
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations, Spring 
1920 to Summer 2023 Graduate Studies 

5-2016 

An Energy-Efficient Semi-Partitioned Approach for Hard Real-Time An Energy-Efficient Semi-Partitioned Approach for Hard Real-Time 

Systems with Voltage and Frequency Islands Systems with Voltage and Frequency Islands 

Jesse W. Patterson 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Patterson, Jesse W., "An Energy-Efficient Semi-Partitioned Approach for Hard Real-Time Systems with 
Voltage and Frequency Islands" (2016). All Graduate Theses and Dissertations, Spring 1920 to Summer 
2023. 4969. 
https://digitalcommons.usu.edu/etd/4969 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations, Spring 1920 to Summer 2023 by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F4969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4969?utm_source=digitalcommons.usu.edu%2Fetd%2F4969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


AN ENERGY-EFFICIENT SEMI-PARTITIONED APPROACH FOR HARD

REAL-TIME SYSTEMS WITH VOLTAGE AND FREQUENCY ISLANDS

by

Jesse W. Patterson

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Dr. Thidapat Chantem Dr. Koushik Chakraborty
Major Professor Committee Member

Dr. Ryan Gerdes Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2016



ii

Copyright c© Jesse W. Patterson 2016

All Rights Reserved



iii

Abstract

An Energy-Efficient Semi-Partitioned Approach for Hard Real-Time Systems with Voltage

and Frequency Islands

by

Jesse W. Patterson, Master of Science

Utah State University, 2016

Major Professor: Dr. Thidapat Chantem
Department: Electrical and Computer Engineering

The shift from uniprocessor to multi-core architectures has made it difficult to design

predictable hard real-time systems (HRTS) since guaranteeing deadlines while achieving

high processor utilization remains a major challenge. In addition, due to increasing de-

mands, energy efficiency has become an important design metric in HRTS. To obtain en-

ergy savings, most multi-core systems use dynamic voltage and frequency scaling (DVFS)

to reduce dynamic power consumption when the system is underloaded. However, in many

multi-core systems, DVFS is implemented using voltage and frequency islands (VFI), im-

plying that individual cores cannot independently select their voltage and frequency (v/f)

pairs, thus resulting in less energy savings when existing energy-aware task assignment and

scheduling techniques are used. In this thesis, we present an analysis of the increase in en-

ergy consumption in the presence of VFI. Further, we propose a semi-partitioned approach

called EDF-hv to reduce the energy consumption of HRTS on multi-core systems with VFI.

Simulation results revealed that when workload imbalance among the cores is sufficiently

high, EDF-hv can reduce system energy consumption by 15.9% on average.

(75 pages)



iv

Public Abstract

An Energy-Efficient Semi-Partitioned Approach for Hard Real-Time Systems with Voltage

and Frequency Islands

by

Jesse W. Patterson, Master of Science

Utah State University, 2016

Major Professor: Dr. Thidapat Chantem
Department: Electrical and Computer Engineering

Embedded devices are computer systems with a dedicated function, such as kitchen

appliances, electronic toys, phones, et cetera. Embedded devices are commonplace, and

many are expected to respond to users in real-time. Such devices are often categorized

as real-time embedded systems as they differ from other embedded systems in that work

performed by a real-time embedded system must be scheduled such that timeliness can be

provided to the user (e.g. when someone is talking on a phone, the phone needs to be able

to schedule the sending and receiving of data in a timely manner such that the conversation

is intelligible). Further, for real-time embedded systems that perform life-critical functions

(e.g. medical equipment, avionics instruments, military devices, et cetera), scheduling must

be able to guarantee that all of the work can be performed in the required amount of time.

These systems are often referred to as Hard Real-Time Systems (HRTS).

Due to the increase in popularity of multi-core processors, many real-time embedded

systems have transitioned from a single core processor architecture to a multi-core archi-

tecture. Unfortunately, similar to how scheduling tasking for a group of people is more

complicated than scheduling tasking for just one person, the transition to a multi-core

architecture has proven to be a difficult problem for scheduling.



v

Further, energy efficiency is a major design metric in many HRTS, and to obtain

energy savings, most embedded systems use dynamic voltage and frequency scaling (DVFS).

With DVFS, the processing cores on the multi-core processor can increase and decrease its

voltage and frequency to change its energy consumption. Although reducing the voltage

and frequency also reduces the amount of work that can be accomplished, typically the

relationship between work and energy consumption is quadratic such that reducing the

frequency by two reduces energy consumption by four. As such when a processing core

only has a little bit of work to be completed, the voltage and frequency can be reduced to

allow the core to operate slower and consume significantly less energy. Conversely, when

the workload is high, the core can increase its voltage and frequency to be able to meet

its schedule. Unfortunately, as clock frequencies have increased and transistors have gotten

smaller, being able to implement DVFS in a multi-core processor has gotten more difficult.

To mitigate this difficulty, multi-core processors often use a voltage and frequency island

(VFI) to implement DVFS, where multiple processing cores reside on a single VFI. Although

a VFI does simplify the implementation of DVFS on a multi-core processor, it also causes

that all of the cores on the VFI must operate at the same voltage and frequency; which

further complicates scheduling.

To be able to guarantee scheduling for HRTS in an energy efficient manner in the pres-

ence of VFI, we propose EDF-hv. Simulation results revealed that, when applied correctly,

EDF-hv can reduce system energy consumption by 15.9% on average and up to 61.6%.



vi

I dedicate this work to Science.



vii

Acknowledgments

We gratefully acknowledge funding and other support from the Naval Air Warfare
Center Weapons Division for this work.



viii

Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Public Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Semi-partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Earliest Deadline First Optimal Semi-Partitioned Scheduling (EDF-os) . . . 6

3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Energy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Quantifying Imbalance and VFI Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 VFI Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Worst-Case VFI Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Best-Case VFI Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 EDF-hv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Partitioning for a Load-Balance . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Guaranteeing Deadlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 VFI Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 EDF-hv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.2 Performance of EDF-hv . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.3 TI C66x DSP Case-Study . . . . . . . . . . . . . . . . . . . . . . . . 36



ix

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A Handling Oversized Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.1 Bounds with Oversized Tasks . . . . . . . . . . . . . . . . . . . . . . 46
A.2 Methods to Handle Oversized Tasks . . . . . . . . . . . . . . . . . . 51
A.3 Best Method for Handling Oversized Tasks . . . . . . . . . . . . . . 61



x

List of Tables

Table Page

5.1 Example periodic task set (left) with EDF-os partition onto a system with
two cores (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Utilization of cores for the task set in Table 5.1 when migrating tasks are
and are not present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Reduction in imbalance with the correlated reduction in VFI cost for the
given system utilization based on the average of two, four, and eight cores
per VFI. The average over the system utilizations shows a nearly one-to-one
correlation between imbalance and VFI cost. . . . . . . . . . . . . . . . . . 31

A.1 Comparison of methods to handle oversized task using the metrics described
in Section A.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



xi

List of Figures

Figure Page

3.1 Example of the limitations on static power management imposed by VFI.
Consider a processor with sixteen cores on four homogeneous VFI (i.e. each
VFI has four cores). Suppose at some time, the task set requires only six
cores, shown in orange, to guarantee deadlines. With four cores per VFI, to
ensure six cores are available, two VFI must be powered on. Unfortunately,
powering on two VFI means the system has eight operating cores consuming
energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 The maximum VFI cost (Equation 4.7) as a function of the number of cores
(M) by the minimum frequency (f1) that the VFI can reduce to (as a per-
centage of the maximum frequency, fK) assuming a pure CMOS circuit (i.e.,
wk ∝ f3

k ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Partitioning the task set, η (top left), where each task is represented by its
utilization, onto the set of cores, P (top right), using the WFD (or EDF-
os; bottom left) and EDF-hv (bottom right). EDF-hv restricts the available
capacity of each core to Φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.1 Average VFI cost (left) and imbalance (right) for two (top), four (middle),
and eight (bottom) cores, as a function of the average number of tasks per
core (i.e., N/M) and system utilization. . . . . . . . . . . . . . . . . . . . . 29

6.2 Combined average VFI cost (left) and imbalance (right) (i.e., combined av-
erage of two, four, and eight cores per VFI), as a function of the average
number of tasks per core (i.e., N/M) and system utilization. . . . . . . . . . 30

6.3 Combined average VFI cost (left) and imbalance (right) for the average num-
ber of tasks per core (N/M) by the system utilization. . . . . . . . . . . . . 30

6.4 Combined average VFI cost (left) and imbalance (right) for the system uti-
lization by the average number of tasks per core (N/M). . . . . . . . . . . . 30

6.5 Reduction in energy consumption (i.e. performance) of EDF-hv compared
to WFD versus the imbalance of WFD for two- and four-core systems with
one VFI and task sets with 1.5, 2.0, 2.5 and 3.0 average number of tasks per
core (i.e., N/M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



xii

6.6 Reduction in energy consumption (i.e. performance) of EDF-hv compared
to WFD versus the imbalance of WFD for four- and eight-core systems with
one VFI and task sets with 1.5, 2.0, 2.5 and 3.0 average number of tasks per
core (i.e., N/M). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.7 Reduction in energy consumption (i.e. performance) of EDF-hv compared
to WFD versus the imbalance of WFD for a four-core system with one VFI
using the frequency profile of the TI C66x DSP and task sets with 1.5, 2.0,
2.5 and 3.0 average number of tasks per core (i.e., N/M). . . . . . . . . . . 37

A.1 An example of cascading oversized tasks. The original task set, η (top; where
each task is represented by its utilization), has only one oversized task, τ1.
When τ1 is pre-partitioned, τ2 becomes an oversized task in η

′
, even though

τ2 was not an oversized task in η. Further, when τ2 is pre-partitioned, τ3

becomes oversized in η
′′
. At this point, the system has (M − 1) = (4 −

1) = 3 oversized task (i.e. the maximum number of oversized tasks in a 4
core system) in the system. Thus, η

′′′
does not have oversized tasks, so the

remaining tasks are assigned to the remaining core (bottom). . . . . . . . . 53

A.2 An example of horizontal multi-partitioning (HMP). The original task set, η
(top; where each task’s utilization is shown), has one oversized task, τ1. As
such, η is divided into two subsets, ηA and ηB, as well as P is also divided into
two subsets, PA and PB (middle). Although the resulting subsets no longer
have any oversized task, the system is clearly not load-balanced (bottom). . 60



xiii

Acronyms

CMOS Complementary Metal-Oxide Semiconductor

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EDF Earliest Deadline First

EDF-fm Earliest Deadline First Fixed or Migrating

EDF-hv Earliest Deadline First for Hard Real-Time Systems with Voltage

and Frequency Islands

EDF-os Earliest Deadline First Optimal Semi-Partitioned Scheduling

HRTS Hard Real-Time Systems

HMP Horizontal Multi-Partitioning

LADVS Look-Ahead Dynamic Voltage Scaling

P-Fair Proportionate Fairness

TI Texas Instrument

v/f Voltage and Frequency

VFI Voltage and Frequency Islands

VMP Vertical Multi-Partitioning

WCET Worst-Case Execution Time

WFD Worst-Fit Decreasing



1

Chapter 1

Introduction

Scheduling tasks is an intrinsic design consideration for real-time systems that obliges

attaining the desired confidence level that tasks will complete on time, or at least complete

within an acceptable tardiness. For the class of hard real-time systems (HRTS), scheduling

must guarantee that all deadlines will complete on time. A wealth of knowledge exists for

how to schedule HRTS in a single-core environment [1–5], and the Earliest-Deadline-First

(EDF) scheduling algorithm has been shown to be optimal [1]. However, guaranteeing

deadlines in an environment with multiple cores [6–12] is still an area of on-going research.

In fact, for multi-core HRTS, often partitioned scheduling [6] is used, as it leverages the

existing knowledge for scheduling in a single-core environment since each task is assigned

to only one core and task migration is prohibited, i.e., each core operates as a single core.

In addition to meeting deadlines, scheduling is also a driving force behind dynamic

voltage and frequency scaling (DVFS). DVFS enables a processing core to operate at mul-

tiple power states, where each power state is defined by a voltage and frequency (v/f) pair.

When a core has low workload/utilization, the core can reduce its v/f pair, thereby oper-

ating at a lower voltage and improving energy efficiency. Conversely, when a core has high

workload/utilization, it can operate at a high v/f pair so that deadlines can be guaranteed.

Typically, DVFS is implemented in a way that it works in tandem with the scheduling to

determine the utilization level and corresponding v/f pair.

Unfortunately, one of the shortcomings of partitioned scheduling is that since each task

is assigned in its entirety to one core, the workload of the task set is typically distributed

across the available cores in a non-uniform or imbalanced manner (i.e., the cores in the

multi-core system are assigned different utilizations). We will show later in this thesis that

such imbalance in core utilization can be significant. While an imbalance may be benign as



2

deadlines can still be guaranteed, it can be costly from the perspective of energy efficiency.

Specifically, some cores will need to operate at a higher v/f pair. Although it may seem that

assigning some cores a higher utilization means that the other cores have a lower utilization,

and thus the total energy is conserved, because the relation between voltage and energy is

quadratic, the additional energy consumption to have some of the cores operate at a higher

v/f pair exceeds the energy saved by the other cores operating at a lower v/f pair. From the

perspective of energy efficiency, it is hence desirable that all operating cores are assigned

the same utilization, a property referred to herein as load-balanced.

To make matters worse, implementing DVFS requires that each core has an independent

clock and power supply, which, due to shrinking technology nodes, increased clock speeds,

and an increase in the number of processing cores, has become increasingly difficult to

realize. To overcome this difficulty, Choudhary and Marculescu proposed the concept of a

voltage and frequency island (VFI) [13]. A VFI simplifies the implementation of DVFS by

driving multiple cores with a single clock and power supply (i.e., each island has one clock

and one power supply distributed to multiple cores). The use of VFI is commonplace in

modern multi-core processors. However, one of the drawbacks of VFI is that the cores can

no longer set their v/f pair independently of the VFI (i.e., each core must operate at the

v/f pair of its VFI) [14], which can reduce the effectiveness of DVFS to save energy. To

guarantee deadlines when multiple cores are on a single VFI, the v/f pair of the VFI must

be set to the highest v/f pair needed by any of the cores on that VFI. This means that if

at least one core on a VFI has a higher utilization than the others, all the cores on that

VFI must operate at the increased v/f pair so that the core with a higher utilization can

guarantee to meet all of its deadlines. Subsequently, the energy consumption is increased

since some cores must now operate above their needed voltage and frequency. Such an

increase in energy consumption is referred to herein as the VFI cost.

To mitigate the effects of imbalance in multi-core HRTS that implement DVFS with

multiple cores on a single VFI, we propose a scheduling heuristic called Earliest Deadline

First for HRTS with VFI (EDF-hv) that attempts to load-balance hard real-time tasks on



3

a multi-core processor. The main contributions of this work are as follows.

• Formal definitions of the concept of imbalance and VFI cost are given and best- and

worst-case bounds on the VFI cost are derived.

• A scheduling heuristic, namely EDF-hv, which is suitable for HRTS, is presented to

improve the energy efficiency of the system in the presence of VFI.

• Simulation results pertaining to VFI cost, approximating the average behavior, are

shown with its correlation to system imbalance.

• Simulation results that allow the performance of EDF-hv to be assessed are presented

and a classification of the types of systems that will benefit from EDF-hv is described.

• Finally, in Appendix A, oversized tasks, which are an artifact of EDF-hv, are for-

mally defined as well as bounds on oversized tasks are derived and methods to handle

oversized tasks are presented.

The rest of this thesis is organized as follows. In Chapter 2, the related work is

presented. Chapter 3 provides the system model. The definitions of imbalance and VFI

cost with theoretical maximum and minimum limits are described in Chapter 4. To mitigate

the effects of VFI cost, we introduce EDF-hv in Chapter 5. Chapter 6 presents simulation

results pertaining to VFI cost as well as the increase in energy efficiency as obtained by

EDF-hv. Chapter 7 concludes this thesis and presents future research directions. Finally,

Appendix A explores an artifact of EDF-hv, referred to herein as “oversized tasks”.



4

Chapter 2

Related Works

The related work will be presented in three major categories. First, we will present a

brief overview of power management and explain its static and dynamic components. Next,

the concepts of global, partitioned, and semi-partitioned scheduling will be discussed. Fi-

nally, we will review the portion of the semi-partitioning heuristic that is especially relevant

to this work.

2.1 Power Management

We have introduced the concept of DVFS previously; however, DVFS is only a portion

of managing power for energy efficiency [14–29]. As explained in [15, 16], the power con-

sumption of real-time systems can be broadly divided into two categories: static power and

dynamic power. Static power arises from the leakage current, which is the result of tran-

sistors constantly conducting a small amount of current even when they are static/inactive

(i.e. when the transistors are not changing between low and high states). Dynamic power

is primarily the result of charging and discharging the load capacitance as the transistors

change between high and low states as required for computation. Typically, techniques to

reduce energy consumption focus on reducing either static or dynamic power and, since

static power now dominates energy consumption [14], it is common for designers to first

apply appropriate techniques to efficiently manage static power, and then to apply appro-

priate techniques to efficiently manage dynamic power. This thesis focuses on reducing

dynamic power and is intended to work in conjunction, not competition, with techniques

to reduce static power [14–21].

The primary method used to minimize dynamic power is DVFS [15]. Many DVFS

algorithms exist that are suitable for real-time systems [22–25]. The work in [22] presented



5

three increasingly aggressive DVFS algorithms that leverage knowledge of the task set and

already completed tasks in order to set the v/f pair in a way that guarantees deadlines. The

most aggressive of these techniques is called look-ahead dynamic voltage scaling (LADVS),

which attempts to delay execution as long as possible with the expectation that some tasks

will complete early, and thus the core voltage and frequency may not need to be increased

to meet the deadlines. The work in [23] and [24] proposed using probabilistic knowledge of

the task set to predict the execution time of each task. In [23], the authors considered a

task model where each task has a set of possible execution times and each of these possible

execution times in the set has a probability of occurrence. Thus, based on this profile,

the execution behavior can be predicted. Additionally, while [23] and [24] both placed an

emphasis on maintaining a high level of timeliness, [24] specifically attempted to maintain

a defined level of reliability. Unfortunately, since both works rely on probabilistic models,

neither is suitable for HRTS. The work in [26] also attempted to use a probabilistic method

suitable for HRTS, but under the added complexity that the task set is uncertain. In this

case, the probabilistic method pertains to HRTS only because, under the assumption of

an uncertain workload, no deadlines can fully be guaranteed. It is significant to note that

while some existing DVFS-based algorithms are suitable for HRTS, all consider DVFS in a

single core environment or on multi-core systems where each core is its own VFI [22–29].

2.2 Semi-partitioning

The work in [30] categorizes multiprocessor real-time scheduling algorithms as global,

partitioned, or a hybrid of the two. These scheduling algorithms are classified based on

the amount of task migration that is allowed among the cores. As mentioned previously,

partitioned scheduling prohibits migration and, conversely, global scheduling permits unre-

stricted migration. Further, [30] calculated how much of the system’s total capacity the task

set can require while still guaranteeing to produce a valid schedule. Partitioned scheduling

minimizes scheduling overhead, as there is no task migration, and has been shown to be

able to guarantee deadlines using EDF, however, for partitioning heuristics, if the task set

will use more than approximately 50% of the capacity of a system, the task set is not guar-



6

anteed to be schedulable. On the other hand, global scheduling can schedule up to 100% of

the systems capacity; however the scheduling overhead is increased and deadlines are not

guaranteed by EDF.

In an attempt to get the best of partitioned and global scheduling, a hybrid approach to

scheduling that allows restricted task migration has been developed [31–37] and is typically

referred to as semi-partitioning. In semi-partitioning, limited task migration is permitted

for specific tasks while other tasks are fixed only to execute on an assigned core. In this

thesis, we follow the semi-partitioning heuristics proposed by Anderson et. al. in [32, 37].

The work in [32] presents EDF-fm, a semi-partitioning algorithm that guarantees feasibility

up to 100% of the system capacity with the restriction that no single task can have a

utilization greater than 50% of a single core. In [37], EDF-fm was extended to EDF-os,

which removes the per task utilization requirements, i.e., tasks can have a utilization up to

100% of a single core. Neither of these semi-partitioning heuristics can guarantee deadlines;

however, both have a bound on the how late the tasks can be, referred to as bounded

tardiness. Further, in both EDF-fm and EDF-os, for migrating tasks, to reduce migration

overhead, the task can only migrate from one core to another after a job/iteration of the

task has fully completed, a property referred to herein as boundary-limited.

2.3 Earliest Deadline First Optimal Semi-Partitioned Scheduling (EDF-os)

EDF-os [37] is designed for periodic tasks on a homogeneous multi-core system. As a

semi-partitioning algorithm, task are either fixed (i.e., the task is assigned to execute on

only one core) or migrating (i.e., the task is assigned to execute a defined share of jobs on

a subset of the cores). In EDF-os, tasks are partitioned in two steps. In the first step, as

many tasks as possible are assigned to one of the cores as fixed tasks using the worst-fit

decreasing (WFD) heuristic [6]. When a task is encountered that cannot be assigned to

a core using WFD, the second part of the partition begins. In the second step, using a

next-fit-like heuristic (note that tasks are still in decreasing order), the remaining tasks are

assigned a share on cores that still have available capacity until the complete utilization of

the task is allotted. Under EDF-os, a migrating task can execute on more than two cores;



7

however, each core is limited to a maximum of two migrating tasks. After the tasks have

been partitioned, the migrating tasks will execute the defined share of jobs on each of its

cores and migration is determined with a proportionate fairness (p-fair) algorithm [38, 39].

Fixed tasks are prioritized using EDF while migrating tasks have fixed priority over fixed

tasks. Additionally, on cores that have two migrating tasks, one migrating task has a

fixed priority over the other. Due to the method in which tasks are assigned to the cores,

Anderson et al. were able to derive tardiness bounds for the tasks [37].



8

Chapter 3

System Model

As this thesis focuses on reducing dynamic power consumption for improved energy

efficiency, in this chapter, we will first present the system model and then discuss its impli-

cations for energy efficiency.

3.1 System Model

We consider a periodic task set, η = {τ1, τ2, ..., τN}, of N independent tasks to be

scheduled on a homogeneous multi-core system with M identical processing cores, P =

{p1, p1, ..., pM}, on a set of I VFI, Γ = {γ1, γ2, ..., γI}, where N, M, and I are positive

integers. The system must have at least one VFI and, since the system is homogeneous,

each VFI, γl, must have the same number of cores on it. For ease of discussion, Pl is the

subset of cores on γl and Ml is the number of cores in Pl. Further, since this work considers

multi-core systems with multiple cores per VFI, M ≥ Ml > 1.

Each VFI can adjust its voltage independently of the other VFI to operate at a set

of K discrete frequencies, λ = {f1, f2, ..., fK} such that f1 < f2 < ... < fK, where f1 is

the minimum/slowest frequency and fK is the maximum/fastest frequency. For the sake

of clarity, scheduling is described in terms of quanta of execution, where each quantum is

the number of clock cycles sufficient to yield a reasonable unit of execution for scheduling

(While the proper selection of a quantum size is an important aspect of scheduling, it is out

of the scope of this work.). As such, each frequency, fk, represents the number of quanta

per second.

When a VFI is operating at frequency fk, each core on the VFI has a corresponding

dynamic power consumption of wk. As such, there is a set of K power consumption levels

W = {w1, w2, ..., wK}, referred to herein as power states, that correspond with the set of



9

frequencies in λ and 0 < w1 < w2 < ... < wK.

Each task, τi, is defined by a worst-case execution time (WCET), Ci, a period, Ti,

a relative deadline, Di, a utilization, ui, and a profile of execution, xi. The WCET is

the absolute maximum number of quanta required for the task to complete and includes

overhead due to context switches, etc. The period is the time, in seconds, for how often the

task must execute. The deadlines of each task for this work are implicit, i.e., Ti = Di; the

task must complete before the start of the next period. The utilization, ui, is the share of

a core’s utilization that the task must be allotted in order to meet its deadline and can be

calculated by:

ui =
Ci

fK · Ti
. (3.1)

The utilization of each task is restricted to 0 < ui ≤ 1 , i.e., a task must require a

positive non-zero utilization, but no single task can require more that the total capacity of

a single core. The profile of execution follows the probabilistic model proposed in [23] such

that xi, is a set of Xi potential execution times, cα, with their probability of occurrence, ρα.

As such, xi = {(ρ1, c1), (ρ2, c2), ..., (ρXi , cXi)}, Xi > 0, and c1 < c2 < ... < cXi = Ci. Also,

Xi∑
α=1

ρα = 1. (3.2)

Additionally, tasks in the task set are sorted in non-decreasing order of utilization such

that:

u1 ≥ u2 ≥ ... ≥ uN. (3.3)

Since the task set, η, will be scheduled on the set of cores, P , the system utilization,

U, is the sum of the utilization of the tasks and can be calculated as:

U =
N∑
i=1

ui. (3.4)

In order to guarantee deadlines with EDF, the cores cannot be overloaded. Hence, U ≤ M.



10

During partitioning, the tasks are partitioned to the cores such that the task set, η, is

divided into task subsets where each subset ηj is assigned to core pj . However, following

the EDF-os [37] semi-partitioning heuristic, each task is assigned a share, si,j , on each core

such that:
M∑
j=1

si,j = ui. (3.5)

Note that shares can be zero and some tasks may have only one non-zero share. Such tasks

are referred to as fixed tasks. Conversely, tasks that have a non-zero share on more than

one core are considered migrating tasks. As mentioned, migrations are boundary limited

and determined by p-fair [38,39]. Thus, all jobs of a fixed task will execute on a single core,

i.e., the fixed task do not migrate, while the jobs of a migrating task will migrate between

cores with a non-zero share such that the number of jobs executed on each core is equal to

the share assigned to that core. Therefore, the utilization of each core Uj , is:

Uj =
N∑
i=1

si,j . (3.6)

For ease of discussion, ηj is the subset of tasks with a non-zero share on pj , and Nj is the

number of tasks in ηj .

3.2 Energy Considerations

As mentioned in Chapter 2, power management typically considers both static and

dynamic power separately, and, since energy consumption is dominated by static power,

typically techniques to manage static power are applied first and then dynamic power is

managed. As such, in the system model, P and Γ do not necessarily represent the entire

set of available cores and VFI of the hardware. Since HRTS are typically greatly over

designed, generally it is not efficient to manage the energy solely from the perspective of

dynamic power. In the interest of energy efficiency, typically as many cores as possible

would be shut-off using power-gating or at least set in low-power modes [15, 16]. However,

since VFI limit the control to the operating cores, often the hardware cannot power-gate



11

16 Core ProcessorVcc

γ3

p11 p12

p9 p10

γ4

p15 p16

p13 p14

γ2

p7 p8

p5 p6

γ1

p3 p4

p1 p2

Fig. 3.1: Example of the limitations on static power management imposed by VFI. Consider
a processor with sixteen cores on four homogeneous VFI (i.e. each VFI has four cores).
Suppose at some time, the task set requires only six cores, shown in orange, to guarantee
deadlines. With four cores per VFI, to ensure six cores are available, two VFI must be
powered on. Unfortunately, powering on two VFI means the system has eight operating
cores consuming energy.

each core separately, but rather to each VFI. Consider the example shown in Figure 3.1.

The system has four VFI, each with four cores. For a given time, suppose the task set has a

utilization of U = 5.8. In this case, since the utilization is greater than five, a minimum of

six cores is required to execute the task set in a way that deadlines can be guaranteed with

EDF. However, since there are four cores per VFI, the system cannot turn on exactly six

cores. Thus, eight cores must be turned on, meaning M = 8 and I = 2. In this case, since

eight cores must be turned on in order to guarantee deadlines, it is advantageous from the

perspective of energy efficiency to have each core operate with a utilization of Uj = 0.725

(i.e. load-balanced), rather than have five cores operate at U1 = U2 = U3 = U4 = U5 = 1,

the sixth core operate at U6 = 0.8, and the remaining two cores be idle.

A second energy efficiency consideration is the implications of the minimum available

frequency and power state, i.e. f1 and w1, respectively. It has been shown in [14] that

there is a point at which reducing the v/f pair of the cores on a VFI actually increases total

energy consumption. This happens because reducing the v/f pair means that the cores must

operate for a longer period of time to accomplish the same amount of work. Thus, more



12

energy is consumed by the static power from keeping the cores operating for a longer period

than is conserved by the dynamic power in reducing the v/f pair. Unfortunately, this point

assumes that the cores on a VFI could be shut off or otherwise set in low-power modes as

soon as work is completed, which may not always be possible (the reasoning is explained

further in the next paragraph). As such, to maintain energy efficiency, f1 and w1 may not

necessarily correspond to the lowest v/f pair available in the system, but rather may be set

to a higher v/f pair based on the behavior of the task set.

Finally, during run time, tasks may complete in less than their WCET, which can

cause there to be periods where there are no tasks to be executed, and thus, the core is idle

(or, as mentioned in the preceding paragraph, the core may be idle as a result of the v/f

pair being set to a v/f pair above the hardware’s minimum capabilities in order to reduce

static power consumption). Further, when a core is idle, since tasks are periodic, each core’s

scheduler knows how long until the next task will be available to execute. Although using

static power management during idle periods is ideal, there are two practical restrictions.

First, since DVFS can typically manage the dynamic power at a rate significantly faster

than power-gating or low-power modes can (e.g. changing the v/f pair takes significantly

less time than power-gating a VFI), the idle periods must be sufficiently long for static

power methods to be implemented. Second, since the VFI limits the control of static power

methods to each VFI, using static power techniques during idle periods is only possible if

all cores on the VFI are experiencing idle periods.

Therefore, in addition to limiting the effectiveness of DVFS, the presence of VFI can

also limit the effectiveness of static power management techniques. In this way, the number

of operating cores may be less than optimal for static power management as well as static

power techniques may be limited, and thus, improved dynamic power management is ad-

vantageous. For this reason, dynamic power is still an important consideration for energy

efficiency in HRTS.



13

Chapter 4

Quantifying Imbalance and VFI Cost

We now consider the imbalance and the VFI cost. As has been mentioned previously,

imbalance occurs in pure partitioning heuristics when some cores in a multi-core system are

assigned a greater workload than others. VFI cost is the increase in energy consumption

that occurs when one or more cores on a VFI operate at a v/f pair above that which is

necessary to guarantee deadlines because another core on the VFI needs the increased v/f

pair to guarantee deadlines. In this chapter, we will formally define the imbalance and the

and VFI cost as well as present a best- and worst-case analysis of the VFI cost. In later

chapters, we will show the correlation between imbalance and VFI cost.

4.1 Imbalance

To achieve an ideal load-balance on the system, each core should be assigned the same

utilization. The utilization, Φ, that each core needs to be assigned in order to attain a

load-balance can be calculated by:

Φ =
U

M
. (4.1)

Unfortunately, since the utilization of each task can be any value which is greater than zero

but less than or equal to one, there is no guarantee that the tasks can be partitioned in

such a way to achieve a load-balance. Further, while the WFD heuristic does approach a

load-balanced partition, and thus is often used for energy-efficiency, it is not guaranteed to

find a load-balanced solution, even if one exists. Formally, the imbalance, φ, is the amount

by which the utilization of the cores differs from the ideal load-balance:

φ =

∑M
j=1

|Φ−Uj |
Φ

M
=

∑M
j=1 |Φ− Uj |

U
. (4.2)



14

4.2 VFI Cost

The VFI cost is the amount of energy consumed as a result of one or more cores

operating at a v/f pair that is higher than is necessary (Recall the VFI must operate at the

highest v/f pair required by any of the cores on it.). More formally, for a period of T quanta,

[0,T), on a given VFI, γl, for each quantum, t, each core in Pl will calculate an optimal

operating frequency using some DVFS-based scheduling algorithm such as LADVS [22].

Next, γl will set its frequency to the maximum of the frequencies calculated by the cores

in Pl. Let the optimal frequency, fo, calculated by each core at quantum t be denoted by

fo(j, t), with the corresponding power state given by wo(j, t). In addition, let the frequency

set by γl be fV FI(l, t), with the corresponding power state given by wV FI(l, t). The VFI

cost, Ψ, for a single quantum, denoted as Ψ(t), can be calculated as:

Ψ(t) =

∑M
j=1[wV FI(l, t)− wo(j, t)]∀pj ∈ Pl

Ml · wV FI(l, t)
. (4.3)

Since the VFI cost of the system is simply the average of all VFI in the system over all of

the quanta, the VFI cost can be calculated by:

Ψ = (I · T)−1
I∑
l=1

T−1∑
t=0

∑M
j=1[wV FI(l, t)− wo(j, t)]∀pj ∈ Pl

Ml · wV FI(l, t)
. (4.4)

Now, since the value of wV FI(l, t) and wo(j, t) for any value of t are in the power state

set W and wV FI(l, t) ≥ wo(j, t), then:

wV FI(l, t) > wV FI(l, t)− wo(j, t).

Thus,

Ml · wV FI(l, t) >
M∑
j=1

[wV FI(l, t)− wo(j, t)]∀pj ∈ Pl. (4.5)

As a result, the VFI cost is strictly less than one. Additionally, from Equation 4.4, it is

possible to determine worst- and best-case VFI cost, as described next.



15

4.2.1 Worst-Case VFI Cost

The maximum VFI cost will occur when the difference between the set VFI power state

wV FI(l, t) and the cores power state wo(j, t) is largest for all of the cores on the VFI for

all quantum. The maximum possible value of wV FI(l, t) is wK, and the minimum possible

value of wo(j, t) is w1, however, wV FI(l, t) can only be wK if the value of wo(j, t) = wK for

at least one core on the VFI. Thus, the maximum VFI cost at a single quantum t, denoted

as Ψmax(t), will occur when wo(j, t) = wK for only one core and wo(j, t) = w1 for all other

cores. Therefore, the maximum VFI cost for a single quantum is:

Ψmax(t) =

∑Ml−1
j=1 [wK − w1]

Ml · wK

Ψmax(t) =
(Ml − 1)(wK − w1)

Ml · wK

Ψmax(t) =
Ml · wK − wK −Ml · w1 + w1

Ml · wK

Ψmax(t) = 1− wK + (Ml − 1)w1

Ml · wK
. (4.6)

Since the maximum VFI cost, Ψmax, will be achieved when all quanta are at the maximum

for all VFIs in the systems, substituting Equation 4.6 into Equation 4.4 produces:

Ψmax = (I · T)−1
I∑
l=1

T−1∑
t=0

(
1− wK + (Ml − 1)w1

Ml · wK

)

Ψmax = (I · T)−1
I∑
l=1

(
1− wK + (Ml − 1)w1

Ml · wK

)T−1∑
t=0

1

Ψmax = T(I · T)−1

(
1− wK + (Ml − 1)w1

Ml · wK

) I∑
l=1

1

Ψmax = I · I−1

(
1− wK + (Ml − 1)w1

Ml · wK

)

Ψmax = 1− wK + (Ml − 1)w1

MlwK
. (4.7)



16

50% 60% 70% 80% 90% 2
4

6
8

20%

40%

60%

80%

Minimum Frequency Cor
es

per
VFIM

ax
im

u
m

V
F

I
C

os
t

Fig. 4.1: The maximum VFI cost (Equation 4.7) as a function of the number of cores (M) by
the minimum frequency (f1) that the VFI can reduce to (as a percentage of the maximum
frequency, fK) assuming a pure CMOS circuit (i.e., wk ∝ f3

k ).

Thus, the maximum VFI cost of the system is the same as the maximum VFI cost of a

single quantum. The maximum VFI cost is shown in Figure 4.1 for 2 to 8 cores per VFI,

assuming a pure CMOS circuit, i.e., wk ∝ f3
k , for systems that can reduce the frequency

from 95% of the maximum to 50% of the maximum (currently, most cores can reduce to

about 70% of the maximum frequency).

4.2.2 Best-Case VFI Cost

Conversely, to achieve the minimum VFI cost, Ψmin, the difference between wV FI(l, t)

and wo(j, t) must be minimized for all of the cores on each VFI for all quanta. This will

occur when wV FI(l, t) = wo(j, t). Using Equation 4.4 when wV FI(l, t) = wo(j, t):

Ψmin(t) = (I · T)−1
I∑
l=1

T−1∑
t=0

∑M
j=1(0)

Ml · wV FI(l, t)
= 0. (4.8)

Therefore, it is possible for there to be no VFI cost regardless of whether the system is

operating at its maximum, minimum, or any other power state.



17

Chapter 5

EDF-hv

EDF-hv modifies the partitioning process of EDF-os to load-balance a system instead

of guaranteeing feasibility up to 100% of the system’s capacity. With this modification,

EDF-hv then extends the scheduling procedure of EDF-os to guarantee deadlines instead

of providing tardiness bounds. In this chapter, we first present the partitioning process of

EDF-hv. We then describe the modifications to the task scheduling process. We end this

section with some important properties of EDF-hv and provide a proof that EDF-hv can

guarantee hard real-time deadlines.

5.1 Partitioning for a Load-Balance

EDF-hv follows the partitioning process of EDF-os with two main modifications in

order to achieve a load-balance. First, we restrict the available capacity of each core to be

no more than Φ. Second, since no task can have a utilization greater than that of a core’s

capacity in order to guarantee feasibility, it is also necessary to restrict the utilization of

each task such that ui ≤ Φ (considerations for task sets with task that have a ui > Φ,

referred to as oversized tasks, are presented in Appendix A). An example comparing the

partition of EDF-hv to WDF and EDF-os is shown in Figure 5.1. In this example, there are

six tasks to be partitioned onto four cores. With WFD, one task is assigned to each core,

until all of the cores have one task. Next, the remaining two tasks are assigned to the cores

with the lowest utilization. Since all of the tasks can fit onto the cores, the second step of

the partitioning process is not initiated, and, thus, the partition is the same for EDF-os

as it is for WFD (recall that EDF-os is designed to increase feasibility, not to improve the

load-balance). In contrast, with EDF-hv, the capacity of each core is restricted to Φ such

that, after the initial four tasks have been assigned, the remaining two tasks will no longer



18

τ1 τ2 τ3 τ4 τ5 τ6

η
p1 p2 p3 p4

P

p1

τ1

p2

τ2

p3

τ3

τ6

p4

τ4

τ5

P

WFD/EDF-os

p1

τ1

τ5

p2

τ2

τ5

p3

τ3

τ5
τ6

p4

τ4

τ6
Φ

P

EDF-hv

Fig. 5.1: Partitioning the task set, η (top left), where each task is represented by its
utilization, onto the set of cores, P (top right), using the WFD (or EDF-os; bottom left)
and EDF-hv (bottom right). EDF-hv restricts the available capacity of each core to Φ.

fit into the remaining available capacity of each core and thus, the remaining two tasks are

assigned as migrating tasks with shares on multiple cores.

Since EDF-hv follows the partitioning process of EDF-os, EDF-hv can now guarantee

that the resultant partition to be load-balanced since EDF-os can guarantee feasibility up

to 100% of the system’s capacity; as stated by the following theorem.

Theorem 1. Given a task set η where ui ≤ Φ, i = 1, ...,N, and a set of M cores, EDF-hv

partitions the tasks among the cores in such a way as to achieve a load-balance.

Proof. As previously mentioned, Anderson et al. showed that the partitioning process of

EDF-os can guarantee feasibility with a system utilization bound of 100% while allowing

individual task utilization of up to 100% of a core’s capacity [37]. As such, for a system

where U = M, EDF-os guarantees that the system can be partitioned. Interestingly, in

this case, EDF-os also load-balances the system since each core must be assigned 100%

of its utilization, otherwise,
∑M

j=1 Uj < U = M (Note that, in this case, Φ = 1, which

is the utilization bound on the individual tasks.). The partitioning process of EDF-hv is

identical to that of EDF-os, with the exception of the two modifications. These restrictions

effectively induce the case where the task set utilization is equal to the available system



19

capacity, which EDF-os has already been shown to guarantee feasibility. Therefore, EDF-hv

is guaranteed to be load-balanced.

Caveat 1. Restricting the utilization of each task to ui ≤ Φ yields a circular definition that

can cause an invalid state. Consider Equation 4.1 and Equation 3.4:

Φ =
U

M
=

∑N
i=1 ui
M

.

Thus, if ui ≤ Φ, then:

ui ≤
∑N

i=1 ui
M

.

Considering the case of τ1:

u1 ≤
∑N

i=1 ui
M

.

M · u1 ≤ u1 + u2 + ...+ uN (5.1)

Recall that tasks are sorted in a non-decreasing order of utilization, i.e., the first task has the

largest utilization, and thus, Equation 5.1 yields that M times the largest utilization must

be less than or equal to the sum of N tasks. As such, Equation 5.1 is only true if N > M,

except in the case that N = M and u1 = u2 = ... = uN. Since assuming all tasks have the

same utilization is not very practical, EDF-hv therefore requires that N > M.

Lemma 1. Each core, pj, has at least one fixed task.

Proof. In EDF-hv N > M, Φ = U
M , and tasks are first partitioned using WFD. Under the

WFD heuristic, a task will be assigned to an empty core before a core will be assigned a

second task. Further, since all tasks have a utilization, ui ≤ Φ, it is guaranteed that at least

one task can fit on each core. Finally, since there are more tasks than cores (i.e., N > M),

each core must be assigned at least one fixed task.

Lemma 2. Each core, pj, has a maximum of two migrating tasks.



20

Proof. Following the proof for Property 3 of EDF-os in [37], it can be shown by induction

that during the partitioning process of EDF-hv, when assigning a migrating task to a core,

there can be at most one migrating task already assigned.

5.2 Scheduling

The reason that tardiness bounds can be derived in EDF-os, but deadlines cannot be

guaranteed is that cores with migrating tasks can be overloaded when migrating tasks are

executing. As an example, consider the periodic task set for a multi-core system with two

cores, as shown in Table 5.1. For simplicity, task periods are given in quanta to avoid having

to consider the frequency of the cores. The resultant EDF-os partition is shown on the right

side of Table 5.1. In this system, τ1 and τ2 are fixed tasks of p1 and p2, respectively, while

τ3 is a migrating task on both p1 and p2. Based on the shares of τ3 on p1 and p2, of every

eleven jobs of τ3, five will execute on processor p1, while six will execute on p2. Although

the assigned utilization of p1 and p2 is 100% each, p1 and p2 are overloaded when they

have to execute both their fixed and migrating tasks. Since all three tasks have the same

period, it is easy to see that during periods where p1 has only its fixed task, τ1, to execute,

it only needs 15 of the 20 quanta in that period, i.e., the utilization during this period is

only 15
20 = 75%. However, during periods where p1 has its fixed task, τ1, and its migrating

task, τ3, to execute, it must execute 15 + 11 = 26 cycles of 20, i.e., the utilization during

this period is 15+11
20 = 26

20 = 130%. Therefore, p1 is overloaded. Similarly, p2 is overloaded,

as shown in the Table 5.2. As such, in EDF-os, since the cores can be overloaded when they

have both their fixed and migrating tasks, deadlines cannot be guaranteed. However, since

the cores are not fully utilized when they do not have their migrating tasks, the cores can

“catch-up”, thus, the tardiness of deadlines can be bounded.

Therefore, for EDF-hv to guarantee deadlines, the cores must not be overloaded. An-

derson et. al. in [37] propose that EDF-os can be suitable for HRTS by increasing the

capacity of the system, e.g. increasing the number of cores, using cores with higher clock

speed, etc., until the tardiness bounds are zero. However, this approach is not ideal as the

tardiness bounds in EDF-os are not dependent on the task utilizations due to the priori-



21

Table 5.1: Example periodic task set (left) with EDF-os partition onto a system with two
cores (right).

Task Set Partition
Task WCET Period (Quanta) Utilization Task p1 p1

τ1 15 20 75% τ1 75% 0%

τ2 14 20 70% τ2 0% 70%

τ3 11 20 55% τ3 25% 30%

Table 5.2: Utilization of cores for the task set in Table 5.1 when migrating tasks are and
are not present.

Core Task Set Tasks Utilization

p1
Fixed Tasks τ1

15
20 = 75%

Migrating Tasks τ1, τ3
15+11

20 = 130%

p2
Fixed Tasks τ2

15
20 = 70%

Migrating Tasks τ2, τ3
14+11

20 = 125%

tization of the migrating tasks. For example, let us reconsider the task set in Table 5.1.

For p1 to not be overloaded, during a period where both τ1 and τ3 are on p1, since τ3 is a

migrating task, it must complete τ3 first, and then τ1 can execute. As such, the capacity

of p1 must increase to 11+15
20 = 130% (which is the value calculated in Table 5.2). However,

if the WCET and period of τ3 are increase to 22 and 40, respectively, even though the

utilization of the system remains constant, for periods when both τ1 and τ3 are on p1, the

capacity must increase to 22+15
20 = 185%. As such, prioritizing migrating tasks over fixed

task yields that guaranteeing deadlines is no longer solely a function of the utilization.

As a result, in EDF-hv, all tasks are scheduled with EDF, i.e., migrating tasks are

not prioritized over fixed tasks. Clearly, by changing the prioritization of the migrating

and fixed tasks, the tardiness bounds in [37] for EDF-os are no longer valid. However, as

will be proved next, tardiness bounds are not necessary for EDF-hv since deadlines can be

guaranteed.

5.3 Guaranteeing Deadlines

Even with all tasks being scheduled with EDF, task deadlines cannot be guaranteed

when a core is overloaded. In the previous section, it was shown that EDF-hv can load-



22

balance the task set on the cores. However, this is insufficient to guarantee deadlines,

because the utilization considered during the partitioning process, shown in Equation 3.6,

is the average utilization of each core. As has been discussed, the actual core utilization

fluctuates depending on whether the migrating task(s) are present. Thus, to guaranteed

deadlines, the core must not be overloaded even when experiencing the maximum utilization.

To determine the maximum utilization that a core can experience, recall that a fixed

task has a non-zero share equal to the task utilization on only one core, and migrating tasks

have more than one non-zero share less than the task’s utilization on the cores. However,

during execution, since migrations are boundary limited, each core will have to be able to

execute the complete utilization of each task assigned to it. As such, for cores with only

fixed tasks, the maximum utilization is simply the sum of the shares assigned to that core

as given by Equation 3.6. For cores with one migrating task, the maximum utilization is

the sum of the shares of the fixed tasks, plus the utilization of the migrating task. Finally,

for cores with two migrating task, the maximum utilization is, in the best-case, the sum of

the shares of the fixed tasks plus the utilization of the first migrating task (since the first

migrating task must have a utilization greater than or equal to the second migrating task

by Equation 3.3), or, in the worst-case, the sum of the shares of the fixed tasks plus the

utilization of both migrating tasks. The best-case for cores with two migrating tasks occurs

when the migrating tasks have migration patterns that ensure only one migrating task at a

time will be present on the core; otherwise, the worst-case will occur. Unfortunately, unless

the two migrating tasks have harmonic periods and both tasks have harmonic shares on

all of the cores with non-zero shares, simulation or another intensive calculation is required

to determine if the best-case or worst-case will occur. Thus, to simplify calculation, since

the maximum utilization can be bounded by the worst-case, the worst-case can be used.

Therefore, the maximum utilization that a core can experience is:

Ujmax =

Nj∑
i=1

ui∀τi ∈ ηj . (5.2)

For cores with only fixed tasks or cores with only one migrating task, Equation 5.2 is the



23

maximum utilization that a core can experience, however, for cores with two migrating

tasks, Equation 5.2 is an upper bound on the maximum utilization. Further, the maximum

utilization may only occur rarely (e.g. if a core with a single migrating task is assigned only

a hundredth share of the migrating tasks utilization, the maximum utilization will only

occur one out of a hundred iterations of the task), yet it is the upper limit on the utilization

that the core can experience. As such, even if the maximum utilization only occurs rarely,

to guarantee deadlines under all conditions, the maximum deadline must be less than or

equal to one.

Theorem 2. If Ujmax ≤ 1, all task deadlines are guaranteed under EDF-hv.

Proof. EDF is known to be able to guarantee deadlines on a core with a periodic task set

with implicit deadlines as long as the utilization of that processor is less than or equal

to one [1]. EDF-hv also assumes a periodic task set but allowing tasks to migrate at job

boundaries complicates the behavior of the task set. While cores with only fixed tasks have

a periodic task set with implicit deadlines, meaning deadlines can be guaranteed by the

properties of EDF, for a core with both fixed and migrating tasks, some share of the time

the migrating tasks will not be executing jobs on the core. However, when the migrating

tasks are executing on the cores, the jobs are released at period boundaries and have implicit

deadlines. In fact, the task will still have all the properties of a periodic task with implicit

deadlines, with the exception that for some periods, the execution time will be zero. Thus

the total utilization of a core with migrating tasks will always be less than or equal to the

maximum utilization. Therefore, since the maximum utilization of all fixed and migrating

tasks is less than or equal to one, deadlines can be guaranteed by EDF.

Therefore, in EDF-hv, guaranteeing deadlines is dependent on the maximum utilization

that any of the cores in the system can experience. The maximum utilization that any of

the cores in the system can experience can be bounded by the total system utilization.

Theorem 3. EDF-hv is guaranteed to satisfy Theorem 2 if U ≤ 1
3 .



24

Proof. Since EDF-hv will load-balance the system, the average utilization of each core will

be Φ, however, the maximum utilization that a core can experience is given by Equation 5.2.

From Lemma 1 and Lemma 2, each core is guaranteed to have at least one fixed task and at

most two migrating tasks. Further, from Equation 3.3, since fixed tasks are assigned before

migrating tasks, the fixed task on any core must have a utilization greater than or equal

to the utilization of the migrating tasks. From Theorem 1, the maximum utilization that a

task can have in EDF-hv is Φ. If a core is assigned a fixed task with a utilization of Φ, then

all of the core’s capacity is assigned, and thus, the core will not have any migrating tasks.

However, if a core is assigned a fixed task of slightly less than Φ, then the core can have up

to two migrating tasks. As such, the maximum utilization that a core can experience can

be bounded by:

Ujmax < 3Φ.

Thus, since by Theorem 2, to guarantee deadlines:

Ujmax ≤ 1→ 3Φ ≤ 1→ Φ ≤ 1

3
.

By Equation 4.1:

U

M
≤ 1

3

U ≤ M

3
.

Therefore, if the total task set utilization is less than or equal to one-third of the system

capacity, the system can guarantee deadlines.

Unfortunately, only utilizing one-third of the system’s capacity is not very practical

for energy efficiency as modern processors are unable to reduce their v/f pair below ap-

proximately 70%. Fortunately, Theorem 3 is the worst-case and thus is not applicable to

most systems (recall that Theorem 2 is sufficient to guarantee deadlines). However, it still

follows that a drawback of guaranteeing deadlines is that the actual feasibility of EDF-hv is

reduced as not every task set can satisfy Theorem 2. In fact, satisfying Theorem 2 actually



25

reduces the feasibility of EDF-hv to less than that of WFD, as described in the following

theorem.

Theorem 4. EDF-hv has lower feasibility than WFD.

Proof. Suppose a task set cannot be partitioned using WFD on to a multi-core processor.

This means that one or more tasks is large enough that, after at least the first M tasks

have been scheduled, they cannot fit onto any core without exceeding the core’s capacity.

In this case, under EDF-hv, the previously assigned tasks will become fixed tasks and then

the task(s) that did not fit on any single core in WFD will be assigned as migrating task(s).

Although this approach will satisfy the average utilization because the maximum utilization

is the sum of the fixed and migrating tasks, even if a core is only assigned one migrating

task, the maximum utilization will violate the capacity of the core since we know that the

migrating task did not fit inside the capacity of any of the cores (which is why it could not

be partitioned with WFD). Therefore, any system that cannot be partitioned with WFD

cannot be scheduled with EDF-hv and still guarantee deadlines. Further, it is trivial to show

by example that some systems can be partitioned by WFD, but not by EDF-hv. Therefore,

EDF-hv has lower feasibility than WFD.

While Theorem 4 indicates that EDF-hv has lower feasibility than WFD, it is more

energy efficient, as will be shown in Chapter 6.



26

Chapter 6

Simulation Results

While we have described the best- and worst-case VFI cost and proposed EDF-hv to

mitigate that cost, the best- and worst-case scenarios rarely occur in reality. Hence, we

conducted simulations to assess the average VFI cost, as well as the performance of EDF-

hv. We will show the simulation results of the average-case behavior of VFI cost first,

and then we will show the performance of EDF-hv, including a case-study using the Texas

Instrument (TI) C66x Multi-core Digital Signal Processor (DSP).

6.1 VFI Cost

We performed simulations consisting of randomly generated task sets for several dif-

ferent utilizations to assess how the average VFI cost correlates with imbalance.

6.1.1 Simulation Setup

To minimize biasing in the randomly generated task sets, a slightly modified version

of the UUniFast algorithm in [40] was used; shown in Algorithm 1. Since the UUniFast

algorithm assumes a single core system, it needed to be modified so that the target utilization

can exceed 100% while restricting the individual task utilization to 100%. Due to this

modification, the UUniFast algorithm occasionally failed to produce a valid task set. When

this situation arose, the task set was discarded, and a new task set was randomly generated.

In addition, not every valid task set can be partitioned unless the system utilization is less

than approximately 50% [1]. Since the VFI cost only applies to partitioned scheduling for

HRTS, if a task set was encountered that could not be partitioned, the task set was also

discarded and another task set was generated randomly.

The maximum allowable period for a task was set to 100 quanta with a minimum



27

Algorithm 1 Modified UUniFast

1: valid = false;
2: while (!valid) do
3: sumU = targetU ∗M ;
4: for (k = 1; k < N ; k + +) do
5: next = sumU − sumU ∗Random()1/(k−N);
6: if (next > 1) then
7: next = 1;
8: end if
9: taskSet[k].utilization = next;

10: sumU = sumU − next;
11: end for
12: if (sumU ≤ 1) then
13: valid = true;
14: taskSet[N ].utilization = next;
15: end if
16: end while

allowable period of 5 quanta. Additionally, each task was required to have a minimum

WCET of one quantum. As such, the minimum allowable task size is 1%, i.e., one quantum

with a period of 100 quanta. For implementation purposes, the system utilization was

allowed to deviate from the desired utilization by up to 1%. An execution profile was then

generated for each task with a random number of probability and execution time entries.

The probabilities for each profile were generated using the original UUniFast algorithm.

The execution times were similarly generated using a modified version of UUniFast where,

for each iteration, the actual execution time was taken as some percentage of the WCET.

In addition to generating tasks, we also generated the available VFI frequencies and

corresponding power states. Since the VFI cost is a ratio between the power states, the

values of the frequencies and power states themselves are not as important as the ratio

between the frequencies and power states. For this set of simulations, cores in a VFI could

reduce their frequency to up to 70% of the maximum frequency at 5% granularity. The

corresponding power was calculated as wk ∝ f3
k .

For given a number of tasks, number of cores per VFI, and system utilization, 20 task

sets were randomly generated. Since each task has a random execution profile, the task sets

were simulated three times to obtain meaningful data. Thus, the VFI cost for the given



28

number of tasks, number of cores per VFI, and system utilization is the average of the VFI

cost of all 60 simulations, i.e., 20 task sets each simulated 3 times.

Simulations were run for systems configured with two, four, and eight cores per VFI.

Each set of simulations only considered one VFI per system, since, as shown in Equation

4.4, the VFI cost of a system is simply the average of the VFI cost of each VFI. Thus,

since the simulation is already the average of multiple simulations, the results of M cores

on a single VFI are representative of kM cores on k VFIs. Further, to be able to compare

the results of the VFI with two, four, and eight cores per VFI, values of N were selected

such that the average number of tasks per core, i.e, N
M , varied from 1.5 to 5 (at intervals

of 0.5). Finally, task sets with total utilization between 40% and 90% (at intervals of 10%)

were considered. The minimum utilization of 40% was selected since each core can reduce

its frequency to 70%, implying that, for a total utilization at or below 30%, the VFI cost

is negligible. Conversely, the maximum utilization was set at 90% since partitioning task

set with a 100% total utilization is only feasible in rare cases. Once partitioned, tasks are

scheduled with EDF and the optimal frequency for each core is calculated using the LADVS

algorithm [22].

6.1.2 Results

The VFI cost and imbalance from the simulations are shown for VFI configurations

of two, four, and eight cores per VFI in Figure 6.1 and the average of the three VFI

configurations are shown in Figure 6.2. Since these graphs are produced from a set of

randomly generated data, they do not represent exact values, but can be used to establish

general trends. As shown in the graphs, as the utilization increases, the VFI cost also

increases. In addition, as the average number of tasks per core increases, both the imbalance

and VFI cost are reduced.

Another trend shown in Figure 6.2 is that the VFI cost increases as the number of

cores per VFI increases. This behavior follows the mathematical model in Equation 4.6.

The mathematical limit for two, four, and eight cores per VFI are 33.3%, 50.0%, and 58.3%,

respectively. The maximum simulated VFI cost for each configuration are 23.9%, 37.3%, and



29

2 3 4 540%

60%

80%0%

10%

20%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

V
F

I
C

os
t

2 3 4 540%

60%

80%0%

10%

20%

30%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

Im
b

al
an

ce

2 3 4 540%

60%

80%0%

20%

40%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

V
F

I
C

os
t

2 3 4 540%

60%

80%0%

10%

20%

30%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

Im
b

al
an

ce

2 3 4 540%

60%

80%0%

20%

40%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

V
F

I
C

os
t

2 3 4 540%

60%

80%0%

10%

20%

30%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

Im
b

al
an

ce

Fig. 6.1: Average VFI cost (left) and imbalance (right) for two (top), four (middle), and
eight (bottom) cores, as a function of the average number of tasks per core (i.e., N/M) and
system utilization.



30

2 3 4 540%

60%

80%0%

10%

20%

30%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

V
F

I
C

os
t

2 3 4 540%

60%

80%0%

10%

20%

30%

Average Number of Tasks per Core (N/M) Util
iza

tio
n

Im
b

al
a
n

ce

Fig. 6.2: Combined average VFI cost (left) and imbalance (right) (i.e., combined average of
two, four, and eight cores per VFI), as a function of the average number of tasks per core
(i.e., N/M) and system utilization.

40% 50% 60% 70% 80% 90%

0%

10%

20%

30%

System Utilization

V
F

I
C

os
t

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

40% 50% 60% 70% 80% 90%

0%

10%

20%

30%

System Utilization

Im
b

al
an

ce

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Fig. 6.3: Combined average VFI cost (left) and imbalance (right) for the average number
of tasks per core (N/M) by the system utilization.

2 3 4 5

0%

10%

20%

30%

Average Number of Tasks per Core (N/M)

V
F

I
C

os
t

40%

50%

60%

70%

80%

90%

2 3 4 5

0%

10%

20%

30%

Average Number of Tasks per Core (N/M)

Im
b
al

an
ce

40%

50%

60%

70%

80%

90%

Fig. 6.4: Combined average VFI cost (left) and imbalance (right) for the system utilization
by the average number of tasks per core (N/M).



31

Table 6.1: Reduction in imbalance with the correlated reduction in VFI cost for the given
system utilization based on the average of two, four, and eight cores per VFI. The average
over the system utilizations shows a nearly one-to-one correlation between imbalance and
VFI cost.

Utilization Imbalance VFI Cost
40% 30.2% 9.1%

50% 30.1% 20.3%

60% 27.8% 27.1%

70% 19.8% 29.4%

80% 14.6% 22.5%

90% 7.6% 8.8%

Average 21.7% 19.5%

48.6%, respectively. While the simulated maximum VFI cost for all three VFI configurations

occurred at a high utilization with a low average number of tasks per core, the simulated

results attained an average of 76.6% of the mathematical limit with the configurations with

more cores per VFI being closer to the mathematical limit in all three cases. Further, the

maximum simulated VFI cost for all three configurations occurred when the imbalance was

at its highest for the given utilization.

A two-dimensional plot of the VFI cost and imbalance by the average number of tasks

per core is shown in Figure 6.3. As the average number of tasks increase, the imbalance de-

creases. Further, for the lower average number of tasks per core, as the utilization increases,

the imbalance decreases. This is expected since as the utilization increases, the probability

that the task set is not able to be partitioned also increases. Since any randomly gener-

ated task set that could not be partitioned was not considered in this work, the amount of

imbalance decreases as necessary to be feasible for partitioning.

Let us now consider Figure 6.4, which is a two-dimensional plot of the VFI cost and

imbalance by system utilization. Although the VFI cost is clearly dominated by system

utilization, there is a strong correlation between the VFI cost and imbalance. The total

reduction in imbalance and VFI cost for each utilization is shown in Table 6.1 and the

average correlation is near one to one. As such, although the VFI cost is primarily influenced

by the utilization, our data suggests that it is also correlated to imbalance and thus can be

partially mitigated by load-balancing the system.



32

6.2 EDF-hv

Now that we have established the average behavior of VFI cost and demonstrated its

correlation to imbalance, we will demonstrate the improvement in energy efficiency (i.e.

performance) of EDF-hv as compared to WFD. Although it may seem that EDF-hv should

be compared to EDF-os, since the former is heavily based on the latter, a fair comparison

cannot be made, as EDF-os is intended for soft real-time systems. Therefore, we compare

the energy efficiency of EDF-hv against that of WFD as both are suitable for HRTS.

We will assess the performance of EDF-hv in two sets of simulations. For the first

set, the performance of EDF-hv was compared to WFD on a theoretical system with two,

four, and eight cores per VFI. The second set of simulations is a case-study that explored

the performance of EDF-hv on a system modeled after the TI C66x DSP with four cores

per VFI. The difference between the theoretical system and the TI C66x DSP system was

the number of available v/f pairs. In the theoretical system, the VFI could reduce their

frequency to 60% of the maximum frequency with a granularity of 1% (i.e. 40 v/f pairs)

in order to emulate the theoretical limits of DVFS. The TI C66x DSP system could reduce

frequency to 57.1% of the maximum frequency with a granularity of 10.7% (i.e. 4 v/f pairs)

to emulate the actually available frequencies of the TI C66x DSP. The motivation behind

the first set of simulations was to establish the performance capabilities of EDF-hv with

minimal effects of the frequency profile, while the second set is intended to demonstrate

some of the limitations imposed by the hardware. Many modern multi-core processors have

significantly more than four v/f pairs, so the TI C66x DSP was specifically chosen due to its

limited v/f pairs to demonstrate the effects of the number of v/f pairs on the performance.

We will describe our setup of the two sets of simulations and explain the results for

each set next.

6.2.1 Simulation Setup

The simulation setup to demonstrate the performance of EDF-hv is similar to that for

VFI cost with four exceptions. First, to establish a baseline for EDF-hv, task execution

profiles were not considered, i.e., each task was assumed to require its WCET. Second,



33

instead of generating 20 task for a given system utilization and average number of tasks

per core, 100 task sets were generated. Third, the range and granularity of the system

utilization for the two sets of simulations differed from that used for the VFI cost. For the

theoretical system, system utilizations from 50% to 85% were considered at 5% intervals.

The minimum system utilization of 50% was used since simulations on VFI cost showed

that the imbalance between 40% and 50% yielded fairly similar results in most cases. The

maximum total utilization was reduced to 85%, as only task sets that could meet Theorem

2 were considered, which was not typical of task sets with utilization above 85%. For the TI

C66x DSP system, system utilizations from 45% to 85% were considered at 10% intervals to

demonstrate the effects of limited v/f pairs on performance as compared to the theoretical

system. Finally, as may be obvious, the theoretical and TI C66x DSP systems both used a

different frequency profile for the VFI as described in the preceding section.

6.2.2 Performance of EDF-hv

The results comparing EDF-hv to WFD are shown in Figure 6.5 and Figure 6.6. Each

graph in Figure 6.5 and Figure 6.6 show the reduction in energy consumption (i.e. the

performance) of EDF-hv as compared to WFD for the given average number of tasks per

core for the given number of cores. The following five general trends are seen in both

figures. First, the amount of imbalance in a system decreases as the number of cores

increase. Second, the amount of imbalance in the system decreases as the average number

of tasks per core increase. Third, the correlation of imbalance and energy savings decreases

as the number of cores increase. Fourth, the correlation of imbalance and energy savings

increases as the average number of cores increases. Fifth, the correlation of imbalance and

energy savings increases as the utilization of the system increases.

On average EDF-hv consumed 4.8% less energy than WFD. Each plot shows the per-

formance, i.e., the energy consumption decrease of EFD-hv as compared to WFD, of each

system versus its imbalance and represents a specific configuration of the number of cores

per VFI and an average number of tasks per core. Since it is difficult to determine quanti-

tative values from the plots in Figure 6.5 and Figure 6.6, a table of the average performance



34

Fig. 6.5: Reduction in energy consumption (i.e. performance) of EDF-hv compared to WFD
versus the imbalance of WFD for two- and four-core systems with one VFI and task sets
with 1.5, 2.0, 2.5 and 3.0 average number of tasks per core (i.e., N/M).



35

Fig. 6.6: Reduction in energy consumption (i.e. performance) of EDF-hv compared to WFD
versus the imbalance of WFD for four- and eight-core systems with one VFI and task sets
with 1.5, 2.0, 2.5 and 3.0 average number of tasks per core (i.e., N/M).



36

and imbalance at each utilization is shown below each plot.

For utilizations less than 60%, EDF-hv performed worse on average than WFD, which

was expected since the utilizations of these systems is lower than the VFI could reduce their

frequency. However, for utilizations 60% and above, EDF-hv consumed 6.3% less energy

than WFD. Further, as shown in Figure 6.5 and Figure 6.6, there is a negative correlation

between the amount of imbalance in a task set and the amount of energy conserved by

EDF-hv. This is also expected since the primary way that EDF-hv conserves energy is by

load-balancing the task set. Additionally, as the average number of tasks per core increased,

so did the negative correlation between imbalance and reduction in energy.

Figure 6.5 and Figure 6.6 further show that a reduction in energy consumption around

20% was common with a significant number of task sets achieving even better than that

(the maximum observed reduction was 61.6%). For systems with a utilization of 60% or

greater and an imbalance of 5% or greater, the average energy consumption was reduced

by 15.9%. As such, on average, task sets with greater imbalance typically yielded greater

energy reduction.

Unfortunately, some task sets consumed significantly more energy with EDF-hv than

with WFD. Typically, such task sets had low imbalance as well as utilization near or below

60%. However, there were cases where there was a reasonable to high imbalance with a

utilization well above 60% and where EDF-hv performed worse than WFD. This is likely

because, since EDF-hv typically has a maximum fluctuation in utilization greater than the

maximum utilization experienced by WFD, as alluded to in Theorem 4, the system selects

higher frequencies (and consequently power states) than WFD and thus more energy is

consumed.

6.2.3 TI C66x DSP Case-Study

The performance of EDF-hv on a four-core system with one VFI using the frequency

profile of the TI C66x DSP is shown in Figure 6.7. Due to the limited number of v/f pairs,

the performance is limited as compared to the theoretical system discussed in the previous

section. On the TI C66x DSP, EDF-hv performed slightly worse than WFD when applied



37

Fig. 6.7: Reduction in energy consumption (i.e. performance) of EDF-hv compared to WFD
versus the imbalance of WFD for a four-core system with one VFI using the frequency profile
of the TI C66x DSP and task sets with 1.5, 2.0, 2.5 and 3.0 average number of tasks per
core (i.e., N/M).



38

generally; consuming just under 1% more energy. When applied only to systems with at

least 5% of imbalance, EDF-hv only performed 2.1% better than WFD, which is a dramatic

decrease in performance as compared to the 15.9% observed in the theoretical system.

Looking at the trends of the data to explain this dramatic decrease in performance

on the TI C66x DSP system, task sets with a system utilization of 45%, 55%, and 65%

performed comparable to the theoretical system, while task sets with 75% system utilization

performed about the same with EDF-hv and WFD regardless of imbalance and task sets with

85% system utilization tended to perform worse with EDF-hv as imbalance increased. The

trend that the performance of EDF-hv got worse for higher utilizations of EDF-hv differed

from that of the theoretical system, which saw the correlation between the performance of

EDF-hv and imbalance increase as system utilization increased. This is likely due to the

fact that EDF-hv will experience fluctuations in utilization higher than WFD as a result of

the migrating tasks, combined with the fact that systems with high utilization and tasks

that require their full WCET to execute will rarely use the v/f pairs significantly below the

system utilization. Thus, on the TI C66x DSP, task sets with 85% typically only used the

highest two v/f pairs, and, as imbalance increased, more time was spent at the highest v/f

pair. Therefore, as imbalance increased, the total energy consumption increased as a result.

This suggests that in systems with limited v/f pairs and high system utilization, EDF-hv

is less effective than WFD as the fluctuations in utilization due to migrating tasks increase

the energy consumption above that which is saved by load-balancing. When considering

only task sets with at least 5% imbalance and a system utilization of 55% and 65%, the

performance of EDF-hv was 8.4% better than WFD. Thus, reducing the number of v/f pairs

by a factor of 10 showed a reduced the performance nearly 50%. Thus, it can be observed

that EDF-hv is best suited for hardware with a high number of available v/f pairs.

One final observation regarding the TI C66x DSP system is that although it may seem

constrictive that EDF-hv only improved performance for task sets with a system utilization

of 55% or 65%, in real-world systems, EDF-hv is likely applicable to systems with much

higher utilizations. As mentioned, for these simulations, task execution profiles were not



39

considered and thus, task were assumed to need there WCET. However, typically, tasks do

not require their WCET, and thus, although the WCET must be accommodated to guar-

antee deadlines, the real-world average utilization is likely to be significantly less. As such,

even though the WCET may show a system utilization of 85%, the actual utilization may

be much lower, which means that systems with high utilization, which are most desirable

to decrease static power cost, will typically perform better with EDF-hv.



40

Chapter 7

Conclusion and Future Work

The best- and worst-case VFI cost have been derived, and both the mathematical

model and simulation results suggest that the VFI cost can be a significant contributor to

the overall energy consumption. The proposed algorithm, EDF-hv, can help to mitigate

VFI cost in HRTS with multiple cores per VFI. Our results also show that the energy

savings from EDF-hv can be significant, especially for systems with high imbalance and

high utilizations.

Several aspects of this work can be further explored to improve energy efficiency. First,

a task scheduling algorithm as well as a DVFS algorithm that is explicitly designed to

accommodate migrating tasks can be developed. Second, further exploration into the rela-

tionship between VFI cost and imbalance may provide insight into ways to improve EDF-hv.

A third area of research is to remove the boundary limited property of EDF-hv. This would

increase the scheduling overhead, which would increase energy consumption, however, re-

moving the boundary limited property could yield energy saving to justify the increased

overhead. Fourth, while this thesis has explored the energy cost associated with VFI from

a dynamic power perspective, there are aspects of static power relating to VFI that could

further be explored. Finally, in addition to saving energy, load-balancing with EDF-hv may

have some advantages for improving the wear state of cores.



41

References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-
real-time environment,” JAMC, vol. 20, pp. 46–61, 1973.

[2] S. Cheng, J. A. Stankovic, and K. Ramamritham, “Dynamic scheduling of groups of
tasks with precedence constraints in distributed hard real-time systems,” in Proceedings
of IEEE Real-Time Systems Symposium, Dec. 1986, pp. 166–174.

[3] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: ex-
act characterization and average case behavior,” in Proceedings of IEEE Real-Time
Systems Symposium, Dec. 1989, pp. 166–171.

[4] G. C. Buttazzo, “Rate monotonic vs. EDF: Judgment day,” Real-Time Systems, vol. 29,
pp. 5–26, 2005.

[5] H. M. Goldberg, “Jackson’s conjecture on earliest due date scheduling,” Mathematics
of Operations Research, vol. 5, pp. 460–466, 1980.

[6] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor
systems,” ACM Comp. Surv., vol. 43, pp. 35:1–35:44, 2011.

[7] T. P. Baker and S. K. Baruah, “An analysis of global EDF schedulability forarbitrary-
deadline sporadic task systems,” Real-Time Systems, vol. 43, pp. 3–24, 2009.

[8] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and
F. Wang, “On the competitiveness of on-line real-time task scheduling,” Real-Time
Systems, vol. 4, pp. 125–144, 1992.

[9] S. Baruah, “Scheduling periodic tasks on uniform multiprocessors,” Information Pro-
cessing Letters, vol. 80, pp. 97–104, 2001.

[10] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling algo-
rithm for multiprocessors,” in Proceedings of IEEE Real-Time Systems Symposium,
Dec. 2006, pp. 101–110.

[11] U. C. Devi, “Soft real-time scheduling on multiprocessors,” Ph.D. dissertation, Uni-
versity of North Carolina at Chapel Hill, Chapel Hill, NC, 2006.

[12] N. Fisher, J. Goossens, and S. Baruah, “Optimal online multiprocessor scheduling of
sporadic real-time tasks is impossible,” Real-Time Systems, vol. 45, pp. 26–71, 2010.

[13] P. Choudhary and D. Marculescu, “Power management of voltage/frequency island-
based systems using hardware-based methods,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, pp. 427–438, 2009.

[14] E. L. Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws of
diminishing returns,” in Proceedings of the 2010 international conference on Power
aware computing and systems, Oct. 2010, pp. 1–8.



42

[15] S. Mittal, “A survey of techniques for improving energy efficiency in embedded comput-
ing systems,” International Journal of Computer Aided Engineering and Technology,
vol. 6, pp. 440–459, 2014.

[16] P.-E. Gaillardon, E. Beigne, S. Lesecq, and G. D. Micheli, “A survey on low-power
techniques with emerging technologies: from devices to systems,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 12, pp. 12.1–12.26, 2015.

[17] A. Csendes, “Survey of dynamic voltage scaling methods for energy efficient embedded
systems,” in Proceedings of the 8th International Conference on Applied Informatics,
Jan. 2010, pp. 413–420.

[18] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time systems on dy-
namic voltage scaling (dvs) platforms,” in International Conference on Embedded and
Real-Time Computing Systems and Applications, Aug. 2007, pp. 28–38.

[19] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage scaling for
real-time embedded systems,” in Proceedings of the 41st Annual Design Automation
Conference, 2004, pp. 275–280.

[20] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, “Leakage-aware energy-efficient scheduling of
real-time tasks in multiprocessor systems,” in Real-Time and Embedded Technology
and Applications Symposium, Apr. 2006, pp. 408–417.

[21] J.-J. Chen and T.-W. Kuo, “Procrastination determination for periodic real-time tasks
in leakage-aware dynamic voltage scaling systems,” in IEEE/ACM International Con-
ference on Computer-Aided Design, Nov. 2007, pp. 289–294.

[22] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded
operating systems,” in Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, Dec. 2001, pp. 89–102.

[23] T. Zitterell and C. Scholl, “A probabilistic and energy-efficient scheduling approach for
online application in real-time systems,” in Proceedings of the 47th Design Automation
Conference, Jun. 2010, pp. 42–47.

[24] D. Zhu, H. Aydin, and J. J. Chen, “Optimistic reliability aware energy management for
real-time tasks with probabilistic execution times,” in Real-Time Systems Symposium,
Nov. 2008, pp. 313–322.

[25] C. Xian, Y. H. Lu, and Z. Li, “Dynamic voltage scaling for multitasking real-time sys-
tems with uncertain execution time,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, pp. 1467–1478, 2008.

[26] T. A. AlEnawy and H. Aydin, “Energy-constrained scheduling for weakly-hard real-
time systems,” in Proceedings of IEEE Real-Time Systems Symposium, Dec. 2005, pp.
376–385.

[27] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-time systems
on variable voltage processors,” in Design Automation Conference, 2001. Proceedings,
Jun. 2001, pp. 828–833.



43

[28] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,” in
Proceedings of Foundations of Computer Science, Oct. 1995, pp. 374–382.

[29] X. Zhong and C.-Z. Xu, “Energy-aware modeling and scheduling of real-time tasks for
dynamic voltage scaling,” in Real-Time Systems Symposium, 2005. RTSS 2005. 26th
IEEE International, Dec. 2005, pp. 358–372.

[30] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H. Anderson, and S. Baruah,
“A categorization of real-time multiprocessor scheduling problems and algorithms,”
Handbook on scheduling algorithms, methods, and models, pp. 30.1–30.19, 2004.

[31] B. Andersson and E. Tovar, “Multiprocessor scheduling with few preemptions,” in
International Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA’06), Aug. 2006, pp. 322–334.

[32] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-based restricted-migration schedul-
ing algorithm for multiprocessor soft real-time systems,” Real-Time Systems, vol. 38,
pp. 85–131, 2008.

[33] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling of sporadic task
systems on multiprocessors,” in 21st Euromicro Conference on Real-Time Systems,
Jul. 2009, pp. 249–258.

[34] F. Dorin, P. M. Yomsi, J. Goossens, and P. Richard, “Semi-partitioned hard real-
time scheduling with restricted migrations upon identical multiprocessor platforms,”
Computing Research Repository (CoRR), vol. 1006.2637, 2010.

[35] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “Is semi-partitioned scheduling
practical?” in 23rd Euromicro Conference on Real-Time Systems, Jul. 2011, pp. 125–
135.

[36] M. Naghibzadeh, P. Neamatollahi, R. Ramezani, A. Rezaeian, and T. Dehghani, “Ef-
ficient semi-partitioning and rate-monotonic scheduling hard real-time tasks on multi-
core systems,” in 8th IEEE International Symposium on Industrial Embedded Systems
(SIES), Jun. 2013, pp. 85–88.

[37] J. H. Anderson, J. P. Erickson, U. C. Devi, and B. N. Casses, “Optimal semi-partitioned
scheduling in soft real-time systems,” in International Conference on Embedded and
Real-Time Computing Systems and Applications, Aug. 2014, pp. 1–10.

[38] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H. Anderson, and S. Baruah, “Fair
multiprocessor scheduling,” Handbook on scheduling algorithms, methods, and models,
pp. 31.1–31.21, 2004.

[39] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate progress:
A notion of fairness in resource allocation,” Algorithmica, vol. 15, pp. 600–625, 1996.

[40] E. Bini and G. C. Buttazzo, “Biasing effects in schedulability measures,” in Proceedings
of Euromicro Conference on Real-Time Systems, Jun. 2004, pp. 196–203.



44

Appendices



45

Appendix A

Handling Oversized Tasks

Thus far, EDF-hv has only considered systems where the utilization of each task is less

than or equal to the utilization that each core needs to be assigned to be load-balanced, i.e.

ui ≤ Φ, however, traditionally, tasks can have a utilization up to 100% of a core’s capacity.

It follows then that one complication of load-balancing is the possibility that a task set to

be scheduled may contain one or more tasks with a utilization greater than Φ. As such, in

this appendix, we will explore how EDF-hv can cope with task sets where at least one task

has a utilization such that ui > Φ.

When a task set contains at least one task such that ui > Φ, EDF-hv now has to

attempt to schedule a task that has a utilization greater than the available capacity of any

of the cores. As such, herein, these tasks are referred to as “oversized tasks”, which is

formally defined by the following definition.

Definition 1. An oversized task is a task with a utilization such that: ui > Φ.

Another way to consider oversized tasks is by combining Definition 1 with Equation

4.1:

ui > Φ =
U

M

ui
U
>

1

M
= M−1. (A.1)

Therefore, an oversized task is any task with a utilization that comprises more than M−1

of the total system utilization.

Oversized tasks impede the ability of EDF-hv to achieve a load-balance and thereby

threaten to increase energy consumption. To cope with the presence of oversized tasks,



46

this appendix derives bounds for oversized tasks and explores three methods, namely pre-

partitioning, oversized migration, and multi-partitioning, to handle oversized tasks to attain,

or at lease approach, a load-balance.

A.1 Bounds with Oversized Tasks

To understand the impact of oversized tasks in EDF-hv, we first explore the properties

of oversized tasks and derive bounds on the system utilization, the deviation in utilization

of oversized tasks for systems with multiple oversized tasks, and the maximum number of

oversized tasks that can be present in a system.

For ease of discussion, let σ be the number of oversized tasks in the system.

Lemma 3. If a system has any oversized tasks (i.e. σ > 0), then the first σ tasks in η are

oversized and any task after the first σ are not oversized.

Proof. Recall that the tasks in η are sorted in non-ascending order based on the utilizations

of the tasks. Further, by Definition 1, an oversized task has a utilization strictly greater

than Φ, while, conversely, a non-oversized tasks have a utilization less than or equal to

Φ. Therefore, if a system has any oversized tasks, they are the tasks with the greatest

utilization and, thus, must be sorted before any non-oversized tasks in η.

Lemma 4. The number of oversized tasks is strictly less than the number of tasks:

σ < N.

Proof. By counter example, consider when σ ≥ N. First, if σ > N, then the number of

oversized tasks in the task set is greater than the number of tasks in the task set, which is

clearly not possible. Second, the case where σ = N, then uN = uσ, which, by Definition 1

and from Equation 3.4 and Equation 4.1:

uN > Φ =
U

M
=

∑N
i=1 ui
M



47

M · uN >

N∑
i=1

ui

Recall that, by Equation 3.3, tasks are sorted in non-ascending order by utilization such

that uN must be the smallest task by utilization in the system, if one exists. Thus:

N∑
i=1

ui ≥ N · uN,

which yields that:

M · uN >
N∑
i=1

ui ≥ N · uN

M · uN > N · uN

M · uN −N · uN = (M−N)uN > 0,

which, since the utilization must be a positive value, is only true if N < M. However, by

Caveat 1, N > M, therefore, since the number of oversized tasks cannot be greater than or

equal to the number of tasks, σ < N.

Utilization Bound of Oversized Tasks

We will now show the utilization bound for oversized tasks. Considering the simplest

case where a system has only one oversized task (i.e. σ = 1), then τ1 is oversized and, thus,

by Definition 1 and Equation 3.4:

u1 > Φ =
U

M
=

∑N
i=1 ui
M

.

Since τ1 is the first task in η:

u1 >
u1 +

∑N
i=2 ui

M
=
u1

M
+

∑N
i=2 ui
M

u1 −
u1

M
=

(M− 1)u1

M
>

∑N
i=2 ui
M



48

(M− 1)u1 >

N∑
i=2

ui

u1 >

∑N
i=2 ui

M− 1
=

U− u1

M− 1
. (A.2)

Thus, from Equation A.2, if the first task in a system is oversized than the utilization

of the oversized task must be greater than the utilization of the other tasks divided across

all but one of the cores.

To extend Equation A.2 for a system with σ oversized tasks, consider first the rela-

tionship between oversized tasks. Since task are sorted in non-ascending order by Equation

3.3:

u1 ≥ u2 ≥ ... ≥ uσ > Φ. (A.3)

As such, uσ is the smallest of the oversized tasks, but can be equal to the other oversized

tasks. Therefore:

u1 ≥ ... ≥ uσ > Φ =
U

M
=

∑N
i=1 ui
M

uσ >

∑N
i=1 ui
M

=

∑σ
i=1 ui +

∑N
i=σ+1 ui

M
=

∑σ
i=1 ui
M

+

∑N
i=σ+1 ui

M

uσ −
∑σ

i=1 ui
M

=
M · uσ −

∑σ
i=1 ui

M
>

∑N
i=σ+1 ui

M

M · uσ −
σ∑
i=1

ui >
N∑

i=σ+1

·ui

M · uσ −
N∑

i=σ+1

ui >
σ∑
i=1

ui. (A.4)

As such, the utilization of the oversized tasks must be less than M times the smallest

oversized task minus the sum of the non-oversized tasks. Although this may seem overly

complicated for practical use now, Equation A.4 will be used in the next two subsections to

bound the amount of deviation that can exist in the utilization of oversized tasks and the

maximum number of oversized tasks in a system.



49

Maximum Deviation in the Utilization of Oversized Tasks

Now we consider how much greater one oversized task can be than another in terms

of utilization when there are multiple oversized tasks in a system. More specifically, how

much greater can each oversized task be than uσ (i.e. the smallest of the oversized tasks)

or, more formally:
σ∑
i=1

(ui − uσ). (A.5)

From Equation A.5, the sum of the utilization of the oversized tasks can be written as:

σ∑
i=1

ui = σ · uσ +

σ∑
i=1

(ui − uσ). (A.6)

Now, substituting Equation A.6 into Equation A.4:

M · uσ −
N∑

i=σ+1

ui > σ · uσ +
σ∑
i=1

(ui − uσ)

M · uσ − σ · uσ −
N∑

i=σ+1

ui >

σ∑
i=1

(ui − uσ)

σ∑
i=1

(ui − uσ) < (M− σ)uσ −
N∑

i=σ+1

ui. (A.7)

Therefore, the deviation of oversized tasks is dependent on the number of cores, the number

of oversized tasks, and the utilization of the non-oversized tasks.

Maximum Number of Oversized Tasks

As may be observed from Equation A.7, if the number of oversized tasks is greater than

M, then the deviation from the smallest oversized task must be a negative number, which

would violate Equation A.3. It follows that the number of oversized tasks cannot exceed

the number of cores, as is described in the following Theorem.



50

Theorem 5. The number of oversized tasks, σ, is strictly less than the number of cores,

M:

σ < M

Proof. Since the utilization of each task is a positive quantity, the sum of utilizations must

be a positive quantity. Thus, by counter example, if σ ≥ M, then:

M− σ ≤ 0,

which means:

(M− σ)uσ ≤ 0,

since uσ is a positive value. Further, recall from Lemma 4 that N > σ, and thus:

N∑
i=σ+1

ui > 0,

since there must be at least one non-oversized task in the systems. Therefore, considering

Equation A.7:
σ∑
i=1

(ui − uσ) < (M− σ)uσ −
N∑

i=σ+1

ui < 0

σ∑
i=1

(ui − uσ) =

σ∑
i=1

ui −
σ∑
i=1

uσ < 0

σ∑
i=1

ui <

σ∑
i=1

uσ = σ · uσ,

which is untrue since, by Equation A.3, uσ is less than or equal to the utilization of any of

the other oversized tasks and, thus, the sum of the utilization of the oversized tasks cannot

be strictly less than the number of oversized tasks times the utilization of the smallest

oversized task. Therefore, the number of oversized tasks must be less than the number of

cores.



51

From the system model and Theorem 5, the relationship between the number of tasks,

the number of cores, and the number of oversized tasks can be determined for EDF-hv.

Lemma 5. In EDF-hv, there must be at least two non-oversized tasks in the system.

Proof. Since N > M (by Caveat 1), M > 1 (since EDF-hv is for multi-core systems), and,

M > σ (by Theorem 5), then N > M > σ. Thus, since N, M, and σ are positive integer

values, N must be at least (σ + 2). Therefore, there must be at least two non-oversized

tasks in the system.

A.2 Methods to Handle Oversized Tasks

Now that we have established bounds on the oversized tasks, we will explore different

methods to handle systems with oversized tasks in the context of EDF-hv with the intent to

determine the best method. Note that in this section we assume that σ > 0 for all systems

(otherwise there are no oversized tasks).

We investigated three methods for handling oversized tasks; namely, pre-partitioning,

oversized migration, and multi-partitioning. In the remainder of this appendix, first we

will present the metrics to evaluate each method, then, each method will be defined and

investigated using the bounds derived in the previous section, and finally, each method will

be evaluated based upon the three metrics.

Metrics for Methods to Handle Oversized Tasks

Since oversized tasks impede the ability of EDF-hv to load-balance the system, it is

desirable that a method to handle oversized tasks be able to reduce the imbalance in a

system such that it is load-balanced (i.e. φ = 0). As such, the first metric is how much

the imbalance in the system is reduced. As mentioned, for this metric, it is desirable that

the imbalance in the system be zero, but we will consider methods that at least reduce the

imbalance in the system.

For a second metric, recall that the purpose of EDF-hv is to reduce energy consumption,

and thus, if a method to handle oversized tasks threatens to increase energy consumption,



52

then there is little purpose to consider it for EDF-hv. Recall further that although the

average utilization is load-balanced in EDF-hv, each core experiences some fluctuations

in utilization. If these fluctuations are increased, then the maximum utilization that a

core may experience can be increased; which threatens to increase energy consumption as

the DVFS algorithm may have to select higher v/f pairs in order to guarantee deadlines.

As such, if a method to handle oversized tasks significantly increases the fluctuations in

utilization, then the energy consumption may also increase. It follows then that the second

metric is how much a method may increase fluctuations in utilization.

Finally, it is desirable that a method is able to be applied generally to handle oversized

tasks. As such, a third metric is if the method imposes additional requirements on EDF-

hv. This metric includes if the requirement on the number of tasks or number of cores is

increased or if the method impedes the probability of being able to guarantee deadlines (i.e.

Theorem 2).

Pre-Partitioning

Pre-partitioning follows the idea that although load-balancing all cores is optimal,

energy savings can likely be attained by load-balancing as many cores as possible. As such,

pre-partitioning assigns the oversized tasks to one or more of the cores before scheduling

with EDF-hv. In pre-partitioning, if the first task, τ1, in the task set, η, is oversized,

τ1 is assigned to p1 before EDF-hv partitions η to the set of cores, P . Now, since τ1 is

assigned p1, τ1 is removed from η, such that η
′

= {τ2, τ3, ..., τN}, because τ1 has already

been scheduled on a core. Further, since u1 > Φ, then U1 > Φ (since τ1 has been assigned

to it) and, thus, to stay as close to a load-balance as possible, p1 is removed from P , such

that P
′

= {p2, p3, ..., pM}, so that no further tasks will be assigned a share on p1. Now,

EDF-hv attempts to schedule the tasks in η
′

to the set of cores in P
′
, however, since Φ

was calculated considering the task set η on P , a new target utilization, Φ
′
, needs to be

calculated based on η
′

on P
′
. The utilization of η

′
and the number of cores in P

′
is given



53

τ1 τ2 τ3

τ4 τ5 τ6η

p1 p2 p3 p4

P

Φ

Oversized

τ2 τ3

τ4 τ5 τ6η
′

p2 p3 p4

τ1

p1

P
′

Φ
′

Oversized

τ3

τ4 τ5 τ6η
′′

p3 p4

τ1

p1

τ2

p2

P
′′

Φ
′′

Oversized

τ4 τ5 τ6η
′′′ τ4

τ5

τ6

η
′′′

p4

τ1

p1

τ2

p2

τ3

p3

P
′′′

Φ
′′′

No Oversized

Fig. A.1: An example of cascading oversized tasks. The original task set, η (top; where
each task is represented by its utilization), has only one oversized task, τ1. When τ1 is
pre-partitioned, τ2 becomes an oversized task in η

′
, even though τ2 was not an oversized

task in η. Further, when τ2 is pre-partitioned, τ3 becomes oversized in η
′′
. At this point,

the system has (M−1) = (4−1) = 3 oversized task (i.e. the maximum number of oversized
tasks in a 4 core system) in the system. Thus, η

′′′
does not have oversized tasks, so the

remaining tasks are assigned to the remaining core (bottom).



54

by:

U
′

= U− u1 =
N∑
i=2

ui (A.8)

N
′

= N− 1 (A.9)

M
′

= M− 1 (A.10)

Thus, by removing τ1 from η and p1 from P , the property of EDF-hv that N > M is ensured

because both N and M are decremented by 1. Further, the relationship between Φ and Φ
′

is given by the following theorem.

Theorem 6. After a system has been pre-partitioned, the resulting target utilization, Φ
′
,

to achieve a load-balance for the tasks in η
′

to the set of cores in P
′

is strictly less than the

original target utilization, i.e.: Φ > Φ
′

Proof. From Equation A.3, if there are any oversized tasks in η:

u1 > Φ =
U

M

M · u1 > U

−U > −M · u1.

Now, adding U ·M to both sides of the inequality:

U ·M−U > U ·M−M · u1

U(M− 1) > M(U− u1).

From Equation A.8 and Equation A.10:

U ·M′
> M ·U′

U

M
>

U
′

M′ .



55

Therefore, from Equation 4.1: Φ > Φ
′
.

Unfortunately, since Φ > Φ
′
, if there were multiple oversized tasks in η, then there will

still be oversized tasks in η
′

as, from Equation A.3 and Theorem 6:

u1 ≥ u2 ≥ ... ≥ uσ > Φ > Φ
′
.

Thus, in the presence of multiple oversized tasks, pre-partitioning has to be applied it-

eratively. For ease of discussion, each iteration of pre-partitioning is indicated with an

additional prime, e.g. Φ, Φ
′
, Φ

′′
, Φ

′′′
, et cetera.

Since by Theorem 6, Φ > Φ
′
, then Φ

′
> Φ

′′
, Φ

′′
> Φ

′′′
, et cetera, which means that

it is possible that tasks that were not oversized in η, are now oversized in η
′
; a property

referred to herein as cascading oversized tasks. An example of cascading oversized tasks

is demonstrated in Figure A.1. Fortunately, even in the presence of cascading oversized

tasks, Theorem 5 remains true as, when σ = (M− 1), either natively or by cascading, then

M(M−1)′ = 1 and, thus, by Equation 4.1, Φ(M−1)′ = U(M−1)′ . Therefore, the remaining

tasks can be scheduled on the remaining core. Further, in the case that there are (M − 1)

oversized tasks in the system, pre-partitioning will produce a partition that is identical to

WFD.

A result of Theorem 6 is that pre-partitioning can only approach but never attain a

load-balance as, even in the best case, where there is only one oversized task, the load-

balanced portion of the partition will always be at least slightly less than the first oversized

task. However, since each oversized task is assigned to its own core, the oversized tasks will

not migrate. Although the remaining non-oversized tasks scheduled by EDF-hv may migrate

(assuming there are less than (M-1) oversized tasks in the system), the pre-partitioned tasks

will not and thus, pre-partitioning should not increase the fluctuations in utilization due to

migration above that which would be expected of EDF-hv without oversized tasks. Finally,

pre-partitioning does not add any additional requirements to EDF-hv, and thus can be

applied as a general solution to handling oversized tasks.



56

Oversized Migration

Migrating tasks in EDF-hv are assigned non-zero shares on multiple cores; thus, no

single core bears the entirety of the migrating task’s utilization. As such, in oversized

migration, oversized tasks are allowed to be migrating tasks so no single core is assigned

all of an oversized task and, thus, each core can have a utilization equal to the target

load-balance. As such, oversized migration attains a load-balance.

In oversized migration, the oversized tasks in η are reordered with all the oversized task

after the non-oversized task such that:

η = {τσ+1, τσ+2, ..., τN, τ1, τ2, ..., τσ} (A.11)

This way, the non-oversized tasks will be assigned to the cores with EDF-hv before the

oversized tasks are. Unfortunately, one complication of oversized migration is that reorder-

ing the tasks violates Equation 3.3, which then invalidates the Theorem 3. However, since

Theorem 3 considers the absolute worst-case, and Equation 5.2 provides ways to validate

that a specific system will still be able to guarantee deadlines by Theorem 2, violating the

Theorem 3 may not be an issue since the system can still be verified whether or not it can

guarantee its deadlines.

An additional complication of oversized migration is that EDF-hv requires that each

core has at least one fixed task. If each core is not assigned at least one fixed task, then

it is guaranteed that energy will be wasted. Thus, as the purpose of EDF-hv is to improve

energy efficiency, there must be enough non-oversized tasks in the system for each core

to be assigned at least one non-oversized tasks before the oversized tasks are scheduled as

migrating tasks. Thus, oversized migration adds the following requirement on the number

of tasks in η:

N ≥ σ + M. (A.12)

Note that if there is only one oversized task in the system, then the restriction in Equation

A.12 is identical to the system model.



57

One drawback of oversized migration is now the largest task in the system are migrating

tasks, which means that the fluctuations in utilization due to migrating tasks may be

significantly more than would be expected in EDF-hv without oversized migration. Thus,

oversized migration may frustrate the DVFS algorithm such that more energy is consumed

as a result of migrating tasks than is saved by the load-balance.

In summary, oversized migration can attain a load-balance; unfortunately, oversized

migration threatens to increase fluctuations in utilization due to large migrating tasks, which

may result in decreased energy efficiency. Further, oversized migration adds requirements

to the number of tasks in the system as well as decreases the likelihood that EDF-hv can

guarantee deadlines.

Multi-Partitioning

Multi-partitioning is similar to pre-partitioning except that instead of removing one

oversized task at a time from η and assigning it to a core, the task set is partitioned into

task subsets, ηA, ηB, ηC, et cetera, as well as the cores in P are partitioned into subsets,

PA, PB, PC, et cetera, and then each task subset is assigned to a subset of the cores. After

the task subsets have been assigned to a core subset, the task subsets are scheduled using

EDF-hv to the core subset it was assigned. There are many ways in which a multi-partition

can be accomplished, however, relevant to EDF-hv, multi-partitioning can be broken into

two major categories: vertical and horizontal. In vertical multi-partitioning (VMP), each

task subset is assigned to the full set of cores, P , and then run in parallel. In horizontal

multi-partitioning (HMP), each task subset is assigned to a unique core subset (e.g. the

cores in PA cannot be in any other core subset). In both VMP and HMP task subsets

are scheduled with EDF-hv. Although it is possible to have a hybrid of VMP and HMP,

this work focuses on VMP and HMP separately (the reasoning behind this decision will be

more apparent in the next subsection). Further, while it is possible to have more than two

task subsets, since it is trivial to apply the principals of a two-way partition to a multi-

partition with more than two task subsets, this work will focus on multi-partitioning under

the assumption of two-way partition (i.e. there are only two task subsets in each multi-



58

partition). The remainder of this subsection will first address VMP and then HMP will be

considered.

Vertical Multi-Partitioning (VMP)

In VMP, there needs to be twice the number of tasks as normally required since the

tasks will be partition into two subsets, ηA and ηB, but the cores will not be partitioned.

Thus:

N ≥ 2(M + 1) (A.13)

In theory, if each task subset can attain a load-balance, then running two load-balanced

partitions in parallel on the set of cores will be load-balanced. Thus, the ability of VMP

to attain a load-balance is dependent on each task subset to eliminate oversized tasks.

Unfortunately, in implementation, this is not possible.

Theorem 7. VMP is unable to achieve a load-balance.

Proof. From Equation A.13, VMP requires a system with N ≥ 2(M + 1) where σ > 0 tasks

are oversized. From Equation A.3:

u1 ≥ u2 ≥ ... ≥ uσ > Φ =
U

M

Since ηA and ηB are unique subsets of η, each has fewer tasks than η, which yields:

U > UA → U

M
>

UA

M
→ Φ > ΦA

U > UB → U

M
>

UB

M
→ Φ > ΦB

Thus:

u1 ≥ u2 ≥ ... ≥ uσ > Φ > ΦA

u1 ≥ u2 ≥ ... ≥ uσ > Φ > ΦB



59

As such, if a task was oversized in η, it is still oversized in ηA or ηB and therefore, VMP

does not eliminate oversized tasks and, thus, cannot achieve a load-balance.

In addition to being unable to achieve a load-balance, since the two subsets are expected

to run in parallel on the same core set, the maximum number of allowed migrating task

per core is doubled. This means that the potential for fluctuations in utilization due to

migrating is increased. As such, since VMP cannot eliminate oversized tasks nor attain a

load-balance as well as it is likely to increase fluctuations, VMP has little merit as a method

to handle oversized tasks.

Horizontal Multi-Partitioning (HMP)

In HMP, since each task subset, ηA and ηB, will be assigned to a unique subset of the

cores, there must be at least one task for each core as well as an additional task for each

subset. Thus:

N ≥ M + 2 (A.14)

In addition to increasing the minimum number of tasks, since the set of cores will be

partitioned into subsets, and EDF-hv is only applicable to multi-core systems, the number

of cores must be at least four.

Similar to VMP, for HMP to attain a load-balance, each task subset needs to be able to

eliminate oversized tasks. However, in contrast to VMP, for HMP to attain a load balance,

each task subset would need to attain the same target utilization as the other task subsets

such that:

UA = UB (A.15)

Although it is possible for HMP to eliminate oversized tasks, HMP cannot satisfy Equation

A.15 and thus cannot attain a load-balance, as is shown in the following two theorems.

Theorem 8. HMP can eliminate oversized tasks.

Proof. As derived in the proof for Theorem 7, U > UA and U > UB. Similarly, since the

cores subsets, PA and PB, are unique subsets of P , M > MA and M > MB. However,



60

τ1 τ2 τ3

τ4 τ5 τ6η

p1 p2 p3 p4

P

Φ

Oversized

ηA

τ1 τ2 τ3

ηA

τ4 τ5 τ6η

PA

p1 p2

PB

p3 p4

P

ΦA

ΦB

No Oversized

ηA/PA

p1 p2

ηB/PB

p3 p4

P

τ1 τ2

τ3 τ3

τ4 τ5

τ6 τ6

ΦA

ΦB

Fig. A.2: An example of horizontal multi-partitioning (HMP). The original task set, η (top;
where each task’s utilization is shown), has one oversized task, τ1. As such, η is divided into
two subsets, ηA and ηB, as well as P is also divided into two subsets, PA and PB (middle).
Although the resulting subsets no longer have any oversized task, the system is clearly not
load-balanced (bottom).



61

the relationship between UA and UB as well as the relationship between MA and MB is

ambiguous as one quantity can be greater than, equal to, or less than the other. As such,

since ΦA and ΦB is the ratio of UA

MA and UB

MB , respectively, in the event that UA > UB and

MA ≤ MB then: ΦA > Φ (it is trivial to show that the same can be true for ΦB). Although

there are other combinations to show that ΦA can be greater than Φ, this example is

sufficient to show it is possible. As such, since ΦA can be greater than Φ, then it is possible

for ΦA to be greater than the oversized tasks that existed in η, and, therefore, HMP can

eliminate oversized tasks. An example of a system in which HMP eliminates oversized tasks

is shown in Figure A.2.

Theorem 9. HMP cannot attain a load-balance.

Proof. Building on the proof for Theorem 8, it is trivial to show that when ΦA > Φ, ΦB < Φ

(the opposite is also true, but for this proof it is assumed that ΦA > Φ). As such, since ΦA

must be greater than Φ in order to eliminate oversized tasks:

ΦA > Φ > ΦB

Therefore, to eliminate oversized tasks, Equation A.15 cannot be true, and thus HMP

cannot attain a load-balance.

In summary, HMP can eliminate oversized tasks but cannot attain a load-balanced

solution. Since HPM does not increase the number of migrating tasks, HMP should not

add additional fluctuations in utilization due to the migrating tasks. Additionally, HMP

does add requirements to the number of tasks as well as the number of cores in the system.

A.3 Best Method for Handling Oversized Tasks

We have developed three methods to handle oversized tasks. Table A.1 shows a com-

parison of the three methods, with multi-partitioning broken into its vertical and horizontal

parts, based on the three metrics described in Section A.2. As shown, pre-partitioning is

the only method that could be applied to EDF-hv without any additional requirements



62

Table A.1: Comparison of methods to handle oversized task using the metrics described in
Section A.2.

Load-
Balance

Increase
Fluctuations

Increase Requirements

Pre-Partitioning No No No

Oversized Migration Yes Yes
N ≥ σ + M

Decrease Feasibility

Vertical
Multi-Partitioning

No Yes
N ≥ 2(M + 1)

Decrease Feasibility
Violates Theorem 3

Horizontal
Multi-Partitioning

No No
M ≥ 4

N ≥ M + 2

and therefore is the only general solution to handling oversized tasks. Oversized migration

was the only solution that could attain a load-balance, however, it is likely to significantly

increase the fluctuations in utilization as a result of migrating tasks since the largest tasks

in the system will be migrating tasks. Further, allowing the largest tasks to be migrating

tasks also decreases the likelihood of being able to meet Theorem 2. As such, while oversized

migration may be able to provide a load-balanced solution, it is not likely to be applicable in

many systems. VMP was unable to meet any of the metrics and is thus unsuitable to handle

oversized tasks. HMP was unable to attain a load-balance and increased the requirements

on the number of tasks and number of cores. However, something that was not captured

in Table A.1 is that HMP is able to eliminate oversize tasks. Thus, while HMP fails to

attain a full load-balance, oversized tasks can be eliminated such that each partition can be

load-balanced. As such, HMP may have use in systems with multiple VFI, such that the

cores on each VFI can be load-balanced.


	An Energy-Efficient Semi-Partitioned Approach for Hard Real-Time Systems with Voltage and Frequency Islands
	Recommended Citation

	Abstract
	Public Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Related Works
	Power Management
	Semi-partitioning
	Earliest Deadline First Optimal Semi-Partitioned Scheduling (EDF-os)

	System Model
	System Model
	Energy Considerations

	Quantifying Imbalance and VFI Cost
	Imbalance
	VFI Cost
	Worst-Case VFI Cost
	Best-Case VFI Cost


	EDF-hv
	Partitioning for a Load-Balance
	Scheduling
	Guaranteeing Deadlines

	Simulation Results
	VFI Cost
	Simulation Setup
	Results

	EDF-hv
	Simulation Setup
	Performance of EDF-hv
	TI C66x DSP Case-Study


	Conclusion and Future Work
	References
	Appendices
	A  Handling Oversized Tasks
	Bounds with Oversized Tasks
	Methods to Handle Oversized Tasks
	Best Method for Handling Oversized Tasks



