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ABSTRACT 

BIODIVERSITY, COMMUNITY DYNAMICS, AND NOVEL FORAGING 

BEHAVIORS OF A RICH NATIVE BEE FAUNA ACROSS HABITATS  

AT PINNACLES NATIONAL PARK, CALIFORNIA 

by 

Joan M. Meiners 

Utah State University, 2016 

 

Major Professor: Dr. Edward W. Evans 
Department: Biology 
 

Wild, native bees (Hymenoptera: Apoidea) provide pollination services valued at 

nearly $3 billion to U.S. agriculture annually, and are the primary pollinators maintaining 

plant communities in natural landscapes, an ecosystem service of incalculable worth. 

Global concern over widespread honeybee declines has spurred research to save that 

single species, while knowledge of the health and habitat requirements of 20,000 native 

bee species worldwide lags behind. Understanding dynamics and habitat associations of 

pristine native bee communities may help inform conservation priorities and restoration 

goals to ensure the widespread longevity of native bees. We surveyed the bee and plant 

communities over two flowering seasons and across four distinct habitat types (Alluvial, 

Live Oak Woodland, Blue Oak Woodland, and Grassland) at Pinnacles National Park, a 

protected biodiversity hotspot, and a pristine, heterogeneous environment. We collected 

52,853 bee specimens over 308 collector days, and increased the species inventory to 479, 
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from the previous 398 recorded as of the late 1990s. This statistic ranks Pinnacles as 

likely the most densely diverse area for native bees currently known.  

Spatially, no relationship between habitat type and bee abundance or richness was 

observed. Bee species composition in Alluvial habitats, however, was more unique and 

showed lower dispersal, suggesting this habitat may serve as a nesting refugia for a core 

community of resident species. Temporally, we evaluated potential resilience of solitary 

bees to anticipated disruptions in bloom availability via novel, community-wide foraging 

on honeydew sugars produced by scale insects. We observed 56 native bee species using 

honeydew sugars during the early season low bloom, and determined that they locate this 

resource without visual cues. Overall, these findings suggest that native bee communities 

at Pinnacles National Park may be buffered against temporal resource shifts and may 

benefit from protection of the Alluvial habitat type. The patterns observed here should be 

evaluated in other locations to determine their value towards forecasting and managing 

widespread risks to native bees. 

(143 pages) 
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PUBLIC ABSTRACT 

BIODIVERSITY, COMMUNITY DYNAMICS, AND NOVEL FORAGING 

BEHAVIORS OF A RICH NATIVE BEE FAUNA ACROSS HABITATS  

AT PINNACLES NATIONAL PARK, CALIFORNIA 

Joan M. Meiners 

Global concern about honeybee declines has spurred feverish research about the 

status and protection of this single species, yet our understanding of the ecology and 

issues impacting thousands of species of native bees lags behind. Pinnacles National 

Park, America's newest, near Salinas, California, is currently the most densely biodiverse 

area for native bees known on the planet. Recent work by researchers at Utah State 

University and the USDA-ARS has documented 479 species of native bees in only 42 

square miles of this park. During two years of field studies and 308 collector days, we 

assembled data on 52,853 bee specimens to determine natural patterns in thriving bee 

communities and how they relate to climate and habitat variables. We found that the 

‘alluvial’ habitat type, low in elevation and dominated by woody shrubs and sparse grass, 

had a unique composition of bee species that may depend on their local resources more 

than bees in ‘woodland’ and ‘grassland’ habitat types. We also evaluated novel, early-

season foraging behaviors of 56 native bee species locating scale insect honeydew sugars 

without visual aid of flowers or color. Overall, these findings suggest that native bees at 

Pinnacles National Park may be resilient to temporal bloom shifts, but may be negatively 

affected by loss of ‘alluvial’ habitat. If similar patterns are found in other locations, these 

results may have widespread value in guiding native bee conservation priorities. 
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CHAPTER 1 

INTRODUCTION 

Context and Importance 

Recent widespread honeybee declines have raised awareness about the immense 

economic importance of bees, whose pollination services to U.S. agriculture are valued at 

up to $14.6 billion per year (Morse and Calderone, 2001; Potts et al., 2010). Whereas the 

imported European honeybee raised and transported around the U.S. for rent in crop 

pollination represents only one species, Apis mellifera, there are approximately four 

thousand species of native bees recorded in North America (Michener, 2007). Due to the 

abundance of solitary and ground-nesting species, however, few native bee species have 

been successfully managed for agricultural purposes (James and Pitts-Singer, 2008). 

Nevertheless, wild native bees have been shown to be capable of providing adequate 

pollination for a majority of crop species in the absence of honeybees, and enhancing 

fruit yield and seed set when active in conjunction with honeybees (Garibaldi et al., 

2013, 2013; Greenleaf and Kremen, 2006; Kremen et al., 2004; Winfree et al., 2007). 

Alone, the value to U.S. agriculture of native bees has been estimated at $3.07 billion 

annually and up to 30% of the U.S. diet, with most of this activity attributed to wild 

pollinators persisting in remnant patches of semi-natural habitat (Losey and Vaughan, 

2006). The magnitude and quality of this service, however, is strongly dependent on the 

amount of surrounding natural habitat, a resource that is rapidly disappearing with 

increasing agricultural intensification, habitat fragmentation, and urban development 

(Cane et al., 2006; Kremen et al., 2004; Tscharntke et al., 2002). 
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 Not only do diverse, wild native bees play an underappreciated role in agriculture, 

but the ecosystem services they provide in natural landscapes are of almost immeasurable 

value to global wellbeing (Buchmann and Nabhan, 1996; Foley et al., 2005; Kremen, 

2005). Angiosperms, the flowering plants, are known to be intricately linked to their 

pollinators, having evolved elaborate floral colors and morphologies in response to 

pollinator preferences (Ohashi and Yahara, 2001; Willmer, 2011). Ninety-two percent of 

flowering plants that require a pollen vector are pollinated by animals, while only eight 

percent rely on abiotic forces like wind and water to transport pollens (Nabhan and 

Buchmann, 2012). Animal pollinators, of which bees are the most important, thereby play 

a key role in maintaining plant communities in natural landscapes, which stabilize the soil 

against catastrophic erosion and provide habitat and forage, at some trophic level, for 

nearly all other living creatures (Ollerton et al., 2011; Potts et al., 2003; Tepedino, 1979). 

But it is not only an abundance of bees that are required for this service. The biodiversity 

of native bee communities, with each species contributing a slightly different service 

depending on its size and foraging, nesting, and social behaviors, is thought to be a 

critical stabilizing component of mutualistic pollination networks (Kremen, 2005; Larsen 

et al., 2005). 

 

State of Knowledge 

 Despite the critical importance of diverse communities of native bees to both 

sustainable agriculture and the maintenance of natural plant communities, research on 

their current health, habitat requirements, and vulnerability to environmental change lags 

far behind that being conducted for the managed honeybee (Cane, 2001; Kearns et al., 
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1998; Kremen, 2005; Winfree, 2010). The biology of many native bees is known to be 

tied closely to the bloom of particular floral groups, which in turn are tied to seasonal and 

habitat characteristics such as temperature, moisture levels, and elevations (Linsley, 

1958). Recent observations of shifts in floral bloom time in relation to timing of native 

bee emergence have caused concern about a temporal decoupling of specialist bees from 

their host plants or a dearth of resources for bees emerging early or late in the season 

when bloom may be unreliable (Forrest and Thomson, 2011; Inouye, 2008; Robbirt et 

al., 2014). Furthermore, evidence that bee species respond differently to environmental 

disturbance and habitat loss depending on traits like body size and foraging specialization 

threatens an impending pattern of non-random species loss that has been shown to be 

particularly disruptive to ecosystem stability in mutualistic networks (Aizen et al., 2012; 

Bartomeus et al., 2013; Bommarco et al., 2010; Cane et al., 2006; Larsen et al., 2005; 

Memmott et al., 2007; Williams et al., 2010). However, other studies indicate that, in 

general, biodiverse native bee and plant communities may be buffered to impacts from 

environmental, habitat, and resource disruptions due to redundant functional diversity, 

ability to delay emergence in poor resource years, and flexibility in pollinator networks 

when necessary (Bartomeus et al., 2011; Campbell et al., 2011; Fontaine et al., 2005, 

2008; Johnson and Steiner, 2000; Minckley et al., 2013; Waser, 2006; Waser et al., 

1996; Williams, 2003; Williams and Kremen, 2007). 

 One thing these authors all agree on is the need for more research on community-

level responses of native bees to environmental perturbations across a range of 

ecosystems, as much uncertainty remains in broad forecasts of native bee health status 

(Kearns et al., 1998). Several large surveys of native bee fauna, particularly in the 
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western United States, have added to current knowledge of diversity and variability 

(Griswold et al., 1999; Marlin and LaBerge, 2007; Messinger, 2006; Messinger and 

Griswold, 2003; Roubik, 2001; Wilson et al., 2009). Additional widespread efforts are 

hampered by the high cost and man-power required to thoroughly sample and catalog 

native bee communities, and the ‘taxonomic impediment,’ the dearth of expertise 

required to identify specimens once they are collected to determine sample diversity 

(Cardoso et al., 2011; Gonzalez et al., 2013). Limiting collecting methodology to less 

costly, passive pan traps to enable broader sampling has merit, but is known to produce 

biased, incomplete samples of the bee community (Cane et al., 2000; Droege et al., 

2010; Roulston et al., 2007).  

Efforts to truly capture ecological patterns in an area must also contend, 

statistically, with the immense spatiotemporal variability inherent to native bee 

communities (Cane and Tepedino, 2001; Williams et al., 2001). Since native bee flight 

time can be shorter than a month per year for a solitary species, temporal turnover in a 

location is extremely high over a flowering season (Linsley, 1958; Petanidou et al., 

2008). On top of that, spatial variability, combined with uncertainty about bee flight and 

home ranges, limits our ability to generalize and extrapolate findings to areas not sampled 

(Cane and Tepedino, 2001; Greenleaf et al., 2007; Roubik, 2001; Waddington, 1980). 

Targeted research on responses of diverse native bees to manipulated or measurable 

degrees of disturbance in urban, agricultural, and fragmented habitats are making 

important strides towards understanding bee community dynamics (Cane et al., 2006; 

Foley et al., 2005; James and Pitts-Singer, 2008; Kremen et al., 2002; Matteson et al., 

2008; Minckley et al., 2013; Park et al., 2015; Tonietto et al., 2011; Winfree et al., 
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2008). However, a foundational understanding of what native bee health looks like in the 

absence of human disturbance is still murky and confounded by variability, 

compromising assessments of community health and integrity (Buchmann and Ascher, 

2005). Evaluation of a thriving native bee community that includes systematic, frequent 

sampling over large areas to enable detection of changes over time, and identification of 

community patterns over space as they relate to generalizable habitat characteristics may 

have particular value in advancing our understanding and goals for preservation of native 

bees. 

 

Research Objectives 

 Broadly, the present study aims to survey a rich native bee fauna in a semi-

pristine habitat, where the establishment of a monitoring baseline for a thriving bee 

community may aid detection of future shifts in bee health, and where identification of 

general community patterns may help inform restoration goals for native bee 

communities in degraded habitats. We chose to work in Pinnacles National Park in the 

Inner South Coast Range of California, a protected, heterogeneous landscape documented 

in the late 1990s as being more species-rich per unit area than any place studied for native 

bees (Messinger and Griswold, 2003). Pinnacles lies along several fault lines, has strong 

environmental gradients in elevation, moisture, soil types and microclimates, and boasts a 

huge diversity of wildflowers across several distinct habitat types (Matthews, 1976; 

Tucker et al., 2006), making it an ideal place to investigate relationships between native 

bee community health and environmental habitat characteristics. 



 
6 

We sampled the bee and floral communities in ten different locations that spanned 

diverse habitats and regions of the park, over the flowering seasons of two consecutive 

years. In order to promote comparability of bee community samples across space and 

time, a standardized procedure was defined and adopted by the native bee research 

community in 2003 that sets the ideal at biweekly sampling in hectare-sized plots using 

passive pan trapping and aerial net collecting, both of which are lethal methods necessary 

for viewing specimens under a microscope to obtain essential laboratory species-level 

determinations (LeBuhn et al., 2003). A recent evaluation of the effect of this repeated, 

lethal sampling procedure found native bee communities to be robust to such sampling 

efforts, which extract only a small temporal slice of the community each biweekly visit 

(Gezon et al., 2015). 

The high bee species richness is a subject of pride for Pinnacles National Park, 

and a central motivation behind the National Park Service funding of this thesis work. 

Chapter 2 reviews the updated bee species inventory across the park, with the full list and 

relative abundances over all seven years of sampling included as an Appendix. It then 

evaluates community dynamics at Pinnacles by testing correlations between bee 

abundance and richness across space and time with environmental characteristics such as 

floral diversity and elevation. Finally, in Chapter 2, the relationship between habitat type 

and native bee communities via metrics of abundance, richness, and species composition 

are explored with an aim to identify generalizable, predictable, ecologically relevant 

community patterns that may be used to improve our understanding of bee health in 

similar habitat types without the need to collect, process, identify and analyze 50,000 

specimens in each location of interest.  
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Chapter 3 is a departure from the above a priori analyses in that it describes an 

experimental manipulation undertaken to explore unusual early season native bee 

foraging on honeydew sugars observed during systematic plot sampling. This behavior 

has been recorded in select species of social bees in disparate ecosystems (Batra, 1993; 

Bishop, 1994; Crane and Walker, 1985), but never evaluated as a resource used by an 

entire community of solitary bees. This behavior may also have implications for native 

bee community interactions, health, and resilience to seasonal fluctuations in the 

availability of nectar resources threatened by climate change. Together, these two data 

chapters explore spatial and temporal interactions between diverse native bee 

communities and their habitats that provide insight to the operations of a thriving bee 

community at Pinnacles National Park that may inform expectations for assessments and 

predictions about native bees elsewhere.  
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CHAPTER 2 

LANDSCAPE-SCALE HABITAT TYPES AS PREDICTORS OF NATIVE BEE 

DIVERSITY AND COMMUNITY DYNAMICS IN A SEMI-PRISTINE ECOSYSTEM 

ABSTRACT 

 Native bees (Hymenoptera: Apoidea) are diverse and effective pollinators, 

responsible for the majority of plant pollination in natural and degraded ecosystems. 

Despite this critical role, little is known about patterns in native bee biodiversity, 

community dynamics, and expected variation between habitat types, particularly in the 

absence of human disturbance. Such knowledge could help detect population trends and 

guide conservation in natural and altered landscapes. We surveyed the bee and plant 

communities over two flowering seasons across four distinct habitat types (Alluvial, Live 

Oak Woodland, Blue Oak Woodland, and Grassland) at Pinnacles National Park, a 

protected hotspot of native bee diversity, to 1) update the inventory of park bee 

biodiversity; 2) identify patterns in bee abundance, richness and community composition; 

and 3) evaluate whether habitat type is an indicator of native bee dynamics. We collected 

52,853 bee specimens, and increased the Pinnacles species inventory from 398 to 479. 

While habitat type was not related to bee abundance, richness, or even floral richness 

over a season, species composition varied significantly among habitat types. In alluvial 

habitat, bee species composition was more unique, tightly defined, and related to distance 

between sites than in other habitat types, suggesting these areas may serve as nesting 

refugia, particularly for some oligolectic species. Further examination of these patterns 

may clarify the value of protecting alluvial habitats at Pinnacles and beyond. 
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INTRODUCTION 

 Bees perform the vast majority of animal-mediated pollination services, which are 

required for reproduction in 85% of wild and cultivated plants worldwide (Ollerton et al., 

2011). The honey bee has historically received much of the credit for this key ecosystem 

service, especially within agricultural settings. However, diverse assemblages of native 

bees have been found to not only greatly enhance fruit set and yield in the presence of 

imported honey bees, but to also be capable of providing adequate pollination for the 

majority of crops in their absence (Garibaldi et al., 2013; Greenleaf and Kremen, 2006; 

Park et al., 2010; Winfree et al., 2007).  In natural areas, without the manpower of 

imported, managed honey bee hives, native bees play a key role in maintaining the plant 

communities that structure the soil, shelter other invertebrate ecosystem service 

providers, and sustain wildlife all the way up the food chain (Tepedino, 1979). Yet, 

compared to the managed honey bee, little is known about native bee ecology, habitat 

requirements, or sensitivity to environmental disturbances (Winfree, 2010). Recent 

concerns about global honey bee declines have highlighted the challenges and dearth of 

native bee monitoring efforts, which are often insufficient to detect or evaluate parallel 

declines among native bee communities similarly exposed to widespread threats such as 

habitat loss, fragmentation, pesticides, pathogens, alien species, climate change, and the 

synergistic effect of these factors (Kremen and Ricketts, 2000; Memmott et al., 2007; 

Potts et al., 2010). Indeed, the potential cascading impact of native bee decline on the 

stability of plant-pollinator mutualisms and the integrity of natural and managed 

landscapes, is fraught with uncertainty (Kearns et al., 1998). 
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 A central cause of uncertainty in the status and implications of native bee 

declines, especially in natural areas, is the lack of systematic, repeatable monitoring 

efforts to establish historical baselines with which to compare current measures of 

abundance and richness (Winfree, 2010). This is largely due to the inherently high 

variability of diverse bee communities over space and time, which complicate the 

discovery of useful, predictable indicators for native bee health (Williams et al., 2001a; 

Wilson et al., 2009). Native bees are a rich group with over twenty thousand species 

worldwide and approximately four thousand species documented in North America 

(Michener, 2007). They are particularly diverse in xeric and Mediterranean 

environments, owing to strong seasonal blooms and well-drained soils that support a 

diversity of foraging specializations and high temporal turnover of solitary, ground-

nesting bees in these areas (Linsley, 1958; Michener, 1979; Minckley, 2008). A 

comparison of bee faunas from several Mediterranean climate zones found the chaparral 

habitats of California to represent perhaps the greatest of global biodiversity hotspots for 

native bees (Moldenke, 1976a, 1976b). In the late 1990s, Messinger and Griswold (2003) 

found Pinnacles National Monument in California’s Inner South Coast Range to be one 

of the most densely diverse areas known for bees on the planet, with nearly 400 bees 

discovered in what was then a 65 square kilometer area. 

Pinnacles, made a National Park in 2013 and currently 108 square kilometers, lies 

along several California fault lines, is bisected by a high rocky ridge running north-south, 

and is known for its wildflower diversity and highly heterogeneous landscape (Matthews, 

1976; NPS, 2015; Tucker et al., 2006). The floral diversity and complex landscape make 

Pinnacles National Park an ideal place to study the natural complex dynamics and habitat 
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associations of thriving native bee communities. We took advantage of the strong, albeit 

geographically-constrained, gradients of habitat, elevation, and floral diversity at 

Pinnacles National Park to accomplish two goals: establish a baseline for current and 

repeatable assessment of a thriving native bee fauna; and identify associations between 

habitat type and bee metrics, such as richness, that may be broadly useful in evaluating 

native bee status in similar areas. We collected biweekly bee and plant community 

samples from 10 one-hectare plots over two flowering seasons to address the following 

three objectives: 1) update the inventory of park bee biodiversity; 2) identify patterns in 

bee abundance, diversity, and community composition across habitats; and 3) evaluate 

whether habitat type (Alluvial, Live Oak Woodland, Blue Oak Woodland, or Grassland) 

could be a useful predictor of native bee dynamics. Tracking and evaluating patterns and 

fluctuations among native bee communities in semi-pristine habitat types, such as those 

at Pinnacles National Park, may fill a much-needed gap in our understanding of the 

dynamics of a thriving native bee community, which may help identify conservation 

priorities and restoration goals. Being able to associate these metrics with easily-

identifiable, Mediterranean habitat types may facilitate our ability to detect and manage 

native bee decline at Pinnacles and beyond. 
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MATERIALS & METHODS 

Study Site 

 We began the current study on site in February of 2011 by establishing ten one-

hectare-sized plots for repeated, systematic bee sampling (Fig. 2-1). Given the time, 

funding, and two full-time collectors allotted, we determined ten to be the number of 

plots feasible to sample biweekly on foot, while also leaving time for opportunistic trail 

collecting to capture the full bee diversity in further reaches of the park.  We surveyed the 

available landscapes and selected plot sites that occurred along gradients in elevation, 

grass cover, and microclimates and which were spread across both sides of the steep, 

dividing ridge of namesake “Pinnacles” rock, which separates the drier, lower, eastern 

side of the park from the higher, more coastal-influenced, western side.  

 

	   

Figure 2-1    Pinnacles National Park Map of 2011-2012 study plots (left), and park 
location within California on the western coast of the United States (right). Plots are 
numbered and colored corresponding to habitat type. 
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The location description, coordinates, elevation, dimensions, and habitat type of 

each of ten plots are given in Table 2-1.  We identified four main, visually distinctive 

habitat types at the plot-sized (hectare) scale across the park, and endeavored to distribute 

sampling effort (plots) among them. These four habitat types are pictured and described 

below, roughly ordered by their position east to west across the park, and by increasing 

grass cover, elevation, moisture, and decreasing woody shrub and bare ground cover: 

1. Alluvial (N=3) plots are rocky, fan-shaped deposits at the outlet or 

lowest part of a canyon drainage or flow area where bloom tends to be 

highly seasonal, variable, and moisture-dependent. Overall vegetation 

cover is low and composed of short, woody shrubs, and herbaceous 

annuals. These plots occur typically at lower elevations and drier 

microclimates, and are all found on the east side of the park. 

      
Plot 1: McCabe Upper Alluvial         Plot 2: McCabe Canyon Lower Alluvial 

    
Plot 3: Peaks View Alluvial             
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2. Live Oak Woodland (N=2) plots have more grass cover than Alluvial 

plots, but more gravel cover than Blue Oak woodland or grassland 

plots. They are shaded across approximately 50% of their ground 

surface, with deep shade provided by clustered live oak trees (Quercus 

agrifolia var. agrifolia) interspersed with open grassland areas 

composed of thick, invasive grasses. Woody shrub presence is higher, 

and fairly rich, in these plots compared with Blue Oak woodlands or 

open grasslands, but lower and more homogenous than in Alluvial plots.  

At Pinnacles National Park, this habitat type occurs at lower elevations, 

often near ephemeral stream flow and is restricted to the east side of the 

park. 

    
Plot 4: S.Wilderness Live Oak Woodland      Plot 6: Needlegrass Live Oak Woodland 
(Photo by Paul Johnson) 
 

3. Blue Oak Woodland (N=3) plots also have approximately 50% shade 

cover across their ground surface area, but it is more evenly dispersed 

across the landscape of dispersed blue oak (Quercus douglassii), 

creating a mottled shade effect.  Below the canopy, they have high 
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vegetation cover of mostly homogenous, invasive grasses, and fairly 

rich, if short-lived, herbaceous bloom, but little woody shrub presence 

or bare ground.  These areas are typically drier than Live Oak or 

Alluvial sites, but span a range of elevations and are the only habitat 

type to occur on both east and west sides of the park. 

 

    
Plot 5: Needlegrass Blue Oak Woodland        Plot 7: West Gate Blue Oak Woodland 
 

 
Plot 10: High Peaks Blue Oak Woodland 
 

4. Grassland (N=2) plots are found on the west side of the park, at fairly 

high elevations and variable moisture regimes.  Vegetation cover is 

nearly complete, and is composed primarily of invasive grasses and 

sparse woody shrubs, with rich ephemeral herbaceous bloom as well. 
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Plot 8: Double Gates Grassland         Plot 9: W N. Wilderness Grassland 

 

To ensure that all plots would yield abundant bee samples, enable meaningful 

comparisons of bee metrics between plots, maintain consistency with other bee sampling 

projects across the country, and support practical, safe, and repeatable sampling, we also 

employed a number of other criteria for plot establishment, as follows:  1) Plots had to be 

one hectare in area, and roughly rectangular in shape; 2) The area within a plot had to fit 

into only one of the four outlined habitat types, be fairly homogenous in vegetation 

within its boundaries, and not immediately bordered by any contrasting habitat type; 3) 

Plots had to be fairly flat to enable use of passive bee collection by pan traps (colored 

bowls with soapy water placed on the ground); 4) Plots had to be in fairly low-human-use 

areas so as to be considered relatively natural and undisturbed; 5) Approximately half of 

the area in a plot had to be sunny, and the majority terrestrial; 6) Plots had to be easy to 

walk through, and reasonably free of risks (e.g. poison oak, running water, thick brush, 

etc.); 7) For logistical reasons, most plots should be paired so that two could be sampled 

in one day, separated by no more than a fifteen-minute walk; 8) Plots needed to span the 

diversity of elevations, coastal influences (west side vs. east side), and habitat types 

available. 
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Table 2-1    Names, locations, and descriptions of study plots sampled in 2011-2012 
at Pinnacles National Park 

Site/Plot 
Number 

Site/Plot Name GPS 
lat/long 

Elevation Dimensions Habitat 
“Type” 

1 McCabe Canyon Upper 36.5081, 
-121.156 

410m 175 m x 57m Alluvial 

2 McCabe Canyon Lower 36.503,   
-121.156 

395m 175m x 57m Alluvial 

3 Peaks View 36.4802, 
-121.16 

290m 200m x 50m Alluvial 

4 South Wilderness 36.4683, 
-121.156 

280m 250m x 40m Live Oak 
Woodland 

5 Needlegrass BOW 36.5091, 
-121.12 

385m 200m x 50m Blue Oak 
Woodland 

6 Needlegrass LOW 36.509,   
-121.129 

365m 200m x 50m Live Oak 
Woodland 

7 West Gate 36. 4747, 
-121.227 

610m 175m x 57m Blue Oak 
Woodland 

8 Double Gates 36.4858, 
-121.232 

535m 200m x 50m Grassland 

9 W. North Wilderness 36.4949, 
-121.211 

430m 200m x 50m Grassland 

10 High Peaks 36.4907,  
-121.183 

595m 175m x 50m Blue Oak 
Woodland 

 

Field Methods 

The field sampling protocol for the project required two full-time collectors in 

order to sample two plots in one day and cycle through ten plots in a two-week period.  

Two regular collectors is also ideal to ensure safety in remote areas, to distribute and 

control for potential collector biases, to get pan traps set out and picked up at the same 

time in both plots simultaneously, and to capture diurnal bee diversity by sampling in 

pairs at specific times of the morning and afternoon.  See Appendix A for a full list of 

supplies used (from plot establishment to field sampling to collection management) to 

conduct the bee survey in 2011-2012, including a sample data collection card.  

We began our field seasons in both 2011 and 2012 in mid-February before most 

bloom had commenced, and ended the season in late June after most bloom had faded. 



 
24 

We sampled ten plots in six days over a period of two weeks using the daily schedule 

included in Appendix A, then started the cycle over for a total of eight sampling cycles 

of ten plots in 2011 and seven in 2012.  Days deemed appropriate for sampling were 

fairly sunny, without high winds, and over 15 degrees Celsius if possible. Weather 

permitting, we typically sampled two pairs of plots per day Monday through Wednesday, 

and included additional trail collecting and work on side projects where possible. 

Thursdays and Fridays were spent collecting bees in other areas of the park for the 

diversity inventory, processing bee and plant samples, and entering data.  

Each sampling day began and ended on site with the placement of pan traps (aka 

“bowls”). Pan traps were made from 2-ounce plastic Solo cups, spray painted one of three 

colors known to be attractive to bees (white, fluorescent blue, and fluorescent yellow). 

We placed 30 pan traps, ten of each color, evenly spaced in an “X” shape connecting the 

four corners of the rectangular plots at 9 am each sampling morning. Pan trap bowls were 

placed directly on the ground and filled ¾ full of soapy water (using a small squirt of blue 

Dawn dish soap, standardized within the bee research community to control for 

influences of soap scent or color).  In grassland habitats, we made an effort to flatten an 

area in the grass on which to place bowls so that they were easily visible to bees from the 

air. We placed bowls in approximately the same position each time we sampled a plot 

because the bowl locations served as sample points for a companion vegetation 

monitoring protocol (see Meiners et al., 2015). At 4pm, after all net sampling had been 

completed, each collector picked up bowls in the same order in which they were placed 

out, straining the bee contents into three labeled mesh tea strainers, one for each pan trap 

bowl color, then emptying the strainers into separate plastic Whirl packs, filled with 75% 
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ethanol until all bees were fully submerged in liquid, and stored in the freezer until 

specimens could be removed, washed, and individually pinned.  

On days with sufficiently good conditions to anticipate bee activity, we began plot 

net sampling in the two plots at 10am and 11:15am, respectively. Immediately before 

these times, we recorded the cloud cover category (full sun, partly cloudy, cloudy, or 

mostly cloudy), and used a Kestrel monitoring device to record the ambient temperature 

(in the sun), wind speed, humidity, and barometric pressure at the plot. We began net 

sampling with the two collectors starting at opposite corners of the rectangular plot, then 

systematically working their way through one long half of the plot towards the opposite 

end for fifteen minutes, before switching sides to spend another 15 minutes covering the 

area on the other side, such that each collector evenly paced themselves through the 

entire plot area over 30 minutes and were not sampling in the same location at the same 

time. Because the study goal was to capture and record the plot bee community and relate 

it to measured habitat characteristics, we focused on moving consistently throughout the 

plot, rather than spending inordinate amounts of time in richly floral patches promising 

higher bee captures.  

Net sampling involved visual and auditory-focused collecting of bee individuals 

encountered, rather than sweep-netting or otherwise randomized sampling methods. We 

quickly learned to visually distinguish and avoid collecting wasps and flies, but attempted 

to avoid bias in collecting certain bees, such as larger more charismatic fliers, by actively 

keeping our search images broad. Specimens were placed into cyanide killing vials 

immediately after net capture, and without stopping the clock, as it is possible to 

efficiently put bees into vials with practice, and thereby avoid the human error and 
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schedule setbacks inherent with starting and stopping the sampling timer. Bee collections 

from different floral hosts or surface category (i.e. “ground” or “air) were kept in separate 

vials during sampling in order to associate each bee with the plant species or surface on 

which it was collected. We took and pressed vouchers of all unknown flowering species, 

regardless of whether or not bees were collected from them, for later identification using 

keys and herbarium collections. Once the plot sampling period was over, we labeled each 

vial with the unique number of the corresponding data card and plant voucher, and 

moved bees into plastic storage containers. 

We finished each plot sampling day by mounting all net-caught specimens on size 

1 or 2 pins into field boxes with associated vial field labels. Medium to large bees were 

pinned through the right mesosoma; bees too small to pin were glued directly to size 2 

pins by carefully placing a tiny dab of Elmer’s washable glue directly on the pin and then 

cleanly attaching it to the right side of the bee mesosoma. We froze full field boxes for at 

least 48 hours and then sealed them into giant Ziplock bags to prevent contamination and 

beetle infestation. Bees from pan traps were stored in the freezer in whirl packs to pin on 

rainy days or at the Logan Bee Lab, before which they were briefly rinsed with 90% 

ethanol, and thoroughly dried by placing on paper towels and/or ‘fluffed’ with a hair 

drier.  Plant vouchers were pressed with collection information in a large wooden plant 

press, separated by cardboard sheets and newspaper to blot moisture from plants.  

 

Specimens & Data Management 

All bee and plant specimens were transported to Logan, Utah and incorporated 

into the USDA-ARS Pollinating Insect Research Unit collection except for reference and 
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display collections housed at Pinnacles National Park. Students and experts at the Logan 

Bee Lab collaborated to identify all bees to the species level wherever possible. Bee 

identifications were completed using high quality Leica dissecting microscopes, one of 

the best collections of reference specimens in the world (the Logan Bee Lab houses 

approximately 1.5 million curated bee specimen), and the appropriate taxonomic 

literature. Plants were identified on rainy field days using ‘The Jepson Manual’ (Baldwin 

and Goldman, 2012) and help from Pinnacles botanists, or were transported to the Logan 

Bee Lab and identified with help from the reference collection and experts at the Utah 

State University Intermountain Herbarium.  

 All collection information from data cards was entered into the Logan Bee Lab’s 

existing relational database using SQL and Microsoft Access as a front end. 

Corresponding individual ID numbers and barcodes were assigned to each specimen, and 

labels with this information were printed, double-checked, and pinned below each bee. 

Once each of the tens of thousands of bees for each sampling year were entered into the 

database and labeled, bees were moved into permanent museum storage unit drawers and 

sorted to morphotype by the naked eye.  After species identification, all specimens were 

re-scanned, updated with their species and sex in the database, then organized in glass 

drawers by taxonomic group.  The various iterations of the work described in the above 

two paragraphs took approximately two years.   

 

Statistical Analyses 

Statistical analyses were performed at the p<0.05 significance level using the R-

Cran statistical package and guidance from accompanying documents (R Core 
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Development Team 2014 version 3.1.1; package “vegan” version 2.2-1; package “lmer” 

version 1.1-7). Initial exploratory analyses were performed using the software PC-ORD 

version 6.0, with guidance from an associated book and instruction manual on 

multivariate methods (McCune et al., 2002; Peck, 2010).  

Data were tested for normality and to ensure assumptions were met before 

appropriate tests were applied. Bee richness, measured as counts of distinct species or 

higher-level taxa, was verified as normally distributed by a Shapiro fit test in R before 

running parametric statistics (ANOVA, regression, generalized linear mixed models) to 

test for differences between habitat types and relationships to habitat variables. Floral 

richness, here defined as the number of distinct plant taxa from which bee specimens 

were collected in a sample, was also normally distributed via a Shapiro fit test. Bee 

abundance, calculated as the number of individual bee specimens collected in a given 

sample or set of samples, was square root transformed to meet assumptions of normality 

before running aforementioned parametric statistics. Elevation and longitude were non-

normally distributed, and were therefore evaluated using the Friedman nonparametric 

alternative to ANOVA. Differences in bee abundance and richness among habitat types 

and sides of the park were evaluated using a mixed-effects ANOVA with habitat as the 

fixed effect grouping and the random effects of sample plot and day nested within year 

(Gelman and Hill, 2006). Cross-tab matrices of bee or flower taxa abundances per sample 

unit were used to calculate indices of diversity or to produce NMDS ordinations to 

evaluate compositional similarity between habitats using functions in the vegan package 

in R. Data for ordinations were relativized in R using the Wisconsin standardization 

procedure, and tested to assure assumptions of homogeneity of beta dispersions were met. 
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RESULTS  

Biodiversity 

Over the flowering seasons of 2011 and 2012 we conducted fifteen sampling 

rounds for each of the ten plots (8 rounds in 2011 and 7 rounds in 2012) resulting in 

32,440 bee specimens from plots. Approximately 19% of these bees were collected using 

an aerial handheld net, 33% were collected in fluorescent blue pan traps, 20% in 

fluorescent yellow pan traps, and 28% in white pan traps. Ninety-nine percent of 

specimens were identified by experts at the Logan Bee Lab to generic level, with the vast 

majority of those determined to species. Over the two years we detected 283 species from 

51 genera in plots, and expanded the known geographic range of three genera 

(Brachynomada, Neopasites, and Peponapis), none of which had previously been 

detected in the area.  

Including opportunistic trail sampling outside of plots and sampling for two side 

projects, collection totals for the 2011-12 study include 52,853 bee specimens, 354 

species, and 52 genera, with 72 new species records for the park and 3 new genera (listed 

above). The seventy-two new species records were split evenly between the two years of 

collections, but the three new park genera were all only collected in 2012. Nineteen 

species were unique to 2011, never collected in any of the six other years in which bees 

have been sampled at Pinnacles, and 36 species were unique to 2012. A full species list 

and relative abundances per year can be found in Appendix B. 

The current study was precipitated by five years of bee inventory sampling efforts 

along trails across the previous, smaller area of Pinnacles National Park (1996-9), and 

using passive pan traps to sample the central bottomlands (2002). Delving into trends in 
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sampling effort and species accumulation between past and present projects, the overall 

number of specimens collected per new species record across the seven years is 177, with 

1668 specimens required to detect a new genus, on average. By 2012, however, we 

collected 903 specimens for every new species we discovered, and 10,839 specimens for 

every new genus, indicating that the species accumulation rate has plateaued and the 

majority of diversity at Pinnacles has already been detected. Including the overall park 

collection from all seven years of sampling, the specimen total comes to 85,075 (average 

25.4 specimens/species/year) and the current inventory for all bees recorded within 

Pinnacles National Park boundaries lists 479 distinct species. More details on the 

collection and its diversity are included in Table 2-2.   
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Table 2-2    Summary results of sampling efforts for bees 1996-2012 at Pinnacles 
National Park.  See Appendix B for full bee species list and relative abundances by year. 

A. By year sampled 

Bees at Pinnacles 
National Park By 

Year 

Grand 
Totals 

Individual Years 

1996 1997 1998 1999 2002 2011 2012 

Number of Specimen Collected 85075 1362 8077 9383 8234 5166 20336 32517 

Number of Species Collected 479 174 302 320 213 76 285 283 

Number of Genera Collected 53 38 48 49 43 23 45 49 
  Number of New Species Records 480 174 145 66 11 11 36 36 

Number of New Genus Records 52 38 11 1 0 0 0 3 
Bees / new species record 177 8 56 142 749 470 565 903 
Bees / new Genus record 1668 36 734 9383 \ \ \ 10839 

Species unique to that year/project  9 25 23 4 5 19 36 
Genera unique to that year/project  1 0 0 0 0 0 3 

Methodology (equipment):  
Since methodology and 

sampling effort vary widely 
between years and projects, 

comparisons should be 
interpreted with caution. 

  Opportunistic trail collecting 
(aerial handheld net) 

Passive 
collecting 
(pan trap 
bowls) 

Plot (N=10) 
sampling (aerial 
nets + pan traps); 
Trail collecting 

(nets); Resample 
of 2002 bowl 

sites (pan traps) 

Primary Collectors/Contacts   O. Messinger & T. Griswold A. Fesnock J. Meiners & T. 
Lamperty 

B. By project 

Bees at Pinnacles 
National Park By 

Project 

Grand 
Totals 

Projects 

1996- 1999 
Pilot Trail 
Inventory 

Pre-2011                 
(Pilot Trail 

Inventory + 2002 
Bottomlands 
Bowls (BB)) 

All 2011-12 
Projects: Plot-based 
Community Study + 
Trails + Honeydew 

+ BB Resample           
Number of Specimen Collected 85075 27056 32222 52853 

Number of Species Collected 479 396 407 354 

Number of Genera Collected 53 51 51 52 
  Number of New Species Records 480 396 (all) 407 72 

Number of New Genus Records 52 51 (all) 51 3 
Bees / new species record 177 68 2929 734 
Bees / new Genus record 1668 531 632 17618 

Species unique to that year/project  116 126 72 
Genera unique to that year/project  1 1 3 

Methodology (equipment): 
Since methodology and sampling 
effort vary widely between years 

and projects, comparisons should 
be interpreted with caution. 

  
Opportunistic trail 
collecting (aerial 

handheld net) 

Passive collecting (pan 
trap bowls) 

Plot (N=10) sampling 
(aerial nets + pan traps); 
Trail collecting (nets); 

Resample of 2002 bowl 
sites (pan traps) 

Primary Collectors/Contacts   O. Messinger & T. 
Griswold A. Fesnock J. Meiners & T. Lamperty 
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The current study expanded collecting efforts into areas of Pinnacles National 

Park not previously sampled in the 1996-99 inventories by Messinger and Griswold 

inventories or the 2002 pan trap study by Fesnock. Thus, part of the motivation for the 

current study, other than establishing a systematic, repeatable, plot-based sample of bee 

community dynamics, was to inventory these additional new park lands. A map of 

collecting efforts over all these years shows the distribution of plots, trail sampling 

locations, and previous sampling locations recorded prior to this study, the specimens for 

which were also processed and are housed at the Logan Bee Lab (Fig. 2-2). The current 

study established four plots for repeated, systematic sampling in the upper right (NE) 

quadrant of the map that lie in park lands acquired since the previous decades’ sampling 

efforts (plots are represented by squares in Fig. 2-2 below). The current study also 

attempted to expand trail sampling efforts (represented by circles in Fig. 2-2 below) 

beyond those covered during earlier inventories (the position of which are represented by 

triangles in Fig. 2-2 below) to capture more of the biodiversity present within Pinnacles 

National Park both within and beyond previous boundaries. Biodiversity yield per 

sampling effort (or its position along a species accumulation curve, presented in 

subsequent sections) is indicated on the map by the shade of blue of all points, which is a 

function of the number of bee species collected in that area, divided by the number of 

days spent sampling at that location. Plots (squares) were heavily sampled compared to 

other locations, making their light shade not entirely reflective of the high species 

richness recorded in those areas (a species accumulation curve plateau). Further inventory 

efforts may wish to concentrate sampling in areas not represented by points in Fig. 2-2, 

or those which are darkest indicating there may be more diversity there yet to detect. 



 
33 

 

 

Figure 2-2    Map of the current boundary of Pinnacles National Park (shown in 
green), and all sites sampled between 1996-2012 (shown in blue). Squares represent 
the location of plots systematically sampled during the current study over the flowering 
seasons of 2011 and 2012 (See Table 1 for plot locations, dimensions, and habitat types). 
Triangles represent locations of opportunistic collecting in 2011 and 2012, and circles 
represent previous collecting locations (1996-2002). The shade of blue is a function of 
the bee species richness per days spent sampling at that location, with dark blue 
indicating a higher return of diversity per sampling effort and light blue indicating either 
less rich or more heavily sampled areas where new species records have begun to slow. 
Darker points and regions not yet sampled may indicate areas most worthy of additional 
sampling if further inventory efforts occur. 
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The 25 most abundantly collected bee species in 2011 and 2012, representing 

81% of all bee specimens collected in those years though they represent only 7.5% of bee 

species diversity, are listed by abundance rank and year in Table 2-3. Variability in 

dominant bee taxa at Pinnacles (eight of 25 absent in alternate year) may have strong 

influences on community dynamics at different times and locations throughout the park. 

A testament to the well-known, high spatiotemporal variability among native bees from 

year to year (Williams et al., 2001a), Hesperapis regularis was the most abundant species 

over both years combined (16.6% of all specimens), and the most abundant in 2011 

(23.6% of all specimens), but ranked only fourth in abundance in 2012 (9% of all 

specimens). Conversely, Osmia nemoris was most abundant in 2012 (12.6% of all 

specimens), having been ranked fifth in 2011 (6% of all specimens), while Lasioglossum 

nigrescens fluctuated less in time (ranked 3rd at 12.6% in 2011 and ranked 6th at 9.1% in 

2012) though it was highly variable in its abundance across plots both years.  

Whether driven by the ever-fluctuating abundances of their pollinators or by their 

own temporal fluctuations in abundance, similar interannaul variability in rank 

abundance can be seen among plant species popular with bees at Pinnacles National Park 

(Table 2-4). Clarkia unguiculata, for example, attracted more bees than any other plant 

in 2011, but was only the fourth most popular plant with bees in 2012. Eriogonum 

fasciculatum var. foliosolum was the foraging source of more bee species in 2012 than 

any other plant, though it had been ranked eighth in number of bee-plant records the year 

before. This type of information may be useful to managers wishing to support specific 

aspects of Pinnacles’ bee or wildflower diversity, a topic discussed at greater length in an 

associated project report submitted to the National Park Service (Meiners et al., 2015). 
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Table 2-3    Twenty-five most commonly collected bee species at Pinnacles National 
Park in 2011-12, by rank abundance per year. See Appendix B for the complete bee 
species list. 

During the 2011 flowering season   During the 2012 flowering season 
Bee Family Genus Species Rank 

Abun. 
Bee Family Genus Species 

Melittidae Hesperapis regularis 1 Megachilidae Osmia nemoris 

Halictidae Halictus tripartitus 2 Halictidae Halictus tripartitus 

Halictidae Lasioglossum nigrescens 3 Halictidae Lasioglossum incompletum 

Halictidae Lasioglossum brunneiventre 4 Melittidae Hesperapis regularis 

Megachilidae Osmia nemoris 5 Halictidae Halictus farinosus 

Halictidae Lasioglossum incompletum 6 Halictidae Lasioglossum nigrescens 

Apidae Apis mellifera 7 Apidae Melissodes stearnsi 

Halictidae Lasioglossum punctatoventre 8 Apidae Apis mellifera 

Halictidae Halictus farinosus 9 Halictidae Lasioglossum brunneiventre 

Halictidae Lasioglossum sp. 9 10 Halictidae Lasioglossum punctatoventre 

Halictidae Lasioglossum imbrex 11 Apidae Eucera actuosa 

Apidae Ceratina arizonensis 12 Andrenidae Panurginus gracilis 

Andrenidae Andrena aff. cerasifolii 13 Halictidae Agapostemon angelicus / 
texanus 

Andrenidae Andrena sp. 14 Halictidae Lasioglossum sp. 9 

Halictidae Agapostemon angelicus / 
texanus 

15 Apidae Diadasia bituberculata 

Andrenidae Andrena crudeni 16 Apidae Melissodes sp. 

Halictidae Lasioglossum nevadense 17 Andrenidae Perdita distropica 

Megachilidae Protosmia rubifloris 18 Halictidae Lasioglossum sp. 

Apidae Eucera actuosa 19 Andrenidae Andrena aff. cerasifolii 

Megachilidae Osmia brevis 20 Megachilidae Osmia aglaia 

Andrenidae Panurginus gracilis 21 Megachilidae Osmia regulina 

Halictidae Lasioglossum sisymbrii 22 Halictidae Lasioglossum nevadense 

Apidae Diadasia angusticeps 23 Andrenidae Andrena macrocephala 

Megachilidae Trachusa perdita 24 Andrenidae Andrena w-scripta 

Megachilidae Osmia regulina 25 Apidae Ceratina arizonensis 
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Table 2-4    Twenty-five most commonly recorded plants visited by bees in 2011-12 
at Pinnacles National Park, ranked by popularity per year. See Appendix C for a 
complete 2011-2012 Bee-Plant list, with years collected and relative bee popularity. 

  During the 2011 flowering season                 During the 2012 flowering season 
Plant Latin Name Plant Family Popul. 

Rank Plant Latin Name Plant Family 

Clarkia unguiculata Onagraceae 1 Eriogonum fasciculatum 
var.foliolosum Polygonaceae 

Adenostoma fasciculatum Rosaceae 2 Adenostoma fasciculatum Rosaceae 

Eschscholzia californica Papaveraceae 3 Eschscholzia californica Papaveraceae 

Clarkia purpurea Onagraceae 4 Clarkia unguiculata Onagraceae 

Chaenactis glabriuscula Asteraceae 5 Hirschfeldia incana Brassicaceae 

Lotus scoparius var.scoparius Fabaceae 6 Marrubium vulgare Lamiaceae 

Ranunculus californicus Ranunculaceae 7 Eriodictyon tomentosum Boraginaceae 

Eriogonum fasciculatum 
var.foliolosum Polygonaceae 8 Chaenactis glabriuscula Asteraceae 

Hirschfeldia incana Brassicaceae 9 Amsinckia menziesii Boraginaceae 

Salix exigua Salicaceae 10 Salix lasiolepis Salicaceae 

Lupinus albifrons Fabaceae 11 Clarkia purpurea Onagraceae 

Vicia villosa Fabaceae 12 Lasthenia californica Asteraceae 

Eriodictyon tomentosum Boraginaceae 13 Lupinus albifrons Fabaceae 

Viola pedunculata Violaceae 14 Calochortus venustus Liliaceae 

Quercus agrifolia var.agrifolia Fagaceae 15 Ceanothus cuneatus 
var.cuneatus Rhamnaceae 

Lasthenia californica Asteraceae 16 Chorizanthe douglasii Polygonaceae 

Marrubium vulgare Lamiaceae 17 Erodium cicutarium Geraniaceae 

Pholistoma auritum 
var.auritum Boraginaceae 18 Salix exigua Salicaceae 

Arctostaphylos pungens Ericaceae 19 Penstemon heterophyllus Plantaginaceae 

Amsinckia menziesii Boraginaceae 20 Lotus scoparius var.scoparius Fabaceae 

Ceanothus cuneatus 
var.cuneatus Rhamnaceae 21 Baccharis salicifolia Asteraceae 

Bloomeria crocea Liliaceae 22 Vicia villosa Fabaceae 

Heliotropium curassavicum Boraginaceae 23 Malacothamnus aboriginum Malvaceae 

Erodium brachycarpum Geraniaceae 24 Ranunculus californicus Ranunculaceae 

Salix lasiolepis Salicaceae 25 Heliotropium curassavicum Boraginaceae 
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Community Dynamics 

 The overall bee richness (count of species) at Pinnacles National Park was 

normally distributed (Shapiro-Wilk normality test, p=0.8), strongly correlated with the 

number of floral taxa on which all bees were collected (R2=0.57, p<0.001, Fig. 2-3), and 

positively related to floral richness of bee-visited plants by a power-law linear regression 

model (Bee Richness = exp(2.79 + 0.38*log(FR)); R2=0.37, p<0.01, Fig. 2-4). Bee 

abundance (sum of all bee individuals collected by net and pan traps, square root 

transformed to normalize distribution) was also, though to a lesser extent, significantly 

positively correlated with the floral diversity of bee-visited plants, considering both the 

overall dataset (R2=0.30, p<0.001, Fig. 2-3) and in a linear power-law regression model 

(Bee Abundance = exp(2.26 + 0.23*log(FR)); R2 = 0.16, p<0.01, Fig. 2-5).  

Bee richness and abundance were also both positively correlated with the ambient 

temperature at the time of sampling and the longitude of the sample plot, and negatively 

correlated with the elevation of the sample plot (Richness: BR = exp(1.14*log(Temp) – 

1.52), R2 = 0.17, p<0.01. Abundance: BA = exp(0.85*log(Temp) – 1.03), R2 = 0.10, 

p<0.01R2=0.07 – 0.15, p<0.001, Figs. 2-6 & 2-7). Bee abundance, but not bee richness, 

was positively correlated with the relatively small range of latitudes across sample plots 

(R2=0.29, p<0.001, Fig. 2-3), while humidity and wind speed showed no relationship to 

either bee richness or bee abundance in the Pinnacles data. Floral diversity was 

significantly positively correlated with the ambient temperature of a sample plot 

(R2=0.378, p<0.001, Fig. 2-3) and to a lesser degree with its longitude (R2=0.17, p<0.1, 

Fig. 2-3), and significantly negatively correlated with humidity (R2= -0.20, p<0.1, Fig. 2-

3) and wind speed (R2= -0.17, p<0.1, Fig. 2-3) of sample plot. Temperature and humidity 
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were inversely related (R2= - 0.61, p<0.001, Fig. 2-3), and wind speed was higher at 

higher elevations (R2=0.23, p<0.01, Fig. 2-3).  

 

 

Figure 2-3    Correlation matrix of collection results from all 149 positive plot 
samples. Bee species richness, square root abundance, and environmental variables 
(floral diversity, ambient temperature, humidity, wind speed, longitude, latitude, and 
elevation) are plotted to show data distributions along the diagonal and scatterplots of 
compared variables in the lower triangle. Absolute correlations are shown in the upper 
triangle, with larger correlation values in bigger fonts and noted by more significance 
asterisks (*=0.05, **=0.01, ***=0.001). Note that some correlations are likely to occur 
by chance, and that this figure is intended to aid in visualizing distributions of major 
variables used in analyses. 
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Figure 2-4    Relationship between bee richness (BR) and floral richness (FR) at the 
plot-sample level (N=149) within Pinnacles National Park (2011-12). Shown with 
power-law model (black line; BR = exp(2.79 + 0.38*log(FR)); R2=0.37, p<0.01). 

 
Figure 2-5    Relationship between bee abundance (square-root transformed; BA) 
and floral richness (FR) at the plot-sample level (N=149) at Pinnacles National Park 
(2011-12). Shown with power-law model (black line; BA = exp(2.26 + 0.23*log(FR)); R2 
= 0.16, p<0.01).  
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Figure 2-6    Relationship between bee richness (left; BR) or bee abundance (square-
root transformed, right; BA) and average ambient plot temperature (F) from 149 
plot samples at Pinnacles National Park (2011-12). Shown with power-law models 
(black line; Richness: BR = exp(1.14*log(Temp) – 1.52), R2 = 0.17, p<0.01. Abundance: 
BA = exp(0.85*log(Temp) – 1.03), R2 = 0.10, p<0.01). 
 

 
Figure 2-7    Relationship between bee richness (left) or bee abundance (square-root 
transformed, right) and elevation from 149 plot samples at Pinnacles National Park 
(2011-12). Trend lines are plotted for clarity in interpreting correlation, but results of 
linear regressions are not reported as elevation is not normally distributed. 
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Bee richness and abundance were significantly correlated with each other 

(R2=0.57, p<0.001, Fig. 2-3), despite a high unevenness of particular species’ abundances 

within and across samples, with some plot bee communities composed of very high 

numbers of a few common species. Lasioglossum, for example, was the most abundant of 

all genera collected in plots at Pinnacles, followed by Hesperapis, Osmia, Halictus, and 

Andrena (Fig. 2-8). Lasioglossum and Hesperapis, in particular, were highly variable in 

their abundances between plot samples, whereas Osmia, Halictus, and Andrena, had 

standard deviations of abundance between samples more similar to that of less abundant 

genera.  

 

 

Figure 2-8    Logsum of bee abundance (x-axis) vs. standard deviation of abundance 
in 150 plot samples (y-axis) for all bee genera captured in plots in 2011-12. 
Comparison of position between genera along these axes gives a measure of both 
abundance and evenness of genera across samples.  The y-axis is jittered at 15% to make 
labels visible; close vertical comparisons are not intended. 
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The Role of Habitat Type 

Geography and Floral Resources 

 Ten plots were distributed between four visually distinct habitat types across 

Pinnacles National Park. Though these habitat types do not naturally occur in all areas of 

the park, every attempt was made to spatially distribute plot replicates for each habitat 

type evenly across environmental gradients (see Fig. 2-1). The west side of the park is 

prone to coastal influences while the drier, more climate-stable east side is not, for 

example. As a result, plots on the west side can be foggier, cloudier, windier, and colder 

than those on the east side. Though plots on the west side are also slightly higher in 

elevation than those on the east side due to the natural slope of the landscape, there were 

no significant differences in elevation between habitat types (KW chi-sq = 5.561, df=3, 

p=0.135, Fig. 2-9). Furthermore, while Blue Oak Woodland and Grassland habitat types 

naturally occur, on average, somewhat further west in longitude and higher in elevation 

than either Alluvial or Live Oak habitats at Pinnacles, there were also no significant 

differences in longitude between any of the four habitat types (KW chi-sq = 4.379, df=3, 

p=0.2234, Fig. 2-9). Still, there are some apparent differences between the east and west 

sides of the park in bee measures. Biotic differences across the east-west geographical 

barrier and elevation gradient in the park are reflected in the result of a mixed-effects 

ANOVA that determined bee abundance, as measured on individual days (N=149) at 

individual plots (N=10) across two years of sampling (2011-12), to be somewhat higher 

on the east side than the west side of the park (F(1,147)=5.033, p=0.046, Fig. 2-10). Bee 

species richness, however, was similar across the Pinnacles dividing rock ridge according 

to a mixed-effects ANOVA (F(1,147)=0.8216, p=0.38, Fig. 2-10).  
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Figure 2-9    Range of longitudes (left) and elevations (right) of four habitat types 
observed from 10 plots repeatedly sampled at Pinnacles National Park (2011-12). 
Nonparametric Kruskal-Wallis tests showed no significant differences in longitude or 
elevation between the four habitat types at the p <0.05 level. Box plots are shown with 
medians, first and third quantiles, and a range of 1.5 times the interquartile range. (Long.: 
KW chi-sq = 4.379, df=3, p=0.2234; Elev.: KW chi-sq = 5.561, df=3, p=0.135). 
 

 

Figure 2-10    Bee abundance (left) and richness (right) in 149 plot samples across 
the east (white) vs. west (gray) sides of Pinnacles National Park (2011-12). Habitat 
types with the same letter are not significantly different at the p <0.05 level. Box plots are 
shown with medians, first and third quantiles, and a range of 1.5 times the interquartile 
range. Outliers are represented as circles. Mixed-effects ANOVAs found bee abundance 
(square root transformed) was higher on the east side of the park (F(1,147)=5.033, 
p=0.046), but bee species richness did not differ (F(1,147)=0.822, p=0.38). 
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Despite the visual distinction between habitat types, their somewhat uneven 

distribution across various environmental gradients at Pinnacles, and their varying 

exposure to the influences of coastal weather patterns, the distinction between habitat 

types in other measures relevant to the bee community are minimal. A mixed-effects 

ANOVA identified no differences between habitat types in sample-level floral richness in 

either 2011 or 2012 (F(3,145)=2.093, p=0.20, Fig. 2-11). Sample ambient temperatures, 

which are strongly correlated with floral diversity at the time of plot samples and known 

to vary with relevant habitat characteristics like shade cover and moisture levels, did not 

depend on habitat type across a season either (F(3,145)=0.1377, p=0.93, Fig. 2-11).  

 

 

Figure 2-11    Sample floral richness (left) and sample average temperature (right) 
across four habitat types observed from 149 plot samples at Pinnacles National Park 
(2011-12). Habitat types with the same letter are not significantly different at the p <0.05 
level. Box plots are shown with medians, first and third quantiles, and a range of 1.5 
times the interquartile range. Outliers beyond the range are represented as circles. Over a 
whole season, neither sample floral richness (F(3,145)=2.093, p=0.20) nor sample 
ambient temperature differed between habitat types (F(3,145)=0.1377, p=0.93). 
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Bee Abundance 

Bee abundance at individual plot samples, while wildly variable across space and 

time, was also, surprisingly, not significantly different between habitat types 

(F(3,145)=0.7763, p=0.55, abundance square-root transformed, Fig. 2-12). Variance in 

bee abundances across a season, as expected, was very high. The average number of bees 

collected per plot was 208, but individual plot sample abundances ranged from 7 to 1233 

bees collected at a single plot in a single day (one sample with zero bees was omitted 

from all analyses due to poor environmental conditions for bees that day, thus plot 

sample N=149 as 15 replicates of 10 plots minus one zero record). High spatial variation, 

common among diverse native bee communities, also contributed to the lack of pattern 

between habitat types in bee abundances. A single extremely high outlier from one of the 

Live Oak habitat plots, for example, illustrates how variable bee abundance can be. A 

single plot sample collected on May 9, 2011 contained 1233 bees. The next three most 

abundant samples tallied just over half that number, at 787, 690, and 664 specimens. 

Ecologically, this outlier could be explained by emergence events of two very abundant 

species, Hesperapis regularis (N=343 on that day, third highest abundance record for this 

species) and Lasioglossum nirgrescens (N=690 on that day, highest abundance record for 

this species, Fig. 2-13). To test for undue influence of these events on the results of bee 

abundance differences between habitat types, this sample was removed from the dataset, 

and all analyses in this section were repeated, with no changes in significance. It is 

therefore included in results presented here, but serves to illustrate the difficulty of 

identifying ecological patterns in native bee data due to very high spatiotemporal 

variability in abundances. 
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Figure 2-12    Bee abundance (square root transformed) across four habitat types 
observed from 149 plots samples at Pinnacles National Park (2011-12). Habitat types 
with the same letter are not significantly different at the p <0.05 level. Box plots are 
shown with medians, first and third quantiles, and a range of 1.5 times the interquartile 
range. Outliers beyond the range are represented as circles. A mixed-effects ANOVA 
concluded that bee abundance does not vary with habitat type (F(3,145)=0.7763, p=0.55, 
abundance square-root transformed). 
 

 

Figure 2-13    Distribution of abundances across all 150 plot samples from 2011-12 
at Pinnacles National Park for two species of bees with extreme outliers (outlying 
peak abundances for both species occurred at the Live Oak Plot 6 on May 9, 2011). 
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Bee Richness 

 Bee species richness, or the number of distinct species recorded in a given plot 

sample, varies less across the landscapes or timeframes sampled at Pinnacles National 

Park than bee abundance, and could be a useful measure for natural resource managers 

looking to prioritize protection of habitats with high biodiversity value. In 149 plot 

samples taken over the 2011-12 season at ten plots across Pinnacles, however, bee 

richness was not found to vary between any of the four habitat types by a mixed-effects 

ANOVA (F(3,145)=0.8327, p=0.52, Fig. 2-14).  

 

 
Figure 2-14    Bee richness (count of species) across four main habitat types 
observed from 149 plot samples at Pinnacles National Park (2011-12). Habitat types 
with the same letter are not significantly different at the p <0.05 level. Box plots are 
shown with medians, first and third quantiles, and a range of 1.5 times the interquartile 
range. Outliers beyond the range are represented as circles. A mixed-effects ANOVA 
found no relationship between habitat type and bee species (F(3,145)=0.8327, p=0.52). 

 

There are additional, potentially superior methods than a simple tally of species to 

measure the richness of an area, which deserve attention before the role of habitat type in 

estimating simple bee metrics is disregarded entirely. A species rarefaction curve 
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evaluates differences in species richness between habitat types by first standardizing 

uneven abundances or sampling efforts. This method of quantifying biodiversity takes 

statistical averages of the number of species in increasingly large samples of randomly 

selected individuals, and rarefies these values to match the smallest sample size of the 

groups for comparison, or that of the least abundant habitat type, for example, so that 

habitat types can be compared as if the bee collections from each were equal (Gotelli and 

Colwell, 2001). This eliminates confounding of species richness values due to some 

habitat types simply yielding more specimens (though, in this case, bee abundances did 

not vary between habitat types, Fig. 2-12), and allows a more even statistical comparison 

of differences between habitat types (Fig. 2-15).  

In the Pinnacles dataset, the Grassland habitat type has the lowest sample size 

(N=4728 bees), thus richness values for all habitat types were compared at this number of 

individuals. Lack of overlap of 95% CIs at the vertical line, equal to the maximum 

Grassland sample size, suggests that Blue Oak Woodlands have higher species richness 

than other habitat types when sample sizes are standardized (Fig. 2-16). This conclusion, 

however, is highly dependent on how extensively the Grassland habitat type was 

sampled. For example, the estimated rarefied bee species richness values at a sample size 

of 3000 would have entirely overlapping CIs indicating no difference between habitat 

types, but at the maximum grassland sample size of 4728 bees, the CIs for this habitat 

type have narrowed around this exact, known value. In this way, species rarefaction 

curves help determine whether sampling effort was sufficient to reach an asymptote in 

detecting new species, but offer a somewhat inconclusive answer about richness 

differences between habitat types when confidence intervals are closely aligned. 
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Figure 2-15    Rarefaction curves by habitat type of bee species richness estimated 
from random samples of individuals collected in 149 plot samples at Pinnacles 
National Park (2011-12). The vertical line in the center marks the point of appropriate 
comparison between the four habitat types, determined by the smallest sample size 
among habitat types (in Grassland), to which all other habitat type curves are rarefied. 
 

 

Figure 2-16    Rarefaction curves (solid lines, color-coded by habitat type as in Fig. 15) 
of bee species richness in 149 plot samples at Pinnacles National Park (2011-12), 
with 95% confidence intervals (dotted lines) estimating the species richness for each 
habitat type at continuous simulated sample sizes. The CI for grasslands (green dotted 
lines) converges on its main effect line (solid green) at the far right of the plot (aligned 
with the vertical line in the middle of Fig. 15) because this is an exact count of species at 
the maximum sample size, complicating comparison of curves. 
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Bee Diversity 

A shortcoming of raw richness and species rarefaction as measures of biodiversity 

or ecosystem functioning is that they do not take variations in species abundances into 

account. We recorded 69 singleton species in Pinnacles plot samples, 30 of which were 

found in the Blue Oak woodland habitat type. Blue oak woodlands, therefore, had almost 

twice as many singleton species as any other habitat (Alluvial singletons = 16, Live Oak 

singletons = 15, Grassland singletons = 8), which alone could bump its species 

rarefaction curve above the other groups (Fig. 2-15), but may not have much ecological 

meaning. The Shannon’s, Simpson’s and Fisher’s alpha indices of diversity are methods 

for estimating diversity that put varying emphases on the evenness of abundances 

between species and the sensitivity of variation across samples. Both the Shannon index 

of diversity and the Fisher’s alpha metric tend to emphasize rare species more than the 

Simpson’s index, which places more importance on evenness and dominance, and the 

Fisher’s alpha stands out as having low sensitivity to sample-level variation (Fisher et al., 

1943; Hill, 1973; Nagendra, 2002). All are used currently in ecological diversity 

assessments, and may sometimes produce conflicting interpretations of the concept of 

species richness in an ecosystem.  

For the Pinnacles bee species data, habitat type once again does not sort out 

clearly according to any of these measures (Fig. 2-17), though we know evenness among 

samples to be highly variable at the generic level (Fig. 2-8). The Live Oak habitat type 

appears to be slightly higher in measures of raw bee species counts, mirroring trends of 

its slightly higher richness (Fig. 2-14). Live Oak also appears higher in Fisher’s alpha 

measures for samples, though Blue Oak is high in this test as well, reflecting the 
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emphasis on rare species seen in the species rarefaction curve (Fig. 2-15). All four habitat 

types are nearly identical in mean sample Simpson’s and Shannon’s diversity indices, 

which place higher emphasis on evenness of abundances between species, with the 

Alluvial habitat type possibly having lower evenness of dominant species than the other 

three habitat types as reflected by the Simpson’s index of diversity (Fig. 2-17). 

 

 

Figure 2-17    Diversity measures across habitat types for bees collected in 149 plot 
samples at Pinnacles National Park (2011-12). Counts of bee species per plot sample 
produces one metric of richness (top left), whereas Fisher’s alpha diversity incorporates a 
measure of evenness (top right). The Shannon’s index of diversity (bottom left) measures 
evenness between samples while placing more emphasis on rare species than the 
Simpson’s index of diversity, which places more weight on species dominance in 
samples (bottom right). 
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Bee Community Composition 

 The number of different species and the evenness of their abundances may not be 

the most ecologically relevant measure of bee biodiversity for evaluating ecosystem 

functioning, which may depend more on the specific blends of species. Species 

composition differences between bee communities in different habitat types can be 

explored with Non-metric Multidimensional Scaling Ordinations, a technique which 

takes a matrix of species abundances across samples and uses a chosen distance measure 

to calculate and plot samples as points in ordination-space to visualize bee community 

similarity along two or sometimes three axes, depending on how the points can best be 

represented without overly stressing their ordination scores into too few dimensions. 

While NMDS ordinations do not assign specific variables to ordination axes, the envfit 

function in R (package “vegan”) can identify and plot scaled vectors representing 

environmental variables describing a significant amount of variance if they are included 

as an accompanying environmental dataset.  

In this way, using a Bray Curtis distance measure and a Wisconsin 

standardization technique to reduce the influence of highly abundant species and peak 

sampling periods, the composition of 334 bee species collected in 149 plot samples are 

plotted and color-coded to show community similarity by habitat type (3-d NMDS, stress 

score = 0.20, Fig. 2-18). Elevation, longitude, latitude as well as day, temperature, 

humidity, and the floral diversity of plot samples all help explain the placement of these 

plot sample points into ordination space. Year and wind speed were not significant 

factors in plotting samples into the NMDS. Convex hulls connect all outlying points of 

each color-coded habitat type to show the spread of samples within a habitat type in 
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ordination space, while labels are plotted at the weighted average scores for each habitat 

type and surrounded by black 95% confidence ellipses (Fig. 2-18).  

Unlike earlier results of tests for differences between habitat types for measures of 

bee abundance, richness, or diversity, in this NMDS ordination of 149 plot samples, the 

Alluvial habitat type clearly stands apart in bee species composition from the other three 

habitat types with overlapping 95% confidence ellipses (Fig. 2-18). This difference is 

supported by an analysis of similarity that confirms significant dissimilarity of bee 

species composition between habitat types (ANOSIM R=0.25, p<0.001). A permutational 

(per)MANOVA that can accommodate both categorical and continuous predictor 

variables, called the adonis function in R (Kartzinel et al., 2015), also finds habitat type 

to be a significant predictor of bee species sample composition (adonis pseudo 

F(3,145)=6.302, R2=0.12, p<0.001). 
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Figure 2-18    NMDS ordination of bee species (N=334) community composition of 
non-zero plot samples (N=149), using a Bray-Curtis distance measure and a 
Wisconsin square-root transformation to relativize by species and samples (3-d, 
stress score =0.20). Habitat type is emphasized by outlined convex hulls (gray lines) and 
95% CI ellipses (black ovals) around the standard error of the weighted average of group 
scores. Points represent individual plot samples and are colored by habitat and shaped by 
location within the park. Analysis of similarity (ANOSIM) showed the Alluvial habitat 
type to be significantly dissimilar to the other habitats in bee community composition 
(R=0.25, p<0.001), and an adonis test of the predictive power of habitat on sample bee 
species composition was significant (adonis pseudo F(3,145)=6.302, R2=0.12, p<0.001). 
 

 An NMDS for the floral taxa (N=117 distinct taxa at species, genus, or sometimes 

family level) composition of all 149 plot samples shows a different result of separation 

between habitat types, however, indicating that the bee community composition is not 

simply a reflection of floral composition in those habitat types (Fig. 2-19). The Live Oak 
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Woodland stands out as the most dissimilar habitat type in floral composition, rather than 

the Alluvial as with the bee species composition, while the 95% confidence ellipsoids of 

the Blue Oak, Alluvial, and Grassland habitat types overlap in their floral composition. 

Only two environmental variables, floral diversity and day of each plot sample, have 

significant explanatory power of this ordination result according to the envfit function in 

R, suggesting a strong influence of temporal, seasonal variation in bloom.  

 

 
Figure 2-19    NMDS ordination of floral taxa (N=117) community composition of 
non-zero plot samples (N=149) (2-d, stress score = 0.208). Habitat type is emphasized 
by outlined convex hulls (gray lines) and 95% CI ellipses (black ovals) around the 
standard error of the weighted average of group scores. Points represent plot samples and 
are colored by habitat and shaped by location within the park. A permutation test for 
homogeneity of multivariate betadispersions found significant group differences 
(F(3,145)=5.091, p=0.002), thus further analysis is inappropriate. There is, however, a 
trend of Live Oak differing from other habitat types in floral composition. 
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Temporal Variables in Species Composition 

To examine the influence of temporal variables on composition, samples were 

condensed to generate NMDS ordinations for bee and floral community composition of 

just one point per plot per year in order to look at group separation of habitat type without 

seasonal noise. As with the ordination of all biweekly plot samples (N=149, Fig. 2-18), 

the separation of habitat type in annual plot bee species composition is clear for the 

Alluvial habitat type (N=20, Fig. 2-20). Considering the whole composition of plots over 

a season, the Live Oak habitat type also shows significant separation in bee species 

composition from all three other habitat types, while the Grassland and Blue Oak habitat 

types overlap in composition as they did in the biweekly plot sample ordination 

(ANOSIM R=0.53, p<0.00; adonis pseudo F(3,16)=3.631, R2=0.41, p<0.001). Latitude, 

Longitude, and elevation are significant variables in determining placement of annual 

plot samples in ordination space, while year, average temperature, wind speed, humidity, 

and floral richness at plots over a season are not (using the envfit function at p<0.05).  

Habitat type separation in the ordination of annual plot composition of floral taxa 

(N=20, Fig. 2-20) reflects a pattern more similar to that of the ordination for annual plot 

bee composition (N=20) than to the habitat type separation of floral taxa composition 

with all biweekly plot samples (N=149, Fig. 2-19). This suggests substantial seasonal 

noise in determining groupings of floral community composition by habitat type with all 

biweekly plot samples. Adonis perMANOVA test found habitat type to be predictive of 

annual floral plot sample composition (adonis pseudo F(3,16)=2.750, R2=0.34, p<0.001), 

and an analysis of similarity confirmed the differing composition of Alluvial and Live 

Oak habitat types for floral, as well as bee, community composition (R=0.54, p<0.001).  
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Figure 2-20    NMDS ordinations of annual plot samples of bee species (left) and 
floral taxa (right) composition, with seasonal temporal variation of individual 
samples condensed into one point per plot per year (N samples=20) (2-d, stress score 
= 0.209 (bee), 0.214 (flora)). Habitat type is emphasized by outlined convex hulls (gray 
lines) and 95% CI ellipses (black ovals) around the standard error of the weighted 
average of group scores. ANOSIM showed the Alluvial and Live Oak habitat types to be 
significantly dissimilar to the other habitats in both bee and floral community 
composition (R=0.53, p<0.001; R=0.54, p<0.001), and an adonis perMANOVA test of 
the effect of habitat on annual plot sample composition was significant for both bees and 
flora (adonis pseudo F(3,16)=3.631, R2=0.41, p<0.001; adonis pseudo F(3,16)=2.750, 
R2=0.34, p<0.001). 
 

High turnover of bee species between years is expected in native bee data, while 

the annual and perennial plants that support these bee communities are thought to be 

more stable (Wilson et al., 2009). Adding proof to this concept, NMDS ordinations of bee 

and floral taxa using the same points as above, but with the year of each annual plot 

sample as the grouping variable, show separation between years in bee but not floral 

community composition (Fig. 2-21). Lack of overlap of black ellipses representing the 

95% CI boundaries around annual plot samples from 2011 or 2012 show weak separation 

for bee species composition, supported by significant results from ANOSIM and adonis 
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tests (ANOSIM R=0.18, p=0.04; adonis pseudo F(1,18)=2.241, R2=0.11, p=0.03). In 

contrast, no difference is indicated by ellipses or statistical tests for floral composition at 

annual plot samples between the two years of collecting (ANOSIM R=0.11, p=0.08; 

adonis pseudo F(1,18)=1.360, R2=0.07, p=0.15).  

 

 
Figure 2-21    NMDS ordinations (same points as Fig. 20) for composition of annual 
plot samples of all bee species (left) and floral taxa (right) (2-d, stress score = 0.209 
(bee), 0.214 (flora)). Year of plot sample is emphasized by outlined convex hulls (gray 
lines) and 95% CI ellipses (black ovals) around the standard error of the weighted 
average of group scores. ANOSIM showed a slight difference between years in bee but 
not floral plot composition (R=0.18, p=0.04; R=0.11, p=0.08), and an adonis 
perMANOVA test of the effect of sample year on plot composition was significant for 
bees but not for flora (adonis pseudo F(1,18)=2.241, R2=0.11, p=0.03; F(1,18)=1.360, 
R2=0.07, p=0.15). 
 

Dominant Bee Species 

 If the Alluvial habitat type is unique in bee species composition, but this is not a 

clear reflection of floral composition, and Alluvial habitats do not stand out in any other 
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measure of native bee biodiversity, it is reasonable to suspect that something about the 

bee traits present in different areas is driving this separation. The seven most abundant 

bee species in the plot dataset add up to 20,124 specimens, 62% of the entire collection of 

bees for the plot study (N=32,440 specimens). As a group of seven species, their 

abundance is fairly consistent across the four habitat types, representing between 57% 

and 67% of total specimens collected in each habitat type. The relative abundances of 

each of the seven species within each habitat type, however, varies considerably (Fig. 2-

22). Alluvial habitats are dominated by Hesperapis regularis, a medium-sized, solitary 

specialist (oligolege) that forages for pollen almost exclusively on flowers of the genus 

Clarkia (Burdick and Torchio, 1959; Moeller, 2005). To a lesser degree, Live Oak and 

Blue Oak habitats are both dominated by species of the genus Lasioglossum, most of 

which are very small and thought to be generalist foragers (polyleges), aggregate ground 

nesters, and primitively eusocial (Danforth et al., 2003; Gibbs et al., 2012). Grassland 

habitats are dominated by Osmia nemoris, a medium-sized, stem-nesting bee, the 

foraging habits of which are not well understood (Rust and Clement, 1972). All seven 

species are present in each of the four habitats, though at very different abundances, with 

a third species of Lasioglossum also highly abundant in the Alluvial habitat type, but 

virtually absent in every other. There appears to be a higher similarity in the evenness and 

blend of species between the Live Oak, Blue Oak, and Grassland habitat types than for 

the Alluvial habitat type, which reflects bee species composition ordination results (Fig. 

2-18). Ecological or functional trait differences between dominant species in different 

habitats may provide interesting clues as to the nature and ecological relevance of the 

community dissimilarity between Alluvial and the other three habitat types (Table 2-5). 



 
60 

 
Figure 2-22    Barplot of relative proportions in each habitat type of the seven most 
abundant bee species overall in 2011 and 2012 plot sampling at Pinnacles National 
Park, which together represent 62% of all specimens collected in plots for both 
years. Larger color blocks in each habitat bar represent the dominant species (by 
abundance) collected in that habitat type, listed by taxonomic name in top legend. 
 

Table 2-5    Top seven most abundant bee species collected in plots at Pinnacles 
National Park in 2011-12 combined (all species numbering over 1000 in total 
specimens count, ordered by rank abundance), count, and notes on their body size 
and functional traits.  Specimen counts apply to both sexes of the species, but traits 
refer specifically to female characteristics. 
Bee species (Family) Specimens 

collected 
in plots 

Flight 
season 
at PINN 

Size (inter-
tegular 
distance) 

Sociality Nesting Foraging style 
(# floral taxa 
recorded,  
% specimens 
with floral 
records) 

Hesperapis regularis 
(Melittidae) 

5372 Mar 12 – 
June 24 

2.06mm Solitary Ground Oligolectic 
(9; 14%) 

Lasioglossum (Evylaeus) 
nigrescens (Halictidae) 

3543 Feb 28 – 
June 23 

1.15mm Social Ground Polylectic 
(26; 4%) 

Osmia (Melanosmia) 
nemoris (Megachilidae) 

3027 Mar 15 – 
June 24 

2.08mm Solitary Stem/wood Polylectic 
(14; 1%) 

Lasioglossum (Dialictus) 
incompletum (Halictidae) 

2883 Feb 28 – 
June 24 

0.89mm Social Ground Polylectic 
(11; 2%) 

Halictus (Seladonia) 
tripartitus (Halictidae) 

2302 Mar 1 – 
June 24 

1.22mm Social Ground Polylectic 
(13; 1%) 

Lasioglossum (Dialictus) 
brunneiventre (Halictidae) 

1962 Mar 4 – 
June 23 

0.79mm Social Ground Polylectic 
(7; 1%) 

Apis mellifera (Apidae) 1035 Feb 28 – 
June 24 

2.80mm Eusocial Hive Polylectic 
(43, 86%) 
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Influence of Habitat Type vs. Geography 

 Habitat type is a predictor of native bee community composition, and may be 

informative about the type and traits of bee species most likely to be found in those areas 

at Pinnacles. But it is difficult to attribute this result to habitat type alone without being 

able to separate this variable from the natural longitudinal and elevation gradients along 

which habitat types naturally occur, and which may have important influences on bee 

community composition due to dispersal limitation and geographical barriers. Without 

replicates of all habitat types on both sides of Pinnacles’ central, high rock spine, 

questions about the mechanisms of historical bee community assembly are especially 

difficult to address. The same NMDS ordination presented earlier of bee community 

composition (Fig. 2-18), now shown with convex hulls and ellipses emphasizing the 

location on the east vs west side of the park instead of the habitat type of all biweekly 

plot samples, suggests that geography exerts an influence on bee species community 

composition (Fig. 2-23, adonis pseudo F=9.927, R2=0.06, p<0.001). Ordinations of the 

annual plot sample points (as in Figs. 2-20 & 2-21) also show strong dissimilarity 

between the west and east sides of the park for both bee species and floral taxa 

community composition (Fig. 2-24, adonis pseudo F(1,18)=5.658, R2=0.24, p<0.001; 

F(1,18)=3.106, R2=0.15, p<0.001). 
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Figure 2-23    NMDS ordination of bee species community composition from 149 
plot samples (3-d, stress score = 0.20). Location (east vs. west) across Pinnacles National 
Park’s dividing rock spine is emphasized by outlined convex hulls (gray lines) and 95% 
CI ellipses (black ovals) around the standard error of the weighted average of group 
scores. ANOSIM showed the west and east sides to be dissimilar in bee composition 
(R=0.22, p<0.001), and adonis found geographical location to be a significant predictor 
of bee composition (adonis pseudo F(1,147)=9.927, R2=0.06, p<0.001). 
 

 
Figure 2-24    NMDS ordinations of annual plot samples of all bee species (left) and 
floral taxa (right) compositions (2-d, stress score = 0.209 (bee), 0.214 (flora)). Location 
(east vs. west) across Pinnacles National Park’s dividing rock spine is emphasized by 
outlined convex hulls (gray lines) and 95% CI ellipses (black ovals) around the standard 
error of the weighted average of group scores. ANOSIM showed the sides of the park to 
be dissimilar to each other in annual plot bee and floral community composition (R=0.51, 
p<0.001; R=49, p<0.001), and an adonis test of effect of side of the park on annual plot 
composition was significant for both bees and flora (adonis pseudo F(1,18)=5.658, 
R2=0.24, p<0.001; F(1,18)=3.106, R2=0.15, p<0.001). 
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 In an attempt to further tease apart the relative influences of habitat type and 

dispersal distance as determinants of bee species community composition, a final 

experimental analysis is included below. Using the annual plot ordination (as in Figs. 2-

20, 2-21, 2-24) to eliminate temporal variation in bee species composition, ordination 

distances between all possible pairs of annual sampling plots (N=20) was calculated and 

plotted against a measure of the physical distance, based on GPS data, between each pair 

of plots (Fig. 2-25). The y-axis (ordination distance) coordinates of points plotted at the 

0.00 coordinate on the x-axis (physical distance), therefore, reflect the ordination distance 

between the same plot in two different years, where the physical distance between them 

is zero on the x-axis. Each habitat type is represented in its own panel to highlight paired 

comparisons between annual plot points in that habitat type and points from all others 

(Fig. 2-25). Data points within each panel are color-coded for the habitat type with which 

each of the annual plots from the panel habitat type are paired. For example, points 

compared with Alluvial plots are yellow in all panels (including in the Alluvial panel 

when Alluvial plots are compared to each other), those compared with Live Oak plots are 

always purple, with Blue Oak plots are blue, and with Grassland plots are green, 

consistent with habitat type color-coding throughout the chapter.  

Trend lines show a relationship between the ordination distance and the spatial 

distance between two plots, though these data do not meet the assumptions of regression 

so no correlation values are reported (Fig. 2-25). Nevertheless, this figure suggests a 

stronger relationship (a steeper slope) between bee community similarity and the physical 

distance between plots for comparisons with Alluvial plots than with any other habitat 

type (top left panel, Fig. 2-25). Bee community similarity and the distance between two 
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plots shows a weak pattern for Live Oak and Grassland plots, and no association for Blue 

Oak plots (nearly flat trend line in top right panel, Fig. 2-25), which is the only habitat 

type represented by plots on both sides of the park.  

The stronger relationship between ordination distance and spatial distance for 

comparisons with Alluvial plots is also evidenced by the fact that the majority of yellow 

dots lie above the trend line in every habitat panel. No clear pattern is seen in the 

alignment of purple, blue, or green-colored dots signifying the relationship of ordination 

distance to spatial distance for any other habitat type in any of the three non-Alluvial 

panels. As with ordination results, there appears to be something about the Alluvial 

habitat type that produces unique patterns in native bee species community composition, 

if not in raw abundances or measures of richness or diversity, that is not simply due to its 

geographical location within the park. 
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Figure 2-25    Comparisons of the spatial distance and NMDS ordination distance 
between all possible pairs of ten plots, with color indicating with which habitat each 
plot is paired in the four panel habitat categories (see text above for additional 
explanation). Simple linear model fits give regression lines showing trends. Alluvial plots 
show the strongest relationship with bee community similarity depending on the distance 
between plots, while there seems to be no relationship between the distance between plots 
and the similarity of the bee community composition in comparisons with blue oak 
habitats. 
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DISCUSSION 

Biodiversity 

 Pinnacles National Park may harbor the highest density of bee species currently 

known anywhere in the world. Surveys conducted in Clark County, Nevada, Grand 

Staircase Escalante National Monument, Utah, around Riverside, California, and in a plot 

study near the Arizona-Mexico border also each recorded high numbers of bee species, 

though likely across substantially larger areas (study site size was not always specified) 

(Griswold et al., 1999; Linsley, 1958; Messinger, 2006; Minckley, 2008). Furthermore, 

after five years of prior sampling at Pinnacles, we still recorded three new bee genera, 

seventy-two new species, and sixty-nine singleton species in the two years of this study. 

While rarity and a high interannual turnover is expected among native bees (Lennon et 

al., 2004; Petanidou et al., 2008; Williams et al., 2001a), these numbers suggest that the 

inventory at Pinnacles has not been fully realized, though the leveling off of the species 

accumulation curve and the order of magnitude increase since the 1990s in the collection 

effort necessary to record a new species indicates a slowing of new species detection. 

Still, expanded sampling into areas and months not previously sampled is expected to be 

particularly fruitful. 

Pinnacles’ rich bee fauna can be attributed broadly to its Mediterranean climate, 

strong environmental gradients, and high habitat heterogeneity, the latter of which has 

been found in other research to be a stronger predictor of species richness than the 

species-area relationship (Báldi, 2008; Tews et al., 2004). Habitat heterogeneity can 

occur over both space and time. Mediterranean habitats, like those at Pinnacles, are 

known for their rich ‘flash-bloom’ cycles during spring months, followed by hot, dry 
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summers and mild, wet winters, an environment that tends to support a high biodiversity 

of many taxa (Klausmeyer and Shaw, 2009; Potts et al., 2003). Among bees, the rapid 

turnover of floral resources in these areas may favor solitary species, whose shorter flight 

periods and often specialized foraging behaviors may allow more species to coexist in a 

single area, as each can occupy a narrower temporal and foraging niche space than can 

longer-lived social or generalist species, which are more common in temperate areas 

(Linsley, 1958; Minckley, 2008).  

Across space, habitats at Pinnacles change rapidly from the western, coastally-

influenced slopes, up the 500m elevational gradient to the rock ridge, and down the 

different aspects and microclimates of the drier east side. This heterogeneity has likely 

arisen from the existence of several fault lines across Pinnacles, the geologic movements 

of which may have resulted in the elevational gradient, variety in aspect, and broader 

array of soil types and plant species than would typically be found in such a small area 

(Matthews, 1976). Perhaps because of this soil heterogeneity, Pinnacles is also considered 

to be a transitional zone between the floral ecotones of northern and southern California 

(Tucker et al., 2006). Consequently, the park boasts a list of nearly 700 plant taxa, many 

of them flowering species, which is extraordinarily biodiverse for a 42 square mile area 

(NPS, 2015). We found bee richness to be highly correlated with the richness of bee-

visited angiosperms on any given day and site of sampling at Pinnacles, which 

corroborates results from previous studies (Messinger, 2006; Potts et al., 2003) Indeed, 

the overall diversity of native bees at Pinnacles seems to be a function of both the rich 

wildflower flora and the patchiness of the landscape. These factors seemingly allow for 
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more diverse bee communities to coexist within a smaller area than has been found in any 

other study. 

 

Community Dynamics 

 The variation between Pinnacles’ plot samples in measures of bee abundance and 

richness with temporal, seasonally influenced variables like floral diversity and 

temperature, and along spatial gradients like longitude and elevation is consistent with 

known spatiotemporal variability widely found to be common to native bees (Williams et 

al., 2001b; Wilson et al., 2009). Fewer studies have assessed composition as a measure of 

native bee activity. Plot samples at Pinnacles also varied in composition, with some 

dominant genera displaying very high patchiness over space and/or time and others more 

consistently abundant. The composition of a bee community at a particular point in space 

and time, in terms of phylogenetics, functional traits, and relative abundances of specific 

bees, may be a product of competition for floral and nesting resources interacting with 

stochastic influences on community assembly (Chase, 2007; Cody and Diamond, 1975; 

Diamond, 1978; Leibold et al., 2004). These processes are difficult to disentangle, but 

may result in communities with very different ecosystem services and resilience to 

environmental change, thus an attempt to tease apart dominance patterns may be 

worthwhile, albeit challenging (Bommarco et al., 2010; Williams et al., 2010). 

The high spatial variability of native bee communities at Pinnacles suggests an 

ecological limitation in niche breadth and/or dispersal ability of species (Blackburn and 

Gaston, 2003; Bommarco et al., 2010). Bee flight ranges, which may indicate the 

accessibility of distant areas to a species, are difficult to determine since technology to 
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follow foraging flights is currently only suitable for the largest of bee species (He et al., 

2012; Streit et al., 2003; Wikelski et al., 2010). Radio frequency tagging methods have 

recorded honeybees, a relatively large species, returning to their hives in a single flight 

from as far as 11km away (Pahl et al., 2011). Indirect methods of estimating home ranges 

for smaller bees have recorded single foraging flights of several hundred to several 

thousand meters, though foraging distance is also highly dependent on nectar availability 

in the immediate area (Roubik and Aluja, 1983; Waddington, 1980; Zurbuchen et al., 

2010). Building upon these studies, bee body size has been shown to correlate fairly well 

with flight distance, and might be useful for estimating home ranges or dispersal 

capabilities of diverse native bee species (Cane, 1987; Greenleaf et al., 2007; Guédot et 

al., 2009). Across larger areas, these calculations may help inform community turnover, 

as distance between areas sampled becomes large enough to limit dispersal of bee species 

into new suitable areas.  

At Pinnacles, however, even with the geographic barrier of a bisecting rock spine, 

this 42-square-mile area is unlikely to be outside the range of potential colonization for 

any bee species collected, especially across multiple generations (T. Griswold, pers. 

comm.). Therefore, since bee communities differ across the park, it follows that 

compositional variation is likely to be a reflection of species’ niche requirements being 

met by particular local habitat characteristics, combined with some influence of priority 

effects, competition, and chance in community assembly (Chase, 2007). Being able to 

relate habitat types that are easily distinguished by the human eye to specific predictable 

characteristics of bee community dynamics would aid conservation efforts where a rapid 

assessment of habitat type is possible, but extensive local bee sampling is not. 
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The Role of Habitat Type 

The four discrete categories of habitat type identified for this study (Alluvial, Live 

Oak Woodland, Blue Oak Woodland, Grassland) are easily distinguished by human 

visitors. However, native bee activity at Pinnacles, whether measured as numbers of 

individuals, numbers of species, species rarefactions, or various diversity indices 

incorporating evenness, was not clearly or consistently related to the four main habitat 

types studied. In contrast, a similar study in Utah’s bee biodiverse Escalante Grand 

Staircase National Monument did find a relationship between habitat type and these bee 

metrics (Messinger, 2006), though across a much larger spatial scale, with different 

habitat type designations, and in a semi-arid rather than Mediterranean biome, where the 

rules governing bee community assembly may differ.  

Ecologically, the lack of a relationship between habitat type and bee richness does 

not in itself refute the utility of habitat type for rapidly assessing bee communities at 

Pinnacles. Richness, as measured by species counts, is sensitive to taxonomic revisions, 

weighs rare and singleton species as equal to very abundant species, and does not factor 

in phylogenetic nestedness, counting a sample with ten species all in the same genus and 

a sample with ten species from ten different genera as equally rich, for example. While 

these various scenarios may have equivalent richness measures, they potentially represent 

vastly different communities and, therefore, pollination results, likely with cascading 

effects up the entire ecosystem. Had there been detectable differences in bee richness, as 

assessed by taxonomic determination, between the four habitat types in this study they 

still may have represented little in terms of functional richness, or inherent and consistent 

biodiversity or ecosystem service value of bees in a given habitat type. Once bee 
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specimens have been counted and identified, other measures of the community may be 

assessed as easily as richness, and may have more ecological meaning and generalizable 

connection to habitat type. 

The foraging behaviors and interactions of different groups of bees can strongly 

influence the effectiveness and nature of pollination services. Abundance and evenness 

may not actually reflect the quality or quantity of pollination services in an area. For 

example, a dominant bee species focusing on a particular floral element to the exclusion 

of others, for example by enhancing pollination of invasive flora, may result in a negative 

ecosystem outcome of raw bee abundance (King and Sargent, 2012; Tepedino et al., 

2008). Comparisons of richness, abundance, and evenness between habitat types may 

also be meaningless if the species involved have very different traits and impacts on the 

habitat, such as bees that excavate their own nests versus those who occupy preexisting 

cavities (O’Toole and Raw, 1991). Likewise, these metrics may fail to indicate real 

change in a community if shifts in bee species composition result in equivalent 

abundance, richness, and evenness values. Therefore, the use of such measures should be 

aligned with specific conservation goals and accompanied by knowledge of the taxa. 

Abundance, species richness, and evenness measures alone may not adequately reflect 

status or changes in the health or ecosystem services of discrete bee communities. 

Comparing the species composition of a bee community over time, space, and 

habitat type may offer another, more ecologically informative view of native bee 

dynamics. The Alluvial habitat type, despite being indistinguishable from the other three 

habitat types in measures of abundance, richness, and evenness, was unique in several 

other ways at Pinnacles. In Bray-Curtis distance calculations of bee community 
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similarity, samples from the Alluvial habitat type were relatively constrained and 

distanced from the other three habitat types, while much more spread and overlap was 

observed for sample points in Live Oak, Blue Oak, and Grassland habitat types. This 

dissimilarity of Alluvial bee communities was not explained by differences in floral 

community composition between habitat types, as one might expect from strong 

correlations between bee and floral richness and from previous work relating bee 

community similarity to similarity of floral communities in discrete, post-fire, 

Mediterranean habitat types (Potts et al., 2003).  

The compositional distinction of the Alluvial bee communities may instead be 

best explained by the dominance of a solitary, oligolectic (specialist) bee species. The 

notably high relative abundance in Alluvial habitats of the ground-nesting, Clarkia 

specialist, Hesperapis regularis, may point to subtle but influential differences in internal 

community dynamics related to intra- and interspecific bee interactions and competition 

for resources different from those at play in areas dominated by social or polylectic 

(generalist) species, as is the case for all three other habitat types. The resulting 

pollination services and, therefore, plant community composition may thereby differ 

between habitat types with contrasting patterns of dominance by bees with different 

lifestyle traits. Williams et al. (2010) recognized the importance to large-scale bee 

conservation of using functional trait groups, which can be applied to any community 

regardless of genetics or taxonomic classification, to identify community patterns 

predictive of species responses to environmental change. Further investigation of 

functional ecology patterns driving compositional uniqueness in the Alluvial habitat type 

may help decipher the structure and processes of a model healthy, stable bee community. 
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It is an experimental complication that the Alluvial habitats studied were not only 

unique and constrained in their bee species composition, but also in their distribution 

across Pinnacles National Park, occurring only at lower elevations on the typically drier 

east side of the park. This makes it difficult to attribute the community distinction of this 

habitat type to its dominant specialist or any other single factor, when it is likely also a 

result of spatial gradients to some unknown degree. Having determined that most native 

bee species should be able to travel across the entire protected range of Pinnacles 

National Park to colonize any other desired location or habitat type, even crossing the 

dividing rock ridge where it descends at the northern edge of the park (T. Griswold, pers 

comm.), reduces concerns about the confounding element of the natural spatial 

distribution of different habitat types. But it does not elucidate the relative influence of 

geographical versus habitat type characteristics on local bee species composition.  

Comparing the Bray-Curtis distance between an Alluvial plot and any other plot 

with the spatial distance between them helps clarify the relative importance of habitat 

type and geographical habitat location. The result that the closer a plot was to an Alluvial 

plot, the more similar the bee community composition suggests that, while bees may 

forage into other habitat types, there is less interchange of resident bee species to and 

from Alluvial habitats compared to other habitats. This implies that bee community 

composition would be more unique and conserved in Alluvial habitats overall regardless 

of geographical distance from other habitats. Blue Oak habitats, on the other hand, show 

no relationship (a flat trend line) between bee community similarity and the spatial 

distance to other plots, suggesting that there is higher mixing and lower fidelity of bee 

species to these areas. This idea is supported by a study that found habitat to exert a 
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stronger influence on bee community similarity than geographical location in 

Mediterranean habitat types differentiated by post-fire age, floral community, and grazing 

intensity (Potts et al., 2003). A more detailed spatial analysis that incorporates a measure 

of the surrounding habitats and potential travel corridors for bees between habitat types 

may be interesting to further explore ideas of habitat type fidelity and likelihood of 

dispersal movements. 

In the meantime, attributing bee community differences between habitat types to 

the ecological alignment of habitat type characteristics and niche requirements of the 

dominant species has equal merit. Lower rates of bee species dispersal to or from 

Alluvial habitat types could be explained by a lower propensity of the dominant oligolege 

to disperse from an area where its preferred floral resource is abundant. Polyleges, which 

dominate all three other habitat types, would be less tied to one resource and may thereby 

be more mobile and travel further, visiting a variety of flowers along the way to 

colonizing a new habitat. Whether this is a result or a cause of the corresponding 

patchiness of specific floral resources would be an interesting avenue for future research, 

likely requiring long-term habitat manipulations. Another explanation may be that lower 

grass cover in Alluvial habitats means a higher availability of nesting resources for 

ground-nesting species, which may have difficulty burrowing through grass roots. If this 

is the case, offspring of those ground-nesting bees may also be more likely to establish a 

nest nearby, preserving the unique composition and low dispersal of Alluvial bee 

communities. It is interesting to note here that most of the grasses dominating non-

Alluvial habitats at Pinnacles National Park are highly invasive, and influence bee 

community dynamics as they spread by obscuring ground nesting habitat and 
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outcompeting key floral resources. Management of invasive grasses in different habitat 

types and subsequent analysis of any bee community response may contribute valuable 

information to native bee ecology and conservation efforts. 

In summary, while habitat type was not a useful predictor of bee abundance, 

richness, or evenness, Alluvial habitats in and around Pinnacles National Park may be 

important refugia for resident solitary, ground-nesting species, which maintain 

compositional uniqueness via low dispersal of a dominant oligolege tied to local floral 

resources. This identification of bee community uniqueness characterized by a solitary, 

ground-nesting, specialist in Alluvial habitats seems promising for the utility of habitat 

type in bee conservation initiatives. Future work should pay particular attention to 

differences in measures of resilience to influences like climate change and habitat 

degradation between Alluvial and other habitat types to determine if this protection is 

warranted. Furthermore, investigation of the role a dominant solitary specialist plays in 

its plant and bee community would be interesting and informative for prioritizing 

protection of areas in accordance with specific management goals. Because Alluvial 

habitats are more constrained in species composition, shifts observed in future samples 

may indicate real changes in native bee health rather than variance, and thus may have 

particular value for both monitoring and conservation of diverse native bees. 
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APPENDICES 
 

Appendix A.  Field Methods Supplementary Material: Materials list, Daily detailed field 
plot sampling schedule, Data card template 
 
A1. Full Study Materials List 
 
Plot Establishment (at least a two-person job, more is ideal) 

• Park map 
• 100’ tape measure 
• Range finder to help estimate distances when positioning plot 
• GPS unit to record corners of plot and to check plot dimension distance measurements 
• Red flags to mark outside boundary of plot (good color for visibility and to minimize influence on 

bee activity) 
• Pink flags to quarter inside of plot to guide sampling walks (also good color) 
• Camera to record images of plot from all corner angles 

 
Net Collecting (designed for two regular collectors) 

• 4 complete nets (2 for regular use, 2 extra) 
• 2 extra net bags 
• Extra wire to repair nets (necessity depends on type of net ring) 
• 3 collection shoulder bags (2 for regular use, one for guest collector) 
• 40 cyanide/killing vials (12 per each of 3 collection bags, 4 extra)—only need this many if trying 

to keep collections on different flowers separate per area 
• 3 pair small scissors 
• String to tie scissors to bag 
• Kestrel or other device for measuring temperature, wind speed, other desired metrics 
• Ethanol resistant pens 
• Pre-printed data books (one sheet for each expected day and collecting location) 
• “Stackers” or other plastic container with lots of small divisions to keep bees separated out of vials 

 
Pan Trap Collecting (designed for sampling two sites at once) 

• 3 sets of 30 painted “pan traps” (one per site to be sampled simultaneously, plus an extra set to 
replace broken bowls).  “Pan traps” are 2-oz clear ‘Solo’ brand plastic shallow cups, spray-painted 
fluorescent blue, fluorescent yellow, and white (10 of each color per set) 

• 4 gallon jugs (2 for regular use, 2 extra) 
• ‘Dawn’ Brand blue dish soap (this specific kind is used to control for influence of particular soap 

scent or appearance on bee catch) 
• 400 ‘Whirl’ packs, (4 for each time a site is sampled (one for each pan trap color, one to put all 

three bags in all together), plus extras) 
• 9 tea strainers (3 for each site to be sampled simultaneously (one for each pan trap color), 3 extra) 
• Masking tape to mark pan trap color on strainers 
• Sharpie to label masking tape and Whirl packs 
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• Ethanol-resistant pens 
• Pre-printed labels for pan trap colors (incorporated into pre-printed data books above) 
• 4 gal. 75% (Usually buy as 95% and dilute down) Ethanol (about 10 - 16 oz. per collection site 

between 3 Whirl packs) 
• 2 16 oz. plastic soda bottles to carry Ethanol into field 
• Funnels to use to pour pan trap liquid back into gallon jugs and to dilute Ethanol into empty 

plastic soda bottles 
 
Vegetation Monitoring 

• Printed loose data sheets and binder to keep them organized 
• Meter stick or piece of PVC with decimeter increments marked 
• Homemade handy field guide with pictures for remembering common plants 
• Ziploc bags for collecting plant vouchers 
• Camera to record more plant detail if taking only a small section or voucher not possible 
• Notebook with extra sheets or notecards to write more information about full plant size, location, 

etc to put in ziplocs with plant vouchers 
• Pruning shears and/or small trowel for collecting woody plants (optional) 
• Cooler for storing plant vouchers in car while continuing field work (optional) 
• Plant press for vouchers (small one for field, then transfer into larger one at night) 
• Newspaper and cardboard for blotting and absorbing voucher moisture 
• Newspaper or loose-leaf sheets on which to tape vouchers when dried 
• Masking tape to lightly tape down vouchers to paper 
• Sharpie to mark collection number and information on voucher sheet 
• Jepson Manual for identifying plants 
• Herbarium reference collection and botanist experts to help with identification if possible! 

 
Personal Field Gear (recommended) 

• Radio or other method of reliable communication in the event of an emergency 
• First aid kit 
• Durable, non-cotton, long-sleeve and long-pant field clothes 
• Wide-brimmed hat 
• Sunglasses 
• Sunscreen 
• Backpack 
• Water bottles 
• Snacks 
• Camera (for fun or to help with plant vouchers) 
• Multi tool knife 
• Snake chaps, if relevant in area 
• Durable footwear and hiking socks 
• Duct tape, to keep grass seeds out of your socks, and because it’s really cool 

 
Specimen Pinning 

• Field pinning (‘Schmidt’) boxes 
• Pins (#1, #2) 



 
83 

• ‘Elmers’ non-washable glue or wood glue for gluing bees too small to pin 
• Large plastic bowls for rinsing pan trap bees in 90% Ethanol 
• 90% (undiluted) Ethanol 
• Paper towels for drying and fluffing pan trap bees out of Ethanol 
• Pen for labeling pinning boxes with date, location, collectors, frozen status, etc 
• Freezer to store pinned bees and Whirl packs for 48 hours after pinning, then repeatedly check for 

Dermestid invasion and re-freeze 
• Very large Ziploc bags for storing Schmidt boxes after freezing to prevent contamination 

 
Collection and Database Management 

• Computer with Microsoft Office and Access Database software 
• ODBC database and entry form in Access for inputting field notes and assigning a unique ID 

accession number, with searchable collection information, to each specimen 
• Printer for producing specimen labels 
• Card stock paper for labels 
• Fine, sharp scissors for precisely cutting labels 
• Pinning block to mount labels evenly 
• Unit boxes to move pinned, labeled specimen into 
• Sealed wooden drawers for storing specimen in a museum collection safe from desiccation, mold, 

and attack by Dermestid beetles 
• High quality dissecting microscope 
• Light source for microscope 
• Identification guide for bee genera 
• Identification guides specific to each genera for species level determinations 
• Card stock species determination labels 
• Ethanol-resistant labeling pens 
• Experts in bee identification who are willing to train or help with species determinations! 

 

A2. Daily Field Plot Sampling Schedule 
 
Time Task Equipment 
8:45am One collector arrives separately at each plot to be 

sampled that day 
Lay out pan traps in “X” shape across plot 

One set of pan traps 
Gallon of soapy water 

9:00am Collectors meet at first plot to sample for day 
Vegetation monitoring protocol for the first sampling 
plot of the day (this will take the whole 45 min 
allotted) 

Vegetation datasheets 
Ethanol-proof pen 
Meter stick with decimeter marks 
Plant voucher bags 

9:45am Record Kestrel weather measurements Databook 
Ethanol-proof pen 
Kestrel monitoring device 

10:00am Each collector walks to opposite long corner of plot 
Start collecting timer, begin walking 

Net, Collection bag & killing vials 
Watch 

10:15am Collectors reach long end of plot, switch sides, and 
walk back other side 

 

10:30am Record plants on which bees were collected 
Make corresponding vial labels from databook 

Databook 
Ethanol-proof pen 



 
84 

Transfer bee groups with vial labels to stackers Stackers or other small storage 
10:45am Hike to other paired plot for sampling that day 

OR if only sampling one plot, collect bees in a new 
area to increase diversity until Noon 

Bring all gear except active pan 
traps 

11:00am Record Kestrel weather measurements at second plot Databook 
Ethanol-proof pen 
Kestrel monitoring device 

11:15am Repeat protocol 10-10:30am to take morning sample 
of second plot 

Net, Collection bag & killing vials 
Watch 

11:45am Finish collecting time for second plot 
Record flowers on which bees collected 
Store bees from vials with labels 

Databook 
Ethanol-proof pen 
Stacks or other small storage 

12:00pm Lunch break Food! 
12:30pm Walk back to first sampling plot of the day Bring all gear except active pan 

traps 
12:45pm Take afternoon Kestrel measurements at first plot Kestrel monitoring device 

Databook & pen 
1:00pm Repeat protocol 10-10:30am to take afternoon sample 

of first plot 
Net, Collection bag & killing vials 
Watch 

1:30pm Finish collecting 
Record plants and label bees from vials 

Databook & pen 
Stackers or other small storage 

1:45pm Walk back to second sampling plot 
OR if only sampling one plot, collect bees in a new 
area to increase diversity until 3:30pm 

Bring all gear except active pan 
traps 

2:00pm Take afternoon Kestrel measurements at second plot Kestrel monitoring device 
Databook & pen 

2:15pm Repeat protocol 10-10:30am to take afternoon sample 
of second plot 

Net, Collection bag & killing vials 
Watch 

2:45pm Finish collecting 
Record plants and label bees from vials 

Databook & pen 
Stacks or other small storage 

3:00pm Vegetation monitoring protocol for the second 
sampling plot of the day 

Vegetation datasheets 
Ethanol-proof pen 
Meter stick with decimeter marks 
Plant voucher bags 

3:45pm Two collectors split up and walk to separate plots to 
pick up bowls 

Tea strainers 
Gallon jug 
Funnel 
Whirl Packs (labeled on inside with 
ethanol-proof tag + on outside with 
Sharpie) 
Ethanol in plastic soda bottle 

4:00pm Each collector picks up pan traps at one plot (all of immediately above) 
4:45pm Finish sampling day 

Collectors meet and return to car 
All gear 

5:00pm Lay out gear for next day 
File datasheest 

New Whirl packs 
Refill Ethanol 
Refill soapy water gallon jugs 
Replace useless vials, etc. 

Evening Pin all bees collected that day into field boxes Field (Schmidt) boxes 
Pins (#1 & #2) 
Pinning blocks 
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A3. Sample Data Collection Card Template 
 
Collection ID# 
 

START Date (like ## /JUN)  
 
______/________/2012 

END Date (like ## / MAY)  
 
______  /_______/2012 

�  Set Plot Collection  
�  Random Collection site  
�  See Notes on Back 

Other data card #’s Collector(s): 
Plot/Location Name: 
 
DD.dddd°(start)  w/lon N/lat Input into GPS as Elev 
DD.dddd°(end)  w/lon N/lat Input into GPS as Elev 

 DD.dddd°BOWL  w/lon N/lat Input into GPS as Elev 
 # of bowls run______________ Bowls Spilled >>> Yellow Blue White 

startAM Time         (24hrs ex10:00) endAM Time (ex10:30) AM Temp °F AM Wind Speed AM Humidity 

startPM Time  endPM Time (ex17:00) PM Temp °F  PM Wind Speed                      PM Humidity 

startBowl Time-         (24hrs) endBowl Time-  (24hrs) AVG Temp °F Avg Wind 

BAR:                                                        Other weatherNotes: 

Sunny 
AM                PM 

Partly Cloudy 
(>50% sun) 

AM                PM 

Cloudy (some Shadow 
cast; <50% sun) 

AM                PM 

Completely Cloudy 
(NO shadow cast) 

AM                PM 

Inclement Weather 
*see notes on back 
AM                PM 

Radius of collection in(m):       �10/       �25/      �50/       �100 /      �200/     �>200 /    �>1km 
«Card_Numb

er»-A 
Am � Collector 
Pm  �  initials 

Plant details____________ �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
    Plant Name/info                               Abundance  

«Card_Number»-A COL: 
Date-              /            /2012           am/pm 
LOC: 
plant- 

«Card_Numb
er»-B 

Am �    
Pm  �     

Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 
 

«Card_Number»-B COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-C 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-C COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-D 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-D COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-E 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-E COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-F 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-F COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-G 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-G COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-H 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-H COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-I 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-I COL: 
Date-              /            /2012          am/pm 
LOC: 

plant- 

«Card_Numb
er»-J 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-J COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-K 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-K COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-L 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-L COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-M 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-M COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-N 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-N COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-P 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-P COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

«Card_Numb
er»-Q 

Am � 

Pm  � 
Plant details____________  �NOT-Flowering/  �Voucher  /�Bee Not Foraging:                 
 

«Card_Number»-Q COL: 
Date-              /            /2012           am/pm 
LOC: 

plant- 

 
PAN TRAPS 

Y    /    N 
 

Col.ID#-«Card_Number» Yellow 
Date -                    ’2012    col- 
site/plot# 

Col.ID#-«Card_Number»  Blue 
Date -                   2012    col- 
site/plot# 

Col.ID#-«Card_Number» White 
Date -                    2012    col- 
site/plot# 
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Appendix B. Full bee species list for Pinnacles National Park, with relative abundance 
per year of capture, and status as new or lost to the current study. Groups are marked "R" 
for Rare if N≤10, "U” for Uncommon if 100>N>10, and “C” for Common if N>100. 
Dashed line distinguishes 2002 collection as separate from the original 1996-9 inventory, 
but still prior to the current study (2011-12). Species highlighted in blue were newly 
discovered by the current study, and those highlighted in red were recorded in the park 
previously, but were not confirmed by the current study. See Table 3 in Results I for 25 
most common in current study. 

  

Bee Family (SubFamily) Genus (Subgenus) Species 

1
9
9
6 

1
9
9
7 

1
9
9
8 

1
9
9
9 

2
0
0
2 

2
0
1
1 

2
0
1
2 

1 Andrenidae (Andreninae) Ancylandrena  atoposoma R             
2 Andrenidae (Andreninae) Andrena  sp. 17             R 
3 Andrenidae (Andreninae) Andrena  sp. 18             R 
4 Andrenidae (Andreninae) Andrena  sp. 19           R R 
5 Andrenidae (Andreninae) Andrena  sp. 22             R 
6 Andrenidae (Andreninae) Andrena  sp. 25             R 
7 Andrenidae (Andreninae) Andrena (Anchandrena) quercina     R         
8 Andrenidae (Andreninae) Andrena (Aporandrena) n. sp. R             
9 Andrenidae (Andreninae) Andrena (Belandrena) nemophilae     R         

10 Andrenidae (Andreninae) Andrena (Belandrena) palpalis   R R         

11 
Andrenidae (Andreninae) Andrena (Cremnandrena) 
anisochlora     U     U R 

12 Andrenidae (Andreninae) Andrena (Dasyandrena) cristata     R         

13 
Andrenidae (Andreninae) Andrena (Derandrena) 
arctostaphylae     R   R     

14 
Andrenidae (Andreninae) Andrena (Derandrena) 
californiensis     R   R R R 

15 Andrenidae (Andreninae) Andrena (Derandrena) n. sp. R R R     R U 
16 Andrenidae (Andreninae) Andrena (Derandrena) vandykei     U   R     
17 Andrenidae (Andreninae) Andrena (Derandrena) viridissima           R   
18 Andrenidae (Andreninae) Andrena (Diandrena) chalybioides             R 
19 Andrenidae (Andreninae) Andrena (Diandrena) cuneilabris             R 
20 Andrenidae (Andreninae) Andrena (Diandrena) lewisorum R R R U   U U 

21 
Andrenidae (Andreninae) Andrena (Diandrena) 
nothocalaidis     R         

22 Andrenidae (Andreninae) Andrena (Diandrena) puthua   R U       R 
23 Andrenidae (Andreninae) Andrena (Diandrena) sperryi           R   
24 Andrenidae (Andreninae) Andrena (Diandrena) subchalybea     R R R U C 
25 Andrenidae (Andreninae) Andrena (Diandrena) submoesta         R     
26 Andrenidae (Andreninae) Andrena (Erandrena) principalis     R         
27 Andrenidae (Andreninae) Andrena (Euandrena) astragali   R R     R R 
28 Andrenidae (Andreninae) Andrena (Euandrena) auricoma R R U R   U   
29 Andrenidae (Andreninae) Andrena (Euandrena) caerulea     U       R 
30 Andrenidae (Andreninae) Andrena (Euandrena) chlorura   R U   R U U 
31 Andrenidae (Andreninae) Andrena (Euandrena) dissimulans     U     U U 
32 Andrenidae (Andreninae) Andrena (Euandrena) misella     R         

33 
Andrenidae (Andreninae) Andrena (Euandrena) 
nigrocaerulea R R R         

34 Andrenidae (Andreninae) Andrena (Euandrena) suavis     R     U U 
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35 Andrenidae (Andreninae) Andrena (Euandrena) subdepressa     R     R R 
36 Andrenidae (Andreninae) Andrena (Genyandrena) mackieae   R U     R R 
37 Andrenidae (Andreninae) Andrena (Hesperandrena) baeriae   R R         

38 
Andrenidae (Andreninae) Andrena (Hesperandrena) 
lativentris             R 

39 Andrenidae (Andreninae) Andrena (Holandrena) cressonii   R           

40 
Andrenidae (Andreninae) Andrena (Melandrena) aff. 
cerasifolii   U U U   C C 

41 Andrenidae (Andreninae) Andrena (Melandrena) cerasifolii U U U R   U R 
42 Andrenidae (Andreninae) Andrena (Melandrena) perimelas         R     
43 Andrenidae (Andreninae) Andrena (Melandrena) sola R U U U   U U 
44 Andrenidae (Andreninae) Andrena (Micrandrena) aff. ishii     U         
45 Andrenidae (Andreninae) Andrena (Micrandrena) annectens     R     R   

46 
Andrenidae (Andreninae) Andrena (Micrandrena) 
chlorogaster   R C   R R U 

47 
Andrenidae (Andreninae) Andrena (Micrandrena) 
microchlora   U U R R R U 

48 Andrenidae (Andreninae) Andrena (Micrandrena) piperi   R R   R R R 
49 Andrenidae (Andreninae) Andrena (Nemandrena) crudeni     U   R C C 

50 
Andrenidae (Andreninae) Andrena (Nemandrena) 
subnigripes     R         

51 
Andrenidae (Andreninae) Andrena (Oligandrena) 
macrocephala R U U   U U C 

52 Andrenidae (Andreninae) Andrena (Parandrena) concinnula     R     R   
53 Andrenidae (Andreninae) Andrena (Pelicandrena) atypica   R C R R U R 
54 Andrenidae (Andreninae) Andrena (Plastandrena) prunorum             R 
55 Andrenidae (Andreninae) Andrena (Psammandrena) congrua   R R     R R 
56 Andrenidae (Andreninae) Andrena (Ptilandrena) pallidiscopa     R       R 
57 Andrenidae (Andreninae) Andrena (Scaphandrena) lomatii     R         
58 Andrenidae (Andreninae) Andrena (Scaphandrena) plana     R         

59 
Andrenidae (Andreninae) Andrena (Scaphandrena) 
santaclarae   R R       R 

60 
Andrenidae (Andreninae) Andrena (Scoliandrena) 
cryptanthae R             

61 Andrenidae (Andreninae) Andrena (Scoliandrena) osmioides     R     R R 
62 Andrenidae (Andreninae) Andrena (Scrapteropsis) biareola     R         

63 
Andrenidae (Andreninae) Andrena (Simandrena) 
angustitarsata R R C U   U U 

64 Andrenidae (Andreninae) Andrena (Simandrena) hypoleuca           R R 
65 Andrenidae (Andreninae) Andrena (Simandrena) orthocarpi     R     R   

66 
Andrenidae (Andreninae) Andrena (Simandrena) 
pallidifovea R R R R   R R 

67 Andrenidae (Andreninae) Andrena (Simandrena) pensilis             R 

68 
Andrenidae (Andreninae) Andrena (Thysandrena) aff. 
candida   R         R 

69 Andrenidae (Andreninae) Andrena (Thysandrena) aff. lauta   R           
70 Andrenidae (Andreninae) Andrena (Thysandrena) candida U U C U R U U 
71 Andrenidae (Andreninae) Andrena (Thysandrena) vierecki   R R         
72 Andrenidae (Andreninae) Andrena (Thysandrena) w-scripta R R U U R R C 

73 
Andrenidae (Andreninae) Andrena (Trachandrena) 
fuscicauda     R R       

74 
Andrenidae (Andreninae) Andrena (Trachandrena) 
semipunctata   R R     R   
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75 Andrenidae (Andreninae) Andrena (Tylandrena) subtilis     R     R   
76 Andrenidae (Andreninae) Andrena (Tylandrena) waldmerei     R         
77 Andrenidae (Panurginae) Calliopsis  smithi U U U U     R 

78 
Andrenidae (Panurginae) Calliopsis (Micronomadopsis) 
fracta R R R     R   

79 
Andrenidae (Panurginae) Calliopsis (Micronomadopsis) 
helianthi           R   

80 
Andrenidae (Panurginae) Calliopsis (Micronomadopsis) 
mellipes   R       R   

81 
Andrenidae (Panurginae) Calliopsis (Micronomadopsis) 
trifolii R     R       

82 Andrenidae (Panurginae) Calliopsis (Nomadopsis) anthidia R R R         

83 
Andrenidae (Panurginae) Calliopsis (Nomadopsis) 
obscurella R U R R   U R 

84 Andrenidae (Panurginae) Calliopsis (Nomadopsis) zonalis R R   R       
85 Andrenidae (Panurginae) Macrotera (Macroteropsis) arcuata     R     R R 
86 Andrenidae (Panurginae) Panurginus  gracilis     C R   C C 
87 Andrenidae (Panurginae) Panurginus  melanocephalus   R R     U U 
88 Andrenidae (Panurginae) Panurginus  morrisoni   R         R 
89 Andrenidae (Panurginae) Panurginus  nigrellus U U U     U C 
90 Andrenidae (Panurginae) Panurginus  occidentalis         R     
91 Andrenidae (Panurginae) Panurginus  quadratus     R U       
92 Andrenidae (Panurginae) Perdita (Hesperoperdita) trisignata R U U C   R R 
93 Andrenidae (Panurginae) Perdita (Perdita) aff. linsleyi n.sp. R R R R   R   
94 Andrenidae (Panurginae) Perdita (Perdita) claypolei   U U         
95 Andrenidae (Panurginae) Perdita (Perdita) hirticeps             R 
96 Andrenidae (Panurginae) Perdita (Perdita) holoxantha           R   
97 Andrenidae (Panurginae) Perdita (Perdita) isocomae   R           
98 Andrenidae (Panurginae) Perdita (Perdita) jucunda   R   R       
99 Andrenidae (Panurginae) Perdita (Perdita) linsleyi           R   

100 Andrenidae (Panurginae) Perdita (Perdita) rhois U C C R     R 
101 Andrenidae (Panurginae) Perdita (Perdita) salicis           R   
102 Andrenidae (Panurginae) Perdita (Pygoperdita) aureovittata   R           
103 Andrenidae (Panurginae) Perdita (Pygoperdita) californica     R         
104 Andrenidae (Panurginae) Perdita (Pygoperdita) distropica R U U U   U C 
105 Andrenidae (Panurginae) Perdita (Pygoperdita) micheneri     U R   R   

106 
Andrenidae (Panurginae) Perdita (Pygoperdita) 
montereyensis U U U U   U C 

107 Andrenidae (Panurginae) Perdita (Pygoperdita) nitens U U R     U R 
108 Apidae (Apinae) Anthophora (Anthophoroides) californica R U R R R R R 
109 Apidae (Apinae) Anthophora (Heliophila) columbariae     R         
110 Apidae (Apinae) Anthophora (Heliophila) curta R R R R   R R 
111 Apidae (Apinae) Anthophora (Heliophila) estebana   R           
112 Apidae (Apinae) Anthophora (Heliophila) flavocincta         R     
113 Apidae (Apinae) Anthophora (Lophanthophora) pacifica   R U     R   
114 Apidae (Apinae) Anthophora (Melea) bomboides R             
115 Apidae (Apinae) Anthophora (Mystacanthophora) urbana R U U U R U U 
116 Apidae (Apinae) Anthophora (Paramegilla) centriformis R U R U   R   
117 Apidae (Apinae) Anthophora (Pyganthophora) crotchii R U R R R U U 
118 Apidae (Apinae) Anthophora (Pyganthophora) edwardsii R R R     U U 
119 Apidae (Apinae) Anthophora (Pyganthophora) platti U U U R   U U 
120 Apidae (Apinae) Anthophorula (Anthophorisca) nitens   U U     U U 
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121 Apidae (Apinae) Anthophorula (Anthophorula) albicans   U U   R R R 
122 Apidae (Apinae) Apis  mellifera R C C U U C C 
123 Apidae (Apinae) Bombus (Crotchiibombus) crotchii   U U R       
124 Apidae (Apinae) Bombus (Fervidobombus) californicus R U U R R R R 
125 Apidae (Apinae) Bombus (Pyrobombus) caliginosus   U       R R 
126 Apidae (Apinae) Bombus (Pyrobombus) edwardsii             R 
127 Apidae (Apinae) Bombus (Pyrobombus) melanopygus R C U R R U   
128 Apidae (Apinae) Bombus (Pyrobombus) vandykei   R R     R   
129 Apidae (Apinae) Bombus (Pyrobombus) vosnesenskii R C C R R U R 
130 Apidae (Apinae) Centris (Paracentris) aff. californica   U U R       
131 Apidae (Apinae) Diadasia  aff. ochracea   R R   R R U 
132 Apidae (Apinae) Diadasia  angusticeps   R R C R C U 
133 Apidae (Apinae) Diadasia  australis         R R   
134 Apidae (Apinae) Diadasia  bituberculata R U R U U U C 
135 Apidae (Apinae) Diadasia  consociata             R 
136 Apidae (Apinae) Diadasia  laticauda   U U R R U U 
137 Apidae (Apinae) Diadasia  nigrifrons           R   
138 Apidae (Apinae) Diadasia  nitidifrons   R U R R U U 
139 Apidae (Apinae) Diadasia  rinconis             R 
140 Apidae (Apinae) Eucera (Synhalonia) actuosa   R R R U C C 
141 Apidae (Apinae) Eucera (Synhalonia) amsinckiae R R R   R R R 
142 Apidae (Apinae) Eucera (Synhalonia) cordleyi   R U   R U R 
143 Apidae (Apinae) Eucera (Synhalonia) delphinii   U R R R R R 
144 Apidae (Apinae) Eucera (Synhalonia) dorsata   U R R R U U 
145 Apidae (Apinae) Eucera (Synhalonia) edwardsii R R R   R   R 
146 Apidae (Apinae) Eucera (Synhalonia) lunata     R     R R 
147 Apidae (Apinae) Eucera (Synhalonia) venusta U U U R   R R 
148 Apidae (Apinae) Eucera (Synhalonia) virgata     U R R U U 
149 Apidae (Apinae) Habropoda  dammersi     R         
150 Apidae (Apinae) Habropoda  depressa R U U R R U U 
151 Apidae (Apinae) Habropoda  tristissima R U R R R R U 
152 Apidae (Apinae) Melecta (Melecta) pacifica   R R     R   
153 Apidae (Apinae) Melecta (Melecta) separata     R R R R U 
154 Apidae (Apinae) Melecta (Melectomimus) edwardsii   R       R   
155 Apidae (Apinae) Melissodes  sp. m1     R         
156 Apidae (Apinae) Melissodes (Callimelissodes) clarkiae   R       R R 
157 Apidae (Apinae) Melissodes (Callimelissodes) composita             R 
158 Apidae (Apinae) Melissodes (Callimelissodes) lupina   R U   R U C 
159 Apidae (Apinae) Melissodes (Callimelissodes) lustra   R           
160 Apidae (Apinae) Melissodes (Callimelissodes) n. sp.             R 
161 Apidae (Apinae) Melissodes (Callimelissodes) n. sp. 1   R R R       
162 Apidae (Apinae) Melissodes (Callimelissodes) n. sp. 2   R R R R R   
163 Apidae (Apinae) Melissodes (Callimelissodes) nigracauda     R         
164 Apidae (Apinae) Melissodes (Callimelissodes) plumosa   R       R U 
165 Apidae (Apinae) Melissodes (Callimelissodes) stearnsi   R R   C U C 
166 Apidae (Apinae) Melissodes (Eumelissodes) paulula   R           
167 Apidae (Apinae) Melissodes (Eumelissodes) velutina             R 
168 Apidae (Apinae) Melissodes (Melissodes) tepida             R 
169 Apidae (Apinae) Peponapis (Peponapis) pruinosa             R 
170 Apidae (Apinae) Xeromelecta (Melectomorpha) californica R U R U   R R 
171 Apidae (Apinae) Xeromelecta (Xeromelecta) larreae R             
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172 
Apidae (Nomadinae) Brachynomada (Melanomada) 
melanantha             R 

173 Apidae (Nomadinae) Epeolus  americanus R R     R R R 
174 Apidae (Nomadinae) Epeolus  compactus     R R     R 
175 Apidae (Nomadinae) Epeolus  mesillae           R R 
176 Apidae (Nomadinae) Epeolus  minimus       R R   R 
177 Apidae (Nomadinae) Neopasites (Micropasites) sp.             R 
178 Apidae (Nomadinae) Nomada (Centrias) crotchii   R U     R R 
179 Apidae (Nomadinae) Nomada (Centrias) sp. A R R           
180 Apidae (Nomadinae) Nomada (Holonomada) edwardsii   R R       R 
181 Apidae (Nomadinae) Nomada (Nomada) sp. A R R R     R R 
182 Apidae (Nomadinae) Nomada (Nomada) sp. AA             R 
183 Apidae (Nomadinae) Nomada (Nomada) sp. B R R R     R R 
184 Apidae (Nomadinae) Nomada (Nomada) sp. BB         R R R 
185 Apidae (Nomadinae) Nomada (Nomada) sp. CC         R   R 
186 Apidae (Nomadinae) Nomada (Nomada) sp. D U U U R       
187 Apidae (Nomadinae) Nomada (Nomada) sp. DD           R   
188 Apidae (Nomadinae) Nomada (Nomada) sp. E U R R R   R R 
189 Apidae (Nomadinae) Nomada (Nomada) sp. EE           R   
190 Apidae (Nomadinae) Nomada (Nomada) sp. F R   R       R 
191 Apidae (Nomadinae) Nomada (Nomada) sp. FF             R 
192 Apidae (Nomadinae) Nomada (Nomada) sp. G           R R 
193 Apidae (Nomadinae) Nomada (Nomada) sp. GG     R       R 
194 Apidae (Nomadinae) Nomada (Nomada) sp. HH     R   R     
195 Apidae (Nomadinae) Nomada (Nomada) sp. I     R         
196 Apidae (Nomadinae) Nomada (Nomada) sp. II         R     
197 Apidae (Nomadinae) Nomada (Nomada) sp. J     R     R   
198 Apidae (Nomadinae) Nomada (Nomada) sp. Q   R R     R   
199 Apidae (Nomadinae) Nomada (Nomada) sp. R   R R         
200 Apidae (Nomadinae) Nomada (Nomada) sp. S   R           
201 Apidae (Nomadinae) Nomada (Nomada) sp. T   R           
202 Apidae (Nomadinae) Nomada (Nomada) sp. U   U U     R U 
203 Apidae (Nomadinae) Nomada (Nomada) sp. V R R R   R R R 
204 Apidae (Nomadinae) Nomada (Nomada) sp. W   U U     U U 
205 Apidae (Nomadinae) Nomada (Nomada) sp. X     R     R R 
206 Apidae (Nomadinae) Nomada (Nomada) sp. Y     R   R     
207 Apidae (Nomadinae) Nomada (Nomada) sp. Z     U         
208 Apidae (Nomadinae) Oreopasites  aff. hurdi n.sp   R R R   R R 
209 Apidae (Nomadinae) Oreopasites  vanduzeei R R R R   R   
210 Apidae (Nomadinae) Townsendiella  ensifera   R U U     R 
211 Apidae (Nomadinae) Townsendiella  rufiventris     R         
212 Apidae (Nomadinae) Triepeolus  sp. P1           R R 
213 Apidae (Nomadinae) Triepeolus  sp. P2           R   
214 Apidae (Nomadinae) Triepeolus (Triepeolus) heterurus             R 
215 Apidae (Nomadinae) Triepeolus (Triepeolus) sp. 1     R         
216 Apidae (Nomadinae) Triepeolus (Triepeolus) timberlakei   R R R   R R 
217 Apidae (Xylocopinae) Ceratina  aff. nanula R R R         
218 Apidae (Xylocopinae) Ceratina (Ceratina) arizonensis U C U U U C C 
219 Apidae (Xylocopinae) Ceratina (Euceratina) dallatorreana     R   R     
220 Apidae (Xylocopinae) Ceratina (Zadontomerus) acantha R U R   R U R 
221 Apidae (Xylocopinae) Ceratina (Zadontomerus) hurdi R R R   R U U 
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222 Apidae (Xylocopinae) Ceratina (Zadontomerus) nanula R U U U U U C 
223 Apidae (Xylocopinae) Ceratina (Zadontomerus) pacifica   R R     R R 
224 Apidae (Xylocopinae) Ceratina (Zadontomerus) punctigena R U R U   R   
225 Apidae (Xylocopinae) Ceratina (Zadontomerus) sequoiae R U U U R U U 
226 Apidae (Xylocopinae) Ceratina (Zadontomerus) tejonensis   U R     R R 
227 Apidae (Xylocopinae) Ceratina (Zadontomerus) timberlakei   R R R R R R 

228 
Apidae (Xylocopinae) Xylocopa (Notoxylocopa) 
tabaniformis R U R R R R R 

229 Colletidae (Colletinae) Colletes consors U U R R   U R 
230 Colletidae (Colletinae) Colletes aff. algarobiae R U U R   R   
231 Colletidae (Colletinae) Colletes algarobiae             U 
232 Colletidae (Colletinae) Colletes fulgidus   R R R     R 
233 Colletidae (Colletinae) Colletes simulans   R           
234 Colletidae (Colletinae) Colletes slevini R U U U   R R 

235 
Colletidae (Hylaeinae) Hylaeus (Cephalylaeus) 
nunenmacheri     R R       

236 Colletidae (Hylaeinae) Hylaeus (Hylaeus) bisinuatus   R           
237 Colletidae (Hylaeinae) Hylaeus (Hylaeus) conspicuus       R R   R 
238 Colletidae (Hylaeinae) Hylaeus (Hylaeus) granulatus   U U U   R R 
239 Colletidae (Hylaeinae) Hylaeus (Hylaeus) mesillae R C U U   U R 
240 Colletidae (Hylaeinae) Hylaeus (Hylaeus) rudbeckiae R         R R 
241 Colletidae (Hylaeinae) Hylaeus (Hylaeus) verticalis R U U U   R R 

242 
Colletidae (Hylaeinae) Hylaeus (Paraprosopis) aff. cookii 
n.sp.   R R R       

243 Colletidae (Hylaeinae) Hylaeus (Paraprosopis) calvus R   U U   R U 
244 Colletidae (Hylaeinae) Hylaeus (Paraprosopis) coloradensis   U U R       
245 Colletidae (Hylaeinae) Hylaeus (Paraprosopis) n. sp.2   U R R   R   
246 Colletidae (Hylaeinae) Hylaeus (Paraprosopis) nevadensis U U U U   R U 
247 Colletidae (Hylaeinae) Hylaeus (Paraprosopis) polifolii   U U U   R   
248 Colletidae (Hylaeinae) Hylaeus (Prosopis) episcopalis           R R 
249 Colletidae (Hylaeinae) Hylaeus (Prosopis) n. sp. U C U U       
250 Colletidae (Hylaeinae) Hylaeus (Spatulariella) punctatus       R       

251 
Halictidae (Halictinae) Agapostemon (Agapostemon) 
angelicus / texanus         U C C 

252 
Halictidae (Halictinae) Agapostemon (Agapostemon) 
femoratus         R R   

253 
Halictidae (Halictinae) Agapostemon (Agapostemon) 
texanus R R R U       

254 
Halictidae (Halictinae) Augochlorella (Augochlorella) 
pomoniella   R R       R 

255 Halictidae (Halictinae) Halictus (Nealictus) farinosus U C C C C C C 
256 Halictidae (Halictinae) Halictus (Odontalictus) ligatus       R U U U 
257 Halictidae (Halictinae) Halictus (Protohalictus) rubicundus         R R R 
258 Halictidae (Halictinae) Halictus (Seladonia) tripartitus U U C C C C C 

259 
Halictidae (Halictinae) Lasioglossum (Dialictus) aff. 
punctatoventre     R         

260 
Halictidae (Halictinae) Lasioglossum (Dialictus) aff. 
ruidosense R             

261 Halictidae (Halictinae) Lasioglossum (Dialictus) aff. tegulare R U U C       
262 Halictidae (Halictinae) Lasioglossum (Dialictus) albohirtum       R   R R 

263 
Halictidae (Halictinae) Lasioglossum (Dialictus) 
brunneiventre   R R R   C C 

264 Halictidae (Halictinae) Lasioglossum (Dialictus)     R     R   
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diversopunctatum 
265 Halictidae (Halictinae) Lasioglossum (Dialictus) glabriventre           U U 

266 
Halictidae (Halictinae) Lasioglossum (Dialictus) 
hudsoniellum           R R 

267 Halictidae (Halictinae) Lasioglossum (Dialictus) imbrex           C U 
268 Halictidae (Halictinae) Lasioglossum (Dialictus) impavidum             R 

269 
Halictidae (Halictinae) Lasioglossum (Dialictus) 
incompletum R R U C   C C 

270 
Halictidae (Halictinae) Lasioglossum (Dialictus) 
megastictum     R     R   

271 
Halictidae (Halictinae) Lasioglossum (Dialictus) n. sp. aff. 
nevadense     R R       

272 Halictidae (Halictinae) Lasioglossum (Dialictus) nevadense R U U C   C C 
273 Halictidae (Halictinae) Lasioglossum (Dialictus) obscurior           R U 
274 Halictidae (Halictinae) Lasioglossum (Dialictus) perichlarum           R   

275 
Halictidae (Halictinae) Lasioglossum (Dialictus) 
punctatoventre U U C C   C C 

276 Halictidae (Halictinae) Lasioglossum (Dialictus) sp. D R             
277 Halictidae (Halictinae) Lasioglossum (Dialictus) sp. G       R       
278 Halictidae (Halictinae) Lasioglossum (Dialictus) sp. L     R R       

279 
Halictidae (Halictinae) Lasioglossum (Dialictus) 
tuolumnenie   R           

280 Halictidae (Halictinae) Lasioglossum (Evylaeus) allonotum     R     R R 
281 Halictidae (Halictinae) Lasioglossum (Evylaeus) argemonis R U U U R U U 
282 Halictidae (Halictinae) Lasioglossum (Evylaeus) aspilurum   R   R   R R 
283 Halictidae (Halictinae) Lasioglossum (Evylaeus) avalonense             R 

284 
Halictidae (Halictinae) Lasioglossum (Evylaeus) 
glabriventris R R R U   R   

285 Halictidae (Halictinae) Lasioglossum (Evylaeus) kincaidii R R R R   R R 
286 Halictidae (Halictinae) Lasioglossum (Evylaeus) miguelense   R   R       
287 Halictidae (Halictinae) Lasioglossum (Evylaeus) nigrescens U C C C   C C 
288 Halictidae (Halictinae) Lasioglossum (Evylaeus) ovaliceps           R   
289 Halictidae (Halictinae) Lasioglossum (Evylaeus) pulveris           U R 
290 Halictidae (Halictinae) Lasioglossum (Evylaeus) robustum   R R U   U U 
291 Halictidae (Halictinae) Lasioglossum (Evylaeus) ruficorne R R U U       
292 Halictidae (Halictinae) Lasioglossum (Evylaeus) sequoiae           U U 
293 Halictidae (Halictinae) Lasioglossum (Evylaeus) sp. 1             R 
294 Halictidae (Halictinae) Lasioglossum (Evylaeus) sp. 10   R R         
295 Halictidae (Halictinae) Lasioglossum (Evylaeus) sp. 11   R           
296 Halictidae (Halictinae) Lasioglossum (Evylaeus) sp. 12   R   R       
297 Halictidae (Halictinae) Lasioglossum (Evylaeus) sp. 16       R   U U 
298 Halictidae (Halictinae) Lasioglossum (Evylaeus) sp. 4 R   R U       
299 Halictidae (Halictinae) Lasioglossum (Evylaeus) sp. 9   R R U   C C 

300 
Halictidae (Halictinae) Lasioglossum (Lasioglossum) 
egregium   R R R     U 

301 
Halictidae (Halictinae) Lasioglossum (Lasioglossum) 
sisymbrii R U U U U C U 

302 Halictidae (Halictinae) Lasioglossum (Lasioglossum) titusi     R R   R U 
303 Halictidae (Halictinae) Lasioglossum (Sphecodogastra) sp.             R 
304 Halictidae (Halictinae) Sphecodes  arvensiformis R R           
305 Halictidae (Halictinae) Sphecodes  sp. A   R       R R 
306 Halictidae (Halictinae) Sphecodes  sp. B R U U R   R R 
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307 Halictidae (Halictinae) Sphecodes  sp. C R             
308 Halictidae (Halictinae) Sphecodes  sp. D R   R R   R R 
309 Halictidae (Halictinae) Sphecodes  sp. E R R R U   U U 
310 Halictidae (Halictinae) Sphecodes  sp. F R R           
311 Halictidae (Halictinae) Sphecodes  sp. I   R R         
312 Halictidae (Halictinae) Sphecodes  sp. J   R           
313 Halictidae (Halictinae) Sphecodes  sp. K   R           
314 Halictidae (Halictinae) Sphecodes  sp. L   R R U   R   
315 Halictidae (Halictinae) Sphecodes  sp. M             R 
316 Halictidae (Rophitinae) Conanthalictus (Phaceliapis) bakeri   R R R   R   

317 
Halictidae (Rophitinae) Conanthalictus (Phaceliapis) 
seminiger       R       

318 Halictidae (Rophitinae) Dufourea  dentipes           R   
319 Halictidae (Rophitinae) Dufourea  leachi R R U R   R U 
320 Halictidae (Rophitinae) Dufourea  mulleri   R R     R   
321 Halictidae (Rophitinae) Dufourea  rhamni R R R       R 
322 Halictidae (Rophitinae) Dufourea  sandhouseae   U U     U U 
323 Halictidae (Rophitinae) Dufourea  sparsipunctata U U R R   C U 
324 Halictidae (Rophitinae) Dufourea  virgata U R R R   R R 
325 Halictidae (Rophitinae) Micralictoides  altadenae   R       R   
326 Halictidae (Rophitinae) Micralictoides  ruficaudus R R R     U R 

327 
Megachilidae (Megachilinae) Anthidiellum 
(Loyalanthidium) notatum           R   

328 
Megachilidae (Megachilinae) Anthidiellum 
(Loyalanthidium) robertsoni   U U         

329 
Megachilidae (Megachilinae) Anthidium (Anthidium) 
collectum R U U U   R R 

330 
Megachilidae (Megachilinae) Anthidium (Anthidium) 
edwardsii             R 

331 
Megachilidae (Megachilinae) Anthidium (Anthidium) 
jocosum             R 

332 
Megachilidae (Megachilinae) Anthidium (Anthidium) 
maculosum   R           

333 
Megachilidae (Megachilinae) Anthidium (Anthidium) 
mormonum R R R R       

334 
Megachilidae (Megachilinae) Anthidium (Anthidium) 
pallidiclypeum R R R R       

335 
Megachilidae (Megachilinae) Anthidium (Anthidium) 
utahense U C C U   U U 

336 
Megachilidae (Megachilinae) Anthidium (Callanthidium) 
illustre   U R R   R R 

337 Megachilidae (Megachilinae) Ashmeadiella  aff. rufitarsis R R R R   R   

338 
Megachilidae (Megachilinae) Ashmeadiella (Arogochila) 
aff. salviae n.sp.           R   

339 
Megachilidae (Megachilinae) Ashmeadiella (Arogochila) 
australis   R R R       

340 
Megachilidae (Megachilinae) Ashmeadiella (Arogochila) 
salviae R U U R   R R 

341 
Megachilidae (Megachilinae) Ashmeadiella (Arogochila) 
timberlakei U C U U   R R 

342 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
bucconis   U R       R 

343 Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella)   R           
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cactorum 

344 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
californica R U U U   R R 

345 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
difugita   R R     R   

346 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
femorata   R   U       

347 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
foveata R U U U   R   

348 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
gillettei   R R       R 

349 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
meliloti   U U       R 

350 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
pronitens   R           

351 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
rufitarsis             R 

352 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
sonora   R R         

353 
Megachilidae (Megachilinae) Ashmeadiella (Ashmeadiella) 
titusi   U R R       

354 
Megachilidae (Megachilinae) Atoposmia (Atoposmia) n. sp. 
2 R R R     R   

355 
Megachilidae (Megachilinae) Atoposmia (Atoposmia) 
pycnognatha   U R R       

356 
Megachilidae (Megachilinae) Atoposmia (Eremosmia) 
hemizoniae           R   

357 
Megachilidae (Megachilinae) Atoposmia (Hexosmia) 
copelandica R U R R   R R 

358 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) aff. 
minutum n.sp.   R R R     R 

359 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) 
californicum U C U U   U R 

360 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) 
cockerelli U U U C   U U 

361 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) 
incisulum U U U U   U R 

362 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) 
marginatum U U U R   U R 

363 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) n. 
sp. R U U R       

364 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) 
phaceliae U C U U   U R 

365 
Megachilidae (Megachilinae) Chelostoma (Chelostoma) 
tetramerum           R R 

366 
Megachilidae (Megachilinae) Coelioxys (Boreocoelioxys) 
octodentata   R R     R   

367 
Megachilidae (Megachilinae) Coelioxys (Coelioxys) 
hirsutissima           R   

368 
Megachilidae (Megachilinae) Coelioxys (Coelioxys) 
serricaudata R R R R   R R 

369 
Megachilidae (Megachilinae) Coelioxys (Cyrtocoelioxys) 
gilensis   R           

370 
Megachilidae (Megachilinae) Coelioxys (Cyrtocoelioxys) 
gonaspis   R           
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371 
Megachilidae (Megachilinae) Dianthidium (Dianthidium) 
dubium   U U R   R U 

372 
Megachilidae (Megachilinae) Dianthidium (Dianthidium) 
parvum           R R 

373 
Megachilidae (Megachilinae) Dianthidium (Dianthidium) 
pudicum R R R R   R R 

374 
Megachilidae (Megachilinae) Dianthidium (Dianthidium) 
singulare   R           

375 
Megachilidae (Megachilinae) Dianthidium (Dianthidium) 
ulkei   R R       R 

376 Megachilidae (Megachilinae) Dioxys  aurifusca   R           
377 Megachilidae (Megachilinae) Dioxys  pacifica     R       R 
378 Megachilidae (Megachilinae) Dioxys  pomonae R R R R   U R 
379 Megachilidae (Megachilinae) Dioxys  producta R R R R   R R 
380 Megachilidae (Megachilinae) Heriades (Heriades) sp.             R 

381 
Megachilidae (Megachilinae) Heriades (Neotrypetes) 
occidentalis   C U         

382 
Megachilidae (Megachilinae) Hoplitis (Acrosmia) aff. 
emarginata   U R R   R   

383 Megachilidae (Megachilinae) Hoplitis (Alcidamea) colei R U R U   U U 
384 Megachilidae (Megachilinae) Hoplitis (Alcidamea) grinnelli R U R R   R R 
385 Megachilidae (Megachilinae) Hoplitis (Alcidamea) producta U U U U   U R 
386 Megachilidae (Megachilinae) Hoplitis (Alcidamea) sambuci R U R R       
387 Megachilidae (Megachilinae) Hoplitis (Cyrtosmia) hypocrita R U U R   R R 

388 
Megachilidae (Megachilinae) Hoplitis (Hoplitina) 
bunocephala R   R         

389 Megachilidae (Megachilinae) Hoplitis (Hoplitina) howardi U C U U   R R 

390 
Megachilidae (Megachilinae) Hoplitis (Monumetha) 
albifrons U C U U   U U 

391 Megachilidae (Megachilinae) Hoplitis (Monumetha) fulgida U U U U   U R 

392 
Megachilidae (Megachilinae) Hoplitis (Penteriades) 
remotula R U R     R R 

393 
Megachilidae (Megachilinae) Hoplitis (Proteriades) 
cryptanthae R R           

394 Megachilidae (Megachilinae) Hoplitis (Proteriades) jacintana U U R R   R   
395 Megachilidae (Megachilinae) Hoplitis (Proteriades) nanula R U R R   R   

396 
Megachilidae (Megachilinae) Hoplitis (Proteriades) 
seminigra R U R R   R   

397 
Megachilidae (Megachilinae) Hoplitis (Proteriades) 
semirubra R R R R   R R 

398 
Megachilidae (Megachilinae) Megachile (Argyropile) 
parallela   R           

399 
Megachilidae (Megachilinae) Megachile (Chelostomoides) 
angelarum   U U     R R 

400 
Megachilidae (Megachilinae) Megachile (Chelostomoides) 
davidsoni   U       R R 

401 
Megachilidae (Megachilinae) Megachile (Chelostomoides) 
exilis             R 

402 
Megachilidae (Megachilinae) Megachile (Chelostomoides) 
spinotulata   U R         

403 
Megachilidae (Megachilinae) Megachile (Eutricharaea) 
apicalis   U R     R U 

404 
Megachilidae (Megachilinae) Megachile (Litomegachile) 
brevis     R R   R   
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405 
Megachilidae (Megachilinae) Megachile (Litomegachile) 
coquilletti R U U     U U 

406 
Megachilidae (Megachilinae) Megachile (Litomegachile) 
gentilis   R R       R 

407 
Megachilidae (Megachilinae) Megachile (Litomegachile) 
lippiae             R 

408 
Megachilidae (Megachilinae) Megachile (Litomegachile) 
onobrychidis           R R 

409 
Megachilidae (Megachilinae) Megachile (Litomegachile) 
texana R R R R       

410 
Megachilidae (Megachilinae) Megachile (Megachile) 
montivaga   R       R R 

411 
Megachilidae (Megachilinae) Megachile (Megachiloides) 
gravita   R   U   U U 

412 
Megachilidae (Megachilinae) Megachile (Megachiloides) 
pascoensis R U R U   U U 

413 
Megachilidae (Megachilinae) Megachile (Megachiloides) 
pseudonigra R R       R   

414 
Megachilidae (Megachilinae) Megachile (Megachiloides) 
subnigra     R     U R 

415 Megachilidae (Megachilinae) Megachile (Sayapis) fidelis   R R       R 
416 Megachilidae (Megachilinae) Megachile (Sayapis) frugalis   C U     R R 
417 Megachilidae (Megachilinae) Megachile (Sayapis) inimica   R           

418 
Megachilidae (Megachilinae) Megachile (Sayapis) 
newberryae   R R         

419 Megachilidae (Megachilinae) Osmia  claremontensis R U R R   R   

420 
Megachilidae (Megachilinae) Osmia (Acanthosmioides) 
nigrifrons   R   R       

421 
Megachilidae (Megachilinae) Osmia (Acanthosmioides) 
nigrobarbata R R R R   R R 

422 
Megachilidae (Megachilinae) Osmia (Acanthosmioides) 
odontogaster R U U R   R R 

423 
Megachilidae (Megachilinae) Osmia (Acanthosmioides) 
sedula           R   

424 
Megachilidae (Megachilinae) Osmia (Acanthosmioides) sp. 
A R             

425 
Megachilidae (Megachilinae) Osmia (Cephalosmia) 
californica R R R R   R R 

426 Megachilidae (Megachilinae) Osmia (Cephalosmia) montana R R R U R U R 
427 Megachilidae (Megachilinae) Osmia (Euthosmia) glauca R U U U   U U 

428 
Megachilidae (Megachilinae) Osmia (Helicosmia) 
coloradensis   U U R   R R 

429 Megachilidae (Megachilinae) Osmia (Helicosmia) texana   U R R   R R 

430 
Megachilidae (Megachilinae) Osmia (Melanosmia) aff. 
hesperos           R   

431 Megachilidae (Megachilinae) Osmia (Melanosmia) aglaia R C U U   U C 

432 
Megachilidae (Megachilinae) Osmia (Melanosmia) 
atrocyanea R U U U   U U 

433 Megachilidae (Megachilinae) Osmia (Melanosmia) bakeri U U U U   U R 
434 Megachilidae (Megachilinae) Osmia (Melanosmia) brevis U C U U R C U 
435 Megachilidae (Megachilinae) Osmia (Melanosmia) calla R U U U   U U 
436 Megachilidae (Megachilinae) Osmia (Melanosmia) cara U U U U   U U 

437 
Megachilidae (Megachilinae) Osmia (Melanosmia) 
clarescens R U U R   R R 
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438 Megachilidae (Megachilinae) Osmia (Melanosmia) cyanella U U U U   U U 

439 
Megachilidae (Megachilinae) Osmia (Melanosmia) 
cyanopoda R U R R     R 

440 Megachilidae (Megachilinae) Osmia (Melanosmia) densa U U U R   U U 
441 Megachilidae (Megachilinae) Osmia (Melanosmia) gabrielis U U U U   U U 
442 Megachilidae (Megachilinae) Osmia (Melanosmia) gaudiosa           U R 

443 
Megachilidae (Megachilinae) Osmia (Melanosmia) 
granulosa R U U U   U U 

444 Megachilidae (Megachilinae) Osmia (Melanosmia) inurbana     R     U U 
445 Megachilidae (Megachilinae) Osmia (Melanosmia) kincaidii U U U U   U U 
446 Megachilidae (Megachilinae) Osmia (Melanosmia) laeta R U U R   U U 
447 Megachilidae (Megachilinae) Osmia (Melanosmia) malina     R         
448 Megachilidae (Megachilinae) Osmia (Melanosmia) pusilla R U   R   R R 
449 Megachilidae (Megachilinae) Osmia (Melanosmia) raritatis R R R R   R R 
450 Megachilidae (Megachilinae) Osmia (Melanosmia) regulina R U U U   C C 
451 Megachilidae (Megachilinae) Osmia (Melanosmia) rostrata       R       
452 Megachilidae (Megachilinae) Osmia (Melanosmia) trevoris     R R   U U 
453 Megachilidae (Megachilinae) Osmia (Melanosmia) tristella   R R R       
454 Megachilidae (Megachilinae) Osmia (Melanosmia) vandykei   R R R       
455 Megachilidae (Megachilinae) Osmia (Melanosmia) visenda U U U R   U U 
456 Megachilidae (Megachilinae) Osmia (Mystacosmia) nemoris   R U C C C C 
457 Megachilidae (Megachilinae) Osmia (Osmia) lignaria R U C R R U U 
458 Megachilidae (Megachilinae) Osmia (Osmia) ribifloris   R R         
459 Megachilidae (Megachilinae) Osmia (Pyrosmia) nigricollis            R 

460 
Megachilidae (Megachilinae) Osmia (Trichinosmia) 
latisulcata   R R R   U   

461 
Megachilidae (Megachilinae) Protosmia (Chelostomopsis) 
rubifloris U C C U   C U 

462 Megachilidae (Megachilinae) Stelis (Protostelis) anthidioides R   R     R   
463 Megachilidae (Megachilinae) Stelis (Protostelis) hurdi   R R R   R   
464 Megachilidae (Megachilinae) Stelis (Stelis) aff. foederalis   R   R   R   
465 Megachilidae (Megachilinae) Stelis (Stelis) ashmeadiellae   R R R   R R 
466 Megachilidae (Megachilinae) Stelis (Stelis) calliphorina   R           
467 Megachilidae (Megachilinae) Stelis (Stelis) chemsaki             R 
468 Megachilidae (Megachilinae) Stelis (Stelis) cockerelli       R   R R 
469 Megachilidae (Megachilinae) Stelis (Stelis) interrupta       R     R 
470 Megachilidae (Megachilinae) Stelis (Stelis) lateralis   R R R   R   
471 Megachilidae (Megachilinae) Stelis (Stelis) micheneri R R   R   R   
472 Megachilidae (Megachilinae) Stelis (Stelis) montana R R R R   R R 
473 Megachilidae (Megachilinae) Stelis (Stelis) nigriventris   R R         
474 Megachilidae (Megachilinae) Stelis (Stelis) occidentalis R R         R 
475 Megachilidae (Megachilinae) Stelis (Stelis) subemarginata R R R R   R   

476 
Megachilidae (Megachilinae) Trachusa (Heteranthidium) 
timberlakei   R U U   R R 

477 
Megachilidae (Megachilinae) Trachusa (Trachusomimus) 
perdita   U C U U C R 

478 Melittidae (Dasypodinae) Hesperapis (Amblyapis) ilicifoliae U C C C R U U 
479 Melittidae (Dasypodinae) Hesperapis (Panurgomia) regularis U C C C C C C 
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Appendix C. Floral taxa visited by bees (unique groups, identified to lowest possible 
level), and their relative popularity by year at Pinnacles National Park, and status as new 
or lost to the current study.  
Plants are marked with “R” for rare if bee visits were fewer than 10 in that year, with “U” 
for uncommon if bee visits ranged between 10-100, and “C” for common when over 100 
bees were collected on that plant. The last row gives a count of plant taxa sampled on in 
each year. Dashed line distinguishes 2002 collection as separate from original 1996-9 
study, but still prior to current study. Taxa highlighted in blue were newly collected on in 
the current study, and those highlighted in red had bees recorded on them in the park 
previously, but did not yield bees in the current study. Note that differences between red 
and blue highlighted taxa may only reflect the foci of the given study or the expertise of 
the plant identifications, rather than any measurable changes in park flora or 
attractiveness to bees.  See Table 4 in Results for 25 most popular in current study. 

  

Plant Name 

1
9
9
6 

1
9
9
7 

1
9
9
8 

1
9
9
9 

2
0
0
2 

2
0
1
1 

2
0
1
2 

1 Alliaceae Allium fimbriatum           R   
2 Alliaceae Allium lacunosum   U U R       
3 Alliaceae Allium lacunosum var.micranthum             R 
4 Alliaceae Allium sp. U U R         
5 Anacardiaceae Toxicodendron diversilobum           R   
6 Apiaceae Anthriscus caucalis           R   
7 Apiaceae Apiaceae sp.   R U         
8 Apiaceae Apiaceae sp. (yellow)     R     R   
9 Apiaceae Lomatium dasycarpum             R 

10 Apiaceae Lomatium sp.   U R       R 
11 Apiaceae Lomatium utriculatum     R     U R 
12 Apiaceae Perideridia californica     R         
13 Apiaceae Sanicula crassicaulis           R   
14 Apiaceae Sanicula sp.   R           
15 Apiaceae Sanicula tuberosa           R R 
16 Asclepiadaceae Asclepias sp.     U         
17 Asteraceae Achillea millefolium   R       R R 
18 Asteraceae Agoseris grandiflora           R   
19 Asteraceae Agoseris sp.   R           
20 Asteraceae Anaphalis margaritacea   R           
21 Asteraceae Asteraceae sp.   R U         
22 Asteraceae Asteraceae sp. (yellow)     R         
23 Asteraceae Baccharis pilularis   U U         
24 Asteraceae Baccharis salicifolia U R   U   U U 
25 Asteraceae Carduus tenuiflorus   U           
26 Asteraceae Centaurea melitensis           R R 
27 Asteraceae Centaurea solstitialis   U U   R   R 
28 Asteraceae Chaenactis glabriuscula   R       C U 
29 Asteraceae Cirsium occidentale   R U R   R R 
30 Asteraceae Cirsium sp.   U R         
31 Asteraceae Cirsium vulgare   R R         
32 Asteraceae Erigeron foliosus   U           
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33 Asteraceae Erigeron foliosus var.foliosus             R 
34 Asteraceae Erigeron petrophilus   U           
35 Asteraceae Eriophyllum confertiflorum   U U U   R R 
36 Asteraceae Eriophyllum lanatum     R         
37 Asteraceae Eriophyllum multicaule             R 
38 Asteraceae Eriophyllum sp.   U           
39 Asteraceae Euthamia occidentalis   R           
40 Asteraceae Gnaphalium bicolor           R   
41 Asteraceae Gnaphalium californicum           R R 
42 Asteraceae Hemizonia lobbii   U           
43 Asteraceae Heterotheca sessiliflora   U           
44 Asteraceae Hypochaeris glabra           R   
45 Asteraceae Hypochaeris radicata           U R 
46 Asteraceae Lasthenia californica R U C     U U 
47 Asteraceae Layia hieracioides   R           
48 Asteraceae Lessingia tenuis       U       
49 Asteraceae Madia sp.   R           
50 Asteraceae Malacothrix californica           R   
51 Asteraceae Microseris douglasii           R   
52 Asteraceae Packera breweri           R   
53 Asteraceae Pectis papposa   R           
54 Asteraceae Senecio flaccidus   R           
55 Asteraceae Senecio sp.   U           
56 Asteraceae Stephanomeria virgata ssp.pleurocarpa     R         
57 Asteraceae Wyethia helenioides R         U U 
58 Asteraceae Wyethia sp.       R       
59 Boraginaceae Amsinckia menziesii U     R R U U 
60 Boraginaceae Amsinckia menziesii var.menziesii   U U R   R   
61 Boraginaceae Amsinckia sp.         U     
62 Boraginaceae Cryptantha sp. U C U R     R 
63 Boraginaceae Emmenanthe penduliflora     R U       
64 Boraginaceae Eriodictyon sp.     R         
65 Boraginaceae Eriodictyon tomentosum U C U C   U U 
66 Boraginaceae Heliotropium curassavicum   U       U U 
67 Boraginaceae Nemophila menziesii var.integrifolia   U U         
68 Boraginaceae Nemophila menziesii var.menziesii           R R 
69 Boraginaceae Phacelia brachyloba   U           
70 Boraginaceae Phacelia californica   U           
71 Boraginaceae Phacelia distans   U U       R 
72 Boraginaceae Phacelia imbricata   U U U   R   
73 Boraginaceae Phacelia malvifolia     R U       
74 Boraginaceae Phacelia ramosissima   U U R       
75 Boraginaceae Phacelia ramosissima var.ramosissima           R   
76 Boraginaceae Phacelia sp. U C U U     R 
77 Boraginaceae Phacelia sp. (white) U             
78 Boraginaceae Pholistoma auritum U C C R     R 
79 Boraginaceae Pholistoma auritum var.auritum           U R 
80 Boraginaceae Pholistoma membranaceum     U     R R 
81 Boraginaceae Plagiobothrys canescens           U   
82 Boraginaceae Plagiobothrys nothofulvus     C         
83 Boraginaceae Plagiobothrys sp.   R U   U   R 
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84 Brassicaceae Brassica nigra   C U U       
85 Brassicaceae Brassicaceae sp.         R     
86 Brassicaceae Cardamine californica     U         
87 Brassicaceae Cardamine californica var.californica     U     R   
88 Brassicaceae Erysimum capitatum var.capitatum           R   
89 Brassicaceae Erysimum sp.   R           
90 Brassicaceae Hirschfeldia incana           C C 
91 Brassicaceae Rorippa nasturtium-aquaticum   U   R       
92 Brassicaceae Thysanocarpus curvipes     C         
93 Brassicaceae Thysanocarpus laciniatus             R 
94 Caprifoliaceae Lonicera hispidula     U         
95 Caprifoliaceae Lonicera sp.     U       R 
96 Caprifoliaceae Lonicera subspicata var.denudata           R   
97 Caprifoliaceae Sambucus mexicana           R U 
98 Chenopodiaceae Chenopodium californicum           R   
99 Convolvulaceae Calystegia collina           R U 

100 Convolvulaceae Calystegia collina ssp.venusta           R   
101 Convolvulaceae Calystegia purpurata             R 
102 Convolvulaceae Calystegia sp.     R         
103 Convolvulaceae Calystegia subacaulis R U           
104 Convolvulaceae Convolvulus arvensis           R   
105 Crassulaceae Dudleya cymosa   R R R       
106 Crassulaceae Dudleya sp.   R           
107 Crassulaceae Sedum spathulifolium   R           
108 Cuscutaceae Cuscuta californica   R           
109 Ericaceae Arctostaphylos pungens     C     U   
110 Ericaceae Arctostaphylos sp.     R   U     
111 Euphorbiaceae Euphorbia sp.     R         
112 Fabaceae Glycyrrhiza lepidota   R           
113 Fabaceae Lotus humistratus/wragelianus           R   
114 Fabaceae Lotus micranthus           R   
115 Fabaceae Lotus purshianus   U       R   
116 Fabaceae Lotus scoparius U C C         
117 Fabaceae Lotus scoparius var.scoparius           C U 
118 Fabaceae Lotus sp.   U U R       
119 Fabaceae Lotus wrangelianus     U         
120 Fabaceae Lupinus albifrons R U U     R U 
121 Fabaceae Lupinus albifrons var.albifrons           U U 
122 Fabaceae Lupinus bicolor   R           
123 Fabaceae Lupinus concinnus           R   
124 Fabaceae Lupinus microcarpus var.densiflorus           R   
125 Fabaceae Lupinus sp. R R R         
126 Fabaceae Melilotus indicus   R       U R 
127 Fabaceae Trifolium albopurpureum           R   
128 Fabaceae Trifolium depauperatum           R   
129 Fabaceae Trifolium gracilentum var.gracilentum           R   
130 Fabaceae Trifolium microcephalum   R         R 
131 Fabaceae Trifolium sp. U U R         
132 Fabaceae Trifolium willdenovii     U     R R 
133 Fabaceae Vicia sp.     R         
134 Fabaceae Vicia villosa   U R     U U 
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135 Fagaceae Quercus agrifolia           R R 
136 Fagaceae Quercus agrifolia var.agrifolia           U U 
137 Fagaceae Quercus douglasii           R R 
138 Fagaceae Quercus lobata           R   
139 Fagaceae Quercus sp. U R R     R R 
140 Fumariaceae Dicentra chrysantha   U R U     R 
141 Fumariaceae Dicentra sp.     U         
142 Geraniaceae Erodium botrys           R R 
143 Geraniaceae Erodium brachycarpum           U U 
144 Geraniaceae Erodium cicutarium     R     U U 
145 Geraniaceae Erodium sp.   R           
146 Hippocastanaceae Aesculus californica   R R     R   
147 Lamiaceae Lamium amplexicaule             R 
148 Lamiaceae Lepechinia calycina   U U R   R U 
149 Lamiaceae Marrubium vulgare           U U 
150 Lamiaceae Mentha spicata   U           
151 Lamiaceae Mentha suaveolens   U           
152 Lamiaceae Monardella lanceolata   R           
153 Lamiaceae Monardella sp.     R         
154 Lamiaceae Monardella villosa   R       R R 
155 Lamiaceae Salvia columbariae           R   
156 Lamiaceae Salvia mellifera R U U U   U R 
157 Lamiaceae Stachys bullata   U R U   R U 
158 Lamiaceae Trichostema lanatum R U U R   R R 
159 Lamiaceae Trichostema lanceolatum R U         R 
160 Liliaceae Bloomeria crocea   U U     U   
161 Liliaceae Brodiaea sp.   R           
162 Liliaceae Brodiaea terrestris   R U     R R 
163 Liliaceae Calochortus venustus   U U U   U U 
164 Liliaceae Dichelostemma capitatum   U       R U 
165 Liliaceae Triteleia hyacinthina   R           
166 Liliaceae Triteleia lugens   R U       U 
167 Liliaceae Zigadenus fremontii   R R         
168 Liliaceae Zigadenus venenosus             R 
169 Malvaceae Eremalche parryi       U       
170 Malvaceae Malacothamnus aboriginum   U U     U U 
171 Oleaceae Fraxinus dipetala   R       R   
172 Onagraceae Camissonia sp. R U R R     R 
173 Onagraceae Clarkia affinis   R       R   
174 Onagraceae Clarkia cylindrica   R R       R 
175 Onagraceae Clarkia modesta   R R R   R   
176 Onagraceae Clarkia purpurea R U U U   C U 
177 Onagraceae Clarkia similis   R           
178 Onagraceae Clarkia sp. U U U U       
179 Onagraceae Clarkia speciosa           R R 
180 Onagraceae Clarkia unguiculata   C C U   C C 
181 Onagraceae Epilobium canum     R         
182 Orobanchaceae Castilleja affinis     R     R   
183 Orobanchaceae Castilleja exserta   R R     R   
184 Orobanchaceae Castilleja sp.   R R         
185 Orobanchaceae Pedicularis densiflora           R   
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186 Orobanchaceae Pedicularis sp.     R         
187 Orobanchaceae Triphysaria pusilla           R   
188 Papaveraceae Dendromecon rigida   U R R   R   
189 Papaveraceae Eschscholzia californica U C U C R C C 
190 Papaveraceae Eschscholzia sp.         R     
191 Papaveraceae Meconella linearis   R           
192 Papaveraceae Platystemon sp.     R         
193 Phyrmaceae Mimulus aurantiacus R C R C   U R 
194 Phyrmaceae Mimulus guttatus       R   U R 
195 Phyrmaceae Mimulus pilosus   U           
196 Phyrmaceae Mimulus sp.   R R         
197 Pinaceae Pinus sabiniana           R R 
198 Plantaginaceae Antirrhinum multiflorum   U R         
199 Plantaginaceae Antirrhinum sp.     R R       
200 Plantaginaceae Collinsia heterophylla U C C U   R U 
201 Plantaginaceae Collinsia parviflora   U           
202 Plantaginaceae Keckiella breviflora   U U         
203 Plantaginaceae Penstemon centranthifolius   U R     U U 
204 Plantaginaceae Penstemon heterophyllus   R U     U U 
205 Plantaginaceae Plantago erecta           R   
206 Plantaginaceae Veronica anagallis-aquatica   U       R   
207 Polemoniaceae Gilia achilleifolia     U         
208 Polemoniaceae Gilia angelensis   U           
209 Polemoniaceae Gilia capitata R R       R   
210 Polemoniaceae Gilia sp.   R U         
211 Polemoniaceae Linanthus parviflorus           R   
212 Polemoniaceae Linanthus sp.   R R       R 
213 Polemoniaceae Navarretia hamata             U 
214 Polemoniaceae Navarretia sp.     R         
215 Polygonaceae Chorizanthe douglasii R U   C   U U 
216 Polygonaceae Eriogonum elongatum   U           
217 Polygonaceae Eriogonum fasciculatum U C C U   R   
218 Polygonaceae Eriogonum fasciculatum var.foliolosum           C C 
219 Polygonaceae Eriogonum gracile   R           
220 Polygonaceae Eriogonum nortonii   R       R   
221 Polygonaceae Eriogonum sp.     U         
222 Polygonaceae Eriogonum vimineum   U           
223 Polygonaceae Polygonum punctatum   R           
224 Polygonaceae Polygonum sp.       U       
225 Portulacaceae Claytonia perfoliata   R U     U R 
226 Portulacaceae Montia fontana   R           
227 Primulaceae Anagallis arvensis     R       R 
228 Primulaceae Dodecatheon clevelandii             R 
229 Primulaceae Dodecatheon clevelandii ssp.patulum           R   
230 Primulaceae Dodecatheon sp.   R           
231 Ranunculaceae Clematis lasiantha   R       R R 
232 Ranunculaceae Clematis sp.   R           
233 Ranunculaceae Delphinium hesperium             R 
234 Ranunculaceae Delphinium hesperium ssp.pallescens           R   
235 Ranunculaceae Delphinium parryi           R R 
236 Ranunculaceae Delphinium parryi/patens           R   
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237 Ranunculaceae Delphinium sp.   U R R       
238 Ranunculaceae Ranunculus californicus   R U     C U 
239 Rhamnaceae Ceanothus cuneatus   R C U   U   
240 Rhamnaceae Ceanothus cuneatus var.cuneatus           U U 
241 Rhamnaceae Ceanothus sp.     R   R     
242 Rhamnaceae Rhamnus ilicifolia   R U C   R R 
243 Rhamnaceae Rhamnus sp.           R   
244 Rosaceae Adenostoma fasciculatum U U C R   C C 
245 Rosaceae Cercocarpus betuloides   R       R R 
246 Rosaceae Drymocallis glandulosa             R 
247 Rosaceae Heteromeles arbutifolia   U       R   
248 Rosaceae Prunus ilicifolia   U R C   R   
249 Rosaceae Rosa californica   R       U R 
250 Rosaceae Rubus parviflorus       R       
251 Rosaceae Rubus sp.   R           
252 Rosaceae Rubus ursinus   U           
253 Rubiaceae Galium sp.   R           
254 Salicaceae Salix exigua           U U 
255 Salicaceae Salix laevigata           U R 
256 Salicaceae Salix lasiolepis           U U 
257 Salicaceae Salix sp.   U C         
258 Saxifragaceae Lithophragma affine     R         
259 Saxifragaceae Saxifraga californica     U         
260 Scrophulariaceae Scrophularia californica   R   R       
261 Solanaceae Solanaceae sp.         R     
262 Solanaceae Solanum umbelliferum   U R     U U 
263 Valerianaceae Plectritis ciliosa             R 
264 Valerianaceae Plectritis macrocera     U     U   
265 Valerianaceae Plectritis sp.   R U         
266 Verbenaceae Verbena lasiostachys var.scabrida           R R 
267 Verbenaceae Verbena sp.             R 
268 Violaceae Viola pedunculata   R U     U U 

 

Count of unique floral taxa on which bees were collected 
in each of seven years of Pinnacles study: 30 142 115 49 11 128 102 
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CHAPTER 3 

NOVEL, WIDESPREAD USE OF HONEYDEW SUGARS AMONG  

A DIVERSE COMMUNITY OF SOLITARY BEES 

ABSTRACT 

Bees are known to respond to visual cues, using floral colors and petal markings 

to locate nectar sources, but non-visual foraging is less well understood. Wild bees were 

observed visiting inconspicuous, pre-bloom Adenostoma fasciculatum shrubs across the 

Mediterranean landscapes of California’s Pinnacles National Park. Many of these woody 

shrubs were covered with a ‘sooty mold,’ fueled by honeydew secretions of scale insects 

(Hemiptera: Coccoidea). While honeydew has been recorded as a resource visited by 

disparate social bees, knowledge of honeydew use by solitary bees or at a community-

wide scale is lacking. We designed an experiment to evaluate the mechanism of attraction 

to this non-advertised resource, and to identify the bees involved. Collection results 

revealed that there is high bee visitation to moldy plants, but only in the presence of live 

scale insects, and that black paint, as a mold-like visual cue, did not enhance highly 

significant visitation to experimental honeydew-mimic sugars. The widespread ability of 

bees to locate unadvertised honeydew-mimic sugars suggests the existence of stochastic 

and socially-mediated foraging behaviors among a community of solitary bees that begs 

further study. Ongoing evaluations of functional-trait and taxonomic patterns among the 

particular bees engaging in honeydew foraging may have implications in predicting trait 

resilience to the increasing threat of climate-induced shifts in bloom predictability. 
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INTRODUCTION 

 A variety of insects are known to forage on carbohydrate-rich honeydew 

excretions from scale insects (Hemiptera: Coccoidea) and aphids (Hemiptera: Aphididae) 

as a non-floral sugar source, which may be more nutrient-rich than floral nectar in some 

cases (Batra, 1993). Some insects, particularly ants, cultivate this resource in a 

mutualistic relationship with honeydew producers, offering protection from predators in 

exchange for reliable access to honeydew (Blatrix et al., 2009). In turn, access to 

honeydew as an additional sugar source has been shown to improve the life span and 

fitness of some forest insects (Zoebelein, 1957). Artificial honeydew is effective in 

recruiting wasp parasites of non-aphid pests when sprayed on alfalfa crops (Jacob, 1998). 

In the 1960s, honeydew was thought to be toxic to some bees (Kirkwood et al., 

1960), though its use among honeybees (Apis mellifera) has since been broadly 

recognized (Crane et al., 1984), and experiments have confirmed that the bee genera Apis 

and Osmia are able to obtain and digest honeydew sugars in the lab (Konrad et al., 2009). 

Documentation of honeydew use by other species of bees has been limited to isolated 

incidences involving social species in either forest or tropical habitats (Crane and Walker, 

1985; Santas, 1983). Batra (1993) was among the first to record the behaviors of 

opportunistic bumble bees foraging on “rare, distant alpine honeydew bonanzas.” A year 

later, Bishop (1994) wrote about bumble bees visiting aphid honeydew in Russian boreal 

forests during two weeks in July. Less seasonal activity has been recorded among 

Malaysian stingless bees foraging year-round on honeydews in the tropics (Koch et al., 

2011). Use of honeydew by solitary bees, bees in non-alpine or tropical habitats, or bees 
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at the community level, however, has never, to our knowledge, been experimentally 

examined.  

 Widespread use of honeydew by diverse solitary bees would have interesting 

implications for behavioral and landscape-scale bee ecology, namely because it would be 

a departure from the intricate dependence of bee foraging behaviors on floral 

morphology, a well-studied mutualism that has been widely credited with driving floral 

trait evolution. Honeydew is a non-volatile sugar source, and occurs independently of 

flowering resources. Angiosperms’ globally elaborate and costly floral displays, however, 

are thought to serve a central purpose in attracting animal pollinators, of which bees 

make up about 85% (Ollerton et al., 2011). Support for this idea includes the fact that the 

floral structure of wind-pollinated plants is usually much more modest and drab than that 

of plants that rely on biotic pollination (Willmer, 2011), and that larger floral displays 

have been shown to attract more pollinators and increase the number of flowers visited on 

a plant (Ohashi and Yahara, 2001). Bees are known to visit colored objects placed in their 

habitat and to respond to complex visual cues, using petal markings to navigate to nectar 

sources (Roulston et al., 2007; Willmer, 2011). Their use of visual cues to locate floral 

resources and ability to learn to recognize floral color, shape, size and patterns to 

establish constancy and efficiency during foraging flights has been well established, and 

is suspected of shaping the assembly of flower colors within a plant community (Chittka 

and Thomson, 2001; de Jager et al., 2011). Research on the floral chemistry and olfactory 

signal in insect foraging strategies has also been gaining momentum in recent decades 

(Deisig et al., 2012; Wäckers, 1994; Wright and Schiestl, 2009). The ability of bees to 



 
107 

locate non-visually advertised, non-volatile, and non-floral resources, however, has not 

been thoroughly evaluated. 

Working in the rich Mediterranean habitats of Pinnacles National Park in the 

Inner South Coast Range of California, we observed a diverse array of native, solitary bee 

species visiting pre-bloom Adenostoma fasciculatum shrubs during the early spring when 

floral resources are still very limited. Upon closer examination, we discovered many of 

these shrubs to be covered in a dark ‘sooty mold,’ known to grow on the honeydew 

excretions of colonized scale insects (Hemiptera:Coccoidea) (Crane and Walker, 1985; 

Santas, 1983). The unusual and abundant bee activity around these non-flowering shrubs 

prompted us to perform an experiment to evaluate three primary questions: 1) what are 

these bees finding at this otherwise inconspicuous shrub? (Are they interested in the 

honeydew residues, their scale-insect providers, or perhaps the mold itself)?), 2) what is 

the role of potential visual, olfactory, or insect-insect cues in alerting bees to this 

resource?, and 3) which members of the native bee community are involved? 
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MATERIALS & METHODS 

Pilot Study 

Initial observations and collections were made in the spring of 2011 at Pinnacles 

National Park, California. While conducting routine plot sampling for another project 

tracking bee community phenology, we noted high bee activity on pre-bloom 

Adenostoma fasciculatum in Pinnacles’ McCabe Canyon field sites, particularly those 

covered in a sooty mold thought to grow on the honeydew secretions of scale insects. By 

keeping track of bee collections on pre-bloom plants with or without sooty mold, we 

confirmed that, during the entire 2011 season at all plot sampling locations, many more 

bees were collected on pre-bloom Adenostoma fasciculatum shrubs with sooty mold than 

without it, even when compared with the same plants in flower (Fig. 3-1). 

 

       

Figure 3-1:  Bee counts from 2011 sampling of bees active on Adenostoma fasciculatum 
with and without flowers and with and without sooty mold.  Numbers represent 
collections from all areas in the park and across the entire sampling season (Feb – June), 
during routine plot-based collections for another project, and are shown here to illustrate 
the incentive for the 2012 experimental investigation. 
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Experimental Design 

To explain the behavior of bees visiting these pre-bloom Adenostoma 

fasciculatum shrubs, we designed an experimental evaluation to tease apart the source 

and possible mechanisms of attraction. We located three experimental sites, each 

approximately a hectare in size, within Pinnacles National Park in San Benito County, 

California. Each site was dominated by the large, hardy, allelopathic A. fasciculatum 

shrubs and included several shrubs with obvious presence of scale insects and ‘sooty 

mold.’ We applied seven treatments, outlined below, to three woody shrubs of pre-bloom 

A. fasciculatum at each of the three sites, for a total of 63 experimental shrubs.  

To examine whether the presence of scale insects was necessary for attracting 

bees to these non-flowering shrubs, we selected six shrubs at each site that were visibly 

coated on more than 50% of their branches by sooty mold, which grows on the honeydew 

excretions of scale insects (Crane and Walker, 1985; Santas, 1983). These moldy plants 

were tagged and randomly assigned to one of two treatments: 1) ‘natural mold’ which 

served as our control (sprayed only with 5 ounces of water) to provide data on normal 

visitation to these plants, or 2) ‘natural mold’ + insecticide, which were naturally 

occurring moldy plants to which 5 ounces of a natural, short-residual insecticide (Orange 

Guard) was applied at least one hour before each sampling event to remove the influence 

of live scale insects but leave sugars and mold intact (Table 3-1).  

To differentiate between the attraction of the dark color of the mold, the mold 

itself, or simply the honeydew sugars to bees attending naturally moldy plants, we 

selected fifteen non-moldy shrubs of similar stature at each of the three sites and 

randomly assigned them to one of five remaining experimental treatments (Table 3-1). 
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To test the attraction of the natural honeydew as an isolated resource, we applied 5 

ounces of a sugar spray of 20% equal mixture of chemical-grade Fructose and Sucrose 

similar to the formula used for laboratory research on insect honeydew (pers. comm. F. 

Waackers) to three shrubs at each site. At three other plants per site, a 5-ounce 

application of non-toxic black paint, sufficient to darken the appearance of the shrubs’ 

branches, served as both a test of the darkened visual cue of mold, and as an evaluation of 

whether potentially increased surface temperatures of darkened branches might be 

attractive to bees in accordance with an established preference among bumble bees for 

warmer flowers during foraging bouts (Whitney et al., 2008). Three additional shrubs at 

each site were sprayed with both the sugar solution and the black paint mixture in order 

to simulate the complete attraction of natural mold, and examine interaction effects. To 

serve as controls for the possible influence of the Orange Guard insecticide applied to 

moldy shrubs in the ‘natural mold + insecticide’ treatments outlined above, three non-

moldy shrubs at each site were sprayed with 5 ounces of Orange Guard at least an hour 

prior to all sampling events. Finally, we selected three shrubs at each site to serve as a 

baseline control for quantifying any normal, stochastic bee visitation to random plants in 

the environment. These control plants received a 5-ounce spray application of water 

before sampling events. In total, we had nine shrub replicates, three at each of three sites, 

for each of our seven experimental treatments (Table 3-1).  
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Table 3-1:  Seven experimental treatments, outlined with plant condition and treatment 
spray used.  Each treatment was replicated with three plants at three different sites, for a 
total of nine plants per treatment and sixty-three plants total. 
Treatment Description Condition of  

A. fasciculatum 
Treatment Spray received 

Natural Mold  Moldy 5ml distilled water 

Natural Mold + Insecticide Moldy 5ml Orange Guard® short-residual insecticide 

Control Not Moldy 5ml distilled water 

Insecticide Not Moldy 5ml Orange Guard® short-residual insecticide 

Black Paint Not Moldy 5ml non-toxic black paint 

Sugar Not Moldy 5ml 20% Chem-grade Fructose:Sucrose 

Black Paint + Sugar Not Moldy 5ml non-toxic black paint +  
5ml 20% Chem-grade Fructose:Sucrose 

 

Sampling Protocol 

All experimental collections took place during March and April, the period at 

Pinnacles National Park after which native bee activity has begun, but prior to peak 

bloom of the surrounding plant community. Sampling was conducted on sunny days over 

sixty degrees (F), to ensure adequate bee activity, at one of the three sites per week. Each 

site was visited three times, approximately once every three weeks over the nine-week 

study period. All plants were refreshed with their randomly assigned treatment spray, 

which remained the same throughout the experiment, at 9am on each sampling day. After 

waiting an hour for the effect of the insecticide to take place and for bee activity to 

approach peak levels for the day, a randomly ordered plant list was divided between two 

collectors, who spent five minutes sequentially netting all bees visiting each respective 

plant. Temperature, wind speed, humidity, barometric pressure, and an estimate of cloud 

cover were recorded every thirty minutes during sampling. This whole sampling 

procedure was conducted once in the morning, beginning around 10am, and once in the 

afternoon, around 1pm, to capture the full daily bee community. On sampling days, all 
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flowering species in bloom within the site, approximately a hectare in size, were listed to 

provide an estimate of floral richness and seasonal bloom progression. An infrared 

thermometer was used to record surface temperatures of three different external branches 

of each plant at noon on sampling days to test for effects of potentially warmer, darker 

plants.   

 

Specimen Processing & Data Management  

All bees were labeled and pinned into field boxes each evening, then frozen for 48 

hours to protect from insect infestations, and transported to Utah where they were 

identified to species by experts at the USDA-ARS Pollinating Insect Research Unit 

(“Logan Bee Lab”).  Bee identifications were completed using high quality ‘Leica’ 

dissecting microscopes, one of the best collections of reference specimens in the world 

(the Logan Bee Lab houses approximately 2 million curated bee specimens), and a 

variety of generic and specific taxonomic keys. Bees were assigned individual barcode 

numbers, printed on labels affixed to each specimen pin and recorded along with all 

collection information into a relational database, which was then managed and queried 

for statistical analyses using Microsoft Access front end software. 

 

Statistical Analyses 

 Individual sample bee counts produced a zero-inflated negative binomial 

distribution of response variables, thus nonparametric methods were used to evaluate 

data. We compared the effect sizes of treatment means in bee abundance, relative to the 
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control treatment, using Cohen’s d Effect Size (Cohen, 1992).  We then employed a 

generalized linear mixed model to assess significance of differences in bee abundances 

between treatments, and interactions among them, coding relevant treatments as fixed 

effects and location and temporal variables as random effects. Statistical analyses were 

performed at the p<0.05 significance level using the R-Cran statistical package (R 

Development Core Team 2014 version 3.1.1; package “sciplot” version 1.1-0; package 

“lme4” version 1.1-7) (R Core Development Team 2014 version 3.1.1; package “vegan” 

version 2.2-1; package “lmer” version 1.1-7).  
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RESULTS 

Bee Collection 

Over three sampling days at each of three experimental sites, the 63 shrubs 

included in the experiment were each sampled six times for a total of 54 replicates per 

treatment in 378 plant samples. In total, 308 bees were collected on treated Adenostoma 

fasiculatum plants, representing 9 Genera and 56 species. The ratio of female to male 

bees overall was 3:1. Images of bees foraging on non-flowering A. fasciculatum shrubs 

are included below (Fig. 3-2). Several dozen wasps and flies were also collected during 

sampling, but were not included in analyses. The vast majority of bee specimens were 

collected on the two sprayed sugar treatments (Sugar N=119, and Sugar + Paint, 

N=101). Shrubs with naturally-occurring mold attracted more bees (N=41), than any of 

the four treatments not anticipated to be attractive to bees (Control, N=11; Insecticide, 

N=17; Mold + Insecticide, N=12; and Black Paint, N=7). Table 3-2 gives a full faunal 

list, with taxonomic determinations, ordered by species abundance on treatment groups. 
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Photo Credit (above): Paul Johnson, Pinnacles National Park 

       
Figure 3-2:  Andrena sp. (top, and bottom left and center) foraging on a non-flowering 
Adenostoma fasciculatum shrub (right) sprayed with sugar treatment. 
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Table 3-2:  Faunal list and specimens count of bees collected on experimental treatments 
over the duration of the study. Ordered by abundance in treatment groups (Mold, Sugar, 
then Other (all ‘Other’ treatments were not significantly distinguishable from control)). 

Genus Subgenus Species 
# Bees on Mold 
(1 Treatment) 

# Bees on 
Sugar  

(2 Treatments) 

# Bees on 
Other 

(4 Treatments) 
Andrena (Derandrena) n. sp. 10 33 20 

Lasioglossum (Evylaeus) nigrescens 5 15 1 
Lasioglossum (Dialictus) nevadense 4 16 2 

Andrena (Micrandrena) chlorogaster 4 9 3 
Lasioglossum (Dialictus) punctatoventre 3 14 2 

Andrena  sp. 1 3 4  
Panurginus  gracilis 3 1  

Hylaeus (Paraprosopis) nevadensis 2 9  
Andrena (Melandrena) aff. cerasifolii 1 12 2 
Nomada  sp. 2 1 10  
Andrena (Euandrena) chlorura 1 7 1 
Andrena  sp. 19 1 3  

Lasioglossum (Evylaeus) pulveris 1 1  
Andrena (Thysandrena) candida 1   

Panurginus  morrisoni 1   
Andrena  sp. 20 1   

Lasioglossum (Lasioglossum) sisymbrii  16 1 
Hylaeus (Paraprosopis) calvus  10  

Lasioglossum (Evylaeus) sp. 9  9  
Lasioglossum (Lasioglossum) egregium  8  
Lasioglossum (Evylaeus) argemonis  5 1 

Andrena  sp. 9  5 2 
Halictus (Seladonia) tripartitus  5 1 

Lasioglossum (Evylaeus) sp. 9  3  
Halictus (Nealictus) farinosus  2  
Hylaeus (Prosopis) hinae  2  
Nomada (Gnathias) sp. 1  2  
Andrena (Pelicandrena) atypica  1  
Hylaeus (Hylaeus) granulatus  1  

Apis  mellifera  1 2 
Lasioglossum (Evylaeus) robustum  1  

Halictus (Protohalictus) rubicundus  1  
Andrena (Melandrena) sola  1  

Lasioglossum (Evylaeus) sp. 1  1  
Andrena  sp. 11  1  
Andrena  sp. 18  1  
Andrena  sp. 21  1  
Andrena  sp. 22  1  
Andrena  sp. 23  1  
Andrena  sp. 24  1 1 
Andrena  sp. 25  1  
Andrena  sp. 6  1  

Sphecodes  sp. A  1  
Lasioglossum (Evylaeus) sp. A  1  

Sphecodes  sp. B  1  
Hylaeus (Hylaeus) verticalis  1  

Protosmia (Chelostomopsis) rubifloris   2 
Andrena  sp. 17   2 
Andrena (Derandrena) californiensis   1 
Nomada  sp. 3   1 
Andrena (Thysandrena) w-scripta   1 
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Bee Visitation to Experimental Treatments 

Bee counts at individual plant sampling events included many zeros, ones and 

twos, and a few values over ten (on sugar treatments), resulting in a zero-inflated 

negative binomial distribution of the response variable (Fig. 3-3). Nonparametric options 

for analysis of treatment means in bee visitation were complicated by very high daily 

variation in bee activity across sites and weeks of the study, an expected complication of 

such a spatiotemporally variable group as bees (Williams et al., 2001).  To visualize 

differences between treatment means relative to the control we calculated Cohen’s d 

Effect Size, a statistic thought to be minimially sensitive to non-normal distributions: 

d = (Mtreatment – Mcontrol) / σ 

where 

σ = (σtreatment + σcontrol) / 2. 

Cohen (1992) provided suggested thresholds for interpretation, wherein an effect 

size over 0.8 signifies a large effect of that treatment relative to the control, 0.5 signifies a 

medium effect, and 0.2 constitutes a small effect (Cohen, 1992).  Using Cohen’s 

thresholds, the effect of Sugar treatment on bee visitation was large (d=1.03), while the 

Sugar + Black Paint treatment (d=0.66) had a medium-high effect on bee visitation (Fig. 

3-4). The Mold treatment (d=0.51) had a medium effect size of increased bee visitation 

over background control levels. Treatments not expected to increase bee visitation all had 

small effect sizes in terms of the mean number of bees they each attracted over the course 

of the experiment: Insecticide (d=0.22), Mold + Insecticide (d=0.04), and Black Paint 

(d=0.18). 
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Figure 3-3:  Negative binomial distribution of response variable: bee count data at 
treatment plants over 378 samples. 
 

 

Figure 3-4:  Cohen’s d effect size of each experimental treatment (labeled in red) 
calculated as the standardized mean difference from the control (Becker, 1998). Cohen 
considered an effect size of 0.2 to be “small,” of 0.5 to be “medium,” and of 0.8 to be 
“large.” The effect of Sugar and Sugar-Paint treatments are ‘large,’ and the effect size of 
the Mold treatment is ‘medium’ (Cohen, 1992; Nakagawa and Cuthill, 2007). 
 

 To further test for treatment significance and interactions on bee visitation while 

controlling for influences from abiotic variables, we also built a general linear mixed 

effects model with a negative binomial distribution in R, and performed a step-wise AIC 
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model selection procedure. The best-fit model included the treatments of primary interest 

(Mold, Mold + Insecticide, Sugar, and Sugar + Paint) as fixed effects, and the plant ID 

within the site (categorical), as well as the time of day within each sampling day 

(continuous) as random effects. Bee visitation to pre-bloom Adenostoma fasciculatum 

plants was significantly higher on plants with natural mold (p=0.019) as well as on plants 

with sprayed sugar (p<0.001) than on control plants. Bee visitation was not higher than 

controls to plants with Insecticide (p=0.38) and plants with only black paint (p=0.39).  

There was a significant interaction between the Mold and Insecticide treatments (p=0.03), 

but not between the Sugar and Paint treatments (p=0.84) (Fig. 3-5). 

 

 

Figure 3-5:  Two-way interactions of average sample bee abundance on Mold vs 
Insecticide Treatments (left) and Sugar vs Black Paint Treatments (right), with 95% se 
confidence intervals around points for each treatment combination. Treatment application 
to specified plants is represented by a “1” on x-axes and solid lines, while the absence of 
that treatment is shown by a “0” on x-axes and dotted lines, with the control treatments 
represented at 0,0. A negative binomial mixed model found Mold and Sugar to attract 
significantly more bees per sample than the Insecticide, Paint, or Control treatments, and 
significant interactions of Mold & Insecticide, but not of Sugar & Black Paint. 



 
120 

Environmental, Seasonal & Temperature Significance 

 Floral richness increased linearly across the season and evenly across 1-hectare 

experimental sites as expected, from zero to thirteen species recorded in bloom during 

sampling, confirming the environmental context of the experiment as the period between 

beginning and peak-season bloom. Likewise, though somewhat less linearly, total bee 

specimens collected increased over the nine-week duration of the study, from the first 

sampling round (N=85), through some more variable weather over the second sampling 

period (N=77), to approaching peak bee activity during the third and final sampling round 

(N=146) of all three sites. Bee abundance differed between sites somewhat, with bee 

activity at sites C (N=125) and B (N=115) consistently higher than bee activity at site A 

(N=68). Treatment effects, however, remained significant with temporal and site 

variables included in the model. Similarly, none of the environmental variables recorded 

(e.g. cloud cover, ambient temperature, wind speed, humidity) influenced the significance 

of treatment results. Infrared thermometer temperature readings from plant branches did 

not differ between treatments and thus were not considered as a variable influencing bee 

visitation. 
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DISCUSSION 

Our finding that nearly fifty species of native, solitary bees are able to locate non-

floral, non-volatile, non-visually advertised sugars within a few hours after application to 

inconspicuous shrubs is an interesting and understudied behavior, especially in the 

context of the costly and elaborate floral displays largely regarded as a fundamental 

strategy among angiosperms to attract visually-oriented pollinators. Additionally, current 

knowledge about the role of olfaction in insect foraging does not explain our result that a 

diverse community of bees were quickly and abundantly able to find non-volatile, simple 

sugars sprayed on plants without honeydew producers present (Tapia et al., 2010; Wright 

and Schiestl, 2009). Other research that has delved into non-visual flight patterns of bees 

has so far focused on such ideas as the use of magnetic fields in navigation (Chittka et al., 

1999), and has included little discussion of other mechanisms by which bees may locate 

resources. While floral nectar is likely the primary source of sugar for bees in most 

habitats, the fact that bees are not dependent on floral displays to locate similar, non-

volatile sugars, and can be found visiting non-floral sugars in high abundances is an 

interesting complication in the perception of bee-plant mutualisms as being tightly 

coupled relationships.  

 While our small experiment suggests that bees can locate non-advertised sugars, 

the responses (or lack thereof) to the other treatments also introduce intrigue into this 

novel community-wide behavior.  The lack of any interaction between the Sugar and the 

Sugar + Black Paint treatments suggests that bees are not relying on any learned 

association between the visual cue of the darkened sooty mold and the honeydew reward.  

On the other hand, the significant interaction between the mold and insecticide treatment, 
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in which moldy plants were significantly more attractive to bees than the control, but 

only without the application of the insecticide targeted at scale insects, suggests that the 

presence of live honeydew-producing insects is appealing to bees, rather than simply the 

residual sugars on branches or other nutrients gleaned from the mold itself. Whether this 

reflects a limited ability of bees to detect or collect dried sugar, or potentially the 

existence of a bee-scale relationship is unclear, but worth further investigation. While the 

greater attraction of bees to the sugar spray suggests that the mold itself was not a main 

attractant for bees, ants mutualistic with honeydew-producers for sugars have been shown 

to collect and even cultivate fungus, and Trigona spp. bees have been documented 

collecting mold ‘in lieu of pollen’ (Eltz et al., 2002). Thus, further evaluation of the 

possible use of the sooty mold by bees may be also be fruitful. The lack of any significant 

effect of the insecticide itself compared to control plants confirms that it was effective in 

killing scale insects and removing the attraction of their live presence to bees, but that it 

did not deter bee visitation equivalent to that at control plants. 

We propose that the rapid and highly significant increase in bee visitation to 

plants sprayed with a non-volatile, nectar-like sugar suggests that bee optimal foraging 

strategies are guided less by visual, floral-related cues than is commonly assumed. 

Rather, we believe that bee foraging is heavily influenced by a combination of stochastic 

exploration of resources across a habitat, and a strong reliance on social cues from the 

activity of other bee foragers, even among solitary bees. While bees did not show 

evidence of learning to associate the dark color of sooty mold with honeydew resources, 

bees are known to make repeat foraging trips to a location after discovering an abundant 

resource, and these return visits could account for the spike in bee visitation to plants 
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sprayed with honeydew-mimic sugars. If solitary bees are cueing off the activity of 

conspecifics in their habitat to opportunistically harvest unusual sugar resources, this 

implies the existence of complex, socially-mediated foraging dynamics within solitary 

bee communities that may be sensitive to non-random species loss, which may also 

impact pollination network stability.   

Understanding more about the functional traits and relationships of the particular 

bee species accessing honeydew before peak bloom in this Mediterranean community 

may shed light on both novel foraging tactics and differential resilience within a bee 

community to nectar unpredictability. Mediterranean habitats have been identified as 

both hotspots for diversity, as well as being particularly vulnerable to the effects of 

climate change, invasions of exotic species, and urbanized habitat degradation 

(Klausmeyer and Shaw, 2009). In light of recent observations that warming temperatures 

have induced decoupling shifts in the emergence time of solitary bees in relation to their 

preferred host plants (Forrest and Thomson, 2011; Inouye, 2008; Robbirt et al., 2014), 

this may be an opportunity to study early-season bee foraging responses to habitat 

degradation and climate-induced phenological bloom shifts. For bees that emerge during 

the early season into a habitat of unexpectedly poor floral resources, the ability to locate 

alternate sugar sources before pollens become available could be critical to survival and 

production of offspring for the following season.  
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CHAPTER 4 

SUMMARY 

 Pinnacles National Park remains one of the most densely diverse areas for native 

bees studied. Our updated park inventory lists 479 distinct species in 53 genera from 

seven years of sampling and over 85,000 specimens collected. There were 126 species 

previously detected in Pinnacles during opportunistic sampling of the late 1990s and 

2002 that we did not detect in 2011 or 2012, and 76 species that were new records for the 

park from our sampling. Whether this lower number of species recorded in 2011-12 

compared to previous years signifies a decline in diversity, range shifts over the 

intervening decade, or simply the very high spatiotemporal variability expected within a 

rich native bee fauna is difficult to say. The total abundances and standard deviations 

between plot samples of bee genera, for example, show variation on several orders of 

magnitude from moderately abundant but ever-present genera to hugely dominant but 

patchily-distributed genera. This appears to be a stable, if highly dynamic, pattern. Thus, 

while sifting through the environmental noise of such a speciose and short-lived group 

remains a challenge, continuing to investigate expected fluctuations for a theoretically 

thriving native bee community in a semi-pristine ecosystem will be valuable in improving 

the ability to detect and determine the magnitude of species loss in degraded habitats 

where a pre-disturbance sample is available. In degraded habitats where no such baseline 

sample exists, patterns found at Pinnacles National Park could potentially serve as a 

restoration model for a healthy bee community. Looking at how the structure and 

dynamics of bee communities in the Mediterranean climate of Pinnacles compare to 
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thriving bee communities in other biomes would be an interesting exploration of expected 

variation between and within habitat types in different climates. 

 Unfortunately, habitat type was not a reliable predictor of easily-assessed native 

bee metrics. Between the four main habitat types identified for evaluation at Pinnacles 

National Park (Alluvial, Live Oak Woodland, Blue Oak Woodland, and Grassland) none 

were consistently or significantly different in native bee abundance or richness over an 

entire sampling season. Care must be taken to select the appropriate and ecologically 

relevant statistical methods for evaluating these questions, however, as different methods 

for measuring richness and controlling for random factors resulted in some disagreement 

over which habitat type appeared more species-rich for native bees. Regardless, 

descriptive statistics suggests that, ecologically, habitat type is not a useful guide for 

predicting the native bee abundance, richness, or evenness in an unsampled location. 

 Bee species composition, however, did vary significantly with habitat type at 

Pinnacles National Park. The Alluvial habitat type, which generally occurs at lower 

elevations, drier microclimates, and ranks low on percent grass cover, had a more unique 

and more tightly constrained species composition than the Live Oak, Blue Oak, and 

Grassland habitat types. This difference in bee community may be driven in part by the 

traits of the dominant bee species in each habitat, which is a solitary specialist in the 

Alluvial habitat type, and generalists in each of the other three habitat types. The Alluvial 

habitat type was also found to have a stronger relationship between community similarity 

and the distance between two plots, supporting the suggestion that Alluvial habitats may 

be important refugia that retain a more specialized taxon of bees due to abundant ground-

nesting resources and preferred flora. Further exploration into this pattern, the 
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vulnerability and ecosystem role of this specialist species, and the value of the Alluvial 

habitat type to other bee species is necessary to determine whether Alluvial habitats may 

warrant conservation priority in the name of native bee conservation, or if similar habitats 

elsewhere also may serve as limited nesting refugia for more specialized, and therefore 

potentially more vulnerable, bee communities. 

 The vulnerability of a bee community to temporal resource fluctuations was 

experimentally tested during the second year of plot sampling at Pinnacles National Park. 

Fifty-six different species were found visiting seven treatments designed to test the 

attractiveness of honeydew sugars and the use of visual cues in locating this resource. 

Significantly more bees visited shrubs that had a ‘sooty mold’ associated with natural 

honeydew sugars than visited the control treatment, or similar shrubs after an insecticide 

removed the effect of live scale insect honeydew producers. No evidence of a visual cue 

for this behavior was detected, as responses to plants painted with black paint to mimic 

‘sooty mold’ did not increase bee visitation to control plants or those sprayed with 

honeydew-like sugars. This behavior is interesting because it suggests a previously 

unstudied phenomenon of widespread, stochastic, and socially-influenced foraging 

strategies among a community of solitary bees, as well as implying some resilience of 

these groups to climate-induced changes in temporal bloom predictability. Along with 

spatial insights from the habitat type chapter, this result adds spatiotemporal insight to the 

biodiversity, community dynamics, and foraging behaviors of a rich native bee fauna in a 

semi-pristine ecosystem.  
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