
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2016

Exploiting Adaptive Techniques to Improve Processor Energy Exploiting Adaptive Techniques to Improve Processor Energy

Efficiency Efficiency

Hu Chen
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Chen, Hu, "Exploiting Adaptive Techniques to Improve Processor Energy Efficiency" (2016). All Graduate
Theses and Dissertations. 4985.
https://digitalcommons.usu.edu/etd/4985

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F4985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4985?utm_source=digitalcommons.usu.edu%2Fetd%2F4985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

EXPLOITING ADAPTIVE TECHNIQUES TO IMPROVE PROCESSOR

ENERGY EFFICIENCY

by

Hu Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

Approved:

Sanghamitra Roy, PhD Koushik Chakraborty, PhD
Major Professor Committee Member

Ryan Gerdes, PhD Rose Hu, PhD
Committee Member Committee Member

Haitao Wang, PhD Mark R. McLellan, PhD
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2016

ii

Copyright c© Hu Chen 2016

All Rights Reserved

iii

ABSTRACT

Exploiting Adaptive Techniques to Improve Processor Energy Efficiency

by

Hu Chen, Doctor of Philosophy

Utah State University, 2016

Major Professor: Sanghamitra Roy, PhD
Department: Electrical and Computer Engineering

Rapid device-miniaturization keeps on inducing challenges in building energy efficient

microprocessors. As the size of the transistors continuously decreasing, more uncertainties

emerge in their operations. On the other hand, integrating more and more transistors on

a single chip accentuates the need to lower its supply-voltage. This dissertation investi-

gates one of the primary device uncertainties — timing error, in microprocessor pipeline; as

well as, the energy trade-off between processor components in Near-Threshold Computing

(NTC) era. Using rigorous cross-layer methodology, this dissertation identifies novel oppor-

tunities lying in microprocessor workload, and the shifted processor performance bottleneck

in NTC era. Then it proposes various innovative techniques to exploit these opportunities to

maintain processor energy efficiency, in the context of emerging challenges. Evaluated with

the cross-layer methodology, the proposed approaches achieve substantial improvements in

processor energy efficiency, compared to other start-of-art techniques.

(91 pages)

iv

PUBLIC ABSTRACT

Exploiting Adaptive Techniques to Improve Processor Energy Efficiency

by

Hu Chen, Doctor of Philosophy

Utah State University, 2016

Major Professor: Sanghamitra Roy, PhD
Department: Electrical and Computer Engineering

As technology advances, the size of transistor — the basic building block of micropro-

cessors, continues shrinking. The downscaled transistor will make its manufacture process

become less controllable, and its operation less predictable. Moreover, smaller transis-

tor size will lead to higher volume of transistors on a single chip, thus increases the chip

power consumption. This dissertation proposes various techniques to efficiently tolerate

the uncertainties in microprocessors. Also, it proposes an innovative design paradigm to

build energy-efficient processor under ultra-low supply-voltage. Evaluated with rigorous

methodology, the proposed approaches achieve significant improvement in processor energy

efficiency, compared to other state-of-art techniques.

v

To my wife, Jing and our adorable son Jacob

vi

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Sanghamitra

Roy, and my co-advisor Dr. Koushik Chakraborty for the continuous support of my Ph.D

study and related research, for their patience, motivation, and immense knowledge. Their

guidance helped me in all the time of research and writing of this thesis. Without it, my

whole Ph.D study and research would not be never become possible.

I would like to thank all of my supervisory committee: Dr. Rose Hu, Dr. Ryan Gerdes,

Dr. Haitao Wang, and Dr. Ming Li, for their insightful comments and encouragement that

have incented me to widen my research from various perspectives.

My sincere thanks also goes to my fellow labmates in USU Bridge Lab, for the stimu-

lating discussions, for the sleepless nights we were working together before deadlines, and

for all the fun we have had in the last four years. I would like to thank Yiding, Jason and

Dean for their guidance as I started my research; thank Manzi, Shamik, Prabal and Atif for

withstanding the deadline pressure with me; thank to Shayan, Rajesh and Harshita for all

the fun we had in the 2014 DAC trip; thank to Saptarshi for the fun conversations we had

about life; thank to all the students who have helped me in one way or another: Brennan,

Mohammed, McCabe, Brian, Andrew, Kenneth, Michael, Kenyon, Kurt and Chidham.

I would like to thank the ECE Department and all of the staff members, for giving

me the opportunity to pursue my PhD degree. I am very thankful to Mary Lee Anderson,

Kathy Phippen and Tricia Brandenburg for the invaluable support in supporting my Ph.D

study in many ways.

Last but not the least, I would like to thank my family: my wife Jing and my son

Jacob, for being my everlasting source of joy and motivation; my father for his impact on

my life; my mother for her unconditional love.

Hu Chen

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

1 INTRODUCTION . 1
1.1 Contribution of This Dissertation . 2

1.1.1 Conference Papers . 2
1.1.2 Journal Paper . 3

2 LITERATURE REVIEW . 4
2.1 State-of-the-Art Works in Processor Reliability and Energy-Efficiency . . . 4

2.1.1 Analysis and Modeling of Device Reliability 4
2.1.2 Efficiently Coping with Device Timing Uncertainties at Circuit Level 6
2.1.3 Architectural Strategies to Efficiently Tolerate Device Timing Variations 8
2.1.4 Fundamental Principles in NTC Era 11
2.1.5 NTC Design Techniques . 12

2.2 Tackling Timing-Error in Microprocessors 15
2.3 Processor Energy-Efficiency in NTC Era . 17

3 DARP: DYNAMICALLY ADAPTABLE RESILIENT PIPELINE DE-
SIGN IN MICROPROCESSORS . 19

3.1 Background and Contributions of This Work 19
3.2 Motivation . 21

3.2.1 Sensitized Pipe Stage Delay . 21
3.2.2 Significance . 25

3.3 Dynamically Adaptable Resilient Pipeline 26
3.3.1 DARP overview . 26
3.3.2 Exploiting Early Error Prediction 26
3.3.3 DARP Controller Design . 28

3.4 Methodology . 31
3.4.1 Architecture Layer . 31
3.4.2 Circuit Layer . 32
3.4.3 Timing Error Simulation Methodology 33

3.5 Experimental Results . 33
3.5.1 Comparative Schemes . 33
3.5.2 Performance Comparison . 34

viii

3.5.3 Energy-Efficiency and Power-Efficiency Comparison 35
3.5.4 Power Overhead of DARP . 36

4 DARP-MP: DYNAMICALLY ADAPTABLE RESILIENT PIPELINE DE-
SIGN IN MULTICORE PROCESSORS . 38

4.1 Background and Contributions of This Work 38
4.2 Motivation . 39

4.2.1 Methodology . 39
4.2.2 Results . 40
4.2.3 Significance . 41

4.3 DARP in Multicore Processor . 42
4.3.1 THPH Architecture . 43
4.3.2 DARP Technique . 43
4.3.3 Potential of DARP in THPH . 44
4.3.4 Integrating DARP with THPH . 45

4.4 Methodology . 46
4.4.1 Architecture Layer . 46
4.4.2 Circuit Layer . 48
4.4.3 Timing Error Simulation Methodology 49

4.5 Experimental Results . 49
4.5.1 Comparative Schemes For DARP-MP 50
4.5.2 Performance Comparison . 50
4.5.3 Energy-Efficiency and Power-Efficiency Comparison 50
4.5.4 Limitations . 51

5 OPPORTUNISTIC TURBO EXECUTION IN NTC: EXPLOITINGTHE
PARADIGM SHIFT IN PERFORMANCE BOTTLENECKS 53

5.1 Background and Contributions of This Work 53
5.2 Motivation . 54

5.2.1 Methodology . 56
5.2.2 Performance Bottlenecks in NTC . 56
5.2.3 Energy Efficiency Perspective of OTE 57

5.3 Opportunistic Turbo Execution . 57
5.3.1 OTE Overview . 57
5.3.2 Supporting Two Operating Modes 58
5.3.3 Dealing with Variable Latency MFU 59
5.3.4 OTE Controller . 60

5.4 Methodology . 61
5.4.1 Architecture Layer . 62
5.4.2 Device Layer . 63
5.4.3 Circuit Layer . 63

5.5 Experimental Results . 64
5.5.1 Comparative Schemes . 64
5.5.2 Choice of OTE Boost . 65
5.5.3 Dynamic OTE Configuration . 65
5.5.4 Performance and Energy Efficiency 66
5.5.5 Overhead and Limitation . 66

ix

6 CONCLUSION . 69

REFERENCE . 71

VITA . 79

x

LIST OF TABLES

Table Page

4.1 Multicore configuration. 48

4.2 Multicore Workloads. 48

5.1 The Configuration of the ARM Cortex NTC Core. 62

xi

LIST OF FIGURES

Figure Page

3.1 Cross-Layer Methodology to investigate delay variance in pipe stages. . . . 21

3.2 CDF of sensitized path delay variance in several microprocessor pipe stages. 22

3.3 Average delay for different input-data width transition in execute stage. Both
mean and standard deviation across different benchmarks are shown. The
average delay of the current cycle is measured for the transition between the
input-data width of the immediately preceding cycle and that of the current
cycle. SS: Small-size to Small-size; SM: Small-size to Medium-size; SB: Small-
size to Big-size. Small-size: input-data width <= 8bits; Medium-size: 8bits
< input-data width <= 16bits; Big-size: input-data width > 16bits. 25

3.4 The composition of data-width transition for the benchmarks. Using the
same definition as figure 3.3, for all the transitions. 25

3.5 DARP Overview. 27

3.6 Configuring Clock Vernier Devices using DARP. 30

3.7 Performance comparison normalized to Razor. 35

3.8 Penalty cycles from Timing Errors. 36

3.9 False Positive Rate of Timing-Error Predictor in DARP-Pred. 36

3.10 EDP comparison normalized to Razor. 37

3.11 Performance/Watt comparison normalized to Razor. 37

4.1 Cross-Layer Methodology to investigate the impact of nominal frequency
upon delay variance. 41

4.2 CDF of sensitized path delay variance across cores with different nominal
frequencies. 42

4.3 Topologically Homogeneous Power-Performance Heterogeneous Multicore Sys-
tems (THPH) Architecture and conventional Symmetrical Multicore Proces-
sor enhanced with Voltage-Frequency Scaling (SMP-VFS). The color repre-
sents the optimal running frequency of the task and the nominal frequency
of the core, as described in the figure. 44

xii

4.4 Performance benefit of DARP Technique. 45

4.5 How the benefit of DARP technique vary across cores with different nominal
operating frequencies. core frequencies: f0 = 1.2 ∗ f1 = 1.5 ∗ f2 = 2 ∗ f3. . . 46

4.6 Modeled multicore system. Different color for the core represents different
core nominal frequency. 48

4.7 Performance comparison normalized to THPH. 51

4.8 EDP comparison normalized to THPH. 52

4.9 EDP reduction when applying DARP on multicore architectures. 52

4.10 Performance/Watt comparison normalized to THPH. 52

5.1 Shifting trends in CPU performance sensitivity from the STC to the NTC
regime. 55

5.2 LLD speedup over memory speedup. 55

5.3 Core energy breakdown for NTC. 55

5.4 OTE overview: the ARM Cortex A15 processor pipeline is shown, along with
the major augmentations for OTE. 58

5.5 Our Cross-Layer methodology. 62

5.6 EDP results of four OTE boosts (Lower is better). 65

5.7 EDP results of three Dynamic-OTE Schemes (OTE boost=4X) (Lower is
better). 65

5.8 Performance improvement (Higher is better). 66

5.9 Energy reduction (Higher is better). 67

5.10 Energy-Efficiency comparison (Lower is better). 67

5.11 Impact of Voltage-Regulator efficiency on the EDP (normalized to the base-
line) achieved by Dynamic-OTE. 67

1

CHAPTER 1

INTRODUCTION

The utilization of computers is one of the key attributes that define modern society.

Processors are the core components of a computer system. With rapid miniaturizations of

semiconductor devices, a single processor contains more and more transistors. This device

miniaturization introduces complicated reliability and energy-efficiency hazards in circuits’

operation. First of all, the downscaled device size increases the device sensitivities towards

both process variations, as well as operation environment. These sensitivities create various

uncertainties in device operation, thereby affect the performance and reliability of the whole

system. On the other hand, the fast-increasing transistor count leads to a upsurge in the

power consumption of a single chip. As computers become ubiquitous in the daily life of

human beings, the power consumption of the processors become one of the critical concerns

in building our energy-efficient society.

Among all the reliability challenges, the uncertainty in device delay is of particular

concern. The device delay uncertainty can potentially manifest as timing errors [7, 50, 61],

thereby cause malfunction in the whole system. Previous works have intensively studied

various sources of the delay variations, including Process Variation (PV) and aging [50,61].

Different from these well-known sources, this work reveals that variation in delays of pipeline

stages also heavily depends on specific applications running on the microprocessor. For

instance, sensitized paths during the execution of real world applications may exhibit strik-

ingly distinct characteristics than expected from a purely static timing analysis. Observing

this critical source of delay variation, this work combines early error prediction with clock

skew tuning to propose Dynamically Adaptable Resilient Pipeline (DARP), which outlines a

next wave of innovation in pushing the energy efficient frontier of pipelined microprocessor

design.

Supply voltage (Vdd) is one of the key factors that decide the energy efficiency of

2

the Integrated Circuits (IC). Reducing Vdd will effectively decrease the power dissipation

of the transistor. Recently, Near-Threshold Computing (NTC), where Vdd is marginally

higher than transistor threshold voltage (Vth), has emerged as a promising direction to

improve the energy-efficiency of integrated circuits. However, such a reduction in Vdd will

significantly increase the transistor delay and its sensitivity to PV. Therefore, the NTC

processor cores will operate on a much degraded frequency compared to Super-Threshold

Computing (STC) processor cores [18, 39, 53]. Also, the achievable operating frequency

of each core can vary substantially in a NTC multi/many-core system [18, 39, 53]. Aside

from these well-known challenges, this work reveals another significant change as migrating

the processors into NTC era: the historic performance gap between core and memory

will be largely superseded by the performance bottleneck within the core. Based on this

observation, this work proposes Turbo Execution, which exploits this new performance knob

in processor cores to compensate the severe performance degradation and variability in NTC

era.

1.1 Contribution of This Dissertation

The research works associating with this dissertation have been partially published in

various conference and journals, including 2016 IEEE/ACM Design Automation Confer-

ence (DAC), 2015 IEEE/ACM Design Automation Conference (DAC), 2014 IEEE/ACM

Design, Automation and Test in Europe (DATE), 2014 IEEE International Symposium on

Quality Electronic Design (ISQED), and 2015 ACM Transactions on Design Automation

of Electronic Systems (TODAES).

Publications stemming from this dissertation are listed as follows:

1.1.1 Conference Papers

• Opportunistic turbo execution in NTC: exploiting the paradigm shift in performance

bottlenecks. Hu Chen, Dieudonne Manzi, Sanghamitra Roy, Koushik Chakraborty.

2015 IEEE/ACM Design Automation Conference (DAC).

3

• DARP: Dynamically Adaptable Resilient Pipeline Design in Microprocessors. Hu

Chen, Sanghamitra Roy, Koushik Chakraborty. 2014 IEEE/ACM Design, Automa-

tion and Test in Europe (DATE).

• Exploiting Static and Dynamic Locality of Timing Errors in Robust L1 Cache De-

sign. Hu Chen, Sanghamitra Roy, Koushik Chakraborty. 2014 IEEE International

Symposium on Quality Electronic Design (ISQED).

• SwiftGPU: Fostering Energy Efficiency in a Near-Threshold GPU Through Tactical

Performance Boost. Prabal Basu, Hu Chen, Shamik Saha, Koushik Chakraborty,

Sanghamitra Roy. 2016 IEEE/ACM Design Automation Conference (DAC).

• Synergistic Timing Speculation for Multi-threaded Programs. Atif Yasin, Jeff Zhang,

Hu Chen, Sanghamitra Roy, Koushik Chakraborty. 2016 IEEE/ACM Design Au-

tomation Conference (DAC).

1.1.2 Journal Paper

• DARP-MP: Dynamically Adaptable Resilient Pipeline Design in Multicore Proces-

sors. Hu Chen, Sanghamitra Roy, Koushik Chakraborty. 2015 ACM Transactions on

Design Automation of Electronic Systems (TODAES).

4

CHAPTER 2

LITERATURE REVIEW

This chapter gives a comprehensive literature survey on recent works that associated

with processor energy-efficiency in various aspects. Chapter 2.1 lists and explains the state-

of-the-art recent works. Chapter 2.2 positions the contributions of this dissertation on

efficiently tolerating timing errors in microprocessor components. Chapter 2.3 clearly de-

lineates the position of this research on designing energy-efficient multi/many-core systems

in NTC era.

2.1 State-of-the-Art Works in Processor Reliability and Energy-Efficiency

The existing works that most relevant to this dissertation can be broadly classified

into five categories: basic analysis and modeling of the device reliability (Section 2.1.1);

circuit techniques to efficiently cope with timing uncertainties in devices (Section 2.1.2);

architectural strategies to efficiently tolerate device timing variations (Section 2.1.3); the

fundamental opportunities and challenges in Near-Threshold Computing (NTC) era (Sec-

tion 2.1.4); the state-of-the-art design techniques in NTC (Section 2.1.5).

2.1.1 Analysis and Modeling of Device Reliability

• Borkar [7]: Borkar presents technology and economic challenges in 22nm node and

beyond. As technology continues scaling down, the static and dynamic variations in

devices will continue to become worse. Therefore, one of the major design challenges

in lower technology node is: how to build a reliable yet energy-efficient system, out of

unreliable components.

• IVF [50]: IVF characterizes the vulnerability of microprocessor structures to various

intermittent faults. The timing-faults, where the device delay violates the design con-

5

straints, are mainly caused by inductive noises, aging, crosstalk, or process, voltage,

temperature (PVT) variations. They usually lead to write wrong data to storage cells

and finally become reliability problem.

• VARIUS [61]: VARIUS models the impact of within-die parameter variation upon

the device delay. Using a small number of highly intuitive parameters, VARIUS counts

in both random and systematic effect of parameter variation. Also, VARIUS proposes

a framework to model timing errors in microarchitectures that caused by parameter

variation. The model gives the failure rate of a microarchitecture as a function of

clock frequency and the amount of variation.

• Borkar [64]: Borkar presents the sources of variability in devices as well as the current

variation-tolerant techniques that have been employed. Random dopant fluctuation,

sub-wavelength lithography, as well as various dynamic fluctuations during the device

operation, are the major sources of the device variability. He also predicts the device

variation to increase as the technology continues scaling further, and proposes several

potential solutions to address these reliability challenges.

• Mukhopadhyay et al. [45]: Mukhopadhyay et al. analyze the failure probabilities

(access-time failure, read/write failure and hold failure) in SRAM, as well as, develop

a method to predict the yield of a memory chip. They also propose a statistical design

strategy for the SRAM cell and the memory, to minimize the failure probability of

a memory chip under area and leakage constraints. The developed design strategy

statistically sizes different transistors of the SRAM cell and optimizes the number of

redundant columns to be used in the SRAM array.

• Agarwal et al. [5]: Agarwal et al. analyze various SRAM cell failures under Process

Variation (PV) and propose a new PV-tolerant cache architecture suitable for high-

performance applications. The proposed technique dynamically tracks the faulty cells

under the given operation condition, and employ address-remapping to avoid accessing

6

the faulty cells. This scheme is transparent to processor architecture and has negligible

energy and area overhead.

2.1.2 Efficiently Coping with Device Timing Uncertainties at Circuit Level

• Razor [17]: Razor proposes the timing-speculation technique to remove the conven-

tional timing guardband in circuits. Instead of using enough timing guardband to

ensure always timing-error-free operation, it employs double-sampling infrastructure

to detect occurrence of timing-error, then replay the erroneous instruction to resume

correct execution. Under infrequent error occurrence, this technique can effectively

improve both the performance and the energy-efficiency of the microprocessor.

• Bowman et al. [8]: Bowman et al. implemented novel timing-error detection and

recovery circuits to eliminate the timing guardband. The proposed microarchitecture

lowers the clock energy, as well as, simplifies the management of metastability, in

the Error-Detection Sequential (EDS) circuits. On the other hand, the error-recovery

circuits replay the erroneous instructions at lower clock frequency to ensure correct

functionality.

• TIMBER [16]: TIMBER masks timing errors online by enabling timing-borrowing

between microprocessor pipeline stages. Like timing-speculation techniques, TIMBER

employs double-sampling infrastructure to detect timing-error occurrence. However,

instead of instruction replay or roll-back, TIMBER seamlessly redistributes timing

budget across consecutive pipeline stages to mask the timing errors on the fly. Two

state-of-art structures: TIMBER flip-flop and TIMBER latch are proposed to enable

the timing-borrowing.

• Ghazemazar et al. [19]: Ghazemazar et al. leverage timing-borrowing technique

to optimize the energy-efficiency of a synchronous linear pipeline circuit. Employing

Soft-Edge Flip-Flops (SEFF), the proposed approach enables time borrowing between

pipeline stages to provide the timing-critical stages with more time to complete their

7

operation. With the timing-borrowing infrastructure, the proposed technique also

dynamically adjusts the supply voltage level and clock frequency of the pipeline, to

achieve the best throughput-energy trade-off.

• Bowman et al. [9]: Bowman et al. propose various dynamic-adjusting techniques to

tolerant physical condition variations in the circuits. Sensors and adaptive voltage and

frequency circuits work together to provide proper configuration for the circuit. On the

other hand, canary-circuits, as well as error detection and error recovery circuits are

employed to efficiently avoid/tolerate timing errors in microprocessors. The authors

discuss the opportunity of incorporating these techniques in Computer-aided Design

(CAD) tools.

• AutoRex [69]: AutoRex proposes an automatic tool to do post-silicon clock-tuning,

therefore improves the nominal frequency of the processor. Although commonly avail-

able in high-end microprocessors, the huge amount of possible configurations for the

clock-tuning elements poses a significant challenge for its optimal usage. Also, Process

Variation (PV) can make the optimal configuration vary for different chips. AutoRex

operates by taking data from a volume experiment across multiple process corners and

then using Satisfiability Modulo Theory (SMT) solver to creates optimal assignments

for the tunable delay buffers in each chip.

• Ye et al. [75]: Ye et al. employs both offline and online clock-skewing technique to

tolerate PV in microarchitecture. By investigating the timing-criticality of neighbor

stages, offline clock-skewing technique can statically borrow time into timing-critical

stages to eliminate the timing error occurrence. On the other hand, the timing budget

for back-to-back timing-critical stages are dynamically adjusted online to minimize the

overall timing-error occurrence. Razor-like timing-speculation technique is employed

to protect the circuits as timing error occurs.

• Lak et al. [31]: Lak et al. uses clock-skew tuning to address the lifetime perfor-

mance degradation caused by device aging. Their technique employs in-situ sensor to

8

detect the aging-induced degradation in path delay as it approaches the limit of clock

cycle-time. Then the clock skew is adjusted for that path to give it enough timing

guardband. At the same time, an optimization algorithm is launched to adjust the

clock-tuning elements across the whole circuit to maintain a highest achievable clock

frequency.

• Pan et al. [51]: Pan et al. present an analysis of a representative high-performance

processor architecture and show that the caches have the highest probability of caus-

ing yield losses under PV. Then they propose voltage-boosting to eliminate the PV-

induced timing-errors in cache. The wordlines with timing-errors are located during

the test, then the voltage of these wordlines are statically boosted to reduce the la-

tency.

• Gregg et al. [20]: Gregg et al. employs Adaptive-Body-Biasing (ABB) to miti-

gate the PV-induced delay degradation in cache accesses. Using two algorithms to

find near-optimal configurations, the body biases are generated on set-granularity to

compensate the PV-induced cache access timing degradation.

2.1.3 Architectural Strategies to Efficiently Tolerate Device Timing Variations

• Xin et al. [74]: Xin et al. demonstrate the pronounced locality in instruction-

level timing-error occurrence in microprocessor pipeline. With this observance, they

propose a timing error prediction technique, which uses Program Counter (PC) to

dynamically anticipate timing errors at instruction-level; as well as, an error padding

technique which stalls the pipeline for one-cycle to cover the potential timing-error

occurrence, therefore avoid the full recovery cost of timing errors.

• Roy et al. [60]: Roy et al. reveal that the timing error occurrence is not only associ-

ated with the instruction instance, but also related to the context of that instruction,

as well as the thermal and voltage condition of the processor. Based on this discov-

ery, they propose an effective timing-error prediction technique for the microprocessor

9

pipeline. On a timing-error occurrence, the Program Counter (PC) of the instruction,

the Branch History Register (BHR), as well as the pipe stage where the timing-error

occurred, are recorded in the Timing Violation Predictor (TVP). On-chip sensors are

employed to increase the prediction accuracy.

• Chakraborty et al. [11]: Chakraborty et al. improve the energy-efficiency of timing-

error prediction in microprocessor pipeline. To support efficient error-padding after

an timing-error being predicted, they explore various optimization techniques in the

instruction scheduling in an Out-of-Order pipeline. With the proposed techniques,

only the predicted-to-be- erroneous pipeline stage will stall for one-cycle to cover the

potential timing error, rather than stalling the whole pipeline, as employed in existing

timing- error prediction techniques.

• Rahimi et al. [57]: Rahimi et al. propose adaptive timing guardbanding to pro-

tect applications from Process-Voltage-Temperature (PVT) induced CMOS variabil-

ity. Besides the intrinsic requirement of the application, the author use Instruction-

Level Vulnerability (ILV) and Sequence-Level Vulnerability (SLV) to characterize the

application’s vulnerability to transistor timing variation. On the other hand, low-

overhead Critical Path Monitors (CPM) are employed to detect the transistor timing

degradation. Based on the application metadata, as well as the transistor opera-

tion status, the cycle time of the processor is dynamically adjusted to eliminate the

unnecessary guardbands.

• AVICA [22]: AVICA pads an extra cycle in every L1 cache access to avoid PV-

induced timing-errors. A pseudo multi-bank technique is employed to allow two con-

secutive cache accesses to overlap each other, thereby minimizing the performance

impact of increased cache access latency. Meanwhile, several other architectural tech-

niques are also employed to reduce the chance of bank-conflicting, where two consec-

utive cache accesses are targeting at the same bank thus cannot overlap each other.

10

• Ozdemir et al. [49]: Ozdemir et al. propose several techniques to tackle the PV-

induced fault in cache. The cache ways/ lines suffering from high leakage and delay

violation will be power-off to save the power consumption, as well as maintain the

performance of the cache. On the other hand, they design a VAriable-latency Cache

Architecture (VACA) to allow load accesses to complete with varying latencies, thus

tolerating the PV-induced delay-increase in cache access. An combination of these

techniques is also explored to further improve the yield of the cache memory.

• Mutyam et al. [47]: Mutyam et al. propose a scheme to tolerate the PV-induced

latency degradation in SRAM cell access. During chip test, the timing-error sites of

the cache are detected, and their locations are recorded in a table. At runtime an

early predicted address is used to access the table, thus the timing error prediction

can be made before doing cache-access. An extra cycle is padded in cache access, as

an timing error has been predicted. While pipeline flush and instruction replay are

initiated when there is a false negative in the prediction.

• Kim et al. [28]: Kim et al. design a 2-D error- coding to correct multi-bit errors

in embedded memories. Conventional 1-D ECC schemes can neither detect nor cor-

rect large-scale multi-bit errors without incurring large performance, area and power

overhead. Kim et al., on the other hand, integrate vertical error coding across words

in addition to conventional per-word horizontal error coding, thereby more efficiently

protect embedded memories from multi-bits errors.

• TM [59]: Instead of implementing highly costly Dynamic Voltage Frequency Scaling

(DVFS) in multicore processors, Thread-Motion (TM) employs static VFS on each

core, while enabling thread migration to optimize the core utilization. Different from

rapidly adjusting the voltage and frequency configuration (as done in DVFS) in each

core to meet the temporally varying computing needs of the running applications, TM

transfers the temporary application data among the cores, then restore application

11

execution after the transfer. An optimization algorithm is employed to search for an

efficient task-distribution on the cores.

• THPH et al. [12]: THPH is proposed as superior alternative to conventional VFS

technique. Conventional VFS adjusts the core voltage and frequency according to the

computing needs of the running applications, however, it cannot alter the intrinsic

characteristic of the circuits. On the other hand, THPH design a core from ground-

up for a specified voltage-frequency point. As operating on that voltage-frequency

point, such a core is substantially more energy-efficient than a core that is designed

for other voltage-frequency but using VFS to work on that point.

2.1.4 Fundamental Principles in NTC Era

• Dreslinski et al. [18]: Dreslinski et al. systematically introduce the opportuni-

ties and challenges–as well as their possible solutions–associated with Near-Threshold

Computing (NTC) era. By reducing the supply voltage to be just marginally higher

than the transistor threshold voltage, NTC can significantly save the circuit en-

ergy consumption. NTC is particularly attractive in energy-critical platforms, such

as high- performance date-center, mobile computing and sensors. However, perfor-

mance degradation/variation and functional failure are the major challenges as mi-

grating the circuits into NTC era. The authors review various techniques on architec-

ture/microarchitecture level, as well as circuit level as the solution to these challenges.

• Marković et al. [39]: Marković et al. demonstrate a new design philosophy for

the NTC era. According to their work, gate sizing–the previously widely used trade-

off knob in Super-Threshold Computing (STC), will be much less effective in NTC

region. On the other hand, the delay- voltage sensitivity will be much larger in NTC

than that in STC. Therefore, voltage will be the most effective parameter to adjust

the device delay, in NTC region. Based on this discovery, the authors propose multi-

threshold(Vth) design on the chip to improve the energy efficiency in NTC era.

12

• Pinckney et al. [53]: Pinckney et al. assess the theoretical limit of energy-efficiency

that can be achieved by voltage downscaling. Conventionally, parallel computing will

be employed to compensate the performance degradation from voltage downscaling.

However, Pinckney et al. reveal that various major energy overheads, including device

leakage energy, Amdahl overhead, as well as architectural overhead, will prevent the

supply voltage from continuous downscaling. According their work, the NTC region,

which locates slightly above the minimal-energy point, will have leakage comprise a

significant part of the total energy consumption.

• Karpuzcu et al. [26]: Karpuzcu et al. investigate the impact of PV upon device

performance in NTC, as well as the strategies to address this challenge. The timing

guardband strategy in Super-Threshold Computing (STC) will be inappropriate to

apply in NTC, where the device speed is substantially slow. Also, supply voltage and

threshold voltage adjusting techniques will be much limited, due to the wide core-

wise variation and and the large core volume in a NTC processor. Instead, the author

propose multi-frequency domain on a NTC processor to cope with PV-induced device

timing variation.

2.1.5 NTC Design Techniques

• Seok et al. [66]: Seok et al. propose super-pipelining to reduce the energy con-

sumption in NTC region. As leakage being the dominant part of the device energy

consumption in NTC era, the authors employs a deeper pipeline to increase circuit’s

activity factor and reduce the idle time of the devices. Therefore, the circuits moves

back into the dynamic-energy dominating region, and the energy wasted in leakage is

reduced. Also, the authors propose novel microarchitectures to improve the circuits

reliability in NTC region.

• Wang et al. [71]: Wang et al. explore platform energy-reduction in NTC region.

Different than previous works that only consider the energy efficiency within the pro-

cessor, they consider the energy-consumption in both voltage-regulators and off-chip

13

memory accesses when optimize the platform energy. As larger chip area will decrease

the manufacture yield, they also explore the trade-off between platform energy and

chip area. The major design space they explored is the size of the on-chip L2 cache. As

the performance gap between processor and memory shrinks in NTC, incorporating

large L2 cache will be less effective in boosting processor performance.

• Hsu et al. [24]: Hsu et al. propose a reconfigurable SIMD vector permutation

engine that can work on near-threshold supply-voltage. Various microarchitectural

and circuit techniques are employed to tolerate severe process variation in NTC region.

• Tokunaga et al. [70]: Tokunaga et al. implement NTC graphics execution core

on Intel’s 22nm technology node. To maintain noise margin in memory cells while

the logic cells can operate on lower supply voltage, the authors employs a dual-Vdd

technique. Moreover, an adaptive clocking technique is implemented to proactively

gate or divide the core clock, when high- frequency voltage droops are detected. Also,

the authors propose a state-retentive sleeping mode in the Graphics Register File

(GRF) to reduce the leakage energy, which is the major source of circuit energy

consumption in NTC.

• EnergySmart [27]: EnergySmart proposes a multi-frequency domain design paradigm

to cope with PV-induced performance heterogeneity in NTC multi/many-core system.

Severe sensitivity to PV creates wide performance variation across cores on a NTC

chip. However, the large core volume on the NTC chip makes it difficult to customize

a voltage domain for each core. Instead, EnergySmart only enables multiple frequency

domains on the NTC chip, while providing energy-efficiency aware job assignments to

find an appropriate set of core for each job.

• Liu et al. [35]: Liu et al. implement an asynchronous neural signal processor in NTC.

The intrinsic characteristic of asynchronous circuit makes it an attractive candidate

to address two major challenges in NTC era: the severe sensitivity to PV and the

14

dominating leakage energy consumption. On the other hand, biomedical sensor is one

of the emerging applications that demand for ultra-low power and energy performance.

• Moon et al. [44]: Moon et al. realize a Phase-Locked Loop that work in NTC

region, on 65nm technology node. Multiple circuit techniques are integrated in body-

biasing of Voltage Controlled Oscillator (VCO) to mitigate severe Process-Voltage-

Temperature (PVT) effect in NTC. Also, the PLL employs a novel ultra-low voltage

charge pump that compensates current mismatch with an active loop filter.

• Zhang et al. [76]: Zhang et al. propose a receiver that operates from a single voltage

supply of 300mV, therefore can be directly powered from various energy harvesting

sources. Forward-Body-Biasing (FBB) is employed to temporarily boost the device

performance. The proposed design also extensively utilizes transformer coupling be-

tween stages to reduce headroom requirements.

• Hsieh et al. [23]: Hsieh et al. propose an all digital push-pull linear voltage regu-

lator that can operate for both STC and NTC region. A response time constraint is

developed to provide a design guideline for the digital control system. It describes the

correlation between required speed of the digital control system, the output perfor-

mance and the size of the decoupling capacitor. A time interleaving control technique

is then proposed to have a trade-off between output performance, quiescent current,

and the size of decoupling capacitor.

• Kutila et al. [30]: Rather than exploring other alternative SRAM cells (for example,

8T, 10T, et cetera), Kutila et al. investigate the opportunity of conventional 6T

SRAM cell in NTC region, targeting at low performance applications. According to

their work, the two inner NMOS transistors in the 6T SRAM cell are the crux in

NTC operation. By doubling their widths from the minimum, the reliability and the

leakage energy consumption of the SRAM cell are substantially improved.

• Xie et al. [73]: Xie et al. explore the energy efficiency of Soft-Edge Flip-Flop (SEFF)

based pipeline, for both STC and NTC regions. SEFF allows opportunistic timing

15

borrowing between pipeline stages, however, applying this technique to NTC region

faces a significant challenges due to large circuit parameter variations that result from

manufacturing process imperfections and substrate temperature changes. The authors

propose a novel delay line structure for the SEFF to provide appropriate transparency

window control for the NTC region. Then a design optimization algorithm is employed

to achieve the minimal Energy-Delay-Product (EDP) for the SEFF based pipeline.

• Lee et al. [32]: Lee et al. evaluate the voltage stacking technique in the context

of NTC multicore processor. By stacking logic blocks on top of each other, voltage

stacking reduces the chip leakage energy and simplifies off-chip power delivery. Within-

die voltage noise tends to increase due to inter-layer current mismatch. However,

unlike conventional power delivery schemes, supply rail impedance in voltage stacked

systems depend on aggregated power consumption, leading to better noise immunity

for high power (low impedance) operation for many-core processors.

• Booster [42]: Booster is a two power supply rails framework that can dynamically re-

balance severe PV-induced performance heterogeneity under ultra-low supply voltage.

Each core can be dynamically assigned to either of the two rails using a gating circuit.

This allows cores to quickly switch between two different frequencies. Subject to the

power constraint, an on-chip governor controls the timing of the switching and the

time spent on each rail. Thereby, not only the PV-induced performance heterogeneity,

but also the imbalance in workloads can be rebalanced by Booster.

2.2 Tackling Timing-Error in Microprocessors

Previous works most relevant to tolerating timing-error in microprocessor pipeline fall

in the broad categories of timing speculation and clock skew scheduling. One approach to

boost energy efficiency is by operating at a tighter frequency and detecting and correcting

occasional timing errors after occurrence (e.g., Razor [17] and others [8]). Another approach

aims to employ sensors for just in-time prediction of timing errors, and advocates time

borrowing to avoid timing errors [9,16,19]. More recent works demonstrate early prediction

16

of timing errors, several cycles in advance, by observing the correlation between instructions

and their sensitized path delays [11,60,74]. In the domain of clock skew scheduling, recent

works by Ye et al. and Lak et al. propose dynamic techniques to combine with timing

speculation through error detection [31, 75]. However, their works do not consider real

workload execution on a pipelined microprocessor, and are based on random inputs. On

the other hand, the technique proposed in this dissertation–Dynamically Adaptable Resilient

Pipeline (DARP)–overcomes this limitation through a cross-layer theme that considers real

program driven circuit path sensitization. Moreover, DARP combines early prediction of

timing errors with dynamic clock skew tuning to efficiently exploit the workload driven

circuit delay variances.

Besides the above techniques, Rahimi et al. [56, 57] adapt the cycle-time guardband

according to instruction/instruction-sequence profiling, thus improve the performance of the

processor. Unlike the DARP technique, this approach aims at providing enough guardband

in cycle-time, instead of taking the risk of timing-error and recovering from error after

detection. Also, it does not employ timing-borrowing across pipe-stages. Moreover, the

runtime adaption of this approach is based on a pre-defined lookup table. On the other

hand, the online pipeline adjustment in DARP does not require any information of the

workload before runtime.

Chakraborty et al. [12,13] have shown the energy-efficiency opportunity that lies in the

performance-heterogeneous multicore architecture. For two topologically identical cores

and a same operating frequency fo: the core with the nominal frequency fnom = fo is

much more energy-efficient than the core with fnom 6= fo and using DVFS technique to

operate on fo. Based on this observation, they proposed a Topologically Homogeneous and

Power-performance Heterogeneous (THPH) multicore architecture to make a substantial

energy-efficiency improvement compared to conventional Symmetric Multicore Processor

(SMP). However, it will be intriguing to combine THPH with the dynamic pipeline adjusting

techniques in DARP to even further improve the energy efficiency of the multicore processor.

Moreover, THPH architecture can augment the delay variance which DARP exploits (as

17

will be shown in Chapter 4). Therefore, DARP and THPH architecture can work in a

reciprocal manner in improving the energy-efficiency of the multicore processor.

Previous works tackling PV-induced delay degradation in cache access aim at no occur-

rence of timing-error. For this purpose, AVICA [22] uses a uniform access latency, which is

enough to cover the worst-case delay, in all cache accesses. Therefore, it suffers from unnec-

essary latency penalties. The variable-latency scheme proposed in previous works [47, 49]

requires recording the locations of the error-sites, thus is limited on the granularity it can

be applied to. Previous works [20,51] boost the speed of slow cells in the cache, while again

their hardware overhead limits the granularity they can be applied on. The error-coding

techniques [28] are also prohibitive in hardware cost for severely PV-effected caches. Differ-

ent from the previous works, the timing-error detection/recover technique employed in this

dissertation can give a new light in tolerating the PV-induced delay degradation in cache

accesses. The efficacy of this approach will be determined by the actual occurrence of the

timing-error in cache access.

2.3 Processor Energy-Efficiency in NTC Era

Near-Threshold Computing (NTC) has emerged as a promising direction to improve

the energy-efficiency of integrated circuits. With supply voltage Vdd marginally higher

than threshold voltage Vth, NTC exploits the super-linear Vdd-power relationship to reduce

the system energy consumption. Although with promising energy efficiency, NTC also

introduces various design challenges, including degraded device performance, increasing

performance variations, as well as higher risk of functional failure [18, 39]. Also, leakage

energy becomes dominant as supply voltage approaches the threshold value [53].

Recent works have exploited opportunities of NTC and addressed the associated chal-

lenges in various aspect. These works broadly fall into two categories: ad-hoc NTC designs

and generalized design methods. In the first category, various application-specific circuits

have been implemented in NTC [23, 24, 35, 44, 70, 76]. Most of these designs are targeting

at ultra-low power and low performance applications, with Process-Voltage-Temperature

(PVT) variation as the primary concern. The works in the second categories investigate

18

NTC design philosophy from different aspects. Several works [32,66,71] aim at reducing the

leakage in NTC designs, which is the dominant energy component in a NTC circuit. Some

other works [27,42,73] have proposed general design method to cope with severe PV-induced

performance variation in NTC design. Moreover, Kutila et al. [30] have investigated the

suitability of conventional 6T SRAM cell in NTC designs. None of the existing works from

the above two categories have addressed the a fundamentally new design issue in a NTC

processor: Migrating into the NTC region leads to a 10-100X processor frequency reduction;

the memory, on the other hand, is expected to operate in the STC (Super-Threshold Com-

puting) region, as the combined memory traffic from parallel threads remains comparable

to STC. Consequently, the historic performance bottleneck lies in memory will shift into

the processor core in the upcoming NTC region. This dissertation investigates this shifted

performance bottleneck and proposes Turbo Execution to improve the energy-efficiency of

a NTC microprocessor.

19

CHAPTER 3

DARP: DYNAMICALLY ADAPTABLE RESILIENT PIPELINE DESIGN

IN MICROPROCESSORS

3.1 Background and Contributions of This Work

Rapid miniaturization of transistor devices has introduced several uncertainties in their

operation. Modern microprocessor pipelines experience multiple sources of delay variations,

sometimes manifesting as a timing error [7, 50, 61]. Some of the well studied sources of

delay variations include process variation and aging [50, 61]. To ensure reliable operation

while preserving energy efficiency under delay variation, two of the most popular techniques

applied on microprocessor pipelines are timing speculation and clock skew tuning. Timing

speculation reduces the guardbands to a point where errors occur and are recovered using

error detection and recovery techniques like Razor [17]. Post silicon clock skew tuning is

used to adjust the clock skews of the pipeline registers to allow some stages to borrow time

from others [69]. Combined with timing speculation, clock skew tuning can be even more

effective, as it becomes possible to configure the clock skews more aggressively to allow

occasional errors, thereby improving both performance and energy efficiency [75].

Variation in delays of pipeline stages also depends on specific applications running

on the microprocessor, as well as dynamic fluctuations in voltage and temperature. For

instance, sensitized paths during the execution of real world applications may exhibit strik-

ingly distinct characteristics than expected from a purely static timing analysis. However,

there exist very limited works that exploit delay variance from real world applications. For

example, recent works on adaptive clock skew tuning by Ye et al. and Lak et al. tackle

process variation and aging based delay variation, but do not address the delay variation

from real world applications [31, 75].

This work employs a circuit-architectural analysis to investigate and exploit the delay

20

variation seen in sensitized circuit paths during real world application execution. This work

identifies two distinct classes of these variations, driven by workloads: (a) temporal–delay

variation within a given pipe stage during different phases of a program; and (b) spatial–

distinct delay distributions among different pipe stages of a microprocessor. This work

also exploits early error prediction, a recently proposed technique that allows to predict

timing errors many cycles in advance using the instruction program counter (PC) [11,60,74].

This work combines early error prediction with clock skew tuning to propose Dynamically

Adaptable Resilient Pipeline (DARP), which outlines a next wave of innovation in pushing

the energy efficient frontier of pipelined microprocessor design.

This work makes the following contributions:

• It shows a striking temporal and spatial variance in the sensitization of critical paths in

a microprocessor component, during the execution of real programs (Section 4.2). The

rigorous analysis in this work integrates architectural simulation data with a gate level

logic analyzer to determine critical paths and critical delays sensitized during program

execution.

• It proposes DARP, a dynamically adaptable resilient pipeline. In addition to handling

the well studied delay variations from process variation and aging, DARP can adapt a

pipeline to the spatial and temporal delay variations from real workloads. DARP em-

ploys program phase driven early timing error prediction and dynamic frequency and

clock skew adjustment to exploit workload specific delay characteristics in pipelined

systems (Section 3.3).

• Using a rigorous circuit-architectural simulation (Section 4.4), combining synthesized

hardware with real world application execution through architectural simulation, this

work demonstrates dramatic improvement in the performance (9.4–20%) and energy

efficiency (6.4–27.9%), compared to state-of-the-art timing speculation techniques

(Section 3.5). DARP schemes have negligible core level power overheads of 0.84%

and 3.35%, giving an energy-efficient alternative for robust pipelines.

21

3.2 Motivation

This section demonstrates the wide variance in sensitized path delays in microprocessor

pipe stages during the execution of real applications. The cross-layer analysis in this work,

identifies two distinct sources of this variance: temporal and spatial. Collectively, these

delay variances uncover intriguing possibilities in the runtime adaptation of various pipe

stages in a microprocessor, boosting performance and energy efficiency of the entire system.

3.2.1 Sensitized Pipe Stage Delay

There is a strong correlation between a static instruction and the paths sensitized

by each of its dynamic instances [60]. The logic state of one instruction depends on the

preceding instructions. During the program execution, the code path followed before the

execution of a particular instruction plays a critical role in determining the specific inputs for

that instruction, as well as, the preceding instruction scheduled on any pipeline stage. Since

instructions are drawn from a static code, it is expected that the neighboring instructions

are fairly stable (barring occasional wrong path executions where instructions enter the

pipeline due to a mis-predicted branch) [60].

However, there is a wide disparity in the sensitized delays of different instructions in

a microprocessor pipe stage. For example, during a particular program execution, certain

instructions may experience a mere fraction of the clock cycle delay, meeting the timing

with a large margin to spare. While other instructions may experience a much larger delay,

with limited slack. To analyze these intriguing properties, this section employs a rigorous

cross-layer methodology, outlined next.

FabScalar Toolset

F�������� ���	��
	 �S��	�

(F	S�� D	���	� E�	��S	� �

F�������� �����	�����

�� ������S��
 E
����
�	
S

��E� ��C����

B	
������

��
�����

D	���
 ������	�

I
 H���	 L����

A
����	�
D	��� D��S����S��
�

I
��S� S� E��

���	��
	 �S��	
��
S	���	�

N	S���S

Fig. 3.1: Cross-Layer Methodology to investigate delay variance in pipe stages.

22

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bzip

gap

gzip

mcf

parser

vortex

(a) Retire

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bzip

gap

gzip

mcf

parser

vortex

(b) Execute

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bzip

gap

gzip

mcf

parser

vortex

(c) Issue

Fig. 3.2: CDF of sensitized path delay variance in several microprocessor pipe stages.

23

3.2.1.1 Methodology

As instructions from various workloads pass through the pipe stages, they sensitize

different paths, and therefore observe different logic computation delays. To capture these

characteristics, Figure 3.1 shows the rigorous cross-layer methodology of this work which

combines architecture level workload simulation with circuit level timing analysis. This

work uses the RTL modules, configured for the out-of-order Core-1 configuration, from the

FabScalar infrastructure [15]. The modules are synthesized using Synopsys Design Compiler

to obtain a netlist of gates, Subsequently, this work performs architectural simulation of

several real world applications using the FabScalar Co-Simulation environment, and extract

cycle-by-cycle input vectors for various pipe stage RTL modules. This work uses these input

vectors with an in-house logic analyzer to obtain the delay characteristics of various pipe

stages as instructions flow through the pipeline.

3.2.1.2 Results

Figure 3.2 shows the delay variance on three pipe stages. The Retire stage graduates

instructions from the pipeline, making their changes visible outside (Figure 3.2(a)). For the

Execute stage, this work uses the delay variance seen in the Simple ALU (Figure 3.2(b)).

The Issue stage is responsible for scheduling instructions on various functional units (Figure

3.2(c)). All the three figures show the cumulative distribution function (CDF) plot for the

sensitized delay from workload instructions.

These figures show a wide range of sensitized path delays in these pipe stage modules.

Furthermore, various workloads also show substantially different delay profiles. On a closer

inspection, these variations can be broadly characterized into two major classes:

• Temporal: Within a given pipe stage, different instructions in a given workload often

exhibit substantial variance. For example in Figure 3.2(a), 29% instructions in bzip

exhibit negligible delay in the Retire pipe stage, whereas 57% instructions in vortex

exhibit similar characteristics.

24

• Spatial: Different pipe stages exhibit a range of delay profiles. For example, there

are intriguing distinctions, as comparing Execute and Issue (Figures 3.2(b) and 3.2(c),

respectively). Across different benchmarks, a vast majority of instructions exhibit 80%

or higher percentage of the maximum delay in Issue, whereas only a limited fraction

of instructions experience such high delay in the Execute stage. Comparing across

different workloads, this spatial delay imbalance between the Execute and Issue stage

is substantially more pronounced in vortex than in mcf, primarily due to more uniform

delay characteristics in the Execute stage for mcf.

3.2.1.3 The Source of Sensitized-delay Variation

The delay variations observed can be affected by various factors. For the execute stage,

Figure 3.3 shows how the delay of the current cycle is affected by the difference between the

input-data size of the immediately preceding cycle and that of the current cycle. Generally,

if either cycle has a large-sized input-data, the delay of the current cycle tends to be large.

On the other hand, if both cycles have small-sized input-data (e.g. Small-size to Small-size

(SS) case), the current cycle tends to have a small delay. The CDF of the benchmarks in

Figure 3.2(b) are shaped by their composition of the cases (Figure 3.4). The mcf benchmark

in Figure 3.2(b) shows much less population in the low delay region than other benchmarks.

This characteristic is consistent with Figure 3.4, as mcf has much less SS cases than other

benchmarks.

Besides the impact of the input data-size on the execute stage, others stages can be

affected by more complex interplay of circuit and architectural characteristics. For example,

the extent of instruction dependencies can impact the sensitization of long delay in Issue,

LSU and Retire stages [62]. However, in stages that generate control signals based on the

sequence of instructions, isolating the factors leading to longer sensitized delay is complex.

25

 SS SM SB MS MM MB BS BM BB

N
or

m
al

iz
ed

 D
el

ay

0.3

0.4

0.5

0.6

0.7

Fig. 3.3: Average delay for different input-data width
transition in execute stage. Both mean and standard
deviation across different benchmarks are shown.
The average delay of the current cycle is measured
for the transition between the input-data width of the
immediately preceding cycle and that of the current
cycle. SS: Small-size to Small-size; SM: Small-size
to Medium-size; SB: Small-size to Big-size. Small-
size: input-data width <= 8bits; Medium-size: 8bits
< input-data width <= 16bits; Big-size: input-data
width > 16bits.

bzip

SS SM SB MS MM

MB BS BM BB

gzip gap

mcf parser vortex

Fig. 3.4: The composition of data-
width transition for the benchmarks.
Using the same definition as figure 3.3,
for all the transitions.

3.2.2 Significance

The results above indicate a wide disparity in delay sensitized from different instruc-

tions. On one hand, previous works have demonstrated striking similarity in delay charac-

teristics from recurring instances of the same instruction [60,74]. On the other hand, then

is it possible to simultaneously exploit both these workload driven behaviors in an unified

manner in a microprocessor pipeline? Following this genuine possibility, this work proposes

the scheme named Dynamically Adaptable Resilient Pipeline (DARP). DARP exploits re-

peatability of delay characteristics of a program by substantially tightening the operating

frequency, as well as, dynamically predicting upcoming timing errors several cycles in ad-

vance. As predicted, these timing errors are subsequently avoided through a stall insertion

in the pipeline, radically diminishing the penalty from error detection and correction with

replay. On the other hand, spatial variances in sensitized delay in the pipe stages are seam-

lessly integrated by a low-overhead controller that dynamically adjusts processor frequency

and clock skews in every epoch. Next section will describe the proposed schemes in details.

26

3.3 Dynamically Adaptable Resilient Pipeline

This section presents an overview of designing a DARP system and the associated

design challenges.

3.3.1 DARP overview

Figure 3.5 shows an overview of the proposed DARP pipeline design. The figure shows

two major augmentations of a microprocessor pipeline: (a) Timing Error Prediction Table

(TEPT) in the decode stage coupled with error detection and recovery in every pipeline

stage (Section 3.3.2); and (b) DARP controller design and its auxiliary components (CVD)

in each pipeline stage to adjust the clock skew (Section 3.3.3). Collectively, the techniques

in DARP work in tandem to substantially improve the power-performance characteristics

of a microprocessor pipeline.

3.3.2 Exploiting Early Error Prediction

Four central aspects of early error prediction are described below:

TEPT Size: A 4K sized table dynamically manages the instruction PCs prone to cause

repeated timing errors in various pipeline stages [11,60]. In this work, this table is referred

as Timing Error Prediction Table (TEPT). Superficially, it may appear that effective pre-

diction requires a large TEPT to avoid address collisions in the table. A larger TEPT can

reduce false negatives. However, according to the simulations in this work, a very small

set of instructions cause repeated timing violations. Hence, in this work, the TEPT size is

chosen in accordance with the previous work [60], which has shown a small to moderately

sized TEPT is sufficient to track instructions causing timing violations. In fact, a 4K sized

TEPT leads to less than 2% false negatives from address collisions and the returns will

diminish by increasing the size beyond 4K. On the other hand, a larger TEPT incurs more

area and power overhead.

Error Detection: To detect runtime timing errors in various pipe stages, all the potentially

critical paths are protected by Razor-like [17] double sampling flip-flop in their output.

These critical paths are identified by a technique proposed by Lak et al. [31]. When an

27

Fig. 3.5: DARP Overview.

error is detected, two actions are initiated: (a) insert the error causing instruction PC

along with the relevant pipe stage information in the TEPT to avoid timing errors from

the same instruction in the near future; and (b) initiate an instruction replay to recover

from the fault [17]. During the repeated execution of the same instruction, timing errors

are avoided as described next.

Error Avoidance: During the decode of an instruction [11], the TEPT will check if that

instruction is likely to cause a pipeline error. If a matching entry is found, a stall signal will

be propagated as the instruction proceeds in the pipeline. When the instruction enters the

pipe stage where it previously caused a timing error, the stall signal is triggered, thereby

allowing the instruction to occupy that pipe stage for two consecutive cycles. Forward

flow of instructions is avoided for that cycle by recirculating the inputs to all other pipe

stages. Consequently, timing error from that instruction is avoided, recovering a bulk of

the performance loss. This is possible as pipeline stalls incur at least 10X lower penalty

than an instruction replay in modern processors. During error avoidance by stalling, the

timing-error flagged by Razor flip-flop is masked.

Dynamic TEPT Management: Entries in the TEPT are managed at runtime to exploit

the workload phase behaviors. Whenever a timing error is detected, the instruction PC is

28

inserted into the table. Recall that the detection of a timing error implies that no error was

predicted from that PC before. If the table is full, as is expected after a brief table warm-up

period,an eviction entry can be decided using a pseudo-LRU (least recently used) policy.

Pseudo-LRU policy is widely used in modern caches to avoid the complexity of implementing

a full LRU policy. Table entries are managed as a CAM (Content addressable memory),

which allows the best use of the small space available.

3.3.3 DARP Controller Design

two components are employed to exploit the spatial imbalance among pipe stages using:

(a) a system level DARP controller that dynamically determines the clock skew configura-

tions of each pipe stage; and (b) lower level clock vernier devices (CVD) that control the

clock skews of individual pipe stages. These are detailed next.

3.3.3.1 DARP Controller

The role of the DARP controller is to dynamically configure the frequency of the

pipeline and the clock skews in every pipe stage. This is done in hardware using the infor-

mation about the timing errors in each pipe stage that are not covered by early prediction.

Algorithm 1 outlines the operation of the DARP controller. The DARP controller

repeats this algorithm once in each epoch (every N instructions) to dynamically adapt the

pipeline frequency as well as clock skews to resolve the spatial imbalance in pipe stage

delays. Each pipe stage clock skew is configured using a 3-bit skew configuration of its

CVD. The input to the DARP controller is the skew configurations {s1 : sp} for p pipe

stages, the frequency f , and the timing error counts {n1 : np} from the previous epoch.

Tuning Operating Frequency: Steps 1-7 outline the frequency tuning at each epoch.

First, the pipe stages with the maximum and minimum timing errors (stages k and l) are

recognized. The operating frequency will be tighten by a factor of (1 + γ) when nmin is

zero and nmax is lower than a constant threshold ρ. A constant γ is used To keep the

implementation complexity low. Likewise, the frequency will be relaxed when nmin exceeds

a lower bound given by constant η. In summary, these steps tighten or relax the operating

29

Algorithm 1 DARP

Input: {s1 : sp}, f , {n1 : np}
Output: {s1 : sp}, f

1: k ← Pipe stage with max errors; nmax ← nk

2: l← Pipe stage with min errors; nmin ← nl

3: if nmin == 0 && nmax <= ρ then
4: f ← f ∗ (1 + γ)
5: else if nmin >= η then
6: f ← f ∗ (1− γ)
7: end if
8: T ← 1

f

9: navg ← avg(n1 : np)
10: {△1 : △p} ← {n1 : np} − navg

11: for i← 1 : p do
12: if △i < 0 then
13: si ← si − 001
14: else if △i > 0 then
15: si ← si + 001
16: end if
17: end for
18: Adjust {s1 : sp} to maintain T*p cycles

frequency once in each epoch, based on the timing error profile of the pipeline in the

previous epoch. However workload, aging and other environmental condition induced delay

variations will adapt the frequency and clock skews over several epochs until they stabilize.

Configuring Clock Skews: Steps 9-18 illustrate the dynamic clock skew tuning. At

first it calculates the set {△1 : △p}. The ith element in this set contains the difference

between the timing errors in stage i (ni) and the average timing error navg. The pipe stages

that have timing errors below average get a reduced clock skew, while the pipe stages with

timing errors above average see an increase in the positive clock skew. The clock skew

tuning is done using a 3-bit programmable CVD, detailed in Section 3.3.3.2. This dynamic

reconfiguration of clock skews ensures that the pipe stages sensitizing higher delay paths

can borrow time from those sensitizing lower delay paths. This process in turn further

tightens the frequency in the next epoch. Step 18 readjusts the clock skews to ensure the

total time for a p stage pipeline is maintained at T ∗p cycles, T being the time period (step

8) (Time-borrowing priority goes to the most erroneous stages in case of conflicts).

30

3.3.3.2 Clock Vernier Device (CVD)

DARP uses clock vernier devices (CVD) as the clock tuning elements (Figure 3.6) [38].

CVDs can generate several skew configurations based on their input bits. The latches a,

b and c also store the skew configurations to be used in the next epoch. For example, a

3-bit input can can provide 8 skew configurations. If set bit 011 to represent zero skew, and

perform skew increments/decrements in steps of δ, then it can give the positive and negative

skew configurations of {−3δ,−2δ,−δ, 0, δ, 2δ, 3δ, 4δ}. These skews help dynamically lend

time to pipe stages sensitizing higher delay critical paths, and borrow time from pipe stages

sensitizing low delay critical paths. To manage the overhead of adding CVDs, multiple

flip-flops in a pipe stage are organized in groups to share a single CVD, using the clustering

algorithm proposed by Lak et al. [31].

3.3.3.3 Implementation

The clock skew adjustment must be made when the pipeline is empty to avoid metasta-

bility issues [8]. Thus, at the end of every epoch, the entire pipeline is flushed before running

Algorithm 1 to obtain the new frequency and skew adjustments for the new epoch. The

pipeline operation is resumed only after skew adjustments are applied and the new frequency

is stabilized. Several strategies are adopted to limit the overhead of this operation. First, a

large enough epoch of 100K cycles is chosen to amortize the dynamic adjustment cost while

Fig. 3.6: Configuring Clock Vernier Devices using DARP.

31

offering enough opportunities to adapt to the workload characteristics1. Second, a fairly

simple algorithm is used in hardware to incrementally adjust clock skews and frequency,

avoiding a full blown search. Third, using a widely popular dynamic clocking technique

that allows a rapid adjustment of the clock frequency [40]. Combining these strategies, the

overhead of a single dynamic reconfiguration is less than 100 cycles per epoch (overhead of

0.1%).

3.3.3.4 DARP for tackling delay variations due to aging, voltage and temper-

ature fluctuations

The proposed DARP algorithm is adaptive in nature, as it is driven by real time timing

errors occurring in the pipe stages. Different stages of a microprocessor pipeline may age

asymmetrically over time, as thermal fluctuations are predominant in the back end of the

pipeline [41]. Asymmetric aging can substantially change the critical delays of certain pipe

stages leading to increased timing errors. The DARP algorithm can automatically adjust

the pipeline frequency and clock skews as the processor ages, as it uses the current timing

error information from each pipe stage. Similarly, if the delays of some pipe stages change

due to a combination of temperature hotspots and process variation, the timing errors in

that stage will increase, causing the DARP algorithm to readjust the time allotted to various

stages.

3.4 Methodology

This section describes the cross-layer methodology in this work for power-performance

trade-off analysis of DARP.

3.4.1 Architecture Layer

The architectural simulation in this work is based on the FabScalar infrastructure

[15]. The following will provide details of the proposed core microarchitecture and specific

1A thread is typically scheduled for a 10ms time quantum, within which the configuration adjustments
can be run 300 times assuming a 3GHz clock.

32

workloads used in this work.

3.4.1.1 Core Microarchitecture

This work chooses FabScalar’s Core-1 configuration, with an eleven stage p = 11 out-of-

order superscalar pipeline capable of fetching, issuing and committing 4 instructions each

cycle. The core uses a two-level cache hierarchy: a 32 KB 4-way split Instruction/Data

L1 cache with a latency of 1 cycle and an 8MB 16-way L2 cache with a latency of 25

cycles. The main memory access time is 240 cycles. Each pipeline stage employs a timing-

error detection and instruction replay mechanism similar to [17] as well as the proposed

DARP enhancements (Figure 3.5). This work models cycle accurate timing behavior of the

proposed architecture under various schemes.

3.4.1.2 Workloads

This work uses several SPEC CPU2000 integer benchmarks representing a range of real

world applications, in the analysis. Each of these benchmarks is simulated for 10ms, which

is a typical time quanta allotted to a thread from the operating system.

3.4.2 Circuit Layer

In order to evaluate the proposed approach, this work uses an in-house statistical timing

analysis tool to calculate the propagation delay of each pipeline stage on every cycle (Figure

3.1). To perform gate level timing analysis, this work follows several important steps.

First, it synthesizes the implementation the pipeline with the Synopsys Design Compiler.

Second, to obtain propagation delay of the sensitized circuit paths, it integrates the delay

characteristics from HSPICE simulation based on the Predictive Technology Model (PTM)

for the 22nm node [77], with the synthesized netlist gate delays. The delay models also

incorporate the effects of process variation [29]. This methodology can obtain the circuit

delay characteristics of a lower technology node than using a standard cell library. Third,

for SRAM based memory modules such as the L1 instruction/data cache, the branch target

buffer (BTB) and the conditional branch predictor, this work uses CACTI 6.0 to get the

33

timing information [46], and subsequently integrate it to the circuit delay.

3.4.3 Timing Error Simulation Methodology

This work uses a combination of two distinct strategies to simulate timing errors in the

microprocessor pipeline: (1) frequency over-scaling; and (2) voltage scaling. The frequency

is increased and/or the operating voltage is scaled down to a point, where timing errors

begin to occur in several pipe stages. Combined together, these two strategies allow to

evaluate the power-performance characteristics of the proposed schemes as well as previous

works in the presence of timing errors.

3.5 Experimental Results

This section presents experimental results of comparing the proposed DARP system

with contemporary schemes based on online clock tuning and timing speculation.

3.5.1 Comparative Schemes

• Razor: This scheme models one of the most popular techniques based on timing spec-

ulation [9,17]. Using this scheme, the operating frequency of a processor can be raised,

by allowing occasional timing errors in various stages of the pipeline. These timing

errors are detected using double-sampling rear end flip-flops. After error detection,

an instruction replay is triggered to correct the error.

• Online Clock Tuning with Timing Speculation (OCTTS): This scheme models

recent work to combine clock skew tuning with timing speculation [31,75]. Instead of

application driven sensitized path delays, both these schemes use random inputs to

drive their clock tuning mechanisms.

• DARP: This scheme employs dynamic frequency tuning for each benchmark. At each

operating frequency, it readjusts the clock skews of the pipe stages to best exploit the

spatial imbalance (Algorithm 1).

34

• DARP-Pred: In addition to DARP, this scheme employs a 4K sized timing error

prediction table (TEPT) to do early timing error prediction along the entire pipeline

(Section 3.3.2). DARP-Pred can avoid most timing-errors than DARP through early

prediction, thereby saving several costly instruction replays.

3.5.2 Performance Comparison

Figure 3.7 shows the performance of the proposed DARP schemes, compared to Razor

and OCTTS. The results are normalized to the Razor scheme. By exploiting the delay

variation due to topology and process variation in a general purpose out-of-order micro-

processor, OCTTS can boost the application performance over Razor (19% on an average).

The proposed DARP scheme further improves the performance of the system by dynami-

cally exploiting the workload driven spatial imbalance in addition to the previous factors.

DARP-Pred additionally exploits the temporal delay variance in pipe stages with early

error prediction and avoidance. For example, DARP-Pred can deliver 17.9% and 20% per-

formance improvements over OCTTS in bzip and gap benchmarks, respectively. On an

average, DARP and DARP-Pred show 6.7% and 13.4% speedups over OCTTS across these

benchmarks. The improvements over Razor are substantially larger.

Figure 3.8 gives further insight on the performance improvement of the DARP schemes.

The first and second bar for each benchmark represents the replay cycles in the OCTTS

and DARP schemes, respectively, while the third bar is for the replay and stall cycles in

the DARP-Pred scheme. These schemes work at the same frequency and all these cycle

numbers are normalized to the OCTTS scheme. Since DARP encounters much less timing

errors, it has a much lower replay penalty than the OCTTS scheme. On the other hand,

DARP-Pred converts a significant part of the replay penalty (all of it in some benchmarks,

e.g. bzip) into the stall penalty, further reducing the penalty cycles from the DARP scheme.

This is possible as a majority of the timing errors can be avoided using early prediction.

Using only Razor at the same frequency incurs substantially higher timing errors and replay

penalties, and thus is omitted from the figure. Figure 3.9 shows the false positive rate of

timing-error predictor employed in DARP-Pred. The false positive rate is measured as the

35

average occurrences of false positive in an epoch. Given such a low false positive rate shown

in Figure 3.9, the performance overhead from DARP-Pred is negligible.

3.5.3 Energy-Efficiency and Power-Efficiency Comparison

Figure 3.10 shows the energy-efficiency of both DARP and comparative schemes, in

terms of the Energy Delay Product (EDP). To search the best EDP for each scheme, this

work explores discrete supply voltages in steps of 5% up to 70% of the nominal voltage.

OCTTS has a notable EDP reduction, with the average value of 15.1%; while the DARP

schemes show a further energy-efficiency improvement, with the average EDP reduction of

23.2% and 30%, respectively, over Razor. This energy-efficiency improvement stems from

three factors: (a) workload specific skew adjustments; (b) early error prediction to avoid

timing errors; and (c) delay reduction discussed in Figure 3.7. When compared against

OCTTS, the DARP and DARP-Pred schemes show an average EDP reduction of 9.6% and

17.6%, respectively. Figure 3.11 shows the power-efficiency of all the schemes, in terms of

Performance/Watt. Figure 3.11 shows the difference of power-efficiency across the schemes

is much less than that of energy-efficiency. Performance improvement increases the power-

efficiency as it reduces the leakage energy. However, timing-error recovery incurs dynamic

energy-overhead. Therefore, performance improvement by tightening the pipeline will lead

to limited improvement, or even deterioration (e.g. OCTTS and DARP in bzip) in power-

efficiency. Finally, DARP-Pred has 17% in maximum and 5.9% in average improvement in

power-efficiency over Razor.

bzip gap gzip mcf parser vortex average

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Razor OCTTS DARP DARP−Pred

Fig. 3.7: Performance comparison normalized to Razor.

36

 bzip gap gzip mcf parser vortex average

N
or

m
al

iz
ed

 P
en

al
ty

 C
yc

le
s

0

0.2

0.4

0.6

0.8

1

Replay
StallD

A
R

P
D

A
R

P
−

P
re

d

OCTTS

Fig. 3.8: Penalty cycles from Timing Errors.

 bzip gap gzip mcf parser vortex average

F
al

se
 P

os
iti

ve
 R

at
e

 0%

 1%

 2%

 3%

 4%

Fig. 3.9: False Positive Rate of Timing-Error Predictor in DARP-Pred.

3.5.4 Power Overhead of DARP

The primary power overhead in DARP comes from the counters in each stage to record

timing errors, the DARP controller (Figure 3.5) and the 4K sized TEPT for DARP-Pred.

These overheads are estimated relative to the OCTTS scheme. Hence the CVDs and buffers

for minimum delay padding are excluded as they are already present in many modern mi-

croprocessors. The power overhead of the proposed schemes, are calculated by synthesizing

the Core-1 from the FabScalar infrastructure using the Synopsys Design Compiler with

a 45nm FreePDK library. The overhead of all the hardware enhancements of the DARP

pipeline are estimated relatively to the core power. Overall, the power overhead for the

DARP and DARP-Pred schemes are 0.84% and 3.35%, respectively, relative to the core

power. Energy efficiency and power-efficiency results presented in Figure 3.10 and Figure

3.11 include these overheads.

37

bzip gap gzip mcf parser vortex average

N
or

m
al

iz
ed

 E
D

P

0

0.2

0.4

0.6

0.8

1
Razor OCTTS DARP DARP−Pred

Fig. 3.10: EDP comparison normalized to Razor.

bzip gap gzip mcf parser vortex averageN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t

0

0.2

0.4

0.6

0.8

1

1.2
Razor OCTTS DARP DARP−Pred

Fig. 3.11: Performance/Watt comparison normalized to Razor.

38

CHAPTER 4

DARP-MP: DYNAMICALLY ADAPTABLE RESILIENT PIPELINE

DESIGN IN MULTICORE PROCESSORS

4.1 Background and Contributions of This Work

In the era of multicore computing, various applications running concurrently create a

wide diversity in power-performance requirements. In such a computer system, fine grain

control is needed to meet the steep energy efficiency demands [48]. Across the entire spec-

trum of microprocessor design, Dynamic Voltage and Frequency Scaling (DVFS) has been

the paradigm for online energy efficiency optimization [21, 25, 33, 65]. In an increasingly

diverse application pool for the multicore system, DVFS can effectively save energy con-

sumption with minimal loss in performance.

The effectiveness of DVFS, however, is rapidly degrading as technology downscaling.

One of the major sources of this inefficiency is: dynamic adaptions cannot alter the intrinsic

characteristics of the circuits (e.g. gate sizes and threshold voltages). Therefore, a circuit

designed for the nominal frequency will have degraded energy-efficiency if it operate on

a different voltage-frequency configuration. Observing this hazard in multicore processor

energy efficiency, Chakraborty et al. have proposed a Topologically Homogeneous and

Power-performance Heterogeneous (THPH) multicore architecture to meet the steep energy

efficiency demands in such an environment [12]. In this architecture, the cores are designed

for various nominal frequencies to meet the various performance requirements in an energy-

efficient manner.

Combining circuit-level dynamic adjusting techniques with the state-of-art THPH ar-

chitecture can possibly build up a new frontier for the energy-efficiency of multicore pro-

cessors. Previous work (DARP) [14] has revealed the striking variance in the sensitized

delay within the pipeline. With dynamic frequency-scaling and clock-skewing techniques,

39

unnecessary timing margin in pipeline stages can be removed, and the energy-efficiency of

the microprocessor can be substantially improved. Moreover, as will be shown in this work,

the THPH design-flow will enlarge the sensitized delay variance in the pipeline. Therefore,

the DARP techniques [14] will be more effective for energy-efficiency improvement as being

integrated in THPH architecture.

This work makes the following contributions:

• It shows that the power-performance heterogeneity in the state-of-art THPH archi-

tecture can augment the sensitized-delay variation (Section 4.2, Figure 4.2).

• Using an elaborate cross-layer methodology (Section 4.4), it models a THPH system

equipped with DARP (Section 4.4, Figure 4.6, Table 4.1 and Table 4.2), where a larger

and more up-to-date workload pool is employed for this multicore system simulation.

• It applies the DARP technique on the state-of-art THPH architecture (Section 4.3,

Figure 4.3), pushing the energy-efficiency of the multicore processor to a new frontier

(DARP-MP).

• It presents the advantage of DARP-MP on the performance and power/energy-efficiency

in a multicore architecture (Section 4.5, Figure 4.7, 4.8, 4.9 and 4.10), as well as its

limitation (Section 4.5.4). The energy-efficiency improvements of DARP-MP are 42%

and 49.9%, compared against the original THPH, as well as another state-of-art multi-

core power-management scheme, respectively. Applying DARP on THPH architecture

introduces negligible system power overhead of 4.32%.

4.2 Motivation

Using a cross-layer methodology, this section demonstrates the impact of circuit’s nomi-

nal operation frequency upon the sensitized-delay variance within it. This flexibility in delay

variance uncovers intriguing possibilities in runtime adaption of pipeline stages in a THPH

multicore processor, boosting performance and energy efficiency of the entire system.

4.2.1 Methodology

40

This work employs a cross-layer methodology developed from the previous work [14], to

capture the sensitized-delay within each pipe stage, as the instruction of a workload passes

through the microprocessor pipeline. Figure 4.1 shows the rigorous cross-layer methodol-

ogy combining architecture level workload simulation with circuit level timing analysis. It

uses the RTL modules, configured for the out-of-order Core-1 configuration, from the Fab-

Scalar infrastructure [15]. The modules are synthesized using Synopsys Design Compiler

with different timing-constraints to obtain the netlists of four different nominal frequencies:

f0, f1, f2, f3, where f0 = 1.2∗f1 = 1.5∗f2 = 2∗f3. Subsequently, this work employs the gem5

simulator [6] to perform architectural simulation of several real world applications (SPEC

CPU2006 [4]), and extract cycle-by-cycle input vectors for various pipe stage FabScalar

RTL modules. Each benchmark is run for 100K cycles. Within this simulation period, it

captures the characteristic of different instruction sequences as they enter separate code

paths. On the other hand, hspice simulation is performed on Predictive Technology Model

(PTM) [77] to obtain the propagation delay for three basic gates: inverter, 2-input nand

and 2-input nor. With these gate delays, the in-house logic analyzer drives the pipe stage

netlists using the input vectors extracted from gem5 simulation. Finally, for each cycle the

logic analyzer obtains the delay characteristics of various pipe stages at different nominal

frequencies, as instructions flow through the pipeline.

4.2.2 Results

Figure 4.2 shows the variation of delay distribution pattern across cores (two stages

are shown here: Execute and LSU) of different nominal frequencies. Previous work [14] has

shown striking spatial and temporal variances exist in pipeline stages’ sensitized-delay. This

work, on the other hand, reveals that these delay variances can be substantially affected

by the nominal frequency of the circuit. According to Figure 4.2, there is a monotone

trend in the pipe stage delay distribution pattern, as the core nominal frequency varies.

Figure 4.2(a) and Figure 4.2(b) show that as nominal frequency relaxed, both Execute and

LSU stages will have less paths sensitized in the critical/near-critical region. For LSU stage

with the nominal frequency of f0, 90% instructions have the sensitized-delay less than about

41

Fig. 4.1: Cross-Layer Methodology to investigate the impact of nominal frequency upon delay
variance.

80% of the critical-path delay. When the nominal frequency of the LSU stage is f3, 90%

instructions have the sensitized-delay less than about 64% of the critical path delay. This

difference comes from timing-optimization during synthesis. In conventional performance-

driven design, the synthesis tool will employ various timing-optimization techniques (e.g.

gate-sizing, multi-threshold) to reduce the critical path delay as far as it can. Under this

optimization, the circuit will tend to have a ”critical-path wall”, where a lot of paths

have the delay equal/close to the critical-path delay. On the other hand, the intrinsic

characteristic of the circuit will make it less delay-balanced, if the optimization effort is

relaxed. Comparing Figure 4.2(a) and Figure 4.2(b) also show that Execute stage is more

sensitive to this optimization effort relax than LSU stage. In Execute stage, the maximum

delay among 90% paths decreases from 68% to 39% of the critical delay, as the nominal

frequency goes from f0 down to f3. This difference comes from the intrinsic topologies of

these two stages: the lookup structure in the LSU stage intrinsically induces a lot of parallel

critical-paths [36,63].

4.2.3 Significance

The impact of nominal operating frequency upon the pipe stage delay distribution

poses intriguing energy-efficiency opportunities for the pipeline adjusting techniques. Pre-

vious work [14] proposed DARP technique which incorporates timing-speculation and clock-

42

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f 0
f 1
f 2
f 3

(a) Execute

Normalized delay

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 in
st

ru
ct

io
ns

 c
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f 0
f 1
f 2
f 3

(b) LSU

Fig. 4.2: CDF of sensitized path delay variance across cores with different nominal frequencies.

skewing to eliminate the unnecessary timing guardband in the pipe stages. As the cores

with relaxed timing-constraint during design have more spread delay distributions, applying

DARP technique there will less likely to hit a ”critical-path wall” than applying it on those

cores with tight timing-constraint. Therefore, the cores with lower nominal frequency will

have more energy-efficiency benefits than those with higher nominal frequency, as both of

them employing DARP technique. The cores in the THPH architecture have various nom-

inal frequencies. On the other hand, the cores in conventional SMP all have the same high

nominal frequency. Therefore, the THPH architecture will provide extra energy-efficiency

profit over the conventional SMP, assuming both of them are equipped with DARP. Section

4.3 will further discuss how DARP and THPH work together in improving the energy-

efficiency of multicore processor.

4.3 DARP in Multicore Processor

This section briefly reviews the state-of-art THPH architecture [12,13] (Section 4.3.1),

as well as the DARP technique [14] (Section 4.3.2). Then it illustrates the energy-efficiency

benefit (Section 4.3.3) as well as the implementation (Section 4.3.4) to employ DARP in

this architecture.

43

4.3.1 THPH Architecture

The Topologically Homogeneous Power-Performance Heterogeneous Multicore Systems

(THPH) architecture uses on-chip cores that are topologically identical, but designed ground

up to be power-performance optimal for separate VF (voltage-frequency) domains (core0−3

of THPH in Figure 4.3). The THPH architecture improves the energy-efficiency of a mul-

ticore processor by exploiting the various performance needs from different tasks1. As

different tasks have different sensitiveness to frequency downscaling, they will have differ-

ent energy-optimal operating frequency (fopt) [12, 59]. Figure 4.3 illustrates the idea of

THPH, showing the fopt for four tasks, where fopt0 > fopt1 > fopt2 > fopt3 . To meet this

energy-efficiency requirement, conventional SMP can be enhanced with VFS mechanism

(SMP VFS in Figure 4.3) to work on various frequencies. Then the tasks will migrate to

the favored cores at runtime [59]. However, a major drawback of VFS is that it cannot

change the intrinsic characteristic of the circuit (e.g, gate size and threshold voltage), thus

a core designed for a higher frequency will tend to be power-hungry and energy-inefficient

when working at a lower frequency [12,55]. On the other hand, different cores in the THPH

architecture are specifically designed for different frequencies. Therefore, it can provide bet-

ter energy-efficiency than the SMP VFS scheme, after the tasks migrating to the favored

cores [12].

4.3.2 DARP Technique

The DARP technique employs timing speculation, clock skewing, as well as timing

error prediction to eliminate the unnecessary timing guardband in the microprocessor pipe

stages [14]. Figure 4.4 illustrates the performance benefit of the DARP technique. Instead

of operating at a timing-error-free frequency (with a cycle time of T0), a pipeline with

DARP technique applied will operate at a higher frequency (with a cycle time of T1), where

timing-errors will start to occur. At the occurrence of an timing error, DARP will flush

the pipeline, and replay the erroneous instruction to restore the correct execution of the

1For a multicore system, this work uses task to denote the application running on each core. On the
other hand, workload is used to denote the set of applications for the whole multicore system.

44

Fig. 4.3: Topologically Homogeneous Power-Performance Heterogeneous Multicore Sys-
tems (THPH) Architecture and conventional Symmetrical Multicore Processor enhanced with
Voltage-Frequency Scaling (SMP-VFS). The color represents the optimal running frequency of
the task and the nominal frequency of the core, as described in the figure.

workload. Consequently, how to manage the occurrence rate of the timing error becomes

the primary task in DARP. For this purpose, DARP integrates two mechanisms: clock

skewing and timing error prediction. Employing Clock Vernier Devices (CVD) [38], the

clock skew of each pipeline stage can be adjusted. Thereby, the pipeline stages that are

more likely to have timing errors (stage2 in Figure 4.4) can borrow timing budget (amount

of τ in Figure 4.4) from the stages that are less likely to have timing errors (stage1 in Figure

4.4). Therefore, the whole pipeline will have an overall lower error occurrence. Timing-error

prediction mechanism, on the other hand, extends the operation time of the pipeline stage

to cover the predicted upcoming timing violation. At an occurrence of timing error, the

Program Counter (PC) of the erroneous instruction, as well as the pipeline stage where

the error occurs, will be recorded in a look-up table — Timing Error Prediction Table

(TEPT). In the future, if another instruction instance of the same PC enter the pipeline,

the associated pipeline that recorded in the TEPT will be predicted to have timing error

again. As the instruction enters this stage, an extra cycle will be padded to ensure an

error-free operation in that stage, while other stages in the pipeline will stall for one cycle.

Collectively, a speculative pipeline stall is employed to avoid a probable pipeline flush, as

enabling timing error prediction mechanism.

4.3.3 Potential of DARP in THPH

45

Fig. 4.4: Performance benefit of DARP Technique.

As discussed in Section 4.2, cores with different nominal operating frequencies have

different degrees of freedom on pipeline adjusting. More specifically, among the topologically

homogeneous cores, those with lower nominal frequency will have higher freedom for pipeline

adjustment. Figure 4.5 illustrates how the benefit of pipeline adjusting technique vary

across cores with different nominal operating frequencies. The Execute stage in FabScalar’s

Core-1 configuration [15] is synthesized using four different target frequencies, where f0 =

1.2 ∗ f1 = 1.5 ∗ f2 = 2 ∗ f3. The delay distributions for this stage are obtained from the

methodology described in Section 4.2.1, with SPEC CPU2006 employed as the benchmark

suite [4]. Consider the timing-speculation technique that is employed in DARP: given a

same timing error rate (e.g. 5% as shown in Figure 4.5), core0 (the one with frequency of

f0) differs significantly from core3 (the one with frequency of f3), in term of the frequency

overscaling achieved by timing-speculation. At the error rate of 5%, core0 has about 25%

frequency overscaling. On the other hand, core3 can overscale the frequency to more than

2X. As incorporating clock-skewing and timing error prediction, DARP will further reduce

the timing error occurrence in the pipeline. However, the core nominal frequency leads a

knob to throttle the source of the potential timing errors. Therefore, the energy-efficiency

improvement by applying DARP on THPH will be higher than doing so on conventional

SMP architectures. This work focuses on studying the effects of dynamic adaptation (DARP

technique) in a THPH style multicore processor.

4.3.4 Integrating DARP with THPH

46

T

T-�0

T-�3

Fig. 4.5: How the benefit of DARP technique vary across cores with different nominal operating
frequencies. core frequencies: f0 = 1.2 ∗ f1 = 1.5 ∗ f2 = 2 ∗ f3.

To cooperate with task migration in THPH architecture, the TEPT, the frequency

scaling factor (with respect to the nominal frequency), as well as the CVD configuration of

each core, all hold copies in the shared on-chip memory (more details in Section 4.4) [12,58],

to enable fast migration between cores. After a task migration, DARP controller of each

core is restored from the record of previous epoch.

4.4 Methodology

This section describes the cross-layer methodology for power-performance trade-off

analysis of DARP-MP.

4.4.1 Architecture Layer

The architectural simulation in this work is based on the FabScalar infrastructure [15]

and gem5 simulator [6]. The following will provide details of the core/multicore architecture

and specific workloads used in this work.

4.4.1.1 Core Microarchitecture

This work chooses FabScalar’s Core-1 configuration, with an eleven stage p = 11 out-

of-order superscalar pipeline capable of fetching, issuing and committing 4 instructions each

47

cycle. The core uses a two-level cache hierarchy: a 32 KB 4-way split Instruction/Data L1

cache with a latency of 1 cycle and an 8MB 16-way L2 cache with a latency of 25 cycles.

The main memory access time is 240 cycles. The pipeline equips DARP technique [14] to

remove unnecessary timing guardband in each stage 4.4.

4.4.1.2 Multicore Architecture

The FabScalar simulation infrastructure is limited in 1) the amount of available bench-

marks; 2) modeling multicore system. Therefore, this work employs gem5 as the architec-

tural simulation infrastructure for the multicore system. By closely examining the imple-

mentation of FabScalar pipe stages, this work identifies 1) those stages that most likely to

lend/borrow time at runtime; 2) the stage-inputs that most likely to sensitize critical/near-

critical delay in the stage. Then the stage-inputs are extracted cycle-by-cycle from gem5

simulation to drive the sensitized-delay analysis, which have been described in Section 4.2.1.

Figure 4.6 shows the gem5-modeled 8-core system, which is similar to that presented in [12].

However, the shared L1 caches are replaced with private L1 caches to keep up with more

recent design choices [67]. To support task migration among cores, a 3KB on-chip SRAM

(Migration SRAM) is employed to hold the register file (RF) state results and the DARP

controller records (as mentioned in Section 4.3.4), for each 4-core cluster. (For each core,

256B space is for RF [59], 512B space is for TEPT [60]. Each TEPT reserves 38bits for the

clock-skew and frequency-scaling parameters.) The Migration SRAM has the access latency

same as L1 cache. It has 4-banks thus can provide access to all the 4-cores in parallel. Task

migration within the 4-core cluster will take 256–384 cycles to complete. The cycle number

varies with the size of dirty data that needs to be saved to the Migration SRAM before the

task migration.

Table 4.1 shows the system configuration, where the Voltage-Frequency for each core

follows the previous work [12]. This work employs the task migration scheme described

in [12], where the tasks are reassigned at each epoch (100K cycles), based on the IPC

profiling of last epoch.

48

Fig. 4.6: Modeled multicore system. Different color for the core represents different core
nominal frequency.

Table 4.1: Multicore configuration.

Component Configuration
Core 0 0.99V, 3.0Ghz
Core 1 0.84V, 2.4Ghz
Core 2 0.81V, 2.0Ghz
Core 3 0.81V, 1.8Ghz
Core 4 0.99V, 3.0Ghz
Core 5 0.84V, 2.4Ghz
Core 6 0.81V, 2.0Ghz
Core 7 0.81V, 1.5Ghz
L1 32KB 4-way split Instruction and Data

latency= 1 cycle
L2 8MB 16-way latency=25 cycles

Main Memory Latency 240 cycles

4.4.1.3 Workloads

In gem5 simulations, 16 SPEC CPU2006 (9 integer and 7 floating-point) benchmarks

are randomly composed to form the workloads for the modeled 8-core system (Table 4.2).

Each benchmark is simulated for 10ms, which is a typical time quanta allotted to a thread

from the operating systems.

4.4.2 Circuit Layer
Table 4.2: Multicore Workloads.

Workloads Combination
W0 libquantum, gobmk×2, hmmer×2, omnetpp, mcf, namd
W1 omnetpp, sphinx3, sjeng, dealII×2, gobmk, milc, povray
W2 hmmer, povray×2, milc, sjeng, gobmk, namd, mcf
W3 milc, hmmer×3, h264ref, bzip2, sphinx3, sjeng
W4 gcc, hmmer, sjeng, gobmk×2, libquantum, milc, povray
W5 hmmer×3, lbm, libquantum, sjeng, dealII×2
W6 bzip2×3, namd, povray, libquantum×2, mcf
W7 soplex, gobmk×2, dealII×2, lbm, milc, h264ref

49

This work uses input vectors extracted from architectural simulation, along with a in-

house statistical timing analysis tool to obtain the path sensitization delay characteristics

of various pipe stages as instructions flow through the pipeline. (Figure 3.1). Several

important steps are taken to perform gate level timing analysis. First, the implementation

of the proposed approach is synthesized with the Synopsys Design Compiler. Second, the

delay characteristics from HSPICE simulation based on the Predictive Technology Model

(PTM) for the 22nm node [77], are integrated with the synthesized netlist gate delays to

obtain propagation delay of the sensitized circuit paths. The delay models also incorporate

the effects of process variation [29]. This methodology provide an opportunity to obtain the

circuit delay characteristics of a lower technology node than using a standard cell library.

Third, for SRAM based memory modules such as the L1 instruction/data cache, the branch

target buffer (BTB) and the conditional branch predictor, this work uses CACTI 6.0 to get

the timing information [46], and subsequently integrates it to the circuit delay.

On the other hand, this work employs Synopsys Design Compiler (DC) to evaluate the

circuit power-consumption. The FabScalar core is synthesized for varies frequency-voltage

constraints, along with the component usage obtained from architecture simulation results.

4.4.3 Timing Error Simulation Methodology

This work uses a combination of two distinct strategies to simulate timing errors in

the microprocessor pipeline: (1) frequency over-scaling; and (2) voltage down-scaling. The

operating frequency is increased and/or the supply voltage is scaled down until the timing

errors begin to occur in several pipe stages. Combined together, these two strategies help

evaluating the power-performance characteristics of the proposed schemes as well as previous

works in the presence of timing errors.

4.5 Experimental Results

This section presents experimental results of comparing DARP-MP with original THPH

as well as the combination of DARP and another state-of-art multicore power-management

scheme.

50

4.5.1 Comparative Schemes For DARP-MP

• THPH: This scheme follows the architecture proposed in [12]: the cores are syn-

thesized to various nominal frequencies. Task migration is employed to find the best

task-assignment. No pipeline adaption is employed.

• SVFS: Homogeneous cores with static VFS. This scheme is loosely based on [59]. All

cores are synthesized to the same nominal frequency but configured statically to work

on various frequencies. Task migration is employed.

• DARP-SMP: Applying DARP-Pred on the conventional SMP architecture, where

each core has the same nominal frequency. Task migration is employed.

4.5.2 Performance Comparison

Figure 4.7 shows the performance improvement when applying DARP-Pred technique

on the specified multicore architectures. The results are normalized to the THPH case.

SVFS and THPH have almost the same performance, as they have the topologically-identical

cores and the same running frequency, as well as similar task migration mechanism. Due

to the same reason discussed for Figure 3.7, both DARP-SMP and DARP-MP provide

significant performance improvement over their counterparts. Moreover, due to the less

balanced structures in each stage (as discussed in Section 4.2), DARP-MP has more freedom

of pipeline adjustment in each core and thus gives additional performance improvement over

DARP-SMP. The average performance improvements of DARP-SMP and DARP-MP over

THPH are 37.1% and 54.5%, respectively.

4.5.3 Energy-Efficiency and Power-Efficiency Comparison

Figure 4.8 illustrates the multicore system energy-efficiency achieved by equipping the

DARP-Pred technique. DARP-SMP will provide considerable energy-efficiency improve-

ment compared to THPH, with the average EDP reduction of 22.6%. This result should

be expected as DARP-Pred can substantially increase the energy-efficiency of each core.

DARP-MP gives a further energy-efficiency boost compared to THPH, with the average

51

w0 w1 w2 w3 w4 w5 w6 w7 average

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0

0.3

0.6

0.9

1.2

1.5

1.8
SVFS THPH DARP−SMP DARP−MP

Fig. 4.7: Performance comparison normalized to THPH.

EDP reduction of 41%. Again, this extra energy-efficiency benefit comes from more free-

dom of pipeline adjustment in DARP-MP. Figure 4.9 illustrates this extra benefit more

clearly. Applying DARP on SMP gives 31.8% energy-efficiency improvement over SVFS in

average. On the other hand, the average improvement of DARP-MP over THPH is 42%.

Figure 4.10 shows the power-efficiency of all the comparative schemes. For the same

reason discussed in Figure 3.11, the power-efficiency improvement provided by DARP-Pred

is much limited compared to the their improvement in energy-efficiency. DARP-SMP al-

ways gives better power-efficiency than SVFS. However, due to the intrinsic power-hungry

characteristics of SVFS [12], DARP-SMP gives lower power-efficiency than THPH for most

workloads. DARP-MP always provides better power-efficiency than THPH, reaching an

average improvement of 12.4%.

4.5.4 Limitations

The task migration in THPH architecture is the major limitation when applying DARP

pipeline there. As shown in Section 4.3.4 and Section 4.4.1.2, an extra shared memory in

each 4-core cluster needs to be employed to hold a copy of the DARP controller records.

Calculated with the methodology similar to Section 3.5.4, power overhead from this memory

is 3.66% and 4.32%, relative to the modeled DARP-SMP and DARP-MP architecture,

respectively. This overhead has been included in the calculation in Figure 4.8 and Figure

4.10.

52

w0 w1 w2 w3 w4 w5 w6 w7 average

N
or

m
al

iz
ed

 E
D

P

0

0.25

0.5

0.75

1

1.25
SVFS THPH DARP−SMP DARP−MP

Fig. 4.8: EDP comparison normalized to THPH.

W0 W1 W2 W3 W4 W5 W6 W7 average

E
D

P
 R

ed
uc

tio
n

0%

10%

20%

30%

40%

50%

60%
DARP−SMP over SVFS DARP−MP over THPH

Fig. 4.9: EDP reduction when applying DARP on multicore ar-
chitectures.

w0 w1 w2 w3 w4 w5 w6 w7 averageN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t

0

0.2

0.4

0.6

0.8

1

1.2
SVFS THPH DARP−SMP DARP−MP

Fig. 4.10: Performance/Watt comparison normalized to THPH.

53

CHAPTER 5

OPPORTUNISTIC TURBO EXECUTION IN NTC: EXPLOITING THE

PARADIGM SHIFT IN PERFORMANCE BOTTLENECKS

5.1 Background and Contributions of This Work

Near-Threshold Computing (NTC) has emerged as a promising direction to improve the

energy-efficiency of integrated circuits. The NTC supply voltage Vdd is marginally higher

than its threshold voltage Vth. NTC exploits the super-linear Vdd-power relationship to

reduce the system energy consumption. Inspired by this promise of better energy efficiency,

many recent works have explored key challenges in NTC, such as recovering performance

degradation through concurrency and tackling increased process variation [18,39,53]. While

these works embody progress in NTC designs, several traditional design practices in Super-

Threshold Computing (STC) processors are poised to be fundamentally altered in the NTC

regime.

This work shows that the shift from STC to NTC can redefine the performance bottle-

necks within a processor core. Migrating into the NTC region leads to a 10-100X processor

frequency reduction [18,53]. The memory, on the other hand, is expected to operate in the

STC region, as the combined memory traffic from parallel threads remains comparable to

STC [71]. Consequently, one of the fundamental aspects of modern computer systems—the

growing gap between processor and memory speed—is now poised to reverse its direction.

This work shows that the primary performance bottlenecks in NTC processors shift

from the memory to the Long Latency Datapaths (LLD) within the core. One class of LLDs

in a modern microprocessor is the multi-cycle functional units (MFU) such as integer multi-

ply/divide. Using a rigorous analysis, this work demonstrates that the relative performance

impact from this LLD class grows by 161X, compared to memory latency, as we transition

from STC to NTC. To exploit this shift, this work proposes opportunistic turbo execution

54

(OTE)—a dynamic technique to improve the energy efficiency of NTC processors. Funda-

mentally, OTE dynamically speeds up LLDs by 2-5X to improve performance, while also

reducing leakage energy—the major source of energy consumption in NTC systems. While

conceptually intriguing, the OTE technique is not feasible in STC, as an STC pipeline

already operates near its minimal delay region [39]. Consequently, OTE is fundamentally

distinct from the frequency overscaling (10-20%) in some STC processors [1, 3].

Several works have focused on improving the energy efficiency of NTC circuits. One

such recent technique is Super-pipeline that reduces the energy consumption in the NTC

region [66]. By using a deeper pipeline, Super-pipeline transfers the circuit to the dynamic

energy dominated region, thereby reducing the leakage energy. However, this circuit-level

technique ignores the performance bottlenecks in an NTC processor coming from the ar-

chitectural layer. Lack of this knowledge can be detrimental to the energy efficiency of

the Super-pipeline technique. We demonstrate compelling advantages over Super-pipeline

through a cross-layer circuit-architectural analysis, where we identify and opportunistically

ameliorate the performance bottlenecks in the NTC region.

This work makes the following contributions:

• Using a cross-layer methodology combining the architecture, circuit and device layers,

this work finds that the performance bottleneck shifts from the memory to the LLDs

within the core, as we move from STC to NTC (Section 5.2).

• This work proposes OTE—a unique technique geared for NTC processors. OTE

dynamically boosts the LLDs by 2-5X to exploit the shifting trend in performance

bottlenecks in NTC processors (Section 5.3). Compared to the recently proposed

Super-pipelining technique [66], OTE gives a 42.2% improvement in the NTC energy

efficiency. Using synthesis followed by place and route of an ARM processor core

augmented with OTE, this work observes marginal overheads in power (1.2%), wire

length (0.98%), and area (0.37%), respectively (Section 5.5).

5.2 Motivation

55

Fig. 5.1: Shifting trends in CPU performance sensitivity from the STC to the NTC regime.

Fig. 5.2: LLD speedup over memory speedup.

Fig. 5.3: Core energy breakdown for NTC.

56

This section explores shifting trends in performance bottlenecks in a processor when

moving from STC to NTC. Evaluated with cycle-accurate simulation methodology (Sec-

tion 5.2.1), the LLDs are poised to become the primary performance bottlenecks in NTC

processors replacing the memory (Section 5.2.2). Section 5.2.3 presents the opportunity for

OTE to improve the energy efficiency of NTC cores.

5.2.1 Methodology

Estimating the performance bottlenecks in STC and NTC presents a methodological

challenge. This section briefly outlines the cross-layer approach in this work, while more

details will be presented in Section 5.4. This work models a processor core similar to the

ARM Cortex A15 processor [2] on the gem5 simulator [6]. SPEC CPU2006 FP benchmarks

[4] are profiled to investigate the processor performance bottleneck in both STC and NTC

regions. This work empirically evaluates the performance impact due to a 4X boost in the

memory access and also in one class of LLDs–MFU. The Simpoint tool [68] is employed

to pick up the representing phases of each benchmark. We assume the STC and NTC

processors are clocked at 2GHz and 100 MHz [54], respectively. The memory model is given

in Table 5.1, whereas the MFUs in the processor have latencies of 3 ∼ 33 cycles.

5.2.2 Performance Bottlenecks in NTC

5.2.2.1 Comparative Speedups

Figure 5.1 shows the average sensitivity of processor performance to both memory and

LLD speedup, for STC and NTC regions, respectively. The processor performance is highly

sensitive to memory speedup in STC, but nearly unresponsive to it in NTC. On the other

hand, performance sensitivity to LLD speedup is much higher in NTC than in STC. Figure

5.2 more clearly shows this bottleneck transition from STC to NTC. This figure presents

the geometric mean of the relative performance sensitivity of LLD speedup over memory

speedup. The relative performance sensitivity in STC is 0.34, on an average. In the NTC

region, this sensitivity grows by 161X, reaching 54.8 on an average.

57

5.2.2.2 Significance

The transition observed above will potentially inaugurate a new epoch in computer

system design. A vast number of works in the past few decades have been devoted to

mitigate the processor-memory performance gap. In the NTC era, however, this historic

bottleneck will give way to other performance barriers lying inside the processor datapath

like LLDs as we have shown above. Hence it is now critical to understand and mitigate the

emerging bottlenecks in upcoming NTC processors. The proposed technique opportunistic

turbo execution (OTE), detailed in Section 5.3, aims to mitigate this bottleneck by dynami-

cally boosting LLDs for turbo execution. A key research question is: while OTE can deliver

substantial performance boost in an NTC processor, how does it impact the processor energy

consumption, as well as, the overall energy efficiency of the system?

5.2.3 Energy Efficiency Perspective of OTE

Figure 5.3 presents the energy breakdown (dynamic and leakage energy) of the ARM

Cortex core, with and without OTE boost. This data has been collected using an elaborate

circuit-architectural methodology, which combines architectural simulation with circuit level

synthesized hardware and device level HSPICE modeling, as outlined in Section 5.4. In

addition to the performance gains in Figure 5.1, OTE has the potential to improve energy

consumption in the NTC region by trading leakage energy for dynamic energy.

5.3 Opportunistic Turbo Execution

This section presents an overview of the proposed OTE technique (Section 5.3.1), the

hardware support for OTE (Section 5.3.2), pipeline support for variable latency in LLDs

(Section 5.3.3), and the dynamic OTE algorithm (Section 5.3.4).

5.3.1 OTE Overview

Figure 5.4 shows an overview of the OTE technique in a microprocessor core. The

major augmentations of a microprocessor pipeline to support the normal and boosted mode

for the MFUs include: voltage regulators (VR), power gates (PG), level shifters (LS), and

58

the OTE controller that dynamically switches between the normal and the boosted mode.

Collectively, these components work in harmony to boost the energy efficiency of a processor

operating in the NTC region. While focusing on boosting only one class of LLDs (MFUs),

the proposed OTE technique can be applied to other LLDs within the core as well (e.g.,

register file).

Fig. 5.4: OTE overview: the ARM Cortex A15 processor pipeline is shown, along with the major
augmentations for OTE.

5.3.2 Supporting Two Operating Modes

OTE employs efficient voltage regulator and level shifters, as detailed next, to support

two operating modes.

Voltage Regulator: OTE employs two power supply rails [42] with off-chip Voltage Reg-

ulators (VR) to provide dual supply voltages. Vdd H in figure 5.4 is the supply voltage

to support the OTE mode, in addition to the already existing voltage Vdd L for the nor-

mal mode. At the 32nm technology node, the values of Vdd H and Vdd L are 0.6V and

0.35V, respectively, to achieve a 4X OTE boost. Depending on the decision taken by the

59

OTE controller (details in Section 5.3.4), the supply voltage switches between the two rails.

Evaluated with a transition-time test setup similar to [42], the time to switch between the

normal mode and the OTE (4X) mode can complete within one cycle (10ns) in the NTC

processor.

Level Shifter: OTE employs the level shifter proposed in [43] to support the MFU under

Vdd H . The level shifter is a 24 transistor circuit that allows shifting between two voltage

levels, Vdd L and Vdd H . It is controlled by select signals generated by the OTE controller

(Figure 5.4). This level shifter consumes a small portion of the cycle time in OTE design [43].

5.3.3 Dealing with Variable Latency MFU

Enabling OTE results in variable latencies in the target LLDs (MFUs). Therefore, the

pipeline micro-architecture must be augmented to allow seamless switchover between the

normal and the OTE mode. There are two central aspects of this necessary modification:

(a) MFU Modification and (b) Instruction Level Dependency Tracking.

MFU Modification: MFUs are typically pipelined in stages. Activating the OTE mode

will collapse the number of pipe stages of a MFU, therefore boost its performance. To

achieve this goal, a MUX circuit is added between two consecutive MFU stages. This MUX

is controlled by a single-bit select indicating the OTE mode. In the OTE mode, the MUX

re-directs the output of one stage directly into the input of the next stage, bypassing the

intervening pipeline register. In the normal mode, this redirection is turned off, which

enables only the pipeline register to drive the input of the next stage.

Instruction Level Dependency Tracking: Modern microprocessor pipelines are already

equipped with the necessary logic to deal with variable latency operations [52]. When an

instruction is scheduled on an execution unit, the issue queue logic tracks its expected

completion time. For a MFU, a countdown register is used to track its completion time.

Activating the OTE mode will modify all countdown registers of target MFUs to update

their latencies. For example, a MFU that takes three cycles in the normal mode will

complete within a single cycle under OTE (3X). At the end of this completion time, a

wakeup signal is broadcasted with the corresponding tag for that instruction. Dependent

60

instructions can then do a tag-match and grab the output, enabling correct dataflow within

the pipeline.

5.3.4 OTE Controller

The OTE controller is responsible for dynamically switching between the normal and

the OTE modes. A few key questions the OTE controller needs to decide at runtime are:

(a) how much to boost the MFU (Section 5.3.4.1)? (b) when to switch from the normal

to the OTE mode and vice versa (Section 5.3.4.2)? and (c) how to preserve functional

correctness during the switch-over (Section 5.3.4.3)? These decisions involve a tradeoff in

energy efficiency benefits and the associated overheads, outlined next.

5.3.4.1 Effective Choice of OTE Boost

The ideal OTE boost can vary across different workloads. For example, in Figure 5.3,

a 4X OTE boost is desirable for benchmark dealII due to its associated energy reduction.

On the other hand, a 4X boost increases the energy for benchmark namd as the reduction

in leakage energy is superseded by the increase in dynamic energy. However, implement-

ing multiple performance boosts for different applications can involve a high overhead in

managing multiple power rails and level shifters. Additionally, finding a minimal energy-

efficiency point at runtime is impractical for real applications. Instead, this work uses a

single OTE boost for the MFUs and decide the boost voltage at design time. Section 5.5.2

explores different OTE boosts to guide the choice of the OTE boost.

5.3.4.2 Dynamic Control of OTE

Figure 5.1 shows that there is substantial variation in the advantage from speeding up

the MFUs across different benchmarks. Even within a single benchmark, different phases

can vary on their respective performance sensitivities to OTE. To effectively capture both

these design aspects and improve the energy efficiency, this work explores dynamic control

of OTE. The fundamental insight of dynamic control is to exploit the benchmark phase

behavior at runtime. When a particular phase is exhibiting heavy utilization of the MFUs,

61

the OTE controller switches from a normal mode to OTE. On the other hand, low utilization

of the MFUs results in switchover to the normal mode. The OTE controller captures these

utilization at runtime by employing the performance counters in the pipeline, which are

already present in modern microprocessors. This work explores two variants of dynamic

OTE, covering a range of the design space.

• ST : This scheme uses a single threshold for the number of cycles that the MFU is

active in a given epoch1. If the utilization exceeds this threshold in a given epoch,

the execution switches to OTE in the next epoch. Otherwise, OTE will be disabled

in the next epoch.

• HL: This scheme has two thresholds indicating low and high watermarks, respectively.

When the utilization exceeds the high watermark, the execution switches to OTE.

However, unlike ST, OTE is prolonged even when the utilization is below the high

watermark. When the utilization drops below the low watermark, OTE is disabled

for the next epoch. This scheme essentially aims to reduce the number of transitions,

and its associated overheads.

5.3.4.3 Preserving Functional Correctness

A particular challenge during a mode switch arises because of alteration in the expected

latencies in the MFUs (see Section 5.3.3). To maintain functionally correct execution of all

instructions, the processor initiates a pipeline flush during the mode switch. Before instruc-

tions are introduced in the pipeline, the OTE controller modifies all the countdown registers

for MFUs to reflect their respective latencies after the switch. Subsequently, instructions

are fetched and regular processing resumes. We carefully model all circuit-architectural

penalties of these aspects in our evaluation (Section 5.5).

5.4 Methodology

Figure 5.5 shows the extensive cross-layer methodology in this work to evaluate the

proposed energy efficient NTC processor design. In this pursuit, this work combines SPICE

1defined period of execution

62

level energy characteristics of NTC and STC circuits in the device layer, synthesis and place

and route based energy analysis for processor components in the circuit layer, and archi-

tectural simulation based power performance analysis in the architecture and application

layers. The details for each layer are given as follows:

Fig. 5.5: Our Cross-Layer methodology.

Table 5.1: The Configuration of the ARM Cortex NTC Core.

Parameter Value

ISA ARM
Frequency 100MHz

Re-Order Buffer 128 entries
Issue Queue 64 entries

Fetch/Dispatch 3/cycle
Issue/Commit 8/cycle
Pipeline Depth 15

Cacheline 64 Bytes
L1 I-cache 32 KB/2-way, 1-cycle
L1 D-cache 32 KB/2-way, 2-cycle
L2 cache 1MB 16-way 12-cycles
Memory B/W: 4GB/s, Latency: 22.5 ∼ 37.5 ns

5.4.1 Architecture Layer

This work models an out-of-order processor core similar to the ARM Cortex A15 pro-

cessor [2]. Table 5.1 shows the processor configuration. The MFUs in the processor have

latencies of 3 ∼ 33 cycles. To model OTE, this work scales these latencies down by a factor

of n, the speedup of OTE, to as low as a single cycle. The gem5 simulator [6]is employed to

run 15 SPEC CPU2006 FP benchmarks [4]. The first 1 billion instructions in each bench-

mark are skipped to avoid the initialization period. Subsequently, each benchmark will run

63

to its completion or 10 billion instructions, whichever happens earlier. Each benchmark

is divided into epochs (epoch size = 10 million instructions) and OTE decisions are taken

once per epoch. To obtain core power distribution, this work integrates the architectural

simulation data with the McPAT tool [34]. McPAT uses technology parameters representing

the 32nm node.

5.4.2 Device Layer

This work customizes the PTM 32nm technology model card for HSPICE to generate

the leakage and dynamic power trends in the STC and the NTC regions [78]. The power

characteristics are obtained for basic gates like nand, nor, inverter, flip-flop, and also for a

31 fanout-of-4 inverter-chain and 6T and 10T SRAM cells, as shown in Figure 5.5.

5.4.3 Circuit Layer

To obtain the hardware overhead of our scheme, this work adds the major augmen-

tations for OTE (Figure 5.4) to the RTL of a FabScalar core modeled for an ARM A15

processor [15]. Then this core is synthesized using the Synopsys Design Compiler (DC) and

a 45 nm reduced standard cell library using only basic gates. Place and route is performed

subsequently with the Cadence Encounter tool to get a more accurate estimate of the hard-

ware overhead including the additional power rail. The power from the device simulation

of basic gates is fed to the synthesized netlist to obtain power characteristics for the 32nm

technology node.

5.4.3.1 STC-to-NTC Power Scaling

Scaling the entire core power from the STC to the NTC region presents a methodolog-

ical challenge. HSPICE simulation of an entire processor core is computationally intense.

To manage the complexity, this work adopts several steps. First, using the core power dis-

tribution from McPAT in the architecture layer, it estimates the relative power consumed

by the processor components as shown in Figure 5.5. Second, it scales the STC power to

NTC using the following three categories:

64

• Combinational logic: this is scaled using the STC/NTC characteristics of the canonical

31 fanout-of-4 inverter-chain as the representing circuit [53].

• Storage elements: this work scales the on-chip SRAM power by investigating the

power scaling trend from the STC 6T SRAM cell to the NTC-friendly 10T SRAM

cell [10, 72].

• Interconnect : McPAT does not give the power results for the interconnect within the

core. However, as seen by previous works [37], this work estimates the interconnect

power to be 50% of the core dynamic power. As both the interconnect power and

the core dynamic power are equally affected by scaling the supply voltage, this work

assumes that their relative weight remains unchanged for STC and NTC.

5.5 Experimental Results

This section presents a comprehensive analysis of the proposed OTE in a typical NTC

processor. It briefly outlines various comparative schemes (Section 5.5.1), empirical study

on OTE boost (Section 5.5.2), exploration of dynamic OTE configurations (Section 5.5.3),

analysis of performance and energy efficiency (Section 5.5.4), and the overhead and limita-

tion of the proposed schemes (Section 5.5.5).

5.5.1 Comparative Schemes

• Super-pipeline: This scheme uses a deeper pipeline to transfer the circuit to the

dynamic energy dominated region, thereby reducing the leakage energy [66]. Seok et

al. showed a 50% depth increase in a single pipe stage. To capture the maximum

benefit from Super-pipeline, we optimistically model a 50% increase in pipeline depth

in the entire processing core.

• Fixed-OTE: This is the static—always on—OTE scheme.

• Dynamic-OTE: In this scheme, OTE is dynamically controlled as described in Sec-

tion 5.3.4.2.

65

5.5.2 Choice of OTE Boost

Figure 5.6 presents the design space exploration with four possible OTE boosts for

the Fixed-OTE scheme. The figure shows a trend of diminishing improvements in energy

efficiency as increasing the boost strength to 4X. Eventually, at 5X OTE boost, there is a

degradation in energy efficiency, as the power consumption to support a 5X boost masks

the performance gain through it. This work chooses a 4X boost at design time.

Fig. 5.6: EDP results of four OTE boosts (Lower is better).

5.5.3 Dynamic OTE Configuration

Figure 5.7 presents the EDP results for three variants of the Dynamic-OTE scheme

(see Section 5.3.4.2). In all schemes, the runtime utilization of LLDs is monitored for an

epoch length of 10M instructions. For the ST mode, OTE is activated when this utilization

is above 5M cycles. For HL(10%) and HL(20%), the high and low watermarks are set

at at 10% and 20%, respectively, above and below 5M cycles. Figure 5.7 shows that ST

and HL(10%) perform comparably, but a larger spread in watermarks degrades the energy

efficiency of HL(20%). Henceforth, this work uses the ST configuration of Dynamic OTE.

Fig. 5.7: EDP results of three Dynamic-OTE Schemes (OTE boost=4X) (Lower is better).

66

5.5.4 Performance and Energy Efficiency

Figures 5.8 and 5.9 show the performance improvement and energy reduction of all the

three schemes outlined in Section 5.5.1. These are calculated with respect to a Baseline

NTC core having no OTE or Super-pipelining. The proposed schemes are substantially

more effective to drive performance gains, as they can exploit the emerging architectural

bottlenecks in the NTC processor. For example, the performance of Dynamic OTE is

96.1%-178% higher than super-pipeline, across all the benchmarks. This comparatively

poor result in super-pipeline stems from the fact that the gain in clock frequency afforded

through it cannot efficiently exploit the bottleneck from LLDs. The proposed schemes also

offer substantially higher energy reduction, by reducing the leakage energy more efficiently

by optimizing the delay in LLDs. The average energy reduction of Fixed-OTE and Dynamic-

OTE are 20.7X and 31.3X, respectively, compared to super-pipeline.

Collectively, gains in both performance and energy consumption leads to a signifi-

cant improvement in energy efficiency of the system. Figure 5.10 shows the comparison of

energy efficiency using the energy-delay product as the metric. The EDP of Fixed-OTE

and Dynamic-OTE are 41.7% and 42.2% lower than the super-pipeline scheme. However,

super-pipeline also outperforms our OTE schemes in some benchmarks like namd. The

namd benchmark performs worse, as it is not sensitive to increase in pipeline latency and

has little usage of the MFUs.

5.5.5 Overhead and Limitation

The on-chip overhead of the proposed schemes comes from two sources: control for the

Fig. 5.8: Performance improvement (Higher is better).

67

Fig. 5.9: Energy reduction (Higher is better).

Fig. 5.10: Energy-Efficiency comparison (Lower is better).

Fig. 5.11: Impact of Voltage-Regulator efficiency on the EDP (normalized to the baseline)
achieved by Dynamic-OTE.

68

LLDs and control for the pipeline (Section 5.3). Using the circuit methodology detailed

in Section 5.4.3, synthesis followed by place and route are performed on the ARM core

augmented with the proposed OTE scheme. OTE only leads to marginal overheads in

power (1.2%), wire length (0.98%), and area (0.37%), respectively.

Efficacy: The efficacy of the OTE scheme relies on the VR efficiency. Figure 5.11 illustrates

that the normalized EDP of the Dynamic-OTE scheme deteriorates from 51.6% to 57.5%,

as the VR efficiency decreases from 90% to 50%.

69

CHAPTER 6

CONCLUSION

This dissertation has addressed various critical challenges in microprocessor design,

associated with rapid miniaturization in semiconductor devices. This work proposes novel

techniques to efficiently tolerate the timing-errors in a microprocessor. Also, it explores

innovative design paradigms in NTC era to promote energy efficiency in processors.

This work presents a novel runtime approach (DARP) to exploit the variations in

sensitized path delays among various pipe stages in a modern microprocessor design. As

running real world workloads, the microprocessor pipeline manifests striking variations in

sensitized path delay. The proposed DARP technique exploits these delay variations to

improve the energy efficiency of the microprocessor. Two pillars of the proposed core mi-

croarchitecture are early prediction of timing errors from program phases, and exploiting a

low-overhead controller for frequency tuning and clock skew adjustments. Through a rig-

orous circuit-architectural infrastructure, the proposed technique demonstrates significant

improvements in the performance (9.4–20%) and energy efficiency (10–28.6%), compared

to state-of-the-art techniques.

This work also combines DARP with a state-of-art THPH architecture to build a new

frontier for the energy-efficiency of the multicore system. Applying DARP on each core

of THPH architecture will improve its energy efficiency, individually. On the other hand,

THPH architecture can augment the delay variance which DARP exploits. The average

EDP reductions of this combination scheme are 42% and 49.9%, compared to original

THPH and another state-of-art multicore power-management scheme, respectively.

As transitioning from STC to NTC, this work identifies a shifting trend in performance

bottlenecks in a microprocessor pipeline. One of the fundamental aspects in a STC com-

puter system — the growing gap between processor and memory speed, will be largely

overshadowed by the new performance bottleneck in a NTC system: the Long-Latency

70

Datapaths within the core. Observing this intriguing change, this work proposes OTE

which dynamically boosts Long-Latency Datapaths in the processor pipeline. Evaluated by

rigorous circuit-architectural analysis, the proposed approach demonstrates an average of

42.2% improvement in energy efficiency over a recently proposed technique, across a range

of benchmarks.

71

REFERENCE

[1] AMD Turbo Core Technology. http://www.amd.com/en-us/innovations/

software-technologies/turbo-core.

[2] ARM Cortex-A Series. http://www.arm.com/products/processors/cortex-a/.

[3] Intel Core-i7 Processors. http://www.intel.com/content/www/us/en/processors/

core/core-i7-processor.html.

[4] SPEC CPU2006 benchmarks. http://www.spec.org/cpu2006/.

[5] A.Agarwal, B.C.Paul, S.Mukhopadhyay, and K.Roy. Process Variation in Em-

bedded Memories: Failure Analysis and Variation Aware Architecture. In IEEE J.

Solid-State Circuits (2005), vol. 40, pp. 1804–1814.

[6] Binkert, N. and others The gem5 simulator. SIGARCH Computer Architecture

News 39, 2 (Aug. 2011), 1–7.

[7] Borkar, S. Design Perspectives on 22nm CMOS and Beyond. In Proc. of 46th Proc. of

DAC (2009), pp. 93–94.

[8] Bowman, K. and others Energy-Efficient and Metastability-Immune Resilient Cir-

cuits for Dynamic Variation Tolerance. J. of Solid-State Circ. 44, 1 (2009), 49–63.

[9] Bowman, K. and others Circuit techniques for dynamic variation tolerance. In

Proc. of DAC (2009), pp. 4–7.

[10] Calhoun, B., and Chandrakasan, A. A 256-kb 65-nm Sub-Threshold SRAM

Design for Ultra-Low-Voltage Operation. In JSSC (March 2007), vol. 42, pp. 680–688.

[11] Chakraborty, K. and others Efficiently Tolerating Timing Violations in Pipelined

Microprocessors. In Proc. of DAC (2013), no. 102.

72

[12] Chakraborty, K., and Roy, S. Topologically Homogeneous Power-Performance

Heterogeneous Multicore Systems. In Proc. of DATE (Mar. 2011), pp. 1–6.

[13] Chakraborty, K., and Roy, S. Architecturally Homogeneous Power-Performance

Heterogeneous Multicore Systems (in press). TVLSI 21, 4 (April 2013), 670–679.

[14] Chen, H. and others DARP: Dynamically Adaptable Resilient Pipeline Design in

Microprocessors. In Proc. of DATE (2014), pp. 1–6.

[15] Choudhary, N. K. and others FabScalar: composing synthesizable RTL designs

of arbitrary cores within a canonical superscalar template. In Proc. of ISCA (2011),

pp. 11–22.

[16] Choudhury, M. R. and others TIMBER: Time borrowing and error relaying for

online timing error resilience. In Proc. of DATE (2010), pp. 1554–1559.

[17] Das, S. and others RazorII: In Situ Error Detection and Correction for PVT and

SER Tolerance. J. of Solid-State Circ. 44, 1 (Jan. 2009), 32–48.

[18] Dreslinski, R. G. and others Near-Threshold Computing: Reclaiming Moore’s

Law Through Energy Efficient Integrated Circuits. Proceedings of the IEEE 98, 2

(2010), 253–266.

[19] Ghasemazar, M., and Pedram, M. Minimizing the Energy Cost of Throughput in

a Linear Pipeline by Opportunistic Time Borrowing. In Proc. of ICCAD (2008).

[20] Gregg, J., and Chen, T. W. Post Silicon Power/Performance Optimization in

the Presence of Process Variations Using Individual Well-Adaptive Body Biasing. In

TVLSI (Mar 2007), vol. 15, pp. 366–376.

[21] Herbert, S., and Marculescu, D. Analysis of dynamic voltage/frequency scaling

in chip-multiprocessors. In ISLPED (2007), pp. 38–43.

[22] Hong, S., and Kim., S. AVICA: An Access-time Variation Insensitive L1 Cache

Architecture. In DATE (2013).

73

[23] Hsieh, W., and Hwang, W. All Digital Linear Voltage Regulator for Super- to

Near-Threshold Operation. TVLSI 20, 6 (2012), 989–1001.

[24] Hsu, S. and others A 280mV-to-1.1V 256b Reconfigurable SIMD Vector Permuta-

tion Engine with 2-Dimensional Shuffle in 22nm CMOS. In ISSCC (2012), pp. 178–180.

[25] Isci, C. and others An Analysis of Efficient Multi-Core Global Power Management

Policies: Maximizing Performance for a Given Power Budget. In Proc. of MICRO

(2006), pp. 347–358.

[26] Karpuzcu, U. and others Coping with Parametric Variation at Near-Threshold

Voltages. Micro, IEEE 33, 4 (July 2013), 6–14.

[27] Karpuzcu, U. R. and others EnergySmart: Toward energy-efficient manycores for

Near-Threshold Computing. In HPCA (2013), pp. 542–553.

[28] Kim, J. and others Multi-bit Error Tolerant Caches Using Two-Dimensional Error

Coding. In Proc. of MICRO (2007).

[29] Kothawade, S. and others Analysis of Intermittent Timing Fault Vulnerability.

Microelectronics Reliability 52, 7 (July 2012), 1515–1522.

[30] Kutila, M. and others Simulations on 130 nm technology 6T SRAM cell for Near-

Threshold operation. In Proc. of ISCAS (2014), pp. 1211–1214.

[31] Lak, Z., and Nicolici, N. In-system and on-the-fly clock tuning mechanism to

combat lifetime performance degradation. In Proc. of ICCAD (2011), pp. 434–441.

[32] Lee, S. K. and others Evaluation of voltage stacking for near-threshold multicore

computing. In ISLPED (2012), pp. 373–378.

[33] Li, H. and others Combined circuit and architectural level variable supply-voltage

scaling for low power. TVLSI 13, 5 (2005), 564–576.

74

[34] Li, S. and others McPAT: An integrated power, area, and timing modeling frame-

work for multicore and manycore architectures. In Proc. of MICRO (2009), pp. 469

–480.

[35] Liu, T., and Rabaey, J. M. A 0.25 V 460 nW Asynchronous Neural Signal Processor

With Inherent Leakage Suppression. J. of Solid-State Circ. 48, 4 (2013), 897–906.

[36] Lu, S.-L. Speeding Up Processing with Approximation Circuits. ICS 37, 3 (2004),

67–73.

[37] Magen, N. and others Interconnect-Power Dissipation in a Microprocessor. In

Proc. of SLIP (2004), pp. 7–13.

[38] Mahoney, P. and others Clock distribution on a dual-core, multi-threaded

Itanium R©-family processor. In Solid-State Circuits Conference, 2005. Digest of Tech-

nical Papers. ISSCC. 2005 IEEE International (Feb 2005), pp. 292–599 Vol. 1.

[39] Markovic, D. and others Ultralow-Power Design in Near-Threshold Region. Pro-

ceedings of the IEEE 98, 2 (2010), 237–252.

[40] McNairy, C., and Bhatia, R. Montecito: A Dual-Core, Dual-Thread Itanium

Processor. IEEE Micro 25, 2 (2005), 10–20.

[41] Mesa-Martinez, F. J. and others Power model validation through thermal mea-

surements. In Proc. of ISCA (2007), pp. 302–311.

[42] Miller, T. N. and others Booster: Reactive Core Acceleration for Mitigating

the Effects of Process Variation and Application Imbalance in Low-Voltage Chips. In

HPCA (2012), pp. 1–12.

[43] Mohanty, S. P., and Pradhan, D. K. ULS: A dual-Vth/high-kappa nano-CMOS

universal level shifter for system-level power management. JETC 6, 2 (2010).

[44] Moon, J. and others A 0.4-V, 90 ∼ 350-MHz PLL With an Active Loop-Filter

Charge Pump. TCAS 61-II, 5 (2014), 319–323.

75

[45] Mukhopadhyay, S. and others Modeling of failure probability and statistical design

of SRAM array for yield enhancement in nanoscaled CMOS. TCAD 24, 12 (dec. 2005),

1859 – 1880.

[46] Muralimanohar, N. and others Architecting Efficient Interconnects for Large

Caches with CACTI 6.0. IEEE Micro 28, 1 (2008), 69–79.

[47] Mutyam, M. and others Process Variation-Aware Adaptive Cache Architecture

and Management. In IEEE Trans. Computers (Jul 2009), vol. 58.

[48] Ogras, Ü. Y. and others Voltage-Frequency Island Partitioning for GALS-based

Networks-on-Chip. In Proc. of DAC (2007), pp. 110–115.

[49] Ozdemir, S. and others Yield-Aware Cache Architectures. In Proc. of MICRO

(2006), pp. 15–25.

[50] Pan, S. and others IVF: Characterizing the vulnerability of microprocessor struc-

tures to intermittent faults. In Proc. of DATE (2010), pp. 238–243.

[51] Pan, Y. and others Selective Wordline Voltage Boosting for Caches to Manage

Yield under Process Variations. In DAC (2009).

[52] Patterson, D. A., and Hennessy, J. L. Computer Organization and Design, 4 ed.

Morgan Kaufmann, 2009.

[53] Pinckney, N. R. and others Assessing the performance limits of parallelized near-

threshold computing. In DAC (2012), pp. 1147–1152.

[54] Pu, Y. and others Misleading energy and performance claims in sub/near threshold

digital systems. In Proc. of ICCAD (2010), pp. 625–631.

[55] Rabaey, J. M. and others Digital Integrated Circuits, 2 ed. Prentice Hall, 2003.

[56] Rahimi, A. and others Analysis of instruction-level vulnerability to dynamic voltage

and temperature variations. In 2012 Design, Automation & Test in Europe Conference

76

& Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012 (2012), pp. 1102–

1105.

[57] Rahimi, A. and others Application-Adaptive Guardbanding to Mitigate Static and

Dynamic Variability. IEEE Trans. Computers 63, 9 (2014), 2160–2173.

[58] Rangan, K. K. and others Thread motion: fine-grained power management for

multi-core systems. In 36th International Symposium on Computer Architecture (ISCA

2009), June 20-24, 2009, Austin, TX, USA (2009), pp. 302–313.

[59] Rangan, K. K. and others Thread motion: Fine-grained Power Management for

Multi-core Systems. In Proc. of ISCA (2009), pp. 302–313.

[60] Roy, S., and Chakraborty, K. Predicting Timing Violations Through Instruction

Level Path Sensitization Analysis. In Proc. of DAC (2012), pp. 1074–1081.

[61] Sarangi, S. and others VARIUS:A Model of Process Variation and Resulting

Timing Errors for Microarchitects. IEEE Trans. on Semiconductor Manufacturing 21

(2008), 3 –13.

[62] Sartori, J., and Kumar, R. Compiling for energy efficiency on timing speculative

processors. In Proc. of DAC (2012), pp. 1301–1308.

[63] Sartori, J., and Kumar, R. Compiling for energy efficiency on timing speculative

processors. In Proc. of DAC (2012), pp. 1301–1308.

[64] S.Borkar. Designing reliable systems from unreliable components: The challenges of

transistor variability and degradation. In IEEE, MICRO (Nov 2005), vol. 25, pp. 10–

16.

[65] Semeraro, G. and others Dynamic frequency and voltage control for a multiple

clock domain microarchitecture. In Proc. of MICRO (2002), pp. 356–367.

[66] Seok, M. and others Pipeline strategy for improving optimal energy efficiency in

ultra-low voltage design. In DAC (2011), pp. 990–995.

77

[67] Shah, M. and others Sparc T4: A Dynamically Threaded Server-on-a-Chip. IEEE

Micro 32, 2 (2012), 8–19.

[68] Sherwood, T. and others Automatically characterizing large scale program behav-

ior. In ASPLOS (2002), pp. 45–57.

[69] Tadesse, D. and others AutoRex: An automated post-silicon clock tuning tool. In

Proc. of ITC (2009), pp. 1–10.

[70] Tokunaga, C. and others A graphics execution core in 22nm CMOS featur-

ing adaptive clocking, selective boosting and state-retentive sleep. In ISSCC (2014),

pp. 108–109.

[71] Wang, H. and others Improving platform energy: chip area trade-off in near-

threshold computing environment. In Proc. of ICCAD (2013), pp. 318–325.

[72] Weste, N., and Harris, D. CMOS VLSI Design: A Circuits and Systems Perspec-

tive, 4th ed. Addison-Wesley Publishing Company, USA, 2010.

[73] Xie, Q. and others Variability-aware design of energy-delay optimal linear pipelines

operating in the near-threshold regime and above. In Proc. of GLSVLSI (2013), pp. 61–

66.

[74] Xin, J., and Joseph, R. Identifying and predicting timing-critical instructions to

boost timing speculation. In Proc. of MICRO (2011), pp. 128–139.

[75] Ye, R. and others Online clock skew tuning for timing speculation. In Proc. of

ICCAD (2011), pp. 442–447.

[76] Zhang, F. and others Design of a 300-mV 2.4-GHz Receiver Using Transformer-

Coupled Techniques. J. of Solid-State Circ. 48, 12 (2013), 3190–3205.

[77] Zhao, W., and Cao, Y. New Generation of Predictive Technology Model for sub-

45nm Early Design Exploration. IEEE Transactions on Electron Devices 53, 11 (2006),

2816 –2823.

78

[78] Zhao, W., and Cao, Y. Predictive Technology Model, June 2012.

79

VITA

Hu Chen

Published Journal Articles

• DARP-MP: Dynamically Adaptable Resilient Pipeline Design in Multicore Proces-

sors. Hu Chen, Sanghamitra Roy, Koushik Chakraborty. 2015 ACM Transactions on

Design Automation of Electronic Systems (TODAES).

Published Conference Papers

• Opportunistic turbo execution in NTC: exploiting the paradigm shift in performance

bottlenecks. Hu Chen, Dieudonne Manzi, Sanghamitra Roy, Koushik Chakraborty.

2015 IEEE/ACM Design Automation Conference (DAC).

• DARP: Dynamically Adaptable Resilient Pipeline Design in Microprocessors. Hu

Chen, Sanghamitra Roy, Koushik Chakraborty. 2014 IEEE/ACM Design, Automa-

tion and Test in Europe (DATE).

• Exploiting Static and Dynamic Locality of Timing Errors in Robust L1 Cache De-

sign. Hu Chen, Sanghamitra Roy, Koushik Chakraborty. 2014 IEEE International

Symposium on Quality Electronic Design (ISQED).

• SwiftGPU: Fostering Energy Efficiency in a Near-Threshold GPU Through Tactical

Performance Boost. Prabal Basu, Hu Chen, Shamik Saha, Koushik Chakraborty,

Sanghamitra Roy. 2016 IEEE/ACM Design Automation Conference (DAC).

• Synergistic Timing Speculation for Multi-threaded Programs. Atif Yasin, Jeff Zhang,

Hu Chen, Sanghamitra Roy, Koushik Chakraborty. 2016 IEEE/ACM Design Au-

tomation Conference (DAC).

	Exploiting Adaptive Techniques to Improve Processor Energy Efficiency
	Recommended Citation

	thesis.dvi

