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ABSTRACT 

ATP Usage in the Dark-operative Protochlorophyllide Oxidoreductase 

by 

Mark S. Soffe, Master of Science 

Utah State University, 2016 

 

Major Professor: Dr. Edwin Antony 

Department: Biochemistry 

 

Photosynthesis is a fundamental biological process that sustains life on earth. 

Chlorophyll is the pigment that captures sunlight and converts it to chemical energy 

through photosynthesis. These essential light-harvesting compounds are found in 

photosynthetic plants, cyanobacteria, green algae, angiosperms and gymnosperms. In the 

chlorophyll biosynthetic pathway, protochlorophyllide (Pchlide) serves as the precursor 

molecule for chlorophyll. Protochlorophyllide oxidoreductases are a class of enzymes 

that catalyze the conversion of Pchlide to chlorophyllide a (Chlide), which subsequently 

is reduced and modified to form chlorophyll. A light-dependent protochlorophyllide 

oxidoreductase (LPOR) is found in flowering plants (angiosperms), and as the name 

suggests, requires the energy from light to catalyze the conversion. An unrelated dark- 

operative light-independent version (DPOR - dark-operative protochlorophyllide 

oxidoreductase) is found in cyanobacteria, photosynthetic bacteria, green algae and 

gymnosperms. DPOR functions in the absence of light, or low-light conditions and in the 

absence of oxygen. DPOR is a multi-subunit complex consisting of the BchL, BchN and 
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BchB proteins which share striking structural similarities to the Nif proteins in the 

nitrogenase complex. ATP binding and hydrolysis is an essential aspect of DPOR 

catalysis, though it still remains mysterious as to how the energy from ATP is used to 

drive substrate reduction. The role of ATP in the conversion of Pchlide to Chlide has 

been examined kinetically to establish when ATP is hydrolyzed in the catalytic 

mechanism. Additionally, variants of the BchL protein have been developed to include a 

functional linked BchL homodimer, as well as Walker A mutated forms on one, or both 

ATPase sites of the protein. The data suggest a dynamic mechanism in which the binding 

and hydrolysis of both ATP are required for normal function.  

(82 pages) 
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PUBLIC ABSTRACT 

 

ATP Usage in the Dark-operative Protochlorophyllide Oxidoreductase 

Mark S. Soffe 

 

Chlorophylls are essential pigment molecules that function in photosynthesis, and 

serve to aid in utilizing energy from sunlight to power cellular processes in plants, and 

other organisms. To make chlorophyll, photosynthetic organisms devote an abundance of 

resources and energy to ensure their appropriate construction. This process of making 

chlorophylls is highlighted by the penultimate step in the pathway—the conversion of 

protochlorophyllide (Pchlide) to chlorophyllide a (Chlide). 

This conversion can be mediated in two different ways, depending on the type of 

organism. The first method incorporates the use of a light-activated system called the 

light-dependent protochlorophyllide oxidoreductase (LPOR). This system, as the name 

suggests, uses light to trigger the production of chlorophylls for use in photosynthesis. 

The focus of research provided hereafter is centered on a structurally unrelated dark-

operative system (DPOR), which generates chlorophyll in the absence of light, or in low-

light conditions. 

DPOR is structurally related to the enzyme nitrogenase, which functions to reduce 

atmospheric nitrogen into a form usable for living systems to incorporate into their 

metabolism. Both DPOR and nitrogenase are similar in that both require ATP binding 

and hydrolysis for electron transfer to occur, but differ in that DPOR is a much slower 

enzyme. Even though ATPase activity is essential for catalysis, the role of ATP 
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throughout the catalytic mechanism is not well understood. The research contained herein 

was conducted in order to better characterize the role of ATP in DPOR during this critical 

step in chlorophyll production. 

When comparing steady-state rates between DPOR and nitrogenase, DPOR was 

found to perform 400-fold slower with respect to ATPase activity. However, the initial 

rates of ATP hydrolysis were found to be very similar, indicating that the two systems are 

divergent after the initial hydrolysis occurs. Mutational studies further show that both 

ATPase sites are required for normal function. 
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CHAPTER I 

  INTRODUCTION 

 

Photosynthesis Importance and Overview of Chlorophylls 

Photosynthesis is a critical biological process used by plants and other organisms 

which converts light energy into chemical energy. The complex series of chemical 

reactions are not only responsible for supplying oxygen to the atmosphere by means of 

carbon fixation, but also serve to produce essential organic compounds that help maintain 

life. Such a gargantuan task requires specialized components capable of mediating these 

energy transfer events. There have been years’ worth of research dedicated to 

understanding how each of these components works together to produce, from seemingly 

impossible raw material sources such as molecular H2O and CO2—metabolic waste for 

some organisms, into higher value compounds that make life possible. 

Central to the process of photosynthesis is chlorophyll. Chlorophylls are essential 

pigments that help to make photosynthesis possible by capturing light energy and 

directing it to reaction centers designed to make such energy conversion possible. Many 

different varieties of chlorophyll are used among photosynthetic bacteria, green algae, 

angiosperms, and gymnosperms, which are all used in the capture and conversion of light 

energy. Chlorophylls are porphyrin-containing pigments that are coordinated by a central 

magnesium ion, and are substituted variously in order to alter the electronics of the ring 

structure, affecting its absorptive properties. To localize their effect in photosynthesis, as 

well as to protect the organism from excessive oxidative damage, chlorophylls are found 
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attached, usually by means of carotenoids1 to protein components which are found 

embedded in chloroplast membranes. Because of their structural complexity, and their 

importance in photosynthesis, Chlorophylls have a very long and dedicated synthetic 

pathway. 

Synthetic Pathway of Chlorophyll, Leading to Protochlorophyllide a 

Chlorophyll is one of the most abundant organic molecules on Earth. It is 

estimated that in a single leaf, assuming 70 million cells, houses about 600 million 

molecules of chlorophyll2. Therefore, the requirement and synthesis of chlorophyll for 

use in photosynthesis is by no means trivial—in fact, the process of generating active 

chlorophyll requires enzymatic transformation involving fifteen distinct intermediates 

(Figure 1.1) beginning with the amino acid L-glutamate via the C5 pathway, which 

operates in the chloroplast3. The glutamate amino acid, interestingly, is converted to the 

aminoacyl-tRNA by glutamate-tRNA synthetase prior to being reduced by an NADPH-

dependent glutamate-tRNA reductase to form the immediate precursor to 5-

aminolevulinate, which becomes the primary building block to form the porphyrin ring of 

the chlorophyll4. 

Where the first steps of chlorophyll synthesis tend to differ from that of non-

photosynthetic organisms, the assembly of the porphyrin ring at least tends to follow 

more conventional transformation. The generated 5-aminolevulinate undergo additional 

transformation by 5-aminolevulinic acid dehydratase, which catalyzes asymmetric 

condensation of two molecules of 5-aminolevulinate. This completes the synthesis of one 
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Figure 1.1.  Chlorophyll biosynthesis pathway. The chlorophyll biosynthesis pathway starts with the substrate L-glutamate, 

where it is linked to tRNA by means of the enzyme glutamyl-tRNA synthetase and using Mg-ATP to become glutamyl tRNA. 

Reduction occurs to yield the semialdehyde glutamate precursor before it is enzymatically converted into 5-aminolevulinate, which 

serves as the building block of the porphyrin ring. The penultimate step in the pathway, the conversion of Pchlide to Chlide is 

mediated by either a light-dependent oxidoreductase (LPOR) or a light-independent DPOR.
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of what will end up being four pyrrole rings in the completed porphyrin structure of 

chlorophyll5. Following the synthesis of individual pyrrole rings, four such components 

are linked together by porphobilinogen deaminase, which includes high sequence 

similarity among various organisms in its catalytic and substrate binding residues3. 

Uroporphyrinogen synthase follows up this transformation by closing the porphyrin ring. 

Following the completion of the porphyrin ring, it must be substituted correctly to gain 

the appropriate electronic properties required in the capture and conversion of light 

energy. Uroporphyrinogen III decarboxylase replaces acetic acid side chains with one-

carbon methyl groups, coproporphyrinogen III oxidase transforms two propionic acid 

side chains into vinyl groups, and finally protoporphyrinogen IX oxidase, a flavoprotein, 

oxidizes the porphyrin to allow for absorption in the red region of the visible spectrum3. 

From the intermediate protoporphyrin IX and on, the enzymes utilized are specific 

in the chlorophyll synthesis pathway. The process starts with the insertion of a Mg2+ ion 

by Mg-Chelatase6. Following addition of the central Mg2+ ion, the Mg-protoporphyrin 

monomethyl ester intermediate is formed by a methyltransferase that esterifies a 

propionic acid in order to form a fifth ring which is characteristic of active chlorophyll, 

then is reduced to yield protochlorophyllide a. Interestingly, the reduction of 

protochlorophyllide a (Pchlide) to Chlorophyllide a (Chlide), the immediate precursor for 

chlorophyll a, seems to be a key step in chlorophyll synthesis and its regulation, and will 

receive particular consideration. 
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DPOR and LPOR—Twin Models of Protochlorophyllide Reduction 

 The transformation of Pchlide into Chlide is a stereospecific reduction of the 

C17=C18 double bond in ring IV of the porphyrin. This is the rate-limiting step in the 

biosynthetic pathway7. In addition to this, there is significant control related to the 

accumulation of Pchlide in angiosperms. To protect themselves from reactive oxygen 

species (ROS) damage resulting from the over-accumulation of free Pchlide, flowering 

plants have developed a mechanism to shut of synthesis of 5-aminolevulinate after a 

threshold amount of Pchlide is reached when grown under dark conditions, where the 

accumulated substrate is bound to a light-activated NADPH:Pchlide oxidoreductase, 

otherwise referred to as LPOR1. Upon the addition of light, the substrate can be turned 

over to form Chlide by using NADPH as an electron source for the two electron 

reduction, and the addition of a proton by an adjacent tyrosine residue8. After this 

conversion takes place, Chlide may be used as a substrate to finally become chlorophyll 

a. 

 Angiosperms are completely reliant on this light-activated mechanism of 

chlorophyll synthesis, having only LPOR to perform the chemistry to convert Pchlide 

into Chlide. However, gymnosperms, algae, and cyanobacteria utilize an unrelated dark-

operative system for the purpose of reducing Pchlide, known as the dark-operative 

protochlorophyllide oxidoreductase (DPOR) in addition to the light-active system. 

Anoxygenic photosynthetic bacteria such as Rhodobacter capsulatus and Rhodobacter 

sphaeroides are completely reliant on the dark-operative method which functions in the 

absence of light, and in the absence of oxygen. There are many reasons why this protein 
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is interesting to study, which include its similarity to nitrogenase, as well as the role ATP 

plays in the reaction mechanism. 

DPOR Components and Similarity to Nitrogenase 

 While DPOR and LPOR both perform the same chemistry to reduce Pchlide to 

Chlide, it is both structurally and functionally different from LPOR. DPOR is a multi-

protein complex comprised of two symmetrical catalytic halves containing the proteins 

BchL, BchN, and BchB. Each of these proteins share similarities with the Fe protein 

(NifH) and the MoFe protein (NifDK) of nitrogenase, both in functionality and in subunit 

and cofactor orientation. Nitrogenase is responsible for catalyzing the reduction of 

molecular dinitrogen to ammonia, which consumes 16 ATP and produces one obligate 

equivalent of hydrogen gas in eight total single-electron transfer cycles9 (Eq. 1). During 

catalysis, the association and dissociation of the Fe protein to the catalytic MoFe protein 

is coupled to the binding and hydrolysis of ATP, which also results in the transfer of 

electrons, one at a time, to metal centers that contribute to substrate reduction10. The 

same complex orientation and dynamics are achieved in DPOR for the purposes of 

catalysis11, though DPOR catalyzes the two electron reduction of the C17=C18 double 

bond on Pchlide, which only requires two single-electron transfer cycles and the 

hydrolysis of 4 ATP (eq. 2).  

Eq. 1: N2 + 16 ATP + 8 e- + 8 H+  2 NH3 + 16 ADP + 16 Pi + H2 

Eq. 2: Pchlide + 4ATP + 2 e- + 2 H+  Chlide + 4 ADP + 4 Pi 
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Figure 1.2. Comparison of DPOR to nitrogenase and cofactor visualization. DPOR and nitrogenase show considerable 

similarity to each other. Their similar subunit orientation and cofactor location may point to key architectural features that are 

conducive to reducing stable multiple bond systems, such as those found in dinitrogen and in conjugated porphyrin systems. 
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The BchN/BchB proteins of DPOR form a heterotetramer analogous to the MoFe 

protein of nitrogenase. However, there is no conservation in sequence between the two 

sites of substrate reduction, indicating differences in composition. The MoFe protein 

contains a unique [1Mo-7Fe-9S-1homocitrate] FeMo cofactor which serves as the site for 

dinitrogen reduction, whereas the NB-protein does not contain a metal cluster at the site 

of Pchlide reduction. The cofactor composition also varies greatly between the two 

systems (Figure 1.2). It can be purposed that the similarity in cofactor arraignment may 

produce an ideal architecture for an environment suited to reducing stable multiple-bond 

systems. Nitrogenase, in addition to the FeMo cofactor, also contains an [8Fe-7S] P-

cluster, whereas the NB-protein only contains one [4Fe-4S] cluster that is uniquely 

ligated by one aspartate and three cysteine residues12.  

BchL is a homodimeric protein that is found at each end of the symmetrical 

complex of DPOR and functions to deliver electrons, one at a time, to the NB-protein in 

order to generate Chlide. This electron transfer is coupled to the binding and hydrolysis 

of two ATP per electron that is transferred. The L-protein shows significant structural and 

functional similarities to the Fe-protein of nitrogenase13—in fact, when looking at the 

amino acid sequence, BchL is about 30% identical and 50% similar to the Fe protein14, 

with the highest instances of similarity occurring in the ATP-binding motifs and the 

interface that coordinates with the [4Fe-4S] cluster that is joined symmetrically at the 

surface of the dimer14.  Interestingly, the [4Fe-4S] cluster of the L-protein appears to be 

either less accessible, or is more reliant upon a large conformational change upon the 

binding of nucleotide than that of the Fe-protein due to the rate of chelation by α,α’-
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dipyridal solution13. It is also worth noting that even with the high degree of similarity 

between the two proteins, and considering their identical function, they are not 

interchangeable for use in the alternative enzymatic system due to significant differences 

in surface charge used in recognition to the appropriate protein-protein interaction 

partner13. 

Detailed Insights into the Chemistry of DPOR 

 With both the similarity to nitrogenase, and recent structural and inhibition studies 

to probe DPOR function11, 15, detailed information has been gained about the reaction 

mechanism and chemistry of DPOR. Since Both DPOR and nitrogenase both utilize 

ATP-dependent single-electron donating proteins, by necessity, there needs to be a cycle 

(Figure 1.3) which accounts for association, electron transfer, ATP hydrolysis16, 

dissociation of the spent iron-protein, reduction of oxidized protein, and re-association of 

reduced protein to begin the cycle again. As it stands, there has not been much research 

performed to date that addresses the complexity of this single-electron transfer cycle, and 

the role that ATP plays in the dynamics at work. Mixed in with these steps, the DPOR 

mechanism also needs to include steps for substrate binding, transfer of a single electron 

from the NB cluster to Pchlide, proton addition, transfer of a second electron from NB to 

Pchlide coupled to a subsequent proton addition, and finally the release of Chlide15. The 

formation of the DPOR complex is essential for the successful reduction of substrate. 

From structural data11, 17, 18, a number of key residues play important roles to maintain 

appropriate protein-protein interactions, cluster environment, and substrate orientation. 

The Cys95 residue in BchB seems to play a vital role in forming the NB complex. 
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Figure 1.3. Representation of single electron cycle events for the L-protein. 

The L-protein does not statically interact with the NB-protein. Rather, the DPOR 

complex is a dynamic fluctuation between oxidized and reduced, and L-protein bound 

and dissociated states. A single turn in the L-protein single electron cycle requires the 

binding of ATP to the L-protein, binding of L to the NB-protein, transfer of one electron 

coupled to the hydrolysis of both ATP, dissociation of L-protein, dissociation of ADP 

from the L-protein, reduction of the [4Fe-4S] cluster, and the binding again of ATP to the 

L-protein in preparation of the cycle repeating. 

 

 When mutated to alanine, not only did the enzyme lose ability to reduce Pchlide, 

but the protein-protein interaction between BchN and BchB was interrupted11. Asp36 in 

BchB also plays a critical role in the appropriate assembly of the DPOR complex. While 

it has no effect on complex assembly, this residue is critical in coordination with the 

[4Fe-4S] NB cluster, which is uniquely ligated by three cysteines contributed by both 

BchN and BchB, as well as the aforementioned aspartic acid residue11, 17, 18. When 

mutated to cysteine or alanine, while the ability to form a conventionally ligated [4Fe-4S] 

cluster was maintained, almost all reductive capability was lost. The cysteine and serine 

mutations completely abolished activity, while the alanine mutation significantly reduced 
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the activity to only 13% of the wild-type protein11. This may indicate that the Asp36 

ligation is required for appropriate flexibility of the NB-cluster to effectively maintain the 

correct orientation to reduce substrate. The shortest distance from the NB-cluster to 

Pchlide is 10.0 Å, which supports through space electron transfer to be possible19. Phe25 

of BchN also contributes to a suitable environment for electron transfer to the substrate11, 

17.  

 Fujita and his research team propose a trans-specific mechanism in which proton 

attack occurs sequentially and in opposite directions perpendicular to the porphyrin 

plane11, 20. The H+ donors in the reaction are a BchB’-Asp274 residue that interestingly is 

located on the protein to which the opposite Pchlide is bound, and the propionate side 

chain on the Pchlide molecule itself. Rationale for identifying these groups as the H+ 

donors include their proximity (4.9 Å and 4.8 Å respectively) to the C17=C18 double 

bond of Pchlide, as well as the distorted conformation of the propionate side chain 

illuminated by the structural data11 which places it almost perpendicular to the porphyrin 

plane. Evidence for the trans-addition of H+ during electron transfer is found by 

observing the spacial arrangement of the H+ donors when Pchlide is bound. Both the 

accuracy of the donors and the importance of the propionate conformation are supported 

in mutation studies of the BchB’-Asp274, where substrate reduction was lost upon 

change to an alanine, and by switching to the similar, but unnatural substrate chlorophyll 

c. Where chlorophyll a has a flexible propionate side chain, chlorophyll c has a rigid 

acrylate group which does not allow for the distorted conformation seen in the crystal 
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structure. Complete substrate reduction is not observed when chlorophyll c is used as 

substrate, where it acts as a competitive inhibitor for DPOR11, 20. 

 Substrate reduction in DPOR is unique, and differs from what is observed in 

nitrogenase. Because of the absence of metal clusters at the site of substrate reduction, 

and the transfer of only one electron at a time by the L-protein, by necessity, substrate 

radicals are formed. In enzymes that normally produce radicals as reaction intermediates, 

such as B12 enzymes21 or radical SAM enzymes22, the radical that is generated is on its 

cofactor, and not on the substrate itself. DPOR has been found not only to generate 

substrate radicals during catalysis20, but that the electrons, as well as the protons are 

added sequentially. This means that during catalysis, the first intermediate formed, 

confirmed by EPR, is an anion radical species of Pchlide. One proton from the propionate 

side chain is used to resolve the charge, making a neutral radical intermediate. The 

second electron transferred to substrate forms a lone pair on C17 of the Chlide 

intermediate species, forming an anion intermediate, which is eventually resolved by the 

donation of the second H+ from BchB’-Asp274. When chlorophyll c is used as a 

substrate, only an anion radical is generated20.  

Rationale for Master’s Thesis Research 

 While there have been studies on DPOR concerning its role in chlorophyll 

biosynthesis, and its relation to nitrogenase, there are still important questions that remain 

mysterious. Namely, how does DPOR use the energy from hydrolyzing two ATP to 

accomplish electron transfer? Or, what dynamics and regulatory elements are observed in 
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the L-protein upon hydrolysis by its dual ATPase sites during the catalytic cycle? This 

investigation seeks to address these questions. 

1. The components of DPOR were expressed and purified using the E. 

coli expression system for the purpose of in vitro characterization of 

the enzyme. 

2. Assays were developed to examine its ability to reduce Pchlide and 

hydrolyze ATP 

3. Novel linked constructs of the L-protein were designed to examine 

dynamics of the dual ATPase sites, as well as to determine 

functionality in various conditions 

4. How mutations in the Walker-A motif in one or both of the ATPase 

sites affect the ability of the L-protein to hydrolyze ATP, and 

ultimately reduce Pchlide. 
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CHAPTER II 

 

ISOLATION OF DPOR COMPONENTS AND CHARACTERIZATION OF WILD-

TYPE ACTIVITY 

 

 

2.1 INTRODUCTION 

  

 DPOR represents a critical step in the synthesis of chlorophyll for use in the 

capture and conversion of light energy during photosynthesis. It is a multi-subunit 

complex that consists of the catalytic BchN/BchB α2/β2 heterotetramer, and the 

homodimeric BchL protein. During catalysis, Pchlide binds to the NB-protein and awaits 

electrons to be delivered by the L-protein, one at a time, in a process that is dependent 

upon the binding and hydrolysis of two ATP. Pchlide reduction has been well 

characterized in previous studies. The Km value for Pchlide is 10.6 µM from enzyme 

obtained from Rhodobacter capsulatus1. Under in vitro conditions where the flux of L-

protein:NB-protein was held at or higher than 3:1, the specific activity of DPOR from 

Rhodobacter capsulatus2 was found to be 26.2 nmolChlide minute-1 mg-1. DPOR is also 

unique with respect to its method used to reduce Pchlide. It is one of a handful of 

enzymes that forms substrate radicals, coupled with sequential, stereospecific proton 

addition that first generates a neutral radical on the chlorin ring itself, then produces an 

carbanion intermediate that is resolved by the addition of a second proton3. 

The DPOR catalyzed reduction of Pchlide mechanistically resembles nitrogenase 

catalysis4 in that both enzymatic systems share significant topological homology with 
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respect to subunit orientation. Like nitrogenase, DPOR contains oxygen-sensitive metal 

clusters required for catalysis5 but may be expressed and isolated from an E. coli 

expression system, and does not require the control of a complex operon such as the nif 

operon that functions to control appropriate expression and assembly of proteins that are 

required to maintain nitrogenase for nitrogen fixation. 

 Nitrogenase is a difficult enzyme to study, partly due to the fact that it must be 

expressed in a diazotroph system, such as in Azotobacter vinelandii, under control of the 

nifH operon6. DPOR is more convenient to study due to its ability to be expressed in an 

E. coli expression system. While its expression and purification have been accomplished 

previously7, it’s worth noting that the production of protein controlled by IPTG induction 

in E. coli not only overexpresses each component of DPOR, but also ensures proper 

saturation with iron-sulfur clusters necessary for catalytic activity. The cloning strategy 

used to obtain each component of DPOR will be discussed hereafter, also noting how 

Pchlide is obtained for use during in vitro characterization of the purified components. 

 While there has been substantial characterization of DPOR with respect to Pchlide 

reduction, there are certain aspects of the catalytic mechanism that remain mysterious. 

Recent pre-steady state studies in the nitrogenase system have revealed some interesting 

characteristics in the process of nitrogen fixation. Namely, obtaining first-order rate 

constants for the principle steps of electron transfer, ATP hydrolysis, Phosphate (Pi) 

release, and Fe-protein dissociation during the single-electron transfer cycle have 

revealed several interesting insights8. First, electron transfer was found to precede ATP 

hydrolysis by the Fe-protein, showing that it is the free energy of ATP binding and that of 
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the protein-protein interaction between the Fe-protein and the MoFe protein that 

orchestrates electron transfer, and not ATP hydrolysis. Second, the two symmetrical 

halves of nitrogenase may work in a sequential manner, in that the activity on one half of 

the protein may allosterically control essential events to occur on the other catalytic half.  

 Because of the significant homology between DPOR and nitrogenase with respect 

to subunit orientation and the dependence on ATP to mediate essential catalytic events, 

these insights may also hold true in DPOR and other nitrogenase-like reductases. To date, 

the molecular basis for such allosteric coupling is not understood in such enzymatic 

systems, and DPOR function could reveal additional common mechanistic insights. 

Additionally, the role of ATP has not been well characterized for this enzymatic system. 

Therefore, the following studies were performed with the goal of addressing these issues. 

In order to achieve such understanding, molecular biology techniques were used to 

isolate the DPOR components from E. coli, and in vitro assays were developed to 

characterize wild-type DPOR activity. A combination of steady-state and pre-steady state 

kinetics techniques were used to observe nuances in the catalytic mechanism of DPOR, 

which, other than rudimentary analysis with respect to Pchlide reduction, is not well 

understood. The ATPase ability of the system was also observed in the same manner. 

These studies and the resulting data show that DPOR can be expressed and purified from 

an E. coli expression system, and that the resulting isolated components are occupied 

with stoichiometric amounts of iron consistent with the [4Fe-4S] clusters necessary for 

catalysis. DPOR, like nitrogenase, is capable of substrate reduction in an ATP-dependent 

manner, albeit this reduction occurs much slower—on the order of 400 fold. Preliminary 
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pre-steady state ATPase data show that DPOR behaves like nitrogenase, in that two ATP 

are initially hydrolyzed at a burst-rate of 73 second-1, which is 900 times faster than the 

steady state activity. The stoichiometric amount hydrolyzed may provide support for a 

similar allosteric model of activity between the two symmetrical halves. This chapter 

details the initial purification and characterization of wild-type DPOR activity. 

2.2 METHODS 

Cloning of DPOR Components – L-Protein 

A plasmid was designed using RSF-duet as a parent vector to carry the BchL gene 

(Figure 2.1). Expression is controlled by the lac operon, upon addition of IPTG. The 

BchL gene from Rhodobacter sphaeroides was first amplified using PCR. The primer 

with sequence 5’ ATT TAA GGA TCC GGA GAA CCT GTA TTT TCA GAG CAT 

GAG CCC GAA AGA CTT GAC GAT ACC GAC CG 3’ was used for the forward 

orientation of the gene, with the BamHI restriction site underlined. The reverse primer 

was 5’ ATT TAA GCG GCC GCT CAA TCG AAA CCC AGC AAC TCG AAA ATT 

TCG CG 3’, with the underlined portion representing the NotI restriction site. The 

primers included information to encode for a 6x His-tag for purification purposes, as well 

as a Tev cleavage site for optional removal of the tag upon purification. 

 After PCR amplification, the gene was inserted into the expression vector by 

means of restriction digestion using the appropriate restriction enzymes to ensure 

singularity in direction, then ligation to preserve the integrity of the construct. Upon 

transformation into chemically competent E. coli DH5-α cells, the plasmid was replicated 
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and harvested using DNA miniprep kit (Qiagen). Gene insertion was confirmed by DNA 

sequencing (Genewiz). Upon transformation into E. coli BL21+ cells, the recombinant 

protein will dimerize in vivo during the induced expression in preparation for 

purification. 

Cloning of DPOR Components – NB-Protein 

 The cloning strategy for the NB-protein is similar to that of the L-protein, though 

due to the heterodimeric nature of the protein, certain modifications are taken to ensure 

appropriate purification products. These measures include the construction of two distinct 

expression vectors housing either the BchN or the BchB gene (Figure 2.2). As with the L-

protein, the construct for the BchB protein utilizes the RSF-Duet vector, which contains a 

kanamycin resistance cassette. However, to allow for antibiotic selection, the construct 

containing the gene encoding for BchN was made using the pET-Duet vector. Rather than 

kanamycin, the pET vector contains an ampicillin resistance gene. Therefore, each vector 

is co-transformed and expressed in E. coli to ensure proper protein assembly and co-

factor incorporation in the cell.  

 The BchB gene was amplified using the forward primer 5’ TAA ATT GAG CTC 

GGA GAA CCT GTA TTT TCA GAG CAT GAA ACT GAC GCT GTG GAC ATA 

TGA AGG CCC G 3’ and the reverse primer 5’ GAA GTT GTC GAC TCA CCG TGC 

ATA ATG AGC TTT CGC CTC GTA C 3’. The underlined restriction sites used in the 

cloning process are recognized by the SacI in the forward direction, and by SalI in the 

reverse direction. This expression vector contains an N-terminal 6x His-tag for 
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purification purposes, with a Tev cleavage sequence immediately downstream for 

removal of the tag.  

 The pET vector housing BchN was similarly amplified by PCR. The forward 

primer 5’ TAT AAA CAT ATG AGC CTT GAC CTT CCG CCC CCG CCC G 3’ 

includes an NdeI restriction site (underlined portion) which allows for the digestion and 

insertion into the parent vector. The reverse primer 5'- TAT AAA GGT ACC TCA TTC 

CGC AGC CTC GCG CCG CAG GAT C -3' incorporates a KpnI restriction site. After 

PCR amplification, the amplicon was cut using NdeI and KpnI restriction enzymes in 

preparation for insertion into the pET vector. Unlike the construct for the BchB protein, 

this construct did not contain a purification tag. When co-expressed with the BchB vector, 

the heterotetramer forms, which allows for the complex to be purified using the 6x His-

tag present on the other construct. The recombinant vector was verified by DNA 

sequencing. 

Expression and Cluster Formation of the L-Protein 

The expression vector containing the BchL gene was transformed into chemically 

competent BL21+ E. coli cells by the addition of 0.5 µL of the purified plasmid into 50 

µL of cells. After treatment, the cells were incubated on ice for 20 minutes, after which it 

was subjected to heat shock at 42°C for 55 seconds, then incubated on ice for an 

additional 2 minutes.  At this point, 250 µL of LB media was added to the transformation, 

and allowed to incubate at 37°C for 30-45 minutes. The entire volume was plated on LB 

agar plates containing 50 µg/mL kanamycin and 0.34 µg/mL chloramphenicol for 

appropriate antibiotic selection of cells that have taken up the plasmid during 
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transformation. The plates were incubated overnight at 37°C to allow for colony 

formation. 

 After successful appearance of distinct colonies, 5-50 mL LB broth containing 50 

µg/mL kanamycin and 0.34 µg/mL chloramphenicol were inoculated using a single 

colony from the overnight transformation. This starter culture was allowed to grow 

overnight at 37°C, after which 1 mL was used to inoculate 1 L LB broth containing 50 

µg/mL kanamycin, 0.34 µg/mL chloramphenicol, 1 mM iron (III) citrate, and 1 mM L-

cysteine. The antibiotics were included in the growth for plasmid retention, whereas the 

iron and cysteine served as the source for the iron and sulfur used in the formation of the 

[4Fe-4S] cluster under anaerobic conditions. The cultures were incubated at 37°C while 

shaking at 220 rpm initially, as the optical density (O.D.) is monitored by 

spectrophotometer using the wavelength absorbance at 578 nm. When the O.D. = 0.4, the 

cultures were shifted from 37°C to 25°C for greater induction control. At O.D. = 0.5, 50 

µM isopropyl β-D-1-thiogalactopyranoside (IPTG) is added to each flask to induce the 

overexpression of the L-protein by regulation of the lac operon native to the expression 

vector. The cultures are allowed to grow at 25°C overnight. 

To facilitate proper co-factor insertion for protein function, the remaining steps 

were carried out under anaerobic, reducing conditions by the addition of 2 mM sodium 

dithionite. The cultures were transferred to 1L centrifuge bottles where dithionite was 

added under atmosphere of nitrogen. Each bottle was then incubated at 17°C for three 

hours prior to centrifugation at 5000 rpm for 20 minutes to collect the cells. While taking 

care to maintain a nitrogen atmosphere above the reduced cell solution, the cell pellets 



22 
 

 

 7
 

were re-suspended in 100 mM HEPES, 10 mM MgCl2 buffer containing 2 mM dithionite 

and transferred anaerobically via syringe into sealed vials purged of oxygen and 

equilibrated with nitrogen. The cells were then frozen and stored at -20°C in preparation 

for purifying the protein. 

Growth and Expression of the NB-Protein 

The expression and purification of the NB-protein is virtually identical to that of 

the L-protein protocol. The expression vectors containing the BchN and the BchB genes 

were co-transformed into chemically competent BL21+ E. coli cells by the addition of 

0.5 µL of each respective plasmid into 50 µL of cells. The transformation was incubated 

on ice for 20 minutes after the addition of DNA to allow for appropriate incorporation 

into the cells. Heat shocking at 42°C for 55 seconds allowing for expansion of membrane 

pores, followed by incubation on ice for an additional 2 minutes ensures successful 

uptake of foreign DNA.  At this point, 250 µL of LB media was added to the 

transformation, and allowed to incubate at 37°C for 30-45 minutes. The entire volume 

was plated on LB agar plates containing 50 µg/mL kanamycin, 100 µg/mL ampicillin, 

and 0.34 µg/mL chloramphenicol. These plates are incubated overnight at 37°C to allow 

for transformed cell growth. 

 Following the development of distinct colonies, 5-50 mL LB broth containing 50 

µg/mL kanamycin, 100 µg/mL ampicillin, and 0.34 µg/mL chloramphenicol were 

inoculated using a single colony from the overnight transformation. This starter culture 

was allowed to grow overnight at 37°C. Following incubation, 1 mL was used to 

inoculate 1 L LB broth containing 50 µg/mL kanamycin, 100 µg/mL ampicillin, 0.34 
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µg/mL chloramphenicol, 1 mM iron (III) citrate, and 1 mM L-cysteine. As with the 

growth for L-protein expression, the antibiotics are included in the growth for plasmid 

retention, whereas the iron and cysteine serve as the source for the iron and sulfur used in 

the formation of the [4Fe-4S] cluster under anaerobic conditions. The cultures are placed 

in incubation at 37°C while shaking at 220 rpm initially, as the optical density (O.D.) is 

monitored by spectrophotometer using the wavelength absorbance at 578 nm. When the 

O.D. = 0.4, the cultures are shifted from 37°C to 25°C for greater induction control. At 

O.D. = 0.5, 50 µM isopropyl β-D-1-thiogalactopyranoside (IPTG) is added to each flask 

to induce the overexpression of the L-protein by regulation of the lac operon native to the 

expression vector. It is important to strictly follow the O.D. guidelines for expression of 

NB-protein. Unlike the L-protein, expression of vector which efficiently overexpresses 

the recombinant protein with proper cofactor incorporation, expression of the NB-protein 

growth was much more sensitive in general, the result being poorly saturated NB-protein 

with respect to its metal cluster if these guidelines aren’t met. The cultures continue to 

grow at 25°C overnight for maximum protein production. 

To facilitate proper co-factor insertion for protein function, the remaining steps 

were carried out under anaerobic, reducing conditions by the addition of 2 mM sodium 

dithionite. The cultures were transferred to 1L centrifuge bottles where dithionite was 

added under atmosphere of nitrogen. Each bottle was then incubated at 17°C for three 

hours prior to centrifugation at 5000 rpm for 20 minutes to collect the cells. While taking 

care to maintain a nitrogen atmosphere above the reduced cell solution, the cell pellets 

were re-suspended in 100 mM HEPES, 10 mM MgCl2 buffer containing 2 mM dithionite 
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and transferred anaerobically via syringe into sealed vials purged of oxygen and 

equilibrated with nitrogen. The cells are then frozen and stored at -20°C in preparation 

for purifying the protein. 

Purification of DPOR Protein Components 

 The frozen cells are taken from storage at -20°C and thawed under atmosphere of 

nitrogen in a room-temperature water bath. At the same time, equilibration buffer 

containing 100 mM HEPES pH 7.5, and 150 mM NaCl was degassed on a vacuum 

manifold and replacing the atmosphere with nitrogen. In preparation for column 

chromatography and lysis methods, the buffer was reduced by addition of 2 mM 

dithionite. The cells were lysed using a French pressure cell adapted for use to maintain 

anaerobic conditions. Needles were placed on the in and out lines for transfer and 

collection into sealed, degassed vials, and a positive atmosphere of nitrogen was 

maintained above the solutions during the process. To ensure the safety of the protein 

while in the chamber, 30 mL of reduced equilibration buffer was passed through prior to 

the addition of the thawed cells. Post lysis, the total cell lysate was transferred 

anaerobically into centrifuge tubes that have been equilibrated with nitrogen. 

Centrifugation at 17000 rpm for 1 hour ensures total clarification of the cell lysate into 

insoluble and soluble fractions. The aqueous portion is transferred carefully into an 

empty, degassed vial containing 0.7 mL 1 M HEPES pH 7.5, 2.3 mL H2O, and 350 mg 

NaCl. Adhering to this step ensures proper charge maintenance on the 6xHis tag for 

binding to the Ni-NTA column.  
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This column is made reducing by passing through degassed equilibration buffer 

containing 2 mM dithionite. Reducing conditions are verified by colorimetric 

determination using methyl viologen. The protein is then loaded onto the Ni-column, and 

then rinsed with equilibration buffer. The column is then washed with wash buffer 

containing 100 mM HEPES pH 7.5, 150 mM NaCl, and 20 mM imidazole. The protein is 

eluted off of the column using a similar elution buffer that contains 250 mM imidazole. 

Each buffer is made reducing by the addition of 2 mM dithionite. Protein that is saturated 

with metal should appear as a dark brown band on the column, which is eluted into a 100 

mM HEPES dilution buffer.  

The diluted protein is loaded onto a Q-sepharose column which has been pre-

washed in a 100% salt solution that has been degassed and reduced with 2 mM dithionite. 

The protein, again indicated by dark brown coloration is eluted using a NaCl gradient 

(20%-45%). BchNB will begin elution off of the column at 26% salt, whereas BchL will 

elute later, at around 35% salt. The protein is eluted into empty, degassed, and sealed 

vials in preparation for concentration. The proteins are loaded onto a concentrator 

anaerobically, first using reduced salt buffer to reduce the system, and maintaining 

nitrogen pressure to protect the purified proteins. Using an appropriate cut-off filter, each 

protein is concentrated, then stored in liquid nitrogen until needed for use in in vitro 

assays.  

Iron content of the purified proteins were analyzed using an iron chelation assay 

using a α,α’-dipyridal solution. This was accomplished by preparing 5 mM ferrous iron 

standard solutions containing 0-300 nmol Fe, and treating them with 10 % 
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hydroxylamine and 20 mM α,α’-dipyridal solution. Known volumes of protein with 

unknown iron content were analyzed and compared to the standards by reading 

absorbance at 520 nm. Ratios of iron content/protein were determined by comparing 

nmol Fe with nmol protein used in the assay, and compared with the theoretical values of 

4 Fe/L-protein, and 8 Fe/NB-protein. 

Generation and Extraction of Pchlide 

 A strain of Rhodobacter capsulatus (ZY5) was kindly provided to us by Dr. Carl 

Bauer (University of Indiana, Bloomington). This strain is deficient of the BchL gene, 

rendering the DPOR complex useless. Thus, growing the strain in dark conditions allows 

for the accumulation of Pchlide, which is excreted into the culture medium. First, a 5 mL 

starter culture is prepared by inoculating RCV-2/3-PY medium containing 5 µg/mL 

kanamycin from a glycerol stock of cells kept at -80°C. This culture is grown at 34°C 

while illuminated and slow shaking at 130 rpm. Then a larger volume of culture medium 

is inoculated from the starter. First, a 125 mL volume is inoculated, followed by a 500 

mL growth under the same conditions, with the exception of being grown in the dark for 

initiation of chlorophyll synthesis. When left overnight, Pchlide is excreted into the 

culture medium, without the disruption of cells. The Pchlide is harvested by 

centrifugation at 8000 rpm for 30 minutes, followed by filtration through a 0.4 mm filter 

to remove contaminating cell debris. As the cells remain intact through this procedure, a 

new culture may be prepared by re-suspending the pellet in fresh RCV-2/3-PY medium. 

The filtered Pchlide mixture was placed into a seperatory funnel and extracted using one-

third volume diethyl ether (Sigma). Due to the rapid expansion of ether, great care is 
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taken to relieve built up pressure within the funnel by removing the stopper, allowing for 

the release of vapor. The mixture is shaken to ensure thorough mixing, and the ether 

phase is separated from the aqueous phase and collected in a clean flask. The viscous 

inter-phase containing Pchlide is centrifuged at 4300 rpm for 2 minutes to clarify the 

ether phase, where it is added to the other collected stock. Contamination is removed by 

cooling on dry ice, and decanted from the solidified water contaminants. The ether phase 

is evaporated to dryness under a constant nitrogen stream. The dried Pchlide was 

dissolved in 300 µL DMSO and stored in a light-sensitive container in the dark. Pchlide 

concentration is determined by addition into an 80% acetone solution via 

spectrophotometer, and using the millimolar extinction coefficient of 30.4 at 626 nm. 

Pchlide Reduction Endpoint Assay 

 Pchlide reduction assays were performed to qualitatively observe if the purified 

DPOR components were capable of the ATP-driven reduction of substrate. Reaction 

buffer was made which included 50 mM HEPES pH 7.5, 10 mM MgCl2, and 6 mM 

dithionite. This buffer was purged of oxygen by degassing on a vacuum manifold and 

replaced the atmosphere with nitrogen. The solution was made reducing afterwards by 

the addition of 6 mM dithionite, which was degassed separately. Each protein was taken 

from storage in liquid nitrogen and placed on manifold for degasification. In a separate 

degassed, empty vial, appropriate volumes of degassed reaction components were added 

and brought up to 500 µL final volume using the reduced reaction buffer. The contents 

were mixed anaerobically using a syringe. A control containing no ATP was made by the 

addition of 2 µM NB, 8 µM L, and 10 µM Pchlide. The reduction assay contained the 
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same components, and the reaction was initiated by the addition of 2 mM ATP, mixing 

with the syringe to homogenize the solution. After ten minutes, the reactions were 

quenched by the precipitation of proteins by the addition of 800 µL 100% v/v acetone 

into 200 µL assay mixture. The Pchlide/Chlide mixture was harvested by centrifugation 

at 13000 rpm for ten minutes, at which time the results were obtained by measuring 

absorbance over a wavelength range of 700 – 580 nm for each condition. 

DPOR Steady-state ATPase Kinetics 

 Steady-state ATPase assays were carried out in anaerobic conditions in sealed, 

crimp-shut vials. Reaction buffer containing 50 mM HEPES pH 7.5, and 10 mM MgCl2 

was degassed on a vacuum manifold by switching from vacuum to purge oxygen from 

the system and replacing it with nitrogen gas. Pchlide and ATP were also degassed in this 

manner. After degasification, 12 mM dithionite was added to the reaction buffer, which is 

absent of ATP. Solutions were checked by methyl viologen indicator to see if they were 

reducing. Empty vials were sealed and degassed to hold all of the reaction components in 

preparation of starting the assay. BchNB and BchL proteins were taken from storage in 

liquid nitrogen and degassed prior to addition to vials containing reduced buffer. The 

amount of protein used in each reaction was 5 µM NB and 20 µM L, along with 20 µM 

Pchlide. Each reaction was made up to a final volume of 1 mL with the addition of 

reduced buffer. To detect ATP hydrolysis, α-P32-labelled ATP was added to the degassed 

stock to create a hot ATP mix for use in the assay. Addition of 5 mM ATP was used to 

start the reaction, which took place at room temperature while mixing periodically by 

hand. At each time point, 25 µL were taken by syringe and added to 25 µL 0.5 M EDTA 
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for quenching. Samples were taken from 0-40 minutes. After completion of the assay, the 

quenched samples from each time point were plotted on a PEI cellulose plate and 

developed using thin layer chromatography for separation of hydrolyzed ADP from un-

hydrolyzed ATP. The plates were developed by placement in a chamber containing 

phosphate buffer pH 3.4 for 70 minutes. Once dried, the plates were placed in a cassette 

for development for data analysis, and the relative amounts of hydrolysis product 

determined by pixel quantification. 

Preliminary Pre-steady State Analysis of DPOR Activity 

 Due to the recent findings concerning the pre-steady state dynamics at play in the 

nitrogenase catalytic mechanism8, rapid kinetic techniques were used to characterize 

events occurring during the first catalytic cycle for DPOR. A combination of radiolabeled 

ATPase assays using rapid mixing and chemical quench and real-time phosphate release 

assays were used to obtain first order rate constants for the events of ATP hydrolysis and 

phosphate release by the L-protein. 

 Rapid-quench ATPase experiments were carried out using Quench-flow 

instrumentation by KinTek with 10 µM NB-protein, 40 µM L-protein, 40 µM Pchlide, 1 

mM ATP, and 6 mM dithionite in a reaction buffer containing 50 mM HEPES pH 7.5 and 

6 mM MgCl2. The reaction buffer was degassed by the use of vacuum manifold hooked 

up to a vacuum pump to purge oxygen from the system and replace it with a nitrogen 

atmosphere. The dithionite was added after degasification was complete. To assay for 

pre-steady state hydrolysis by DPOR, the previously mentioned enzyme components 

were mixed rapidly with 2 mM ATP and quenched using 0.5 M EDTA. Following 
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reaction quenching, 1 µL aliquots were plotted on PEI cellulose thin layer 

chromatography plates, and developed overnight for computational analysis. The molar 

amount of ADP formed was plotted versus time to obtain the burst rate of ATP 

hydrolysis during the pre-steady state. 

Real-time kinetic experiments were performed by using a stopped-flow 

instrument developed by KinTek. ATP hydrolysis and phosphate release from the L-

protein was monitored by using a fluorescent probe developed by Dr. Martin Webb9 

using MDCC-labelled phosphate binding protein (PBP). Change in fluorescence of 

MDCC-PBP upon phosphate binding was monitored using an excitation wavelength of 

435 nm and using an emission cut-off filter of 450 nm. DPOR assays were performed 

using 0.5 µM NB-protein, 4 µM L, 10 µM Pchlide, and 5 µM MDCC-PBP in 100 mM 

HEPES ph 7.5 and 10 mM MgCl2 buffer. Excess phosphate in the instrument and 

solutions were scrubbed using a coupled assay containing 200 µM 7-methyl guanosine 

and 0.01 U/mL purine nucleoside phosphorylase for 30 minutes prior to data collection. 

The reaction components were shot against a buffer containing 100 mM HEPES pH 7.5, 

10 mM MgCl2, and 0.5 mM ATP. Upon rapid mixing of the components, the change in 

fluorescence was monitored in real-time in the observation cell in the instrument. 

2.3 RESULTS 

Cloning and Expression of DPOR Components from E. coli 

 The genes BchL, BchN, and BchB were successfully cloned into expression 

vectors that allowed for overexpression and purification of the L-protein, and the NB-
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protiens, respectively. Prior work to isolate DPOR components from Rhodobacter 

capsulatus resulted in total protein yield of close to 4 mg/mL1. The incorporation of the 

aforementioned expression vectors proved to be more successful. The transformation and 

expression of the plasmid containing BchL into E. coli BL21+ cells yielded close to 100 

mg of the purified 64 kDa L-protein homodimer after the two-step purification process 

over Ni-NTA and Q-sepharose columns (Figure 2.1B). The co-expression of the BchN 

and BchB plasmids and subsequent purification methods analogous to those used for the 

L-protein resulted in similar amounts of purified NB-protein (Figure 2.2B). Iron content 

analysis by α,α’-dipyridal chelation assays indicate that the purified protein contain 

roughly 4 Fe atoms/L-protein and 8 Fe atoms/NB-protein, suggesting appropriate [4Fe-

4S] cluster formation and incorporation into the DPOR components, even when 

expressed and purified through an E. coli system. Both isolated proteins appear to be > 95 

% pure following the purification protocol. Pchlide extracted by use of the ZY5 strain of 

Rhodobacter capsulatus generously provided to us by Dr. Bauer (Bloomington, IN) 

exhibited absorption maximum at 626 nm as determined in 80% acetone. The 

concentration of Pchlide, determined by Beer’s law is 617 µM. This successful 

purification allows for the initial characterization of the ability of DPOR to reduce 

Pchlide, and how the hydrolysis of ATP helps to accomplish that goal. 

Steady-state ATPase Analysis and Pchlide Reduction of DPOR 

 After isolating the purified DPOR complex, the next step was to assay for the 

capability to reduce Pchlide within the NB-protein coupled to the hydrolysis of ATP by 

the L-protein. The purified protein complex was capable of reducing Pchlide to Chlide as  
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Figure 2.1. Strategy and Purification of BchL. (A) Genetic construction of the 

BchL containing vector. The gene encoding for the BchL protein was successfully cloned 

into an RSF-duet expression vectorand transformed into E. coli BL21+ cells. (B) 

Expresion and purification of BchL The addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) triggers the production of BchL by stimulation of the lac 

operon. Once expressed, the protein was able incorporate the [4Fe-4S] cluster necessary 

for catalysis using iron (III) citrate and L-cysteine supplemented in the culture medium. 

The L-protein was able to be successfully isolated anaerobically using a two-step 

chromatographic approach by passing the cell lysate over Ni and anion-exchange 

columns. The resulting protein isolate is >95% pure, evidenced by SDS-PAGE. 
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Figure 2.2. Cloning strategy and Purification of the BchNB protein. (A) 

Vector components of BchNB. The strategy for isolating the NB-protein of the DPOR 

complex involves the dual transformation and expression of the BchN protein in the pET-

Duet vector, and the BchB protein in the RSF-Duet vector using the E. coli BL21+ 

expression system. (B). Expression and purification of BchNB. These constructs were 

able to be expressed sufficiently under IPTG induction, with metal clusters appropriately 

formed and incorporated when introduced to anaerobic conditions by the addition of 2 

mM dithionite. The two-step purification process of Ni-affinity chromatography and 

anion-exchange chromatography was successful in isolating the functional protein to 

greater than 95% purity.
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indicated by a spectral shift from 626 nm to 665 nm (Figure 2.3). This assay was 

accomplished under anaerobic conditions with 2 µM NB-protein, 8 µM L-protein, 10 µM 

Pchlide, and were initiated by the addition of 2 mM ATP. DPOR exhibits significant 

Pchlide reduction as evidenced by the appearance of Chlide after 5 min. Because of this 

successful transformation from substrate into product, Steady state ATPase kinetic assays 

were performed to observe and probe the ATP requirement of the reaction. 

The assays performed with conditions stated above successfully allowed for the 

observation of how quickly DPOR is able to turnover ATP as an obligate step in the 

reaction mechanism during the steady state. Until now, these findings remained largely 

unanswered. DPOR is capable of turning over ATP at a slow steady-state rate of 4.07 µM 

ATP hydrolyzed per minute as evidenced by PEI sepharose thin layer chromatography 

(Figure 2.4A). Adjusting for the stoichiometric ratio of µM ATP hydrolyzed/NB-protein, 

the kcat was found to be 0.0135 second-1 (Figure 2.4B). Interestingly, this rate for ATP 

hydrolysis is found to be roughly 400 fold slower than the observed kcat for the 

nitrogenase ATP hydrolysis by the Fe protein, which was found to be 5.6 second-1. 

Considering the difficulty of reduction of the nitrogen-nitrogen triple bond, and the 

number of single electron transfer cycles required by nitrogenase (8 as opposed to 2), this 

begs the question of why the ATPase cycle occurs much slower in the steady state.  

Pre-steady state Analysis of the L-Protein Catalyzed ATPase Cycle 

 The discrepancy between the steady-state activity between nitrogenase and DPOR 

was so apparent, that a deeper probe into the catalytic mechanism became necessary in 

order to explain why nitrogenase is a more robust ATP utilizing engine. From recent  
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Figure 2.3. Pchlide reduction assay using isolated DPOR components. The 

purified BchL and BchNB proteins were used for the initial in vitro characterization of 

activity by incubation of 10 µM Pchilde with 2 µM NB-protein and 8 µM L-protein at 

room temperature. After the addition of 2 mM ATP, significant Chlide formation is 

observed after 5 minutes. In the condition where the DPOR components were incubated 

in the absence of ATP, no substrate reduction was monitored.
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studies into the nitrogenase pre-steady state single-electron transfer cycle8, it is known 

that electron transfer occurs quickly (kET = 140 second-1) and precedes the step of ATP 

hydrolysis, which occurs at kATP = 70 second-1.  

Similar rapid kinetic approaches listed above (rapid mixing chemical quench 

assays and real-time phosphate release assays) allowed for the observation of the 

principle steps of ATP hydrolysis and Pi release, which illuminated the rates at which 

these steps occur in the catalytic mechanism. Using the reconstituted DPOR complex, 

mixed with α-P32-labelled ATP for varying times allowed for the ability to observe the 

pre-steady state ATPase activity (Figure 2.5A). Interestingly, only two of the four bound 

ATP of the DPOR complex were hydrolyzed in the pre-steady state, and this hydrolysis 

occurs rapidly, with a kATP = 73 second-1, which closely mirrors that which is observed in 

the nitrogenase pre-steady state. These data also suggest that the initial hydrolysis of the 

two ATP occurs at a rate that is roughly 900 times faster than the steady state rate of ATP 

hydrolysis, and therefore, cannot be the rate-limiting step in the reaction. To probe ATP 

catalysis further, Pi release experiments were performed in real-time by use of an MDCC-

labelled phosphate binding protein probe9 developed for the purpose of rapid kinetic 

assays. When DPOR reaction mixture containing MDCC-PBP was mixed rapidly with 

ATP, the change in fluorescence was monitored, and found to be much slower than the 

rate of initial ATP hydrolysis (kPi = 0.07 second-1) (Figure 2.5B). These data suggest that 

phosphate release, while much slower than the initial rate of ATP hydrolysis in the pre-

steady state, does not constitute the rate-limiting step in the process, and that the slow  
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Figure 2.4. Steady-state analysis of DPOR ATPase activity. (A) PEI-cellulose 

thin-layer chromatography results. DPOR was assayed for ATPase activity using α-P32-

labelled ATP incubated with 5 µM NB-protein, 20 µM L-protein, and 20 µM Pchlide and 

quenching using 0.5 M EDTA pH 8.0. 1 µL volume from each time point was plotted on 

a PEI-cellulose plate for analysis. (B) Steady state ATPase Kinetics. After imaging the 

thin-layer chromatography results, the amount of ATP hydrolysis was quantified and 

plotted versus time. ATP is hydrolyzed slowly with a kcat = 0.0135 second-1.  
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Figure 2.5. Pre-steady state kinetic characterization of DPOR. (A) Quench-

flow ATPase assay. Pre-steady state ATPase activity was monitored by incubating 10 µM 

NB-protein, 40 µM L-protein, and 40 µM Pchlide, which is rapidly mixed with solution 

containing 2 mM ATP to initiate the reaction followed by chemical quenching using 0.5 

M EDTA pH 8.0 at each time point. While the steady-state rate for ATP hydrolysis is 

slow, the kcat in the burst phase of catalysis closely resembles nitrogenase kinetics, 

registering a kcat = 73 second-1. (B) Phosphate release studies. Phosphate product release 

was monitored using a fluorescent probe provided by Dr. Martin Webb. Using stopped-

flow kinetic analysis, the rate constant for phosphate release was determined to be 0.067 

second-1. 
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step must occur shortly afterwards, with the two most likely candidates being the release 

of ADP, or the dissociation of the L-protein from the DPOR complex. 

2.4 DISCUSSION 

 DPOR is an essential enzyme in photosynthetic organisms that catalyzes the 

reaction which serves as the penultimate step in chlorophyll biosynthesis—the two 

electron reduction of Pchlide to Chlide. This step is significant in the synthetic pathway 

because it represents the immediate step prior to the genesis of active chlorophyll for use 

in photosynthesis, and also serves as the rate-limiting step with respect to its kinetics. 

While other lab groups have succeeded in characterizing the ability of DPOR to facilitate 

Pchlide reduction, the characterization of DPOR with respect to its single-electron 

transfer cycle, as catalyzed by the L-protein, has remained largely mysterious. Only 

recently has this cycle been kinetically characterized in the nitrogenase system8. To 

address how DPOR uses the energy from ATP to facilitate substrate reduction, and to 

provide evidence for the molecular basis for allosteric cross-talk between subunits 

located 98 Å apart, we were able to isolate each protein component, and use in vitro rapid 

kinetic and steady-state assays to monitor ATP hydrolysis at all steps of the catalytic 

cycle. These resulting data provide intriguing insights into the single-electron L-protein 

cycle which functions during substrate reduction. 

We were successful in the construction of plasmids containing the BchL, BchN, 

and BchB genes. The introduction of these plasmids into BL21+ E. coli cells allowed for 

the over-expression of both the L-protein, and the NB-protein. These protein components 

were able to be purified using a two-step method involving Ni-NTA and Q-sepharose 
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column chromatography methods. The high resulting yield (over 100 mg) allowed for the 

ability to easily collect large amounts of purified complex for experiments that require 

high concentrations of protein for detection of signal, such as EPR, and the previously 

described pre-steady state ATPase experiments. The isolated protein is both occupied 

with metal, consistent with the levels of iron chelation from α,α’-dipyridal assays, and 

exhibits ATP-dependent reduction of Pchlide to Chlide, as indicated by a spectral shift of 

absorbance maximum from 626 nm to 665 nm. Significant transformation of substrate to 

product is observed after five minutes upon the addition of ATP, which suggests that 

sufficient levels of Chlide are manufactured within this time frame to be observed by 

spectrophotometer. Even though the steady-state reaction rate is slow, especially with 

respect to nitrogenase, the observation of key events should agree with this time frame. 

Therefore, the isolation of the DPOR complex, and the initial characterization of its 

activity provide credence to the subsequent kinetic characterization with respect to its 

ability to hydrolyze ATP. 

ATP Hydrolysis Occurs Slowly in the Steady-state 

 Even though substrate is capable of being reduced to product within the first five 

minutes of reaction initiation, it was found that DPOR is only capable of hydrolyzing 

ATP very slowly, as was observed during the steady-state kinetics assay using α-P32-

labelled ATP. The rate constant for the steady state hydrolysis occurs at kATP = 0.0135 

second-1. When compared to the steady state of nitrogenase catalyzed ATP hydrolysis by 

the Fe-protein, it was found that DPOR is 400 times slower in the steady state. A number 

of reasons may contribute to this phenomenon. For instance, when the structure was first 
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determined for the L-protein6, the nucleotide-dependent rates of iron cluster chelation by 

an α,α’-dipyridal compound were found to be much slower. This may suggest a 

difference in L-protein dynamics that are not seen in the Fe-protein upon binding of 

nucleotide, which positions the [4Fe-4S] cluster in a position to deliver a single electron 

before ATP is hydrolyzed.  

Additionally, nitrogenase functions by storing accumulated negative charge 

delivered in single-electron transfer cycles on the face of the FeMo cofactor in the MoFe 

protein as metal hydrides. When sufficient charge has been accumulated, the triple bond 

of nitrogen is broken, and subsequently reduced to form two equivalents of ammonia. 

DPOR differs in that there is no metal cluster at the site of Pchlide binding. Rather, 

electrons are delivered, one at a time, from the L-protein to the NB cluster, which are 

used to form an anionic substrate radical, followed by a neutral radical, and finally to a 

carbanion intermediate before the final proton addition resolves the charge and completes 

the trans-specific reduction of the Pchlide C17=C18 double bond, forming Chlide as the 

product. Because of the relative instability of the key reaction intermediates that are 

formed on the substrate during the catalytic mechanism, it is likely that the rate is 

affected as a result. 

Preliminary Pre-steady State Data Suggest Rapid-burst ATP Hydrolysis on One Half of 

the DPOR Complex 

 With the revelation that the steady-state hydrolysis of ATP occurs very slowly, 

pre-steady state kinetic techniques were used in order to gain mechanistic clues to what 

the slow step of the DPOR reaction may be. In nitrogenase, the slow step of the reaction 
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was found to be the dissociation of the Fe-protein from the complex after electron 

transfer and ATP hydrolysis and product release occur8. The rapid-kinetic chemical 

quench experiments using radiolabeled ATP show promising preliminary data that help 

describe similarities to the nitrogenase single-electron cycle. Interestingly, there is an 

initial burst rate for ATP hydrolysis that was found to occur with a first-order rate 

constant of kATP = 73 second-1. When compared to the steady-state rate, this represents a 

difference of close to 900 fold, indicating that even though the overall steady-state rate of 

hydrolysis is much slower, ATP hydrolysis is not rate limiting in the kinetic mechanism. 

This indicates that the slow step in the catalytic mechanism must occur later on in the 

catalytic cycle. Additionally, the data suggest that a stoichiometric value of two ATP 

molecules are hydrolyzed per equivalent of DPOR complex. This could be interpreted in 

a couple of different ways—either one ATP is hydrolyzed on each side of the DPOR 

complex simultaneously, or the two ATP bound on one L-protein on one half of the 

functional complex are hydrolyzed first. The latter would suggest an asymmetric model 

for ATP utilization by DPOR, which is only strengthened when considering the subunit 

cross-talk that is inferred when considering the structure for the NB-protein10 and the 

evidence based on data from the Pchlide intermediate species during catalysis3. DPOR 

was shown to form substrate radicals as a function of single-electron transfer by the L-

protein, followed by the addition of one proton to relieve charge. During the catalytic 

cycle, one of the necessary proton donors is thought to come from residue Asp274, which 

is located on the BchB protein that is not bound to the Pchlide which is being reduced. 

While further characterization is required, these data indicate a potential sequential 

mechanism of substrate reduction and ATP hydrolysis, in which catalytic events 
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occurring on one catalytic half cooperatively trigger queues for the other catalytic half to 

initiate appropriate chemistry, much like what is observed in a two-cylinder engine. 

 With the observation of burst kinetics with respect to ATP hydrolysis, it became 

necessary to address the question of why catalysis by DPOR occurs so slowly in the 

steady state. The real-time phosphate release data provides insight into what happens 

after hydrolysis of ATP occurs. Since Pi scavenging by MDCC-PBP occurs rapidly (kON 

= 1.36 x 108 M-1 second-1) and with high affinity (Kd = 100 nM) the observed change in 

fluorescence may be directly correlated to the immediate, diffusion-limited release of Pi 

from DPOR following ATP hydrolysis. At this point in the kinetic mechanism, the rate-

constant of Pi release is found to be much slower than the rate constant for burst ATP 

hydrolysis (kATP = 73 second-1 versus kPi = 0.067 second-1). Since the steady-state rate for 

DPOR catalysis is still slower than the observed rate for Pi release, the slow step in the 

catalytic mechanism must occur at some point after this step. In nitrogenase, the slow 

step was determined to be the dissociation of Fe-protein from the MoFe protein8 (kdiss = 6 

second-1). Because of the similarities between the two enzymatic systems, the slow step 

in DPOR catalysis could very well be the dissociation of L-protein from NB-protein, 

though the single-electron reduction of Pchlide leading to the formation of substrate 

radicals could also contribute to the kinetic slow step. The dynamics at play involving 

ATP during the DPOR reaction mechanism play an interesting role in substrate reduction. 

However, to further probe mechanistically on how the energy from hydrolysis of ATP is 

used to accomplish the transformation of Pchlide into Chlide, mutational studies on the 

L-protein must be achieved that affect ATP binding and hydrolysis. Chapter III describes 
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the dynamics of the L-protein and discusses the nature and rationale of these mutations, 

as well as addresses their effect on substrate reduction. 
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CHAPTER III 

 

CONSTRUCTION OF LINKED L-PROTEIN CONSTRUCTS TO INVESTIGATE 

ATP-RELATED DYNAMICS 

 

 

3.1 INTRODUCTION 

  

 Pchlide reduction as mediated by DPOR involves, by necessity, carefully 

controlled ATPase activity which is critical for catalysis. Interestingly, the number of 

events including electron transfer, ATP hydrolysis, and L-protein dissociation are 

carefully coordinated between symmetrical catalytic halves in what seems to give 

evidence of allosteric cross-talk.  Similarly, these events correlate strongly to what is 

observed in the nitrogenase system, with the exception that catalysis occurs much more 

slowly after the initial electron-transferring and ATP hydrolyzing events (Chapter II). 

The overall subunit architecture and proposed catalytic mechanism highlight a truly 

dynamic process with a high degree of communication required to achieve substrate 

reduction. While the first-order rate constants for these steps have been established 

previously in Chapter II to propose a catalytic order-of-events, that information alone 

does not address the complexity and communication that occurs as Pchlide is reduced to 

Chlide, particularly during the binding and hydrolysis of ATP. 

 In order to gain better understanding on how the ATPase activity of the L-protein 

helps to facilitate activity in the catalytic NB-protein, a look into nitrogenase Fe-protein 

mechanics are warranted. During catalysis, as the Fe-protein mediates ATP hydrolysis, 
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distinct conformations are adopted depending on the state in which the nucleotide is 

situated1, 2. Researchers found that the Fe-protein docks onto the MoFe-protein at a 

specific surface interface when no nucleotide is bound. Alternate conformations are 

adopted when ATP is bound to the Fe-protein, then during catalysis, a different 

conformation is accepted with ADP bound. In all, from the beginning of Fe-protein 

interaction with the MoFe-protein, the conformation is shifted by about 20° as the 

nucleotide undergoes hydrolysis. This seems to imply a rolling motion of the Fe-protein 

as it interacts with the MoFe-protein throughout the catalytic cycle.  

 The ATP-related dynamics of the Fe-protein are additionally highlighted by 

mutational studies involving key residues involved in the binding of nucleotide3, as well 

as with post-hydrolysis signal transduction4. Upon binding of nucleotide, the Fe-protein 

undergoes conformational changes that alter the properties of the [4Fe-4S] cluster, in that 

the redox potential is reduced from -290 mV to -420 mV, which seems to correlate to an 

ability to transfer an electron to the awaiting MoFe-protein5. It turns out that the binding 

of nucleotide to the protein involves a shift in the protein chain from Asp 125 to Cys 132, 

which directly bridges the ATP-binding site and the metal cluster. Shortening this chain 

by one amino acid at residue Leu 127 created a state which mimicked the ATP-bound 

protein, including a lower redox potential of its cluster, even though no nucleotide is 

present.  

Additional mutational studies reveal critical information related to ATP binding in 

preparation for catalysis. In general, ATP motors contain similar structural motifs that 

mediate crucial interactions between the protein and incoming nucleotide, which serve to 
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stabilize the transition state during hydrolysis2. These motifs have been characterized and 

are referred to as P-loops, or Walker A motifs, the characteristic sequence reading as 

follows: GXXXXGKS/T. The lysine embedded within this sequence is especially 

important for mediating the interaction between the γ-phosphate of the incoming 

molecule of ATP and the protein prior to catalysis. Nitrogenase, along with DPOR, 

contains a conserved lysine residue near the N-terminus of the protein. In the case of 

nitrogenase (Azotobacter vinelandii numbering) Lys 15 is the residue in question, 

whereas Lys 44 is the numbering for the L-protein from Rhodobacter sphaeroides 

(Figure 3.1). In the case of nitrogenase, when the Walker A lysine residue is converted 

into a different amino acid, such as glutamine, there is a marked decrease in ATP binding 

when compared to wild-type values, in addition to a total loss of activity, with respect to 

acetylene reduction, dihydrogen evolution, and ATP hydrolysis3. Due to the high degree 

of similarity between the Fe-protein and the L-protein in DPOR, it is assumed that a 

similar mutation to the Walker A lysine residue will yield a mutant that is unable to 

produce Chlide.  

 There are, however, additional questions that are worth noting. As the L-protein is 

a homodimer comprised of identical subunits, the introduction of a point mutation will be 

seen on both monomeric polypeptide chains, resulting in a protein that is incapable of 

binding ATP across both nucleotide interaction sites. Thus, would the introduction of 

only one point mutation, leaving one ATP site intact produce a phenotype that is still 

capable of Pchlide reduction, and does each ATP have a distinct role during catalysis? Is 

it possible that the hydrolysis of each individual molecule of ATP contributes to the 
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rolling motion of the Fe-protein during its interaction with the MoFe protein, and do the 

proposed dynamics function in DPOR? The answers to these questions have not yet been 

addressed in the literature to date, and the following studies hope to give insight into  

 

 

Figure 3.1. Walker A motif in BchL from Rhodobacter sphaeroides. BchL, as 

with other ATPase motors contains conserved sequences that are essential for ATP 

binding and hydrolysis. The Walker A motif (red) is highlighted to show the proximity it 

has towards the incoming nucleotide in the binding pocket. Lysine 44 (yellow) provides 

an essential charge stabilization with the γ-phosphate of the incoming molecule of ATP 

that also serves to stabilize the transition state during hydrolysis. Studies in nitrogenase 

show that the mutation of the Walker A lysine residue results in a protein incapable of 

substrate reduction, but is capable of binding the ADP form. 

 

these queries by developing novel heterodimeric L-protein constructs to investigate the 

role of each individual ATPase site (Figure 3.2). The constructs generated include the 

wild-type L-protein to illustrate normal DPOR function, a homodimeric linked L-protein 

construct incorporating a 3x glycine linker flanked by two tev protease cleavage 

sequences to aid in the removal of the linker post-translationally, and post-purification, a 

homodimeric L-protein in which both Walker A lysine residues have been mutated to  
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Figure 3.2. List of L-protein constructs and their protein architecture. For the 

purposes of studying dynamics that occur during DPOR catalysis, an assortment of L-

protein variants were designed which may have normal ATPase activity (green) or 

impaired activity due to the mutation of Lys44 of the Walker A motif to an alanine 

(K44A) (red).  

 

alanine residues (K44A), and a heterodimeric linked L-protein construct in which one 

ATPase site has been left intact, while the other site has undergone a point mutation at 

the Walker A lysine at position 44. We were able to successfully generate each mutant by 

using standard molecular biology techniques first to generate the homodimeric linked L-

protein construct, and then to use strategic site-directed mutagenesis, followed by 

restriction enzyme digestion/ligation to form the heterodimeric linked L-protein in which 

one ATPase site has been rendered inert. Each of the constructs were successfully 
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introduced into an E. coli expression system and isolated using affinity chromatography. 

The homodimeric linked L-protein construct when added to NB-protein, Pchlide, and 

Mg-ATP in vitro exhibits activity that is reminiscent of what is observed in the wild-type 

system with respect to Pchlide reduction. As expected, the homodimeric Walker A 

mutant did not show any Chlide formation, even after 30 minutes. Likewise, the 

heterodimeric Walker A mutant showed similar inactivity. Suggesting that both ATPase 

sites are essential for proper function. This chapter details the construction of each novel 

construct produced, and their insight into the dynamics required for normal DPOR 

catalysis and Pchlide reduction. 

3.2 METHODS 

Plasmid Construction of the Homodimeric Linked L-protein 

 The construct described in Chapter II which encodes the L-protein from 

Rhodobacter sphaeroides was used as a template for the creation of a vector which will 

yield a homodimeric linked L-protein in a single polypeptide chain upon gene expression 

mediated by IPTG induction. Our construct features the aforementioned BchL gene in an 

RSF-duet parent vector, which was used as a template to create each copy of the gene, 

designated L1 and L2, respectively. The gene which would encode for the L1 monomer 

was created first using PCR using the reverse primer with sequence 5’ ATT ATT CAT 

ATG GTC GAC TGA TTG GAA GTA TAG ATT CTC TGC GGC CGC TCC ATC 

GAA ACC CAG CAA CTC GAA AAT TTC GCG ATC CGG CAG CG 3’, and the 

ACYC duet-up1 forward primer, which is specific for the RSF-duet vector. The reverse 

primer was designed to eliminate the stop codon at the end of the BchL gene to ensure 
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proper read-through of the linked construct during translation, includes a tev protease 

recognition sequence for post-translational removal of the linking unit between both 

monomeric units, and an NdeI restriction site for cloning purposes. After PCR 

amplification, the product was digested using BamHI and NdeI restriction enzymes, and 

placed into an empty RSF-duet vector and ligated using DNA ligase. The ligated product 

was then transformed into chemically competent DH5-α cells for plasmid replication and 

harvesting by DNA miniprep (Qiagen). The correct inclusion of the aforementioned 

features was verified by DNA sequencing (Genewiz).  

 The L2 portion of the linked homodimer was similarly constructed, again using the 

original RSF-duet vector containing the wild-type BchL gene as a template. A second 

PCR reaction was performed, this time using an L2 specific forward primer with the 

following sequence: 5’ AAT AAT CAT ATG GAG AAT CTA TAC TTC CAA TCA 

AAG CTT ATG AGC CCG AAA GAC TTG ACG ATA CCG ACC GGA GCG GAT 

GGC GAG GGC TCG GTC CAG GTG C 3’. This primer contains information for the 

other half of the linker between the L1 and L2 genes, as well as a second tev protease 

recognition sequence. The use of dual tev sites ensures that upon incubation of the 

translated homodimeric linked protein with protease, that the majority of the linker will 

be completely removed, without leaving overly long segments which may contribute to 

non-native secondary structure elements. Like with the above construct, the product was 

digested with the restriction enzymes NdeI and KpnI prior to incubation with a similarly 

cut RSF-duet vector and inserted by incubation with DNA ligase. The freshly-ligated 
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DNA was then transformed into chemically competent DH5-α cells for mass replication 

and harvesting, as previously described. 

 With the successful construction of both the L1 and L2 constructs in the RSF-duet 

vector verified by DNA sequencing, the construction of the homodimeric L1-L2 linked 

construct became possible. To accomplish this, the construct containing the L2 gene in 

RSF duet was digested with the NdeI and BamHI restriction enzymes in preparation of 

receiving the L1 segment. This was prepared by the digestion of the L1-containing RSF-

duet vector using the same restriction enzymes mentioned previously, and verifying 

appropriate insert size by TBE-agarose gel electrophoresis. Upon verification of 

appropriate vector digestion, the insert was selectively purified from the gel using a DNA 

gel extraction kit (Qiagen), and incubated with the L2-containing digested vector. The 

resulting ligated vector was transformed into DH5-α cells, again for mass-production of 

the L1-L2 linked construct in RSF-duet. Similar to the un-linked, wild-type construct, the 

vector contains information encoding for an N-terminal 6x His-tag to aid in affinity 

purification over a Ni-NTA column. 

Site-directed Mutagenesis and Construction of the K44A Walker A Mutant L-Proteins 

 Site-directed mutagenesis of the wild-type L-protein was used to generate a novel 

mutant construct in which both ATPase subunits were rendered inactive with respect to 

nucleotide binding by the point mutation of Lys44 (Rhodobacter sphaeroides numbering) 

to an alanine (K44A). The RSF-duet vector containing the wild-type BchL gene was used 

as a template in a mutagenesis reaction performed in a thermocycler using the 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) with the 
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forward primer 5’ CGA GGT CGT CGA CGC GCC GAT CCC GCC C 3’, and the 

reverse primer 5’ GGG CGG GAT CGG CGC GTC GAC GAC CTC G 3’. The 

underlined segments denote the mismatches necessary for the mutagenesis to occur. After 

the polymerization reaction was completed, the restriction enzyme DpnI was added for 

the digestion of methylated DNA, leaving only the newly-synthesized mutagenesis 

product intact, which was then transformed into DH5-α cells. The resulting harvested 

plasmids were sequenced to confirm the presence of the desired K44A mutation. 

 The heterodimeric linked L-protein construct in which just one ATPase site 

received the Walker A K44A mutation was prepared similarly to the non-mutant linked 

dimer. The mutagenesis reaction was performed again in the same manner as described 

above, but the reaction used the RSF-duet vector containing the L1 construct, with the 

stop codon removed to ensure proper read-through upon translation to yield an 

appropriate product. The same primers were used in the mutagenesis reaction to achieve 

the K44A mutation on the L1 gene. After the resulting plasmid was sequence verified, it 

was treated with the BamHI and NdeI restriction enzymes for appropriate insertion into 

the BchL2- containing RSF-duet vector, which received identical treatment with enzyme. 

Upon DNA harvesting following transformation into DH5-α cells, the resultant constructs 

were digested with BamHI and KpnI restriction enzymes to verify the presence of both 

L1-L2 inserts, with the BchL1 gene containing the desired Walker A mutation.  

Expression and Cluster Formation of the Homodimeric Linked L-Protein 

 The expression vector which contains both the BchL1 and BchL2 genes was 

transformed into chemically competent BL21+ E. coli cells and cultured on LB agar 
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plates containing 50 µg/mL kanamycin and 0.34 µg/mL chloramphenicol to ensure 

plasmid retention. The transformation was accomplished by incubating the BL21+ cells 

with 0.5 µL of the recovered plasmid DNA. The incubation lasted 20 minutes on ice, 

after which it was subjected to heat shock treatment by placing the transformation into a 

water bath at 42°C for 55 seconds. Post-heat shock, the transformation was incubated on 

ice for an additional 2 minutes prior to the addition of 250 µL LB media. This mixture 

was incubated at 37°C for 30-45 minutes. The entire volume of the transformation was 

then plated on the previously mentioned LB agar plates for colony formation and 

incubated at 37°C overnight. 

 Post-incubation, a single colony was used to inoculate 5-25 mL LB broth 

containing 50 µg/mL kanamycin and 0.34 µg/mL chloramphenicol, and was left to 

incubate overnight at 37°C. This culture was used to inoculate 1 L LB broth containing 

50 µg/mL kanamycin, 0.34 µg/mL chloramphenicol, 1 mM iron (III) citrate, and 1 mM 

L-cysteine by adding 1-10 mL from the overnight growth. The growth is monitored 

stringently via UV/vis spectrophotometer until the absorbance at 578 registers an O.D. = 

0.4. At this time, the cultures are shifted from 37°C to 25°C. When the O.D. = 0.5, 50 µM 

IPTG is added to each flask for the triggering of protein expression. This induction 

occurs overnight in preparation for cell harvesting and cluster formation. 

 Cluster formation for the homodimeric linked L-protein follows the same protocol 

as the wild-type unlinked protein. The IPTG-induced cultures are transferred to 1 L 

centrifuge bottles and are made reducing by the addition of 2 mM sodium dithionite 

under atmosphere of nitrogen. These bottles were left to incubate at 17°C for three hours 
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to facilitate an environment which fosters the formation of the [4Fe-4S] clusters required 

for catalysis. Following this incubation, the bottles are placed in a centrifuge, and cells 

are collected by spinning at 5000 rpm for 20 minutes. The cells are re-suspended in 

buffer containing 100 mM HEPES, 10 mM MgCl2, and 2 mM dithionite which is then 

transferred anaerobically via syringe into sealed vials purged of oxygen and equilibrated 

with nitrogen. The collected cells are placed in -20°C for storage until it becomes 

necessary to purify the protein. 

Growth and Cluster Formation of the Homodimeric Non-linked Walker A Mutant L-

Protein 

 The growth and expression of the non-linked K44A L-protein mutant is identical 

to that of the wild-type, and homodimeric linked L-proteins, beginning with the 

transformation of the generated K44A unlinked construct of BchL into BL21+ E. coli 

cells, described previously. After a starter culture was made and incubated overnight, 1-

10 mL were used to inoculate 1 L LB broth containing 50 µg/mL kanamycin, 100 µg/mL 

ampicillin, 0.34 µg/mL chloramphenicol, 1 mM iron (III) citrate, and 1 mM L-cysteine. 

In similar manner to the expression of the aforementioned proteins, the antibiotics ensure 

plasmid retention throughout the growth process, whereas the iron and cysteine additives, 

upon anaerobic conditions, become the building blocks for the [4Fe-4S] clusters that are 

incorporated into the functional protein. In preparation for IPTG induction, the optical 

density is monitored by spectrophotometer at a wavelength absorbance equal to 578 nm 

until a reading of 0.4 is achieved. At this juncture, the cultures are shifted from 37°C to 

25°C until the O.D. reaches a value of 0.5. This is the point where IPTG is added to a 
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final concentration of 50 µM to allow for the slow expression of protein overnight. The 

protocols for anaerobic cluster formation and cell harvesting are identical to the 

previously mentioned proteins. 

Expression and Cluster Formation of the Heterodimeric Linked Walker A Mutant L-

Protein 

 The expression of the heterodimeric linked K44A L-protein variant is based off of 

the previously mentioned protocols, but deviate slightly due to poor plasmid expression 

with IPTG induction. As before, the genetic construct containing the heterodimeric linked 

K44A BchL gene in which one ATPase site has been knocked out was transformed into 

50 µL BL21+ E. coli cells and incubated on ice for 20 minutes. Following this 

incubation, the cells undergo a heat shock at 42°C for 55 seconds, which allows for the 

expansion of membrane pores to facilitate successful DNA uptake, followed by 

incubation on ice for an additional 2 minutes closes the pores to aid in plasmid retention. 

Following these treatments, the transformation is added to 250 µL of LB media and 

immediately incubated at 37°C for 30-45 minutes. The entire volume was plated on LB 

agar plates containing 50 µg/mL kanamycin, 100 µg/mL ampicillin, and 0.34 µg/mL 

chloramphenicol. These plates are incubated overnight at 37°C, which upon successful 

colony formation, becomes the inoculant for 5-50 mL of starter culture in preparation for 

large-scale growth and expression of protein. 

 A volume of 1-25 mL from the overnight starter culture is used to inoculate 1 L 

flasks containing LB broth, 50 µg/mL kanamycin, 100 µg/mL ampicillin, 0.34 µg/mL 

chloramphenicol, 1 mM iron (III) citrate, and 1 mM L-cysteine. Due to a slow growth 
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phase, a higher volume of starter culture was used. The deviations from the wild-type, 

and previous L-protein derivative growth and expression protocols include monitoring 

the optical density while incubating at 37°C until a reading of 0.6 is registered via 

spectrophotometer set to read wavelength absorbance at 600 nm. At this point, IPTG is 

added to each flask to a final concentration of 0.5 mM to induce protein expression. The 

flasks are left to incubate for 3 hours at 37°C, prior to collection in 1 L centrifuge bottles. 

To the cells, 2 mM dithionite is added to create a reducing environment conducive for 

cluster formation. The sealed bottles are placed in an incubator set to 17°C for three hours 

before cell collection by centrifuge at 5000 rpm for 20 minutes. The supernatant is 

carefully decanted under atmosphere of nitrogen, and the resulting cell pellet is re-

suspended in buffer containing 100 mM HEPES, 10 mM MgCl2, and 2 mM dithionite 

before transferring anaerobically via syringe into a sealed vial purged of oxygen and 

equilibrated with nitrogen. The cells are then frozen and stored at -20°C in preparation 

for purifying the protein contained within. 

Purification of the L-Protein Variants 

 Due to the similarity in nature of each of the generated L-protein variants, their 

purification strategy was based off of the wild-type purification. The previously harvested 

cells were taken from storage at -20°C and placed in a water bath at room temperature to 

thaw out while maintaining an atmosphere of nitrogen. During the thawing process, 

equilibration buffer containing 100 mM HEPES pH 7.5, and 150 mM NaCl was degassed 

using a vacuum manifold and replacing the atmosphere with nitrogen in consecutive 

cycles. Following degasification, the buffer was reduced by the addition of 2 mM 



58 
 

 

 7
 

dithionite. A French pressure cell was used to lyse the cells using an adapted protocol to 

ensure that an anaerobic environment was maintained to protect the oxygen-labile metal 

clusters that were incorporated into the proteins. This was accomplished by placing 

needles on the in and out lines of the pressure cell for the loading and collection of the 

cell lysate, and a constant stream of nitrogen was maintained during cell lysis. Prior to the 

addition of the thawed cells, 30 mL reduced equilibration buffer was passed through to 

generate a reducing environment within the apparatus. Following cell lysis, the total cell 

lysate was transferred anaerobically by syringe into centrifuge tubes that have been 

equilibrated with nitrogen. Clarification of the lysate was accomplished by centrifugation 

at 17000 rpm for 1 hour to separate both the soluble and insoluble fractions. The resulting 

supernatant was carefully transferred into an empty, degassed vial containing dilution 

buffer consisting of 0.7 mL 1 M HEPES pH 7.5, 2.3 mL H2O, and 350 mg NaCl in 

preparation for loading onto a Ni-NTA column. 

 The column is made reducing by passing degassed, reducing equilibration buffer 

until a positive colorimetric result is obtained when the flow-through yields a positive 

result by using methyl viologen as an indicator. The protein is then loaded onto the Ni-

column and washed with buffer containing 100 mM HEPES pH 7.5, 150 mM NaCl, and 

20 mM imidazole, made reducing with the addition of 2 mM dithionite. Because the 

proteins contain [4Fe-4S] clusters as an essential part of their composition, evidence that 

the protein has bound to the column is indicated by the appearance and retention of a dark 

brown band both during and after passing wash buffer through the column. Following the 

washing step, elution buffer was passed through the column which contains 250 mM 
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imidazole. The migrating band at this step is collected in an empty sealed, degassed vial. 

The homodimeric linked L-protein, and the non-linked K44A dual ATPase mutant L-

protein were added to a dilution buffer containing 100 mM HEPES pH 7.5, 200 mM 

NaCl, and 2 mM dithionite before concentration using a 30 kDa cut-off filter. The 

concentration apparatus is made reducing by passing a portion of the reduced dilution 

buffer, followed by the addition of protein. Following the concentration of protein, the 

collected portion was pelleted, collected, and stored in liquid nitrogen in preparation for 

in vitro characterization. 

 The heterodimeric single K44A linked L-protein was subjected to an additional 

purification step following Ni-elution. Instead of eluting into a dilution buffer containing 

200 mM NaCl, the protein was instead added to buffer containing no salt in preparation 

for addition to a Q-sepharose column. To prepare the Q-column for addition of protein, 

the resin was pre-washed using a 1 M salt solution which was first degassed and reduced 

with 2 mM dithionite. The column was then rinsed with degassed and reduced buffer 

containing no salt to promote protein binding to the column during loading, again 

indicate by dark brown discoloration. Following the addition of protein, the column was 

washed with 10% salt solution, and then eluted using a NaCl gradient, from 20%-45%. 

The heterodimeric single K44A linked L-protein will elute beginning at around the 35% 

salt mark. The elutant is collected in sealed, degassed, and empty vials in preparation for 

concentration, described previously. 
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Tev Protease Cleavage of the Homodimeric Linked L-Protein and Pchlide Reduction 

Endpoint Assays 

 In preparation for the in vitro characterization of each of the purified L-protein 

variants with the remaining DPOR components, the homodimeric linked L-protein was 

subjected to treatment with AcTev protease (Thermo Fisher Scientific) by incubating 10 

µL of the purified linked homodimer with 20 units protease, and made up to 30 µL using 

buffer containing 100 mM HEPES pH 7.5, 10 mM MgCl2, and 2 mM dithionite. The 

reactions were performed in Eppendorf tubes contained in sealed, degassed vials under a 

constant stream of nitrogen. The wild-type L-protein also underwent this treatment as a 

control, with the results monitored by SDS-PAGE (Figure 3.3B). Following this 

cleavage, Pchlide reduction endpoint assays were performed using both uncleaved and 

cleaved homodimeric linked L-protein, in addition to the dual and single Walker A 

mutant L-proteins, using the wild-type construct as a positive control. A negative control 

using the wild-type DPOR system, but no ATP was also tested.  

Reaction buffer was prepared that contained 50 mM HEPES pH 7.5, 10 mM 

MgCl2, and 6 mM dithionite that was sealed in a crimp-shut vial and purged of oxygen. 

Each protein was taken from storage in liquid nitrogen and immediately placed on 

vacuum manifold for degasification. The Pchlide and ATP used in the reactions were 

similarly degassed under vacuum. The reaction components were then added to the 

following concentrations: 2 µM NB, 8 µM L (or respective variant), and 10 µM Pchlide. 

The reactions were brought up to a final volume of 500 µL using the degassed, reducing 

reaction buffer. Each reaction was initiated separately by the addition of 2 mM degassed 
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ATP, with the exception of the no-ATP negative control, mixing with the syringe to 

ensure a homogeneous mixture throughout. After 10 or 30 minutes, the reactions were 

quenched by removing 200 µL from the reaction mixture and placing in 800 µL 100% 

v/v acetone, which serves to precipitate the protein components, suspending the 

Pchlide/Chlide mixture in the organic phase. This mixture was harvested by centrifuge at 

13000 rpm for 10 minutes, where they were subjected to spectroscopic analysis by 

measuring absorbance profiles over a wavelength range of 700-580 nm for each assay 

condition. 

Real-time Pchlide Kinetic Assay Using the Homodimeric Linked L-Protein 

 To better characterize the homodimeric linked L-protein with respect to the native 

L-protein, kinetic assays were established that monitored the rate of Chlide formation in 

real time using the absorbance value of 675 nm via spectrometer, indicative of reduced 

substrate. Reaction buffer containing 100 mM HEPES pH 7.5, 10 mM MgCl2, and 6 mM 

dithionite was prepared and degassed by placing onto vacuum manifold and switching to 

steady nitrogen flow in alternating cycles. Separate empty vials containing small 

Eppendorf tubes were degassed in preparation for mixing each reaction. The DPOR 

protein components were taken from storage and degassed immediately to protect the 

oxygen-labile metal centers.  

Following degasification, each component was added as follows to make the 

wild-type condition: 25 µM Pchlide, 8 µM NB, 32 µM L, adding reaction buffer to obtain 

a final volume of 600 µL to achieve the desired concentrations. A similar reaction 

condition was established which included the homodimeric linked L-protein in place of 
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the native construct, as well as a negative control which included the wild-type DPOR 

components, but was not introduced to ATP. The reaction mixtures were each placed into 

a sealed, degassed cuvette containing a nitrogen atmosphere and placed into the 

spectrophotometer prior to reaction initiation. Each reaction was initiated by the addition 

of 5 mM ATP and immediately mixed and monitored at 675 nm with data points being 

continuously collected over the course of 10 minutes. 

3.3 RESULTS 

Cloning and Expression of L-Protein Variants 

 In preparation for intensive studying with regard to the dynamic role ATP 

hydrolysis in the L-protein seems to have in DPOR mediated Pchlide reduction, genetic 

constructs encoding for a homodimeric linked L-protein, in addition to two novel ATP 

variants—one a homodimeric K44A Walker A non-linked mutant, and the other a 

heterodimeric linked construct in which only one monomer of the L-protein contains the 

K44A mutation—were generated successfully and appear to encode for the appropriate 

gene products when expressed in the BL21+ expression system under IPTG induction 

(Figure 3.3A). When using the purification method developed for the isolation of the 

wild-type DPOR components adapted to the L-protein variants listed above, the resulting 

proteins appear to be greater than 95% pure, with the exception of the heterodimeric 

K44A Walker A L-protein. While the protein is expressed well using the previously 

mentioned protocol alterations, the resulting protein isolate after purification contains 

contaminants that are not seen in the wild-type, or other variants column elutants, even 

when adding the Q-sepharose polishing step.  
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Figure 3.3. Depiction of purified L-protein variants by SDS-PAGE. (A) Analysis of 

purified L-proteins. SDS-PAGE depiction of purified L-protein constructs, analyzed on a 

10% gel. Lane 1, wild-type BchL; Lane 2, homodimeric linked BchL; Lane 3, 

homodimeric K44A BchL; Lane 4, heterodimeric K44A linked BchL. The molecular 

weight for un-linked BchL constructs is 32 kDa, and 64 kDa for linked constructs. (B) 

Tev cleavage of the homodimeric linked L-protein. Purified linked BchL was incubated 

with 20 units of AcTev protease for 1 hour in tandem with the wild-type construct to 

observe the formation of appropriately sized products in preparation for use in Pchlide 

reduction assays, also monitored on a 10% SDS-PAGE. Lane 1, wild-type BchL; Lane 2, 

linked BchL; Lane 3, wild-type BchL incubated with tev protease; Lane 4, linked BchL 

incubated with tev protease. 

 

The Homodimeric Linked L-Protein Behaves Similarly to the Wild-type Construct 

 With the successful isolation of the homodimeric linked L-protein, the next step 

was to assay its influence on the DPOR system when introduced in place of the native L-

protein. With regard to its ability to promote substrate reduction, qualitatively speaking, 

we observed the reduction of Pchlide to Chlide, which was evidenced by a spectral shift 

from 626 nm to 665 nm from the acetone extracted assay products (Figure 3.4). The 

amount of Pchlide reduction seen in the wild-type and the linked systems appears to be 
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quite similar. Interestingly, the state of the linking unit between monomers does not 

appear to affect substrate reduction, as evidenced by the fact that similar Chlide 

formation profiles were obtained when the intact linked L-protein was used, as well as 

with the tev protease-treated protein as well. Quantitatively, the kinetic data for Pchlide 

reduction reveals that the linked L-protein construct is capable of facilitating a rate of 

Chlide formation that is highly reminiscent with what is observed in the native system. 

When the linked L-protein was used, substrate reduction occurred at a rate of 2.13 x 10-6 

M minute-1, compared to the similar rate of 2.68 x 10-6 M minute-1 in the native DPOR 

system (Figure 3.5). 

The Walker A L-Protein Mutants Are Incapable of Substrate Reduction 

 Structural data suggests that the lysine 44 of the L-protein from Rhodobacter 

sphaeroides is part of the Walker A motif crucial for ATPase activity6. While the 

homodimeric linked L-protein showed sufficient ability to work with the NB-protein to 

accomplish substrate reduction, the novel Walker A altered variants in which Lys44 was 

replaced with alanine did not. The Pchlide reduction assay data suggest that after 10 

minutes, there was no observable conversion of Pchlide to Chlide (Figure 3.4). Even 

when the length of the reaction was increased to more than 30 minutes, there was still no 

substrate reduction observed. It also appears that both ATPase sites are required for 

appropriate catalysis, evidenced by the fact that both the homodimeric K44A mutant, as 

well as the heterodimeric K44A linked construct were incapable of producing Chlide in 

vitro with ATP present. 
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Figure 3.4. Qualitative Pchlide reduction scans. Each L-protein construct was 

incubated together with BchNB, Pchlide, and ATP to observe either the capability or 

inability to accomplish substrate reduction. The L-protein constructs that were successful 

in reducing Pchlide to Chlide were those that did not carry the K44A mutation, including 

the linked L-protein that was not treated with protease. The constructs that harbored a 

mutation in the Walker A motif were unable to produce Chlide, evidenced by an 

emergence of a wavelength absorbance peak at 665 nm. 
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Figure 3.5. Wild-type BchL and homodimeric linked L-protein reduction 

kinetics. As measured by real-time Chlide formation assays, both the wild-type L-protein 

and the linked construct were capable of substrate reduction when incubated with wild-

type NB-protein in standard reaction conditions, as evidenced by the appearance of an 

absorbance maximum at 675 nm, which is indicative of the formation of Chlide. 

Interestingly, the kinetics of both wild-type, and linked construct reactions were similar 

when incubated with 5 mM ATP, indicating that the linked construct has function that is 

analogous to the wild-type protein in vitro, and is sufficient to promote substrate 

reduction. 
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3.4 DISCUSSION 

 Studies from nitrogenase, due to their similar subunit architecture and method of 

substrate reduction, are helpful in elucidating interesting characteristics of how DPOR 

may function to act to reduce Pchlide to Chlide. Like nitrogenase, the binding of ATP is 

an integral step during catalysis. To gain insight into how this process affects DPOR 

function, we generated a series of constructs that aimed to highlight the dynamics of the 

L-protein during ATP binding and hydrolysis. First, a homodimeric linked L-protein 

construct was created that was found to behave favorably when replacing the wild-type 

protein in the native DPOR system. This is critical because for any future studies directed 

at studying L-protein dynamics, such as observing and characterizing the putative rolling 

motion of the L-protein, based on similar observations in nitrogenase1, and how the 

binding and hydrolysis of ATP may facilitate this motion, the generated homodimer must 

behave in a similar manner to the wild-type construct for any conclusions to be met with 

any degree of confidence.  

The fact that we observed such similarity between the linked L-protein and the 

native construct is promising, and establishes precedent for future research to be 

accomplished in this area. The fact that both ATP are necessary for catalysis is equally 

intriguing. The fact that the singly-mutated linked L-protein was completely incapable of 

substrate reduction, even though one ATPase site is still fully capable of ATP binding 

and hydrolysis suggests that it is only when ATP is bound to both monomeric units that a 

catalytically relevant complex is formed to facilitate in the necessary electron transfer and 

ATP hydrolysis required to produce Chlide. It will be interesting to note in future 
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research if this singly-mutated L-protein construct is capable of ATP hydrolysis, or if that 

too is reliant upon the other ATPase site for proper function. Before that avenue is to be 

explored, the protocols detailing the construction, expression, and purification of the L-

protein K44A heterodimer will need to be optimized in order to obtain enough protein to 

properly characterize its function. In any case, the generation and initial characterization 

of all L-protein constructs described in this chapter provide a richer understanding in how 

the utilization of ATP affects DPOR function, as well as provides a basis for future 

research capable of yielding even greater insight about the enzymology of Pchlide 

reduction. 
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SUMMARY AND FUTURE WORK 

 

Chlorophyll is an essential component in the capture and conversion of light 

energy during photosynthesis to accomplish cellular work. The synthetic pathway of 

active chlorophyll is highlighted by the two-electron reduction of Pchlide to generate 

Chlide, the immediate precursor to chlorophyll a1. Angiosperms have developed a 

sensing mechanism that detects levels of Pchlide to protect itself from accumulation of 

ROS damage2. More broadly speaking, the conversion of Pchlide to Chlide serves as the 

rate-limiting step during chlorophyll synthesis3. The focus of this thesis was to highlight 

the dynamic role that ATP plays during the DPOR-mediated reduction of Pchlide to 

Chlide in the chlorophyll synthetic pathway. 

DPOR is structurally similar to the enzyme nitrogenase4. The similarity is most 

apparent when looking at the L-protein of DPOR and the Fe-protein of nitrogenase5, but 

the overall subunit topology is striking between the two systems, consisting of two 

symmetrical catalytic halves which are reliant on the binding and hydrolysis of ATP to 

accomplish substrate reduction6. In DPOR, a similar ATP requirement is needed to 

coordinate events including electron transfer, and subunit dissociation for each catalytic 

half of the functional complex. Recent discoveries give insight to how, and when these 

events occur in the nitrogenase system—that ATP hydrolysis occurs post electron 

transfer7, and that these hydrolysis events potentially highlight an alternating catalysis 

model which involves allosteric crosstalk between catalytic halves. When similar kinetic 

studies were accomplished, a number of interesting findings were made, particularly 
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when compared with what is now known about nitrogenase. First, the steady-state rate for 

ATP hydrolysis occurs 400 fold more slowly in DPOR than in nitrogenase. Interestingly, 

the preliminary pre-steady state characterization of catalytic events discussed in Chapter 

II show that the initial burst rate for ATP hydrolysis in DPOR matches the rate that is 

observed in nitrogenase (73 second-1 and 70 second-1, respectively), however, the release 

of phosphate post-hydrolysis occurs much more slowly. Further studies detailing 

structural differences and mutational studies addressing the discrepancy observed 

between rate constants may help to glean understanding as to why similarly constructed 

ATPase motors behave so drastically different kinetically. Indeed, the elucidation of 

additional first-order rate constants, such as those for ADP-release and subunit 

dissociation of the L-protein from the NB-protein post-hydrolysis may give additional 

insight into the catalytic mechanism of the single-electron transferring cycle that occurs 

in DPOR.  

In addition to the kinetic characterization of the ATP-mediated L-protein cycle 

described above, and in detail in Chapter II, novel L-protein constructs were created to 

illuminate the dynamics that occur during catalysis. In nitrogenase, evidence shows that 

there are distinct Fe-protein docking states on the MoFe-protein depending on the state of 

nucleotide which is bound to the Fe-protein8, which points to a rolling motion during 

catalysis. Additional mutational studies that affect the ability of the Fe-protein to bind 

and hydrolyze ATP abolish normal function with respect to substrate reduction9. The 

studies mentioned in Chapter III confirm the essential role of ATP during catalysis, as 
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well as describe the construction of a linked L-protein that appears to function similarly 

to the wild-type construct.  

 These exciting data show that the L-protein may be expressed and purified as a 

single polypeptide, and that the linked construct is capable of substrate reduction in a 

manner that is both qualitatively and kinetically similar to the wild-type construct when 

incubated with the native DPOR system. Additionally, we show that both ATPase sites 

are required for function, and when one, or both of the sites are affected, a loss of 

function is observed. In the future, the role of each ATPase site may be further 

characterized by using the Walker A mutants to assess their ability to hydrolyze ATP, 

and how that affects substrate reduction. For this to happen, the expression and 

purification of the heterodimeric K44A linked L-protein will need to be optimized for 

confident characterization.  

 Furthermore, additional work may be done with the homodimeric L-protein 

construct with respect to fluorescent labelling. Site-specific labelling of the L-protein 

may be accomplished on the linked construct using unnatural amino acid incorporation 

coupled with click chemistry to attach a fluorophore on a position that will allow for 

observation of the rate of ATPase-dependent rolling during catalysis. For this to become 

possible, additional linked constructs of the NB-protein will have to be generated, also 

labelled with fluorophore in a similar manner. Using Forster Resonance Energy Transfer 

(FRET) techniques, both the rate of the rolling motion will be captured, as well as rates 

for subunit dissociation during the L-protein cycle. Furthermore, the linked NB-protein 

construct may be similarly modified to render only one active site inert by site-directed 
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mutagenesis. This may be accomplished by the mutation of the BchB’-Asp274 to an 

alanine, as substrate reduction is not observed in these constructs6. By generating a 

single-site NB-protein mutant, as described above, it may become possible to observe 

further evidence that both catalytic halves communicate in an allosteric manner to 

coordinate events regarding the L-protein cycle, as well as substrate reduction. 

 As currently constituted, the investigation outlined in the preceding chapters 

serves to establish what is currently known about the DPOR-mediated conversion of 

Pchlide to Chlide during chlorophyll biosynthesis, the characterization of wild-type 

ATPase activity with regards to kinetic characterization of events in the catalytic 

mechanism of the L-protein, and how alterations in one or both of the ATPase sites affect 

the ability of the L-protein to function with respect to substrate reduction. While a 

number of questions still remain concerning DPOR function, the future work described 

above may assist in uncovering additional information with respect to the mechanics on 

how DPOR functions during chlorophyll biosynthesis. 
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