TA clones were sequenced via Sanger 

sequencing. 

 

MERS MODEL DEVELOPMENT 

 

Vector Construction 

 The GFP reporter gene used here originated from the pEGFP-N1 plasmid (Addgene ID: 

6085-1). HindIII-E2A-GFPF 

(5’ggaagcttccaatgtactaactacgctttgttgaaactcgctggcgatgttgaaagtaatcccggtcctatggtgagcaagggcgaggag

ctgttc3’; underlined sequence is the HindIII recognition site) and GFPR-XbaI 

(5’ggtctagattacttgtacagctcgtccatgc3’; underlined sequence is the XbaI recognition site) primers 

were used to create and amplify the E2A-GFP cassette. E2A-GFP cassette was cut by HindIII and 

XbaI and was sub-cloned into the pDNR-DPP4 plasmid (DNASU ID HsCD00021611) at the 

HindIII/XbaI sites. The resulting DPP4-GFP cassette was amplified with a forward primer 

containing an XbaI site and a reverse primer containing a NotI site. The amplified XbaI-DPP4-
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GFP-NotI cassette was inserted into the pK18-tTs plasmid (provided by Dr. Stanley Perlman). 

tTs was replaced by the DPP4-GFP cassette via XbaI/NotI ligation to create pK18-DPP4-GFP. 

 The K18-DPP4-GFP cassette was then liberated from the above resultant plasmid by SpeI 

and BamHI. PiggyBac Vector (PB513B-1, Systems Biosciences) was opened by the same 

restriction enzymes. The K18-DPP4-GFP cassette was inserted into the PiggyBac vector using 

SpeI/BamHI ligation, creating the PB-DPP4-GFP intermediate vector. The intermediate vector 

was then cut by NruI and BamHI to eliminate the PiggyBac elongation factor (EF1) and GFP. 

This allows for GFP expression to be under the control of the K18 promoter instead of being 

constitutively expressed. The final PB-DPP4-GFP vector free from EF1 and GFP was self-ligated 

together via blunt-end ligation. 

 

hDPP4 X STAT2 Crosses 

 Transgenic hDPP4 hamsters were generated by pronuclear injection of PB-DPP4-GFP 

and PiggyBac Transposase (PB210PA-1) vectors in-house (unpublished). STAT2 KO hamsters 

were generated previously by Fan et al [118]. Housing conditions for the hamsters are described 

above. 

 Hamsters with hDPP4 genotype (DPP4+/-) were crossed with hamsters containing a loss 

of function STAT2 allele (STAT2+/-). To cross these animals, females on day four of their estrous 

cycle were placed in the male cage, and the two animals were observed to make sure they did not 

fight each other. Once mating began, the mating pairs were left alone for one hour, and then 

separated back into their own cages. Two to three weeks after pups were born, toe clippings were 

taken and used to isolate genomic DNA using the Pure Gene Core Kit according to the 

manufacturer’s protocol (Qiagen). Sister/brother breeding was then performed in order to produce 

hDPP4 positive hamsters that were homozygous for the STAT2 knockout allele (DPP4+/-; 

STAT2-/-). 
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hDPP4 Genotyping 

 DPP4 genotyping was performed using genomic DNA PCR. 100-500 ng genomic DNA 

was amplified using ExTaq (Takara). Thermocycler protocol started with a 3 min. melting step 

(94° C), followed by 35 cycles of melting (94° C for 30 s), annealing (64° C for 30 s), and 

extension steps (72° C for 1 min). 10 pmol of each primer (K18 F2-1: 5’gccacttaccttgcaagcac3’; 

K18 R2-1: 5’cgccagcgagtttcaacaaa3’) was used in each reaction. PCR products were visualized 

on 1.5% agarose gels stained with SYBR Safe. Samples containing the hDPP4 gene produced a 

658 nucleotide PCR product. 

 

STAT2 Genotyping 

 STAT2 genotyping was performed by first producing an 869 nucleotide PCR product 

using Phusion high-fidelity polymerase (Thermo-Fisher). Thermocycler protocol started with a 3 

min. melting step (98° C), followed by 35 cycles of melting (98° C for 10 s), annealing (65° C for 

30 s), and extension steps (72° C for 30 s). 10 pmol of each STAT2-specific primer (E03: 

5’gtacagggaagagctggaactgatg3’; E04: 5’ctgtatcctctgtgacacttgccac3’) were used to amplify 100-

300 ng of genomic DNA template per reaction. 5 µl of the resulting PCR products were directly 

digested with fast digest BglII (Thermo-Fisher). Digested products were resolved on a 1.5% 

agarose gel stained with SYBR Safe. The STAT2 knockout mutation abolishes the BglII site, 

rendering the PCR products resistant to digest by which the STAT2 knockout allele and wild type 

allele can be distinguished. PCR products completely resistant to digest were determined to be 

homozygous for the knockout genotype (STAT2-/-), while PCR products that are semi-resistant 

(half of a product can be digested by the BglII restriction enzyme) indicate the heterozygous 

knockout genotype (STAT2+/-
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CHAPTER IV 

GENETIC KNOCKOUT OF GOAT KCNQ1 WITH THE CRSPR/CAS9 SYSTEM 

 

Goat KCNQ1 Characterization 

 

We decided to knock out the goat KCNQ1 by introducing frameshift mutations in exon 1 

of this gene via the CRISPR/Cas9 system. Additionally, we chose to target exon 2 as an 

alternative knockout strategy. Targeting the first exons of the gene will fully abolish the function 

of the goat KCNQ1 gene. Another reason to target exon 1 is that it corresponds to the human 

KCNQ1 exon 2 (see below) where three gain-of-function mutations have been identified in 

families with a history AF or in patients presenting with AF [35-36, 38]. Designing a gene 

knockout vector in this locus will allow for future experiments to generate knockin edits in this 

same region using the same gene-targeting vector. 

Designing gene-targeting vectors to genetically knock out the goat KCNQ1 requires 

characterization of the genomic sequence of the goat gene. DNA sequence alignment analysis 

based on the published goat and human KCNQ1 sequences showed that Exon 2 of the human 

KCNQ1 mRNA sequence (NM_000218.2) aligns to exon 1 of the goat KCNQ1 gene 

(NC_022321.1) in the goat genome assembly (Fig. 1 A). Goat KCNQ1 exon 1 and some of the 

downstream intron sequence was PCR amplified from genomic DNA isolated from one of the 

goat fetal fibroblast cell lines we are working with and sequenced. The resulting sequence was an 

exact match to the published sequence within the exon, but differed significantly in the intron 

sequence (Fig. 1A). Similar results were obtained when the KCNQ1 exon 2 locus was amplified 

and sequenced (Fig. 1B). From these sequencing data, contigs of two goat KCNQ1 loci were 

generated, and were the basis for guide RNA (gRNA) template designs. 
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Fig. 1 Sequence characterization of goat KCNQ1 targeting loci. Sequenced KCNQ1 loci of 
goat exons 1 and 2 were aligned to the corresponding publicly available human and goat 
sequences (NM_000218.2 & NC_022321.1 respectively). Shaded areas represent 100% sequence 
identity to the consensus sequence. A) The goat exon 1 locus corresponds to human exon 2 (1-91) 
with a sequence homology of 73% for the whole locus. B) The goat exon 2 locus corresponds to 
human exon 3 (1-127). Sequence homology for the whole locus equals 90% 

 

 

Fig. 2 Schematic of goat KCNQ1 targeting locations. Locations of CRISPR/Cas9 cut sites 
(stars) and PCR primers (arrows) are displayed in the genomic context of goat KCNQ1. 

 

KCNQ1 Gene-targeting in Goat Fibroblast Cells 

 

 Two KCNQ1-targeting gRNAs were designed: one that targets exon 1 (KCNQ1Ex1) and 

one that targets exon 2 (KCNQ1Ex2) (Fig. 2). To knock out the KCNQ1 gene in a goat fibroblast 
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cell line, plasmids expressing Cas9 and one of the gRNAs (sgRNA/Cas9 vector) were 

transfected into the goat fetal fibroblast cells. Forty-eight hours post-transfection, genomic DNA 

from the transfected cells was isolated to examine gene-targeting events and efficiency using 

RFLP assays (Table 1, Fig. 3). For KCNQ1Ex1, bulk cell RFLP yielded an estimated efficiency 

of 30 % (data not shown). CRISPR gRNA targeting exon 2 had a better targeting efficiency, 

which was estimated to be as high as 53% (Fig. 4). 

 

 

Fig. 3 General schematic of RFLP analysis. Targeted DNA is repaired by NHEJ, abolishing a 
restriction enzyme recognition (RE) site in the process. Untargeted DNA will be cut by the 
restriction enzyme. This can be viewed as digested and undigested DNA on a gel. 

 

Table 1 CRISPR/Cas9 gRNA’s used for goat KCNQ1 knockout 

gRNA 
Name 

gRNA Sequence (5’-
3’) 

Exon 
Targeted 

F Primer (5’-
3’) 

R Primer (5’-
3’) RE Used 

KCNQ1
Ex1 

GTGGCCACAGGG
ACCCTCTTCTGG 1 

TTGTCCTGG
CCTGCCTCA

TC 

CCGTCATTCT
TCCGCCTTCT

CA 
EarI 

KCNQ1
Ex2 

GGCTGCCGCAGC
AAGTACGTGGG 2 

GAGATCGTC
CTGGTGGTG

TTCTTCG 

CAGTGGACA
CTCCTATTGT

GCTGAG 
BsaAI 
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Fig. 4 RFLP analysis of KCNQ1Ex2 knockout efficiency. DNA from KCNQ1Ex2 transfections 
produced a band resistant to BsaAI digestion unlike the GFP transfected control DNA. Targeting 
efficiency was estimated to be 53%.  

 

Establishment of Single Cell Derived Colonies 

 

 Based on the results obtained from bulk cell analysis, cells targeted by the exon 2 gRNA 

were chosen to establish single cell-derived colonies by limiting dilutions. Of the 15 colonies 

screened, three (3-E3, 5-D3, and 5-G4) were shown to have indels at the targeted site. PCR 

product sequencing of colony 5-E3 showed a 28-nucleotide deletion on both alleles (Fig. 5). 

 The other two colonies, 5-D3 and 5-G4, were shown to have multiple indel types due to 

double peaks in the chromatograms at the targeting site (Fig. 6A). Indel types were determined by 

sequencing TA clones made from PCR products. These two colonies had alleles with 28-

nucleotide deletions and 11-nucleotide deletions (Fig. 6B). Surprisingly, all three colonies 

contained the exact same 28-nucleotide deletion, and colonies 5-D3 and 5-G4 had identical 11-

nucleotide deletions. This was unexpected, as indels produced by NHEJ occur independently 
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from cell to cell. These data suggest a possible cell type- or locus-specific NHEJ event that 

occurred in these three colonies. More experiments would need to be performed to determine the 

exact mechanism of these identical indel events. 

 

Fig. 5 Colony 3-E3 contains a 28-nucleotide deletion. A) Partial chromatogram generated from 
gDNA PCR of colony 3-E3 followed by Sanger sequencing as described in methods (PAM 
highlighted blue). B) Alignment to the wild type (WT) sequence shows a 28-nucleotide deletion 
at the CRISPR/Cas9 target site (highlighted in green). 

 

Conclusions and Ongoing Efforts 

 

 I successfully characterized regions of goat KCNQ1 exons 1 and 2 via genomic PCR and 

sequencing. For both KCNQ1Ex1 and KCNQ1Ex2 loci, my sequences had a 100 and 95% 

sequence homology to the published goat sequences respectively. Sequence homology to the 

published human KCNQ1 loci were 73% (goat exon 1) and 88% (goat exon 2) Since the exons 

are conserved between goats and humans at these loci, my acquired sequences were used to 

design sgRNA/Cas9 expression vectors targeting these regions of goat KCNQ1. Both gRNAs that 
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were designed were able to cleave their designated target and induce indels. KCNQ1Exon2 had 

a higher indel efficiency, and therefore was chosen to be used for cell line establishment. 

 

 

Fig. 6 Colonies 5-D3 and 5-G4 have identical indels. A) Sequencing chromatograms of PCR 
products contain double peaks starting at the CRISPR/Cas9 KCNQ1Ex2 targeting site (blue 
highlight). B) Alignments of 5-D3 and 5-G4 clones yield identical 11 and 28-nucleotide deletions. 
Interestingly, the 28-nucleotide deletions here are identical to the deletion observed in colony 3-
E3 (Fig. 5).  

 

 Collectively I screened a total of 15 colonies transfected with the KCNQ1Ex2 

sgRNA/Cas9. Three of them had indel mutations yielding an efficiency of 20%. It is interesting to 

note that all three cell lines shared the same 28-nucleotide deletion, and two of them shared an 

identical 11-nucleotide deletion  (Table 2). As we have also observed similar phenomena 

targeting the hamster genome with the CRISPR/Cas9 system, it may be possible that the NHEJ 

machinery makes consistent indels at this particular locus due to these types of repair being 

preferred thermodynamically. 
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Table 2 Cell lines generated from KCNQ1Ex2 transfection into goat fetal fibroblasts 

I.D. Transfected 
With: 

Screening Results Comments 

3-E3 KCNQ1Ex2 PCR product sequencing showed a 
biallelic 28 nucleotide deletion 

None 

5-D3 KCNQ1Ex2 TA cloning/Sequencing of PCR 
product showed 11 and 28 
nucleotide deletions 

28 nucleotide deletion identical 
to 3-E3; 11 nucleotide deletion 
identical to 5-G4 

5-G4 KCNQ1Ex2 TA cloning/Sequencing of PCR 
product showed 11 and 28 
nucleotide deletions 

28 nucleotide deletion identical 
to 3-E3; 11 nucleotide deletion 
identical to 5-D3 

Totals 3/15 colonies screened contained knockout indels. Targeting efficiency= 20% 

 

 The cell lines generated from these efforts contain indels that will cause frameshift 

mutations leading to premature stop codons, resulting in a non-functional KCNQ1 protein (Fig. 7). 

These knockout cell lines can be used as nuclear donors for SCNT. We chose to use SCNT to 

clone genetically engineered goats, instead of using PN injection because we have a ongoing goat 

cloning program for other research projects at USU (Drs. Kenneth White and Irina Polejaeva’s 

laboratories). Clones generated from these donors will contain the same KCNQ1 KO mutations. 

These knockout goats should make excellent models of LQT1. Efforts to induce other types of 

KCNQ1 knockout mutations are ongoing. Recently, I transfected more KCNQ1 goat fibroblast 

cells with KCNQ1Ex1 and KCNQ1Ex2 CRISPR plasmids. Genotyping of these transfections and 

single-cell derived colony establishment is currently in progress. 
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Fig. 7 Goat KCNQ1Ex2 knockout mutations lead to premature stop codons. A) The 11-
nucleotide deletion produces a premature stop codon (TGA) at position 577. B) The 28-
nucleotide deletion produces a premature stop codon (TGA) at position 1015. Goat KCNQ1 
mRNA CDS is 2405 nucleotides long (XM_013976076.1). 
 

 



 40	

CHAPTER V 

GENETIC TARGETING OF THE HAMSTER KCNQ1 GENE 

 

Hamster KCNQ1 Characterization 

 

 We were interested in targeting the same region of human KCNQ1 in hamsters as we did 

in goats. Human KCNQ1 exon 2 (NM_000218.2) aligns with exon 2 of the hamster genome 

assembly (NW_004801604.1) (Fig. 8). Targeting this gene region allowed us to generate both 

knockout (for LQTS1) and gain-of-function mutation knockin (for AF) hamsters. For knockin 

generation, we were interested in the Q147R mutation; a well-characterized familial gain-of-

function mutation that causes AF [38]. It was recently found that a patient carrying this mutation 

also presented with a prolonged QT interval [38]. In the human KCNQ1 gene, an A to G 

substitution results in the Q147R gain-of-function mutation. Designing a CRISPR at this locus 

allows for both targeted gene knockout and knockin using the same CRISPR. 

 

 

Fig. 8 Characterization of hamster KCNQ1Ex2 locus. Sequenced KCNQ1 locus of hamster 
exon 2 was aligned to the corresponding publicly available human and hamster sequences 
(NM_000218.2 & NW_0048801604 respectively). Shaded areas represent 100% sequence 
identity to the consensus sequence. Predicted and sequenced hamster loci share 100% homology 
with each other. Exon 2 (position 1-91) is well conserved (89% homology) between human and 
hamster, including the Q147R A to G substitution location (position 54). 
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 The hamster KCNQ1 locus was amplified from Baby Hamster Kidney (BHK) cell 

gDNA using primers flanking the 91-nucleotide long exon 2 plus some of the surrounding intron 

sequence (Fig. 9). Sanger sequencing showed that this PCR product aligned perfectly with the 

published hamster sequence (NW_004801604.1) (Fig. 8). The conserved Q147R mutation site 

was also intact between all three sequences. Based on the sequencing result, I designed an 

sgRNA/Cas9 vector to target the hamster KCNQ1 exon 2 with the PAM sequence six nucleotides 

downstream of the Q147R mutation site position. 

 

 

Fig. 9 Schematic of hamster KCNQ1 targeting location. PCR primers (arrows) amplify exon 2 
and surrounding intron sequence. The target site (PAM underlined) includes a BglI restriction site 
(red text), which will be used for RFLP analysis.  

 

KCNQ1 Knockout Gene-targeting 

 

 As mentioned above, I chose to focus on the DNA sequence that is close to the Q147R 

mutation site (Fig. 9) by designing and constructing a gRNA template to target it. To test gene-

targeting efficiency, I transfected the sgRNA/Cas9-expressing vector targeting hamster exon 2 

into BHK cells and conducted RFLP analysis on the transfected cells 48 hours post-transfection. 

 This CRISPR showed activity ranging from 10-60%, depending on the amount of 

plasmid DNA used in the transfection. Transfections using 2 µg of plasmid lead to efficiencies of 

10-20% (Fig. 10 A). Increasing transfection amount to 4 µg greatly increased efficiency to as 

high as 60% (Fig. 10 B). Results were further confirmed by SURVEYOR nuclease assay (Fig. 
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11). Using this assay, indel efficiency was estimated to be about 15%, comparable to the ranges 

of efficiency estimated by RFLP. 

 

 

Fig. 10 Indel efficiency is influenced by the amount of sgRNA/Cas9 transfected. Transfecting 
2 µg sgRNA/Cas9 plasmid (A) generates a faint band resistant to BglI digest (Starred) with an 
estimated indel efficiency of 10%. Doubling the sgRNA/Cas9 plasmid amount to 4 µg (B) 
generates an even brighter band after digest with an indel efficiency of 60%. L=1kb Plus DNA 
Ladder. C=Control DNA cut with BglI. U=Knockout DNA uncut. KO=Knockout DNA cut with 
BglI. 

 

 
 

Fig. 11 SURVEYOR assay confirms results from RFLP analysis. The SURVEYOR assay is 
described in the methods section. DNA transfected with sgRNA/Cas9 (KO) can be cut by 
SURVEYOR nuclease indicating dihybrid formation containing DNA with indels. SURVEYOR 
digest products have been starred. 
 

 

L WT KO 
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Single-Cell Derived BHK Knockout Cell Line Establishment 

 

 I conducted limiting dilutions on the sgRNA/Cas9 transfected BHK cells 48 hours post 

transfection to establish single cell-derived BHK cell lines. This was done with the following 

purposes in mind. First, I wanted to characterize the types of mutations that were induced by this 

sgRNA/Cas9 gene-targeting vector at a single-cell level (as all of the cells from a established cell 

line derived from a single cell). Second, the targeted cell lines can potentially provide an in vitro 

system for studying the function of KCNQ1 in a kidney-derived cell type. Third, by analyzing 

each of the cell lines, I can provide an accurate measurement on the gene-targeting efficiency of 

this gene-targeting vector to validate the accuracy of the RFLP and the Surveyor nuclease assay. 

Of the 71 colonies that were screened, 7 contained indels yielding a targeting efficiency of 9.8% 

(Fig. 12A). These cell lines were established from a population of cells transfected with 2 µg of 

plasmid. Therefore, the efficiency calculated by colony screening is comparable to the efficiency 

estimated by bulk cell RFLP analysis.  

 Sanger sequencing was performed on these cell lines to determine the types of knockout 

mutations that were introduced. A wide variety of indels were detected in these clones, including 

2-nucleotide insertions, 1-nucleotide deletions, and 9-nucleotide deletions, among others (Fig. 12 

B, Table 3). All but one of the cell lines was heterozygous, containing one targeted allele. The 

other colony was homozygous harboring identical 1-nucleotide insertions. 

 

Knock in of the Q147R Point Mutation into the Hamster KCNQ1 Gene 

 

 A single-stranded donor oligonucleotide was designed to introduce two precise single 

nucleotide substitutions into the exon 2 locus. The first mutation is the previously mentioned A to 

G substitution leading to the Q147R amino acid conversion. The second mutation is a silent 
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mutation at the CRISPR PAM sequence, designed to abolish the PAM sequence to prevent 

CRISPR/Cas9 from re-cleaving the target site after successful oligo integration (Fig. 13). 

Flanking the A to G substitution site and the disrupted PAM mutation is a 5’ homologous arm 82 

nucleotides long, and a 3’ homologous arm 60 nucleotides long. To knock in this A to G mutation 

into the hamster genome, I co-transfected the oligo into BHK cells with the exon 2-targeting 

sgRNA/Cas9 vector. 

 

 

Fig. 12 Screening BHK KCNQ1 knockout cell lines with RFLP analysis. A) gDNA from BHK 
KO cell lines was PCR amplified, then digested with BglI. Cell lines containing indels in the 
target region are resistant to digest (+). C=Control DNA not digested with BglI. B) Sample BHK 
TA clone sequences aligned to wild type sequences. Different types of knockout alleles were 
found in these colonies. 

	
 After transfection, knockin mutations were examined at the bulk cell level by RFLP 

analysis. Successful integration of the donor oligo abolishes a BglI site via the PAM disrupting 

substitution (Fig. 13). However, this enzyme site can also be abolished by knockout events 
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induced by indels making this assay sensitive to both types of targeting events. Using this 

assay, targeting events were detected (Fig. 14A). Although the ratio of knockout to knockin 

events can’t be determined using this assay, we can conclude that co-transfection of the donor 

oligo does not hamper the activity of the sgRNA/Cas9 vector. 

 

Table 3 Summary of mutation types observed in TA clones of BHK cell lines Clone 4 was 
positive for indels by RFLP, but its TA clone was unable to be sequenced. 

Clone I.D. Mutation Type Genotype 

1 2-Nucleotide Insertion Heterozygous 

2 1-Nucleotide Deletion Heterozygous 

3 9-Nucleotide Deletion Heterozygous 

4 N.A. N.A 

5 1-Nucleotide Insertion Heterozygous 

6 6-Nucleotide Deletion Heterozygous 

7 1-Nucleotide Insertion Homozygous 

 

 Unlike in previous RFLP analyses, successful donor oligo integration introduces a BsrBI 

restriction site at the A to G substitution location, allowing for knockin DNA to be digested by 

this enzyme (Fig. 13). RFLP analysis for the knockin event showed the expected digest bands, but 

the intensity of the bands was very faint, indicating that the knockin efficiency was very low. The 

estimated knockin efficiency was about 6% (Fig. 14 B). Due to the low sensitivity to knockin 

events of the RFLP and SURVEYOR assays, I decided to develop a new assay capable of 

detecting lower levels of knockin activity. Towards this goal, I developed a PCR based assay 
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capable of detecting DNA containing our knockin substitution, but selective against wild type 

DNA.  

 

 

Fig. 13 Schematic of KCNQ1 knockin using a ssdonor oligonucleotide. When the donor oligo 
is integrated into the target site, the Q147R A to G substitution (Red) generates a BsrBI site, and 
the PAM-disrupting mutation (Yellow) abolishes a BglI site. These restriction sites were used for 
RFLP analysis. 

	

 

Fig. 14 RFLP analysis of hamster KCNQ1 knockin. A) BglI digest of knockin DNA left a band 
resistant to digest indicating that knockout and/or knockin events took place at an efficiency of 
60%. B) BsrBI digest of KI DNA produced faint digest products at an efficiency of 6%. 
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 To detect lower levels of targeting efficiency typically found when trying to induce 

knockin events, a new primer was designed which matched the wild type exon except for the A to 

G substitution at the 3’ clamp. This way the primer matches perfectly with genomic DNA 

carrying the A to G substitution but does not match the wild type genomic DNA at the 3’ end (Fig. 

15). Combined with the reverse primer flanking the 3’ end of exon 2 (Fig. 9), knockin template 

DNA is expected to produce a 398 nucleotide PCR product. 

 

 

Fig. 15 KCNQ1 knockin-sensitive PCR primer. The primer’s 3’ clamp contains the A to G 
substitution. This primer, paired with the exon2-flanking reverse primer, amplifies knockin 
gDNA, but is unable to amplify wild type gDNA. 

 

 To test the new assay’s selectivity towards wild type genomic DNA, different PCR 

conditions were tested using wild type gDNA as template. A wide range of annealing 

temperatures was tested to identify the PCR conditions that do not amplify the wild type genomic 

DNA templates. Under the PCR conditions tested, the primer pair was found to be highly 

selective against the wild type DNA template as it was unable to generate any PCR product (Fig. 

16 A). Next, gDNA transfected with the CRISPR plasmid and donor oligo was used as PCR 

template for the same primer pair. The expected PCR product was observed at high levels in 

multiple reactions when the donor oligo was used in the transfection (Fig. 16 B). Sequencing 

these products confirmed the positive results of the assay by detection of the PAM-disrupting 

mutation (Fig. 16 C). 
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Fig. 16 PCR based assay of KCNQ1 knockin events. A) Knockin sensitive PCR primers were 
unable to amplify wild type DNA regardless of what annealing temperature was used. 
Amplification with the original exon 2 primer pair (Fig. 9) was performed in parallel to control 
for PCR conditions. B) Multiple samples of knockin transfected gDNA (KI DNA) produced the 
expected 398 nucleotide PCR product. (star) C) Identification of the PAM-disrupting silent 
mutation (blue highlight) confirmed the PCR results.  

 

KCNQ1 Knockout/Knockin Hamster Generation 

 

 In BHK cells, the CRISPR targeting exon 2 induced indels with efficiencies as high as 

60%. Using this same CRISPR with a single-stranded donor oligo, we were also able to detect 

low levels of knockin events (estimated to be 6% by the RFLP assay). These results gave us 

confidence to use this CRISPR and donor for generation of live hamsters with KCNQ1 

modifications, both knockouts and gain-of-function point mutation knockins. 

 In order to generate live animals with KCNQ1 mutations, hamster embryos were co-

microinjected with sgRNA/Cas9 vector and donor oligo into hamster pronuclei. In total, the 

survival rate of the injected embryos has been 88.5% (Table 4). Injected embryos have been 

transferred to a total of eight recipients. Unfortunately, none of these litters contained any gene 

edited pups, but a new round of injections are scheduled to take place in the near future. In the 
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past our lab has been able to achieve a gene knockout efficiency of 13% using these techniques 

in hamsters. Therefore, we expect the next round of injections to produce adequate numbers of 

KCNQ1 knockout hamsters with the potential to produce some KNCQ1 knockin animals. 

 

Table 4 Injection and pregnancy table for KCNQ1 KO/KI hamster generation 

Recipient ID Survival/Injection Embryo Transfer 

Number 

Date of Birth Number of 

Pups Born 

1. B15 10/11 (91%) 5/5 11/22/2015 0 

2. B19 20/23 (87%) 10/10 11/26/2015 0 

3. C31 23/25 (92%) 12/11 11/27/2015 3 

4. B25 25/29 (86%) 12/13 11/28/2015 0 

5. B12 22/25 (88%)  10/12 12/05/2015 3 

6. B27 20/25 (80%) 10/10 12/05/2015 5 

Total 154/174 (88.5%)    

 
 

Conclusions 

 

 Successful characterization of hamster KCNQ1 exon 2 allowed me to design an 

sgRNA/Cas9 expression vector targeting this region to help introduce knockout mutations. It also 

allowed for the design of a donor oligo that introduces the AF causing mutation Q147R. 

Transfection of the CRISPR produces a high level of mutations in BHK cells. The amount of 

plasmid DNA used seemed to have an effect on indel efficiency. Using 2 µg of plasmid produced 

efficiencies of about 10%. By doubling this amount, targeting efficiency increased to an upper 
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bound of 60%. Establishing single-cell derived cell lines from these transfections allowed us to 

confirm and characterize the types of indels that were introduced. Many types of the indels that 

were found produced premature stop codons leading to loss of gene function (Fig. 17). One 

colony was found to be biallelically targeted, leading to a homozygous knockout of KCNQ1. 

 

 

Fig. 17 Hamster KCNQ1Ex2 knockout mutations lead to premature stop codons. A) The 2-
nucleotide insertion produces a premature stop codon (TAG) at position 622. B) The 1-nucleotide 
insertion produces a premature stop codon (TGA) at position 604. Hamster KCNQ1 mRNA CDS 
is 2873 nucleotides long (XM_005064141.2). 

 

 We developed a PCR based assay capable of detecting lower levels of knockin events. A 

new primer was designed that selects against wild type DNA and those carrying indels and also 

selects for DNA containing the A to G substitution coding for the Q147R mutation. The 

specificity of this assay was demonstrated by the fact that only genomic DNA isolated from BHK 

cells that were co-transfected by the sgRNA/Cas9 vector and the donor oligo can be PCR 

amplified to produce the expected 398 nucleotide PCR product, while wild type DNA was unable 

to be amplified using this method. The presence of the PAM-disrupting silent mutation was 

detected via sequencing, thus confirming the selectivity of the PCR assay. 
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 Based on these results, the KCNQ1 targeting vector and knockin donor oligo were used 

for pronuclear injections to produce both KCNQ1 knockout and gain-of-function point mutation 

hamsters. Production of these hamsters is currently ongoing. We expect some of these animals to 

contain loss-of-function mutations with the potential of finding some animals containing the 

Q147R gain of function mutation. These hamsters will be used as founder animals to establish 

breeding colonies for producing animal models for LQT1 and AF. 
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Chapter VI 

MERS-COV MODELING USING TRANSGENIC HAMSTERS 

 

hDPP4 Founder Line Establishment 

 

 To create hamsters susceptible to MERS-CoV infection, transgenic hamsters expressing 

the human DPP4 (hDPP4) gene encoding the cellular receptor for MERS-CoV were produced as 

part of this thesis project. In the hDPP4 transgenic hamsters, the hDPP4 gene was engineered 

under the control of the keratin 18 (K18) promoter (Fig. 18 A). The K18 promoter used here 

preferentially drives the expression of the hDPP4 gene in the epithelial cells of lung, kidney, 

nervous, and GI tract tissue [141], allowing for preferential expression of the hDPP4 transgene in 

tissue infected by MERS-CoV. To facilitate the monitoring of hDPP4 gene expression in 

transgenic hamsters, we also linked a GFP reporter gene via the E2A peptide DNA sequence to 

the 3’ end of the coding sequence of the hDPP4 gene. The E2A DNA sequence allows the 

hDPP4 and GFP genes to be transcribed as a single transcript under the K18 promoter, but 

translated into two independent proteins: the hDPP4 protein and the GFP protein [142]. 

Consequently, the expression of the GFP gene faithfully reports the expression of the hDPP4 

gene. 

 We employed a PiggyBac transposon system for generating hDPP4 transgenic hamsters. 

After the construction of the K18-DPP4-GFP expression cassette in the pKB12 vector, the 

expression cassette was subcloned into a PiggyBac vector, pB513B-1, resulting the PBK18-

DPP4-GFP vector. This vector, along with a plasmid expressing the PiggyBac transposase, was 

microinjected into the pronuclei of hamster embryos, which were subsequently transferred into 

day 1 pregnant female recipients for transgenic hamster production. From these recipients, 3 F0 

founder animals were born from the 24 pups produced yielding an efficiency of 12.5%. 
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Fig. 18 K18-DPP4-GFP cassette is expressed in hamsters. A) The human DPP4 gene along 
with GFP and 2A peptide (yellow) have been placed in between 5’- and 3’-K18 promoter 
segments. Genotyping primers (arrows) are specific for DPP4 and E2A peptide. B) 
Representative gel DPP4 PCR genotyping. DPP4 positive hamsters produce intense 658 
nucleotide PCR products (D1, D2, D4, & D5). The negative control is a PCR reaction using no 
DNA template. 
 

 Genotyping for hDPP4-positive F0 founder hamsters, and hamsters deriving from the 

founder animals was performed via genomic PCR on DNA isolated from toe clippings. We 

designed the forward primer specific for the hDPP4 transgene, while the reverse primer begins 

amplification at the E2A peptide sequence (Fig. 18 A). Hamster DNA carrying the hDPP4 

transgene produces a 368 nucleotide PCR product (Fig. 18 B). Sanger sequencing confirmed the 

identity of this PCR product. We randomly chose one founder animal to be crossed with wild 

type animals to establish a hDPP4 transgenic hamster breeding colony. Crosses between F0 

DPP4-positive hamsters and wild type animals produced roughly 50% F1 DPP4-positive pups, in 

line with Mendalian inheritance patterns for the hDPP4 transgene, suggesting a single site 

integration of the transgene in the hamster genome. To propagate the breeding colony and to 

provide experimental hamsters for MERS-CoV infection, we further crossed the F1 hDPP4-
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positive hamsters with wild type hamsters to produce F2 transgenic hamsters, then F2 with 

wild type hamsters for F3 transgenic hamsters, and so forth. 

 

Preliminary MERS-CoV Infection Studies 

 

 Following propagation of the hDPP4+ colony, preliminary infection studies were 

performed to test for MERS-CoV susceptibility (studies performed by Dr. Dale Barnard). 

Lethality was not prominent in these animals, even though all of the hDPP4 transgenic hamsters 

infected by MERS-CoV failed to gain weight throughout 12 days post infection (dpi). Weight 

loss was observed in the majority of these animals, with the most dramatic being 10 g in seven 

days (Fig. 19). The less severe disease outcomes observed in the infected hamsters, than what was 

observed in mouse studies, may reflect different pathogenesis between these species. It is also 

possible that the infection dose of virus we used in these experiment was significantly lower than 

lethal dose 50% (LD50). We are in the process of further characterizing the pathogenesis of 

infected hamsters and identifying the LD50. 

 In the DPP4+ hamsters, virus was targeting lung tissue as is observed in human cases. 

Viruses in the range between 10^2.25 and 10^4.75 CCID50/0.18 ml were recovered from lung 

tissue isolated from the euthanized hDPP4 transgenic hamsters at 4 dpi (Fig. 20A). The 

observation that infected hDPP4 transgenic hamsters underwent weight loss or failed to gain 

weight and that titers of infectious viruses were recovered from the lung tissues of the infected 

animals demonstrated that the hDPP4 transgenic hamsters are susceptible to MERS-CoV 

infection. We further revealed that viral RNA was also recovered from hDPP4+ hamster lungs at 

4 dpi, but could not be recovered at day seven (Fig. 20 B). As expected, neither viral titer nor 

viral RNA could be detected from wild type littermates of the hDPP4 transgenic animals. 
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Fig. 19 hDPP4+ hamsters fail to gain weight or lose weight after MERS-CoV infection. 
Weight was monitored in these animals up to 14 days post infection. Hamster DS12 had the most 
dramatic loss of weight, losing 10 grams in 7 days. 

	
 Based on these preliminary studies, we concluded that the hDPP4 transgenic hamsters 

are susceptible to MERS Co-V. Therefore, we have successfully established a transgenic hamster 

model for MERS-CoV. As mentioned above, higher doses of virus will be used to test if this 

hamster model can be used for lethal infection studies. The fact that Viral RNA could only be 

detected in the lung tissues of the infected hDPP4 transgenic hamsters at 4 dpi, but not at 7 dpi 

indicates that infected hamsters can mount an effective immune response to eventually clear the 

viruses. Type I interferon-mediated innate immunity in Syrian hamsters has been shown to be 

effective in controlling the infection of many viruses, such as human Adenovirus 5 [119], Ebola 

virus and dengue virus (our unpublished data). 
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Fig. 20 MERS-CoV could be detected in DPP4+ hamster lungs 4 days post infection. A) 
While virus was not detected in the wild type (WT) hamster, all DPP4+ hamsters infected with 
MERS-CoV had virus ranging between 10^2.25 and 10^4.75 CCID50/0.18 ml recovered from 
their lungs. B) Viral RNA was detected in DPP4+ hamsters on 4, but not 7 days post transfection. 
Numbers in parentheses are Ct values (Ct values between 20 and 40 indicated a positive test 
result for MERS-CoV RNA). Positive controls (POS) were from the assay kits. 

 

Creation of hDPP4 X STAT2 KO Crosses 

 

 Our lab has previously developed a STAT2 knockout hamster line showing increased 

susceptibility to viral infection and replication for the viruses that cannot effectively replicate in 

wild type hamsters [118]. Therefore, we hypothesized that the hDPP4 transgenic hamsters with a 

STAT2 knockout background would lead to a more severe presentation of MERS, and extended 

viral replication would be enabled. Consequently, in this thesis project, I embarked on crossing 

the hDPP4 transgenic hamsters with the STAT2 knockout heterozygotes (STAT2+/-) to generate 

hDPP4 transgenic hamsters with a STAT2 knockout allele. Five crosses were set up producing 

fifty-one pups. These pups were genotyped for hDPP4 and STAT2 knockout alleles (Table 5). 
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hDPP4 was genotyped in the same way discussed above. STAT2 knockout genotyping was 

performed via RFLP analysis as described previously [118] (Fig. 21 A). The STAT2 knockout 

allele contains a 1-nucleotide insertion that abolishes the restriction site, leaving behind an 869 

nucleotide PCR product partially resistant to digest (Fig. 21 B). Six animals from these initial 

crosses contained the hDPP4 transgene with a STAT2 knockout allele (DPP4+/-; STAT2+/-). 

 

Table 5 Initial crosses used to generate hDPP4+; STAT2+/- hamsters 

 

 
 These animals, and other STAT2 knockout heterozygotes, were crossed with each other to 

propagate the hDPP4+; STAT2+/- genotype, and to generate DPP4+ hamsters in a homozygous 

STAT2 knockout background (STAT2-/-). STAT2 PCR products completely resistant to digest 

indicated that both STAT2 alleles in an animal contained the BglII-abolishing insertion (Fig. 21 

B). These initial crosses produced six animals with both the hDPP4 transgene and the STAT2 

homozygous knockout. 
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Fig. 21 STAT2 KO genotyping. A) STAT2 genomic region was amplified using primers (arrows) 
flanking the sgRNA target region (PAM underlined). Target region contains a BglII restriction 
site (red), which was used for RFLP genotyping. B) Representative gel of STAT2 genotyping for 
pups generated from DPP4 X STAT2+/- crosses. DNA partially resistant to digest was determined 
to be STAT2+/-, while DNA completely resistant to digest was determined to be STAT2-/-.  

 

 Through these breeding efforts, we now have DPP4+/-; STAT2+/- and DPP4+/-; STAT2-/- 

breeding colonies (Table 6). Breeding efforts are ongoing to increase the numbers of these 

animals for use in future MERS-CoV infection studies. We suspect that hDPP4 hamsters in a 

STAT2 knockout background will be more susceptible to MERS infection, and/or present with a 

more severe disease than transgenic hamsters with a wild type background. 

 

Conclusions 

 

 Transgenic hDPP4 founder hamsters were generated via the PiggyBac transposase 

system and propagated to produce a breeding colony. Preliminary MERS-CoV infection studies 

were promising as we could detect virus in these animals’ lungs both by virus titer and RT-PCR 

three to four dpi. 

 MERS-CoV infection was not lethal, but tested animals failed to gain weight or 

experienced mild weight loss. The weight loss observed in the two previous transgenic mouse 

models was much more severe, with mice dying as early as 4 dpi, and as late as 13 dpi depending 

on the mouse model and the dose of virus used [84, 86]. The disease progression of the hDPP4 
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hamsters was most similar to those seen in the Ad5 transposed and humanized DPP4 mouse 

models. In the Ad5 mice, younger animals failed to gain weight while older mice lost weight [82]. 

Viral infection of humanized mice was not lethal and no weight loss was mentioned [87]. Virus 

presence was not tested in other epithelial tissue, nor was tissue pathology tested. 

 

 Table 6 hDPP4 hamsters in the STAT2 knockout background

 

 

 These preliminary studies show that hDPP4 hamsters are indeed susceptible to MERS-

CoV infection. However, the disease progression was mild and non-lethal, most closely 

resembling the Ad5-hDPP4 transduced and humanized mouse models. Additionally, virus was 
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unable to be detected after 4 dpi. We suspect that this mild disease could be due to a robust 

innate immune system. 

 Transgenic hDPP4 hamsters were crossed with STAT2 knockout hamsters. MERS-

susceptible hamsters containing a weakened innate immune system should help to make infection 

more severe, and allow for virus detection past day 4 pi. Breeding colonies for both hDPP4+/-; 

STAT2+/- and hDPP4+/-; STAT2-/- genotypes have been established and are being further 

propagated in order to create sufficient numbers for future infection studies. Future infection 

studies should expand on the preliminary data, and should include virus detection in other 

relevant tissues (i.e. nervous and kidney). Tissue pathology should also be examined in future 

studies. Expanding on preliminary data and adding these other types of studies will allow for a 

more thorough characterization of our hamster model. 
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CHAPTER VII 

SUMMARY 

 

 In this thesis project, progress has been made in the development of goat and hamster 

models for three deadly diseases. For the goat model, I successfully targeted the KCNQ1 gene in 

goat fetal fibroblast cells using the CRISPR/Cas9 genome editing system. Two different loci were 

targeted. Using the target in exon 2, I established single-cell derived cell lines containing indels 

that produce premature stop codons. These indels produce functionally abolished KCNQ1 

proteins. Efforts to produce more cell lines like these are ongoing. Additionally, the KCNQ1 exon 

1 locus contains gain-of-function mutation sites known to cause AF. This leaves open the 

possibility for developing cell lines containing AF inducing mutations with an sgRNA/Cas9-

expressing vector designed and ready for use in such experiments. Current and future cell lines 

will be used as nuclear donors for SCNT in order to produce good animal models for long qt 

syndrome and atrial fibrillation. 

 For the development of hamster heart disorder models, I also targeted KCNQ1. Again, 

using the CRISPR/Cas9 genome editing system, the hamster KCNQ1 exon 2 was successfully 

targeted and knocked out in BHK cells. Single cell-derived lines were established, not only 

allowing us to determine specifically what kind of knockout mutations were produced, but also 

having the potential for future functional studies. Many of these mutations produced frameshift 

mutations leading to premature stop codons resulting in a non-functional protein. 

 Using a single-stranded donor oligo along with the exon 2-targeting sgRNA/Cas9 vector, 

I was also able to induce very low levels of a KCNQ1 gain-of function mutation. This mutation 

contains an A to G substitution resulting in the amino acid conversion Q147R, previously 

reported to cause lone atrial fibrillation. I was able to detect this mutation in BHK cells using a 



 62	

PCR based assay. In this assay I designed a primer that would amplify DNA containing the 

Q147R mutation, but not wild type DNA. 

 The sgRNA/Cas9 targeting vector and the single stranded donor oligonucleotide have 

been co-injected into pronuclear stage hamster embryos, and transferred to female recipients. The 

transferred embryos should develop into live animals containing KCNQ1 knockout mutations, 

and some may contain the A to G substitution mutation. Although the first round of injections 

were not successful, another round of injections are scheduled to begin soon. The animals 

produced should become good animals models for long qt syndrome and atrial fibrillation. 

 Finally, I have also significantly contributed to the efforts to develop a hamster model of 

Middle East Respiratory Syndrome. A hDPP4 transgene harboring a GFP reporter gene was 

integrated into the hamster genome. Founder animals were expanded, and then used for 

preliminary MERS-CoV infections. These studies show that hDPP4 positive hamsters are 

susceptible to MERS-CoV, but have a mild disease progression similar to two previously 

generated mouse models [82, 87]. 

 I crossed these hDPP4 hamsters with STAT2 knockout hamsters in order to produce a 

more severe MERS-CoV disease progression in these animals. Two breeding colonies have been 

successfully established from these crosses. One colony is positive for hDPP4 and heterozygous 

for the STAT2 knockout allele (STAT2+/-), and the other is positive for hDPP4 and homozygous 

for the STAT2 knockout (STAT2-/-). These colonies will be further propagated and used for more 

MERS-CoV infection studies in the effort to develop a hamster MERS-CoV model. 

 In summary, my efforts for this thesis project have laid the foundations for the 

development of alternative genetic animal models for three deadly diseases with a need for these 

types of models. Goats generated from the KCNQ1 knockout cell lines I established should 

produce unique genetically engineered large animal models for long qt syndrome, with future 

efforts to be made towards an atrial fibrillation model using cell lines containing the previously 
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mentioned KCNQ1 gain-of-function knockin mutation. KCNQ1 knockout/gain-of-function 

hamsters made using the sgRNA/Cas9 vector I designed should provide an excellent alternative 

animal model for LQTS and AF. Lastly the development of the hDPP4 X STAT2 knockout 

hamster colonies will be foundational in the development of a hamster model of MERS-CoV.
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