
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations, Spring 
1920 to Summer 2023 Graduate Studies 

5-2016 

Assessing Plant Community Structure in the Upper Las Vegas Assessing Plant Community Structure in the Upper Las Vegas 

Wash Conservation Transfer Area, Nevada: The Influence of Biotic Wash Conservation Transfer Area, Nevada: The Influence of Biotic 

and Abiotic Variables and Abiotic Variables 

Amy A. Croft 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
Croft, Amy A., "Assessing Plant Community Structure in the Upper Las Vegas Wash Conservation Transfer 
Area, Nevada: The Influence of Biotic and Abiotic Variables" (2016). All Graduate Theses and 
Dissertations, Spring 1920 to Summer 2023. 5005. 
https://digitalcommons.usu.edu/etd/5005 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations, 
Spring 1920 to Summer 2023 by an authorized 
administrator of DigitalCommons@USU. For more 
information, please contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.usu.edu%2Fetd%2F5005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5005?utm_source=digitalcommons.usu.edu%2Fetd%2F5005&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 

 

ASSESSING PLANT COMMUNITY STRUCTURE IN THE UPPER LAS VEGAS 

 

     WASH CONSERVATION TRANSFER AREA, NEVADA:  THE INFLUENCE OF 

 

 BIOTIC AND ABIOTIC VARIABLES 

 

 

by 

 

 

Amy A. Croft 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree 

 

of 

 

DOCTOR OF PHILOSOPHY 

 

in 

 

Ecology 

 

Approved: 

 

_________________________ _________________________ 

James A. MacMahon Janis L. Boettinger 

Major Professor Committee Member 

        

_________________________ _________________________ 

Thomas C. Edwards, Jr. Ethan P. White 

Committee Member Committee Member 

 

_________________________ _________________________ 

Eugene W. Schupp Mark R. McLellan 

Committee Member Vice President for Research and  

 Dean of the School of Graduate Studies 

 

UTAH STATE UNIVERSITY 

Logan, Utah 

 

2016 

https://rgs.usu.edu/graduateschool/htm/about/directory/memberID=9514


ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Amy A. Croft 2016 

 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

ABSTRACT 

 

 

Assessing Plant Community Structure in the Upper Las Vegas Wash Conservation 

  

Transfer Area, Nevada:  The Influence of Biotic and Abiotic Variables 

 

 

by 

 

 

Amy A. Croft, Doctor of Philosophy 

 

Utah State University, 2016 

 

 

Major Professor: James A. MacMahon 

Department: Biology 

 

 

Ecological communities are complex, the structure of which is composed of 

interactions between multiple community characteristics and the abiotic and biotic factors 

shaping them.  Because of this complexity, ecological studies are generally limited in 

scope and size, often dissecting communities into their component parts to examine them 

piece by piece. While this might be the most practical method to study communities, this 

approach often neglects other characteristics that, with their inclusion, would provide a 

more complete picture of community ecology.  The studies described in this dissertation 

were conducted in an effort to synthesize the complexity that is inherent in ecological 

plant communities growing on a Mojave Desert bajada.   Each study addresses a separate 

component of community structure, which, taken as a whole, provides a more thorough 

understanding of arid plant community dynamics.  Overall, our results reveal the 

importance of substrate variables and their role in shaping plant community structure in 

arid environments.  In addition, these investigations provide evidence of the strong role 
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that facilitation plays on this bajada and possibly arid plant communities as a whole.  The 

comprehensive approach described in this dissertation will enable ecologists to gain a 

more complete understanding of community dynamics and apply this knowledge to 

various climate change and land management scenarios.   

(236 pages) 
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PUBLIC ABSTRACT 

 

 

Assessing Plant Community Structure in the Upper Las Vegas Wash Conservation 

  

Transfer Area, Nevada:  The Influence of Biotic and Abiotic Variables 

 

 

by 

 

 

Amy A. Croft 

 

 

By nature, ecological communities are complex.  Communities are often 

composed of many different interacting species which, together, are influenced by the 

environment.   Ecologists tend to study communities by breaking them into smaller parts 

and studying them piece by piece.  While this might be the most practical method to 

study communities, this approach doesn’t provide a complete working picture of the 

entire community.  The purpose of this dissertation was to investigate multiple working 

parts of plant communities growing in a portion of the Mojave Desert and integrate the 

studies for a greater understanding of how the communities function as a whole.  Overall, 

our results show that soil properties have a strong influence on the amount of water that is 

available for plants to grow.  This, in turn, has a large effect on plant size, how many 

plant species are present in one area, and how the plants are arranged on the landscape. 

Having a greater understanding of ecological communities as a whole will help scientists 

and land managers make appropriate decisions in the face of rapid urbanization and 

climate change. 

 

 

 



vi 

ACKNOWLEDGMENTS 

 

 

 To begin, I would like to thank my major advisor, Dr. Jim MacMahon, for his 

continued support, patience, and guidance throughout this project.  I would also like to 

express my appreciation to the members of my committee, Drs. Thomas C. Edwards, 

Janis L. Boettinger, Ethan P. White, and Eugene W. Schupp.  I also thank Dr. Ron Ryel, 

who served as one of my initial committee members.  They all provided valuable 

feedback and direction during the course of this study.   

 This research was supported by the USDA Bureau of Land Management and the 

USU Ecology Center.  Special thanks to Gayle Marrs-Smith at the Las Vegas Field 

Office for field assistance.  I would like to extend special thanks to the many people who 

helped collect field data for this project, especially my fellow students, Dr. Lori Spears, 

Jesse Walker, and Dr. Mary Pendergast and members of the Boettinger and Edwards labs.  

Statistical direction was provided by Susan Durham and Drs. Jari Oksanen, David 

Roberts, Ethan White, and Andrew Rayburn.  I would also like to recognize the USU 

Ecology Center and Biology Department for financial support.   

 I have received a tremendous amount of personal support from many dear friends, 

family members, and the USU Biology Department faculty and staff.  You have all 

provided constant reassurance and encouragement for which I am forever grateful.  I 

extend much appreciation to my parents, Brent and Lori Howa, for their continued 

support in my education.  Thank you to the MacMahon lab for your constant feedback 

and humor.  



vii 

 Last but not least, many thanks to my husband, Scott Croft.  Scott was 

exceptionally patient while I found my way through this project.  I am deeply grateful for 

his continued love and support.  My son, Benjamin Croft, provided constant light and 

encouragement.  I hope this dissertation serves as a reminder that it takes hard work and 

dedication to reach your goals.  

Amy A. Croft  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

CONTENTS 

 

 

Page 

 

ABSTRACT  ...................................................................................................................... iii 

 

ACKNOWLEDGMENTS ................................................................................................. vi 

 

LIST OF TABLES ............................................................................................................. ix 

 

LIST OF FIGURES ........................................................................................................... xi 

 

CHAPTERS 

 

1.  INTRODUCTION ............................................................................................1  

 

2. ABIOTIC INFLUENCES AND PLANT COMMUNITIES ON   

A MOJAVE DESERT BAJADA:  A MULTIVARIATE  

ANALYSIS ......................................................................................................14 

 

3. ABIOTIC INFLUENCE ON COMPETITION AND  

FACILITATION ON A MOJAVE DESERT BAJADA:  A  

SPATIAL PATTERN ANALYSIS .................................................................46 

 

4. BIOMASS AND ABUNDANCE PATTERNS AMONG  

PLANT COMMUNITIES IN THE MOJAVE DESERT:   

EXAMINING THE ROLE OF SELF-THINNING .........................................94 

 

5.  SUMMARY ....................................................................................................131 

 

APPENDICES .................................................................................................................136 

 

CURRICULUM VITAE ..................................................................................................219 

 

  

 

 

 

 



ix 

LIST OF TABLES 

 

Table               Page 

 

2.1       Vegetation associations of the ULVWCTA ..........................................................36 

 

2.2   Soil map units of the ULVWCTA .........................................................................37 

 

2.3   Geologic units of the ULVWCTA .........................................................................38 

 

2.4   Three-dimensional NMDS results .........................................................................39 

 

2.5  CCA results ............................................................................................................41 

       

3.1   Vegetation associations of the ULVWCTA ..........................................................79 

 

3.2   Soil map units of the ULVWCTA .........................................................................80 

 

3.3   Geologic units of the ULVWCTA .........................................................................81 

 

3.4   Morisita’s index (Id) and standardized Morisita index (Ip) results by  

 size class.................................................................................................................82 

 

3.5   Morisita’s index (Id) and standardized Morisita index (Ip) results by  

 soil map units .........................................................................................................84 

 

3.6   Morisita’s index (Id) and standardized Morisita index (Ip) results by  

 vegetation association ............................................................................................86 

 

3.7   Morisita’s index (Id) and standardized Morisita index (Ip) results by  

 geologic unit...........................................................................................................88 

 

3.8   L-funtion results for Transect1 ..............................................................................90 

 

3.9    L-funtion results for Transect 2 .............................................................................91 

 

3.10   Morisita’s index (Id) and standardized Morisita index (Ip) overall and  

 size class results for the transect data ....................................................................92 

 

4.1   Vegetation associations of the ULVWCTA ........................................................123 

 

4.2   Soil map units of the ULVWCTA .......................................................................124 

 

4.3   Geologic units of the ULVWCTA .......................................................................125 

 



x 

 

B.1   Plots with elevation, vegetation associations, soil map units, and geologic  

 units ......................................................................................................................141 

 

C.1 Plot, species, number of occurrences, and sum of cover .....................................152 

 

D.1 Scree plot depicting NMDS stress value for analyses run in one, two,  

 three, four, five, and six dimensions ....................................................................173 

 

E.1.   NMDS plot scores by axis ...................................................................................183 

 

F.1.   CCA plot scores by axis .......................................................................................187 

 

G.1.   Transect plots with corresponding elevation, vegetation associations,  

 soil map units, and geologic units ........................................................................190 

   

H.1.   Plot, species, and number of occurrences for Transect 1 (T1) and  

 Transect 2 (T2) .....................................................................................................192 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

LIST OF FIGURES 

 

 

Figure               Page 

 

2.1   Ordination diagram of NMDS axes one and two ...................................................42 

 

2.2   Ordination diagram of NMDS axes one and three .................................................43 

 

2.3   Ordination diagram of NMDS axes two and three ................................................44 

 

2.4   CCA ordination diagram ........................................................................................45 

 

4.1   Results of post-hoc comparisons of mean plot volume and density  

 by soil map units using the Tukey-Kramer test ...................................................126  

  

4.2  Results of post-hoc comparisons of mean plot volume and density   

 by geologic unit using the Tukey-Kramer test .....................................................127 

   

4.3   Results of post-hoc comparisons of mean plot volume and density   

 by vegetation association using the Tukey-Kramer test ......................................128  

4.4  OLS regression results showing the log-log plots of total plot  

 volume vs. plot density ........................................................................................129 

 

4.5   OLS regression results showing the log-log plots of mean plot  

 volume vs. plot density ........................................................................................130 

 

D.1 Scree plot depicting NMDS stress value for analyses run in one,  

 two, three, four, five, and six dimensions ............................................................173 

 

E.1.   Ordination diagram of NMDS axes one and two with geology  

 variables ...............................................................................................................174 

   

E.2.   Ordination diagram of NMDS axes one and two with soil variables ..................175  

  

E.3.   Ordination diagram of NMDS axes one and two with vegetation  

 Association variables ...........................................................................................176 

  

E.4.   Ordination diagram of NMDS axes one and three with geology  

 variables ...............................................................................................................177 

   

E.5.   Ordination diagram of NMDS axes one and three with soil variables ................178 

   

E.6.   Ordination diagram of NMDS axes one and three with vegetation 

  association variables ...........................................................................................179 



xii 

E.7.   Ordination diagram of NMDS axes two and three with geology  

 variables ...............................................................................................................180 

   

E.8.   Ordination diagram of NMDS axes one and three with soil variables ................181 

  

E.9.   Ordination diagram of NMDS axes two and three with vegetation  

 association variables ............................................................................................182 

   

I.1.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 1 ...........................................................................196 

 

I.2.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 2 ...........................................................................197 

  

I.3.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 3 ...........................................................................198 

 

I.4.   L-function plots for all species and L. tridentata alone  in Transect 1  

 (T1) Plot 4  ...........................................................................................................199 

  

I.5.   L-function plots for all species and L. tridentata alone  in Transect 1  

 (T1) Plot 5 ............................................................................................................200 

 

I.6.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 6 ...........................................................................201 

 

I.7.   L-function plots for all species and L. tridentata alone  in Transect 1  

 (T1) Plot 7 ............................................................................................................202 

 

I.8.   L-function plots for all species and L. tridentata alone  in Transect 1  

 (T1) Plot 8 ............................................................................................................203 

 

I.9.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 9 ...........................................................................204 

 

I.10.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 10 .........................................................................205 

 

I.11.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 11 .........................................................................206 

 

 

I.12.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 12 .........................................................................207 

 



xiii 

I.13.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 1 (T1) Plot 13 .........................................................................208 

 

I.14.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 1 ...........................................................................209 

I.15.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 2 ...........................................................................210 

 

I.16.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 3 ...........................................................................211 

 

I.17.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 4 ...........................................................................212 

I.18.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 5 ...........................................................................213 

 

I.19.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 6 ...........................................................................214 

 

I.20.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 7 ...........................................................................215 

 

I.21.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 8 ...........................................................................216 

 

I.22.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone  in Transect 2 (T2) Plot 9 ...........................................................................217 

 

I.23.   L-function plots for all species, A.  dumosa alone, and L. tridentata  

 alone in Transect 2 (T2) Plot 10 ..........................................................................218



 

 

CHAPTER 1 

INTRODUCTION  

  

 Ecological communities are inherently complex.  The complexity arises from the 

interplay between the considerable array of characteristics that describe community 

structure and the various processes influencing these characteristics. MacMahon et al. 

(1981) describe community structure as the patterning of characteristics of the resident 

organisms.  Community characteristics may include but are not limited to species 

composition, abundance, diversity, and size.  Ecologists search for patterns in these 

characteristics in an effort to gain insights into what processes create and maintain the 

observed patterns (Cody and Diamond 1975, Harvey et al. 1983, Gotelli and Graves 

1996, McGarigal et al. 2000, Stoll and Bergius 2005).  Processes driving community 

structure may be generally described as abioitc pressures, biotic interactions, and 

historical events (Maurer 1987, Legendre and Legendre 1998).   

 Ecologists have long sought the relative roles of abiotic vs. biotic factors in 

driving community structure.  Discerning the relative role of community driving processes 

on multiple aspects of community structure is difficult at best.  Community structure is 

often shaped by multiple interacting processes all of which operate and interact at various 

spatial and temporal scales.  Because of the complexity and multitude of interacting 

characteristics and processes, ecological studies are generally limited in scope and size, 

often dissecting communities into component parts to examine them piece by piece.  

Although valuable, this approach limits our understanding of communities as a whole.  
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Community ecology is in need of studies and methods that will unify and condense the 

various pieces to this complex puzzle.   

 Plant communities are ideal to study multiple aspects of community structure 

concurrently.  Because plants are sessile organisms and share requirements for basic 

resources, it is more manageable to track and observe multiple patterns in community 

characteristics than for more multifaceted and mobile organisms.  In particular, arid plant 

communities are considered to have a more coherent organization than more complex 

communities because they are relatively sparse and have fewer component populations 

(Chew and Chew 1965).  The simplicity of plant communities in arid environments 

provide an opportunity to study multiple aspects of community structure concurrently in 

order to gain a more complete understanding of which processes regulate patterns in 

community characteristics.  

The distribution, abundance, and size of arid plant communities are strongly 

influenced by both abiotic and biotic processes (Miriti 2007) and studies investigating 

how abiotic and biotic factors influence the structure of arid plant communities are 

numerous.  Given that water is considered the primary limiting resource in desert 

ecosystems (Noy-Meir 1973, MacMahon and Schimpf 1981, Walker et al. 2001, Titus et 

al. 2002), water availability is usually considered as the principal abiotic driving factor 

for arid plant communities.  As such, many studies focus on water limitation and its role 

in shaping plant community structure.   

Drought induced perennial plant mortality may be one of the most important 

processes affecting plant community structure in deserts and drought response tends to be 

soil specific (Hamerlynck and McAuliffe 2008, McAuliffe and Hamerlynck 2010).  
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There have been a host of studies in the desert southwest which have investigated the role 

of soil properties on plant available water.  The phenomenon of soil particle sorting on 

bajada gradients and its influence on plant communities has been well studied (Philips 

and MacMahon 1978, MacMahon and Schimpf 1981, MacMahon and Wagner 1985, 

Bowers and Lowe 1986).  Furthermore, several others have compared plant water 

relations and growth patterns between different soil types (McAuliffe 1994, Smith et al. 

1995, Hamerlynck et al. 2000, Hamerlynck et al. 2002, McAuliffe et al. 2007).  Findings 

show that soil texture, age, and horizon development dictate water availability.  Subtle 

differences in soil properties may lead to large differences in the amount of water that can 

be stored and absorbed (Yang and Lowe 1956, MacMahon and Wagner 1985, 

Hamerlynck et al. 2000, Hamerlynck et al. 2002, Hamerlynck et al. 2004, McAuliffe et 

al. 2007, Ignace and Huxman 2009, Webb 2009, Schwinning et al. 2011).  Soil 

hydrologic properties thus direct the distribution and pattern of plant communities. 

 Research on biotic interactions has concentrated on the roles of competition and 

facilitation in desert environments.  Because water is limited, classic theory predicts that 

plants must compete for water availability.  Many studies have used plant dispersion 

patterns as indicators of plant-plant interactions (Barbour 1969, Woodell et al. 1969, 

Barbour and Diaz 1973, King and Woodell 1973, Ebert and McMaster 1981, Fonteyn and 

Mahall 1981, Philips and MacMahon 1981, Schlesinger and Jones 1984, Cody 1986, 

Fowler 1986, Eccles et al. 1999, Perry et al. 2006, Rayburn et al. 2011).   Interestingly, 

few studies have found evidence in support of plant-plant competition (Barbour 1969, 

Woodell et al. 1969, Fonteyn and Mahall 1981, Philips and MacMahon 1981, Schlesinger 

and Jones 1984).  More recently, facilitation has been cited as an important biotic 
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interaction in harsh environments (Bertness and Callaway 1994, Stachowicz 2001, Bruno 

et al. 2003, Armas & Pugnaire 2005, Brooker et al. 2008, Malkinson and Tielbörger 

2010, Soliveres et al. 2015).   

 Several studies have examined how facilitation and competition are influenced by 

plant size and lifestage (Callaway and Walker 1997, Miriti 2006).  Plant size dictates the 

quantity of water, nutrients, and space an individual requires for growth and survival.  

Some have proposed that plant-plant interactions change from facilitative to competitive 

as a plant grows larger (Philips and MacMahon 1981, Cody 1986, Skarpe 1991, Haase et 

al. 1996).  Seedlings are often found spatially aggregated with adult nurse plants which 

improve the harshness of the environment (McAuliffe 1984, McAuliffe 1988, Callaway 

and Walker 1997, Toft and Fraizer 2003, Miriti 2006, Kéfi et al 2008).  However, as the 

seedlings grow, they often become competitors of the nurse plant (McAuliffe 1988, 

Callaway and Walker 1997).   

 Of growing interest is the role of self-thinning in arid plant communities.  The 

self-thinning rule predicts that total plant abundance per unit area should decline with 

increasing plant size (Enquist et al. 1998, Belgrano et al. 2002, White et al. 2007).  The 

thinning rule is based on the assumption that plants compete for limited resources within 

a given area and resource supply limits community carrying capacity (Enquist et al. 1998, 

White et al. 2007, Ernest et al. 2009).  Several studies investigating the self-thinning rule 

in arid environments have shown that the thinning relationship is weaker under increased 

aridity (Deng et al. 2006, Chu et al. 2008, Lin et al. 2013) and have proposed that 

facilitative interactions may offset the negative effects of competition (Deng et al. 2006, 
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Chu et al. 2008, 2009, 2010).  Deng et al. (2006) proposed a positive relationship 

between plant size and abundance where facilitation is commonly observed.  

Despite years of discussion and countless studies exploring the influence of 

abiotic and biotic variables in structuring arid plant communities, the relative contribution 

of these variables is still not apparent.  To date, most of this research has considered the 

roles of abiotic and biotic processes separately, and limited their analyses to a single 

species or pairwise interactions.  While this piecemeal approach is useful for gathering 

information, we are left without a clear representation of actual community dynamics.  

There is a need to explore the roles of both abiotic and biotic variables on multiple 

characteristics of interacting plant communities.   A more comprehensive study plan 

would address the effect of abiotic factors on community abundance and diversity as well 

as plant-plant interactions.  It would also address the role of substrate on plant size and 

how differences in size might influence plant-plant interactions.  

The objective of this dissertation was to examine the roles of both abiotic and 

biotic processes in shaping multiple aspects of community structure on a Mojave Desert 

bajada.  In 2006, a multidisciplinary team from Utah State University was tasked with 

creating soil and vegetation maps for a 7,400 hectare parcel of the Mojave Desert, 

referred to as the Upper Las Vegas Wash Conservation Area (ULVWCTA).  The team 

used 240 vegetation sampling plots, soil survey data produced by the US Department of 

Agriculture Natural Resources Conservation Service (USDA NRCS), 45 soil pedons, 

high-resolution aerial photography, a digital terrain model, spectral imagery, and United 

States Geological Survey (USGS) maps (1:100,000 Geologic and Geophysical maps of 

the Las Vegas 30’ X 60’ Quadrangle, Clark and Nye Counties, Nevada, and Inyo County, 
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California (Page et al. 2005), to create detailed soil and vegetation maps for the area 

(MacMahon et al. 2008).  This effort identified seven vegetation communities, eight soil 

map units, and seven geologic units and provided a large and detailed data set ideal for 

looking at communities as a whole.   

Tilman (1982) described the characteristics of plant community structure as 

species composition, abundance, diversity, the spatial and temporal patterning of species 

abundances, and morphological characteristics of the dominant species.  Collectively, this 

dissertation will examine the impacts that both abiotic and biotic variables have on each 

of these characteristics for the plant communities on the ULVWCTA.  Each chapter will 

address different variables which together will provide a more holistic view of 

community structure.   

Chapter 2 examines the abiotic influences on each plant community on the 

ULVWCTA.  Research has established the strong role that abiotic properties play in 

structuring arid plant populations, however there is still a disconnect as to the importance 

of soil in addition to other abiotic variables such as geologic substrate, topography, and 

bioclimatic variables and their effect on extensive, conjoining plant communities.  

Specifically, climatic, geologic, and soil variables were evaluated for their impact on 

plant community abundance and distribution.  Chapter 3 investigates the biotic influences 

within each plant community on the ULVWCTA, with special focus given to the roles of 

soil and geology and their impact on plant-plant interactions.  Dispersion patterns were 

analyzed for evidence of competition or facilitation.  We are aware of only one study that 

incorporated the influence of soil type on dispersion patterns.  Schenk et al. (2003) 

examined the spatial pattern of a single species, Ambrosia dumosa, on two different 
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geologic substrates.  Chapter 4 examines patterns in plant size and abundance across the 

ULVWCTA and also gives attention to the influence of soil and geology in shaping plant 

size and abundance patterns.  We also investigate the self-thinning relationship and its 

applicability in this arid environment.  We are aware of only two studies that have 

reported a negative relationship between Larrea tridentata density and average plant size 

(Chew and Chew 1965, Allen et al. 2008), neither of which took an entire community 

into consideration.  Chapter 5 provides a discussion and general conclusions of these 

studies.  This dissertation attempts to bridge the gaps between discrete subjects in 

community ecology, taking into account multiple community characteristics and the 

abiotic and biotic processes shaping community structure. 
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CHAPTER 2 

 

ABIOTIC INFLUENCES AND PLANT COMMUNITIES ON A MOJAVE 

 

 DESERT BAJADA:  A MULTIVARIATE ANALYSIS 

 

 

 Abstract.  Although it is known that soil, geology, topography, and bioclimatic 

factors influence the structure of arid plant communities, the relative contribution of these 

factors remains unclear.  In order to disentangle the role of these abiotic variables, this 

study used two fundamentally different multivariate ordination techniques to examine 

patterns in species composition and abundance on a Mojave Desert bajada.  The patterns 

revealed were consistent with our predictions that woody perennial composition and 

abundance change as soil variables and potential moisture availability change with drier 

sites exhibiting lower cover and species richness.  This study confirms the importance of 

substrate properties on plant water availability. Results from both techniques reveal that 

subtle differences in substrate texture and age may lead to large differences in plant 

available water, thereby impacting plant community structure. 

 

INTRODUCTION 

 

 

 Water is considered the primary limiting resource for life in deserts (Noy-Meir 

1973, MacMahon and Schimpf 1981, Walker et al. 2001, Titus et al. 2002, Baez et al. 

2006).  The germination, growth, and reproduction of desert plants are directly related to 

the availability of moisture (Noy-Meir 1973, MacMahon and Schimpf 1981, Webb 2009, 

Hamerlynck and McAuliffe 2010).  It is well known that the availability of water in soils 

governs the establishment and growth of desert plants (Noy-Meir 1973, Webb 2009, 
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Hamerlynck and McAuliffe 2010).   Reynolds et al. (2004) note that productivity in 

deserts is not a direct response to rainfall but rather to soil water availability. 

 Monger and Bestelmeyer (2006) describe soil, geology, and topography as a 

template for vegetation dynamics.  Soil texture, age, and horizon development play a 

large role in the amount of water that can be absorbed and stored (Yang and Lowe 1956, 

MacMahon and Wagner 1985, Hamerlynck et al. 2002, Whitford 2002).  Mulitple studies 

have confirmed differences in water relations and growth patterns of plants growing on 

different soil types (Smith et al. 1995, Hamerlynck et al. 2000, Hamerlynck et al. 2002, 

Schenk et al. 2003).  In addition, the combination of topography and parent material 

heterogeneity generates complex soil characteristics which in turn have strong influences 

on water availability and the types and patterns of vegetative communities (Rundel and 

Gibson 1996, McAuliffe 1994, MacMahon 2000).  Clearly, subtle differences in slope, 

aspect, elevation, and soil properties can lead to large differences in soil hydrology and 

the resident plant communities (Hamerlynck et al. 2000, Hamerlynck et al. 2002, 

Hamerlynck et al. 2004, McAuliffe et al. 2007, Ignace and Huxman 2009, Webb 2009, 

Schwinning et al. 2011).    

 Gradient analysis has been used extensively to investigate the abiotic influences 

on plant community composition in arid environments (Yang and Lowe 1956, Barbour 

and Diaz 1973, Phillips and MacMahon 1978, Stein and Ludwig 1979, Key et al.1984, 

Bowers and Lowe 1986, McAuliffe 1994, Xu et al 2006, He et al. 2007).  In general, 

gradient analyses in arid regions show a tight relationship between vegetation patterns 

and landscape and soil characteristics (Philips and MacMahon 1978, Stein and Ludwig 

1979, Key et al. 1984, Amundson et al. 1989a and 1989b, McAuliffe 1994, Huerta-
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Martinez et al 2004, Poulos et al. 2007).  For example, soil particle sorting down fan and 

bajada gradients has been well documented.  Upper bajadas have been found to have a 

higher proportion of large, coarse soil particles, and a lower salinity than the lower 

portions of bajadas (Phillips and MacMahon 1978, MacMahon and Schimpf 1981, 

MacMahon and Wagner 1985, Bowers and Lowe 1986, Parker 1995).  Soil particle size 

greatly affects evaporative water loss and water availability for desert plants (MacMahon 

and Schimpf 1981).  Upper bajadas with larger soil particles tend to allow water to 

percolate lower in the profile, thus making more water available later in the dry season 

when it may be limiting; therefore, upper bajadas have been found to have greater species 

richness and diversity (Key et al. 1984).  While the occurrence of soil particle sorting on 

bajada gradients has been well established, this model works as a generalization and 

tends to oversimplify the complexities of specific soil, geologic, and topographic 

variables.  

 Although it is known that soil, geology, topography, and bioclimatic factors affect 

the structure of arid plant communities, the relative contribution of these factors remains 

unclear.  This study will examine the abiotic factors influencing plant community 

structure in a Mojave Desert ecosystem.  Specifically, we will investigate the role of 

parent material, soil, geology, topography, and climate variables in shaping plant species 

composition and abundance.  In order to disentangle the influence of each of these abiotic 

variables, two fundamentally different multivariate ordination techniques were used to 

examine patterns in species composition and abundance.  Ordination is often used as an 

exploratory data-analysis technique that seeks pattern or structure in a multivariate 

dataset and may reveal how species composition varies with environmental factors.  The 
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ideal ordination technique is able to determine the most important dimensions (or 

gradients) in a data set, and ignore "noise" or chance variation (Whittaker 1978, Gauch 

1982, Austin 1985, Jongman et al. 1995, McGarigal et al. 2000, McCune and Grace 

2002). 

 Numerous studies use a combination of direct and indirect methods and compare 

the results of each technique for consistency (R. del Morel et al. 1995, Ohmann and Spies 

1998, El-Ghani and Amer 2003, Jafari 2004, He el al. 2007, Canadas et al. 2010).  To our 

knowledge, there have been no studies which have compared direct and non-direct 

methods in the Mojave Desert.  We expect to see vegetation patterns change as soil 

variables and thus potential moisture availability change.  We predict that sites 

characterized by soils with smaller particle sizes will be the driest sites and exhibit lower 

cover and species richness. 

 Given that deserts cover approximately one fifth of the Earth’s surface, 

approximately 777,000 km
2
 in North America (MacMahon 1987, 2001), and desert cities 

in the southwestern United States are experiencing unprecedented levels of human 

population growth and expansion (Webb et al. 2009, United States Census 2014), 

identifying the relationships among plant communities and the abiotic variables driving 

their structure is critical to understanding the desertification process that is occurring 

globally and for making restoration and management decisions in these fragile systems. 
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METHODS 

 

 

Study area 

 The Upper Las Vegas Wash Conservation Transfer Area (ULVWCTA), Nevada, 

consists of a 7,400 ha land parcel of Mojave Desert vegetation on alluvial fan (bajada) 

and basin floor deposits derived from the Spring and Sheep Mountains.  The area sits 

north of Las Vegas and is transected by a complex of Pleistocene spring deposits and 

their attendant washes.  A research team from Utah State University was tasked with 

creating vegetation and soil maps of the ULVWCTA.  This work was initiated in July 

2006. 

Vegetation sampling 

 A stratified sampling design was used to collect data for describing the 

ULVWCTA vegetation and developing a vegetation map.  Two strata, based on broad 

geomorphic categories, were identified.  The first was defined as alluvial fan/wash and 

totaled 5,270 ha (71%) of the ULVWCTA.  The second stratum (2,130 ha, 29%) was 

defined as basin floor/spring deposit, and was associated with past ground-water 

discharge (evidenced by highly calcareous spring deposits) and lacustrine sediments. 

 A total of 240 plots were sampled across the ULVWCTA.  Initially, the mapping 

data consisted of 163 sample plots that were systematically distributed along 13 north-

south transects spaced 2000 meters apart.  Vegetation data were collected every 100 

meters in the basin floor/spring deposit stratum and every 500 meters in the alluvial 

fan/wash stratum. Preliminary evaluation of these data indicated inadequate coverage of 

the area, so an additional 77 sample plots were established and surveyed to increase 
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sampling intensity where vegetation variation was greater, and where spectral reflectance 

data from Landsat 7 and ASTER satellites suggested greater complexity in geomorphic 

surfaces and vegetation. 

 Each sample plot consisted of the area of a circle with a 10-m radius. Each 

circular plot was divided into quarters by an east-west and a north-south line.  One 

quarter of each plot was used to survey vegetation.  The quarter chosen for sampling was 

rotated in a clockwise manner from one sample plot to the next.  Vegetation data were 

collected for woody perennials only.  For each plant within the sample quarter, the 

height, width in two directions (the longest width and the width perpendicular to this), 

and species were recorded.   

 Sampling data were used to create a detailed vegetation map for the area 

(methodology described in MacMahon et al. 2008).  Seven associations were identified 

and described in addition to heavily disturbed areas defined as “human modified” 

(MacMahon et al. 2008).  Table 2.1 provides a list and description of each association.  

This map, in addition to specific plant measurements, provided the vegetation data for the 

analyses.  A list of identified plants species can be found in Appendix A. 

Soil sampling, geologic data, and topographic data 

 A refined soil map (MacMahon et al. 2008) was created for the ULVWCTA.  The 

map was based on the most recent, publicly available soil survey data for the area 

produced by the US Department of Agriculture Natural Resources Conservation Service.  

Refinement was based on high-resolution aerial photography, a digital terrain model, 

spectral imagery, and 45 soil pedons.  There was a minimum of two pedon locations per 

refined soil map unit and a minimum of two per vegetation map unit.   Eight soil map 
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units were identified for the area.  Table 2.2 provides a list and description of each unit.  

This map provided the soil data for the analyses. 

 Geologic data were obtained from a USGS map (1:100,000 Geologic and 

Geophysical maps of the Las Vegas 30’ X 60’ Quadrangle, Clark and Nye Counties, 

Nevada, and Inyo County, California (Page et al. 2005).  Table 2.3 provides a list and 

description of each unit.  This map provided the geologic data for the analyses. 

 Slope, elevation, and aspect were determined from high-resolution aerial 

photography and a topographic contour map derived from the digital terrain model and 

spectral imagery.  Slope data were transformed into a continuous north-south gradient 

and east-west gradient by using the sine and cosine transformations (Guisan et al. 1999). 

Climate data 

 Climate data were derived using DAYMET (Daily Surface Weather Data and 

Climatological Summaries).  DAYMET is a model that generates daily surfaces of 

temperature, precipitation, humidity, and radiation over large regions of complex terrain. 

It was developed to fulfill the need for fine resolution, daily meteorological and 

climatological data necessary for plant growth model inputs (Thornton et al. 1997).  The 

DAYMET model provided 156 variables which consisted of monthly means for thirteen 

different climate factors.  These factors included maximum and minimum temperatures, 

average daytime temperatures, relative humidity, ambient and saturated vapor pressure, 

precipitation, evapotranspiration, solar radiation, and a moisture index.  In order to reduce 

the dataset and eliminate correlations among the monthly values, Principle Components 

Analysis (PCA) was carried out on each of the climate variables using with SAS 9.2 for 

Windows (SAS, 2011).  Most of the variables were condensed into a single principal 
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component which explained 75% - 95% of the variability for each set of monthly 

variables. 

 Although PCA was used to reduce the monthly values for each variable down to 

one or two principal components, Pearson Correlation Coefficients revealed that many of 

these reduced variables were still correlated in the manner in which they changed over 

the year.  The principal components for maximum, minimum, and average daytime 

temperatures were all positively correlated.  In addition, these were all positively 

correlated with vapor pressure components.    All of these components were negatively 

correlated with precipitation variables.  Evapotranspiration and the moisture index were 

negatively correlated.  Evapotranspiration was moderately correlated with the 

temperature and vapor pressure components while the moisture index had a moderate 

negative correlation with these.  Solar radiation components were moderately positively 

correlated with evapotranspiration and moderately negatively correlated with the 

moisture index.   Because so many of the variables were highly correlated, only daytime 

temperature, direct solar radiation, and evapotranspiration were kept in the final analysis.   

Analytical methods 

 There are two approaches to ordination, direct and indirect gradient analysis 

(Whittaker 1967, Whittaker 1978, Gauch 1982, Austin 1985, ter Braak 1987, ter Braak 

and Prentice 1988, ter Braak 1994, McCune and Grace 2002).  Direct gradient analysis 

involves arranging samples by positions along one or more environmental gradients.  It 

utilizes environmental data in addition to species data and reveals whether or not species 

composition is related to the measured environmental variables. Indirect gradient analysis 

uses species data only. Indirect gradient analysis organizes samples based on association 
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among the species.  The species’ patterns reflect environmental gradients without 

measuring them by assuming plants which are grouped together respond to the 

environment similarly.  Indirect gradient analysis may reveal environmental influences 

that have not been measured (McCune and Grace, 2002).  With this approach, any 

information about the environment should be used after the analysis as an interpretative 

tool.  

 In order to assess the degree to which abioic variables influence plant associations 

of the ULVWCTA, species cover values were analyzed with the DAYMET PCA 

variables, geologic (Page et al. 2005), topographic, and refined soil (MacMahon et al. 

2008) datasets using both direct and indirect non-linear techniques. Nonmetric 

Multidimensional Scaling (NMDS) was used for the indirect analysis while Canonical 

Correspondence Analysis (CCA) was used for the direct analysis.   Using the Bray-Curtis 

coefficient with NMDS has been described as a robust technique when the objective is to 

recover underlying environmental gradients (Minchin 1987).  CCA has been noted as a 

superior method with complex sampling designs, skewed distributions, and community 

data that contain many zeros (ter Braak 1987, Palmer 1993).  Analyses were performed in 

the Vegan R package (Oksanen et al. 2011).   

 All environmental data were entered into a Geographic Information System 

(GIS).  The GIS was used to generate a spreadsheet for analysis.  The spreadsheet was 

organized by plot with corresponding soil, geology, parent material, vegetation 

association, climate, and topographic descriptors.  Appendix B provides a table of each 

plot and its attendant soil map unit, vegetation association, geologic unit, and elevation 

(Table B.1).  Species cover data was organized into a separate spreadsheet in a species by 
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plot matrix.  Appendix C provides a table listing the plant species found in each plot, the 

total number of individuals found in each plot, and the total cover for each species.  Plots 

devoid of plant material or species that occurred in less than 5% of the samples were 

omitted from the analyses (Gauch 1982, Shupe 2005).  The results from the direct and 

indirect gradient analyses were compared for consistency. 

 

RESULTS 

 

 

 NMDS.  The NMDS ordination was conducted using the metaMDS function in 

the Vegan library (version 2.0-0, Oksanen et al. 2011) for R (version 2.13.2; R 

Development Core Team, Vienna, Austria) based on Bray-Curtis dissimilarity and 500 

random starts.  A solution with three axes was selected based on visual inspection of a 

scree plot of stress values.  The scree plot can be found in Appendix D (Figure D.1).  The 

two dimensional solution produced a stress value of 0.175 while the three dimensional 

solution had a stress value of 0.126.  There was no clear “elbow” between the two and 

three axes solutions.  McCune and Grace (2002) mentioned that most ecological 

community data sets have solutions with stress values between 0.10 and 0.20.  While 

values in the lower half of this range are satisfactory, values approaching 0.20 may be 

cause for concern.  Therefore, the three dimensional solution was chosen.  It should be 

noted that the orientation of NMDS axes are arbitrary and one axis does not hold more 

weight than any other.  Ordination diagrams arrange variables so as the distance between 

points corresponds with the dissimilarity between sites.  Larger distances are most 

accurate (ter Braak 1994). 
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 The first NMDS axis identifies a clear distinction between parent material and the 

soil, climatic conditions, and species associated with each.  Species growing on hot, dry 

spring and basin floor deposits (Atriplex confertifolia, Ephedra torreyana, Menodora 

spinescens) with shallowsoil (Las Vegas soil), with low hydraulic conductivity, and very 

low available water capacity had a strong positive correlation to the first axis.  The 

monthly average daytime temperature was also positively correlated, indicating that 

temperature increases at this end of the gradient.  The cacti species, Cylindropuntia 

echinocarpa and Opuntia basilaris, growing on bajada alluvium at higher elevations were 

negatively correlated with the first axis.  Figure 2.1 displays axes one and two and Figure 

2.2 displays axes one and three.  The diagram arranges variables such that the distance 

between points corresponds with the dissimilarity between variables.  Larger distances 

are most accurate.  Table 2.4 provides the coordinates for each variable along each axis.  

In order to keep the figures uncluttered, only the species and significant climate variables 

are displayed.  Ordination graphics for each categorical variable (vegetation association, 

geologic unit, and soil association) are provided in Appendix E (Figures E.1 – E.6).   

Table E.1. shows the coordinates for each plot along each axis.  

 The second NMDS axis depicts a richness and cover gradient within the basin 

floor sites.  Higher daytime temperature, higher potential evapotranspiration, and geology 

associated with fine-grained, calcareous deposits associated with past-ground water 

discharge (geology unit Qsu) were positively correlated with the second NMDS axis.  In 

addition, Atriplex confertifolia and Larrea tridentata and sites where they occur in low 

density as the sole species were positively correlated with this axis.  The Ambrosia 

dumosa – Menodora spinescens association and species found in this association 
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(Xyloriza tortifolia, Menodora spinescens, and Ephedra nevadensis) were negatively 

correlated.  The Ambrosia dumosa – Menodora spinescens association also occurs on 

fine-grained, calcareous deposits associated with past-ground water discharge (primarily 

Qscd), but has the greatest species richness (richness = 17) and mean plant density (9502 

n/ha) of all communities associated with the basin floor or Las Vegas and Las Vegas-

Destazo complex soils.  NMDS axis two confirms that basin floor sites that experience 

higher monthly average daytime temperature and higher potential evapotranspiration 

exhibit lower species richness. Soils, vegetation associations, and species associated with 

alluvium do not influence this gradient (i.e., they sit in the middle of the axis).  Figure 2.1 

displays axes one and two and Figure 2.3 displays axes two and three. Ordination 

graphics for each categorical variable (vegetation association, geologic unit, and soil 

association) are provided in Appendix E (Figures E.1 – E.3 and E.7 – E.9).     

 The third NMDS axis consists of a richness and cover gradient within the 

alluvium sites.  Direct solar radiation, evaporation, and species that grow on open, flat, 

alluvial sites (Opuntia basilaris, Ephedra torreyana, Krameria erecta) were negatively 

correlated with the third NMDS axis, whereas species associated with active wash areas 

(Hymenoclea salsola, Encelia virginensis, Atriplex polycarpa, Gutierrezia species) were 

positively correlated.  This axis represents the gradient between plants with greater cover 

growing in active washes versus flat, open sites where plants have less cover and lose 

more moisture via direct solar radiation and evapotranspiration. This axis represents 

variation within alluvium sites.  Soils, vegetation associations, and species associated 

with the basin floor/spring deposits do not influence this gradient (i.e., they sit in the 

middle of the axis).  Figure 2.2 displays axes one and three and Figure 2.3 displays axes 
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two and three. Ordination graphics for each categorical variable (vegetation association, 

geologic unit, and soil association) are provided in Appendix E (Figures E.4 – E.9).     

CCA.  The CCA was initially run with all of the environmental variables.  

Permutation tests were run to determine which variables were significant.  The tests were 

performed three times, reducing the number of variables each iteration.  The variables run 

in the fourth iteration were kept in the final analaysis: average temperature, direct solar 

radiation, soil, and vegetation association variables.  Constrained variation is the variation 

that is explained by the axes in the CCA (0.3318 or 33.185%).  Eigenvalues for the first 

two axes were 0.5114, and 0.1560 (accounting for 55.83% and 17.03%% of the 

variation). 

 The CCA analysis presents trends similar, but not identical, to the NMDS 

analysis.  The first CCA axis, which accounts for over half of the explained variation in 

the analysis, depicts a moisture, parent material, and plant cover gradient.  Species, 

vegetation associations, and soils associated with alluvium in active wash areas (the 

Atriplex polycarpa - Ambrosia dumosa Association, Atriplex polycarpa, Hymenoclea 

salsola, and Arizo soil) were positively correlated with the first CCA axis.  Species, 

vegetation associations, and soils associated with dry basin floor/spring deposit sites 

(e.g., Menodora spinescens, the Las Vegas-DeStazo soil complex, the Ambrosia dumosa 

- Menodora spinescens Association, the Ambrosia dumosa - Atriplex confertifolia 

Association, and the Las Vegas and Badlands soils) were negatively correlated.  The 

Atriplex polycarpa - Ambrosia dumosa Association shows the greatest mean plant density 

(4269 n/ha) of all communities associated with the alluvium parent material and the 

Ambrosia dumosa - Menodora spinescens Association has the greatest and mean plant 
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density (9502 n/ha) of all communities associated with the basin floor.  Table 2.5 

provides the coordinates for each variable along this axis.  Figure 2.4 displays the 

ordination diagram.  Appendix F provides the coordinates for each plot in the CCA 

analysis (Table F.1).  

 The second CCA axis is correlated with parent material and soil.  Soils and 

vegetation communities associated with fine-grained basin floor were positively 

correlated with the second CCA axis (e.g., the Las Vegas soil, the Ambrosia dumosa - 

Atriplex confertifolia Association, the Las Vegas-DeStazo soil complex, and the 

Ambrosia dumosa - Menodora spinescens Association).  Sites with Las Vegas soil, and 

Qscd geology that support only a few Atriplex confertifolia individuals sit at the extreme 

positive end of this gradient.  The alluvium soil, Weiser, and cacti species associated with 

gravelly bajada soil (Cylindropuntia echinocarpa and Opuntia basilaris) were negatively 

correlated.  Table 2.5 provides the coordinates for each variable along this axis.  Figure 

2.4 displays the ordination diagram.   

 

DISCUSSION 

 

 

 The soils of the ULVWTA can be broadly split into two geomorphic categories: 

alluvial fan/wash and basin floor/spring deposit.  The alluvial fan/wash soils are typically 

dominated by relatively coarse-textured alluvium. Soil map units include Weiser, Dalian- 

McCullogh Complex, Weiser-Wechech Association, and Arizo.  Geologic map units 

associated with alluvial fans/washes include Qay, Qayo, and Qayy.  Vegetation 

associations include the Larrea tridentata - Ambrosia dumosa Association, Atriplex 



28 

polycarpa - Ambrosia dumosa Association, and the Ambrosia dumosa - Larrea 

tridentata:  Upper Alluvial Fan Association.  

 Basin floor soils are generally finer textured alluvium and spring deposits, and 

typically have horizons and/or nodules cemented with carbonates (calcite).  These areas 

are associated with past ground water discharge and include the Las Vegas and Las 

Vegas-Destazo Complex soil map units.  The prominent geologic unit is Qscd and 

vegetation associations include Ambrosia dumosa - Atriplex confertifolia Association, 

Ambrosia dumosa - Menodora spinescens Association, Badlands, and the Larrea 

tridentata Association.  The basin floor is generally hotter, drier, and lower in elevation 

than the alluvial fan/wash. 

 Both the NMDS and CCA results reveal a dichotomy between basin floor/spring 

deposit and alluvial fan/wash and the soils, species, and vegetation communities within 

each.  In addition, each multivariate technique revealed the gradients within each 

geomorphic category. The second NMDS axis depicted a richness and cover gradient 

within the basin floor sites, whereas the third axis showed the same pattern in the alluvial 

fan/wash sites.  All of these patterns are produced from variations in water availability 

resulting from differences in soil texture, degree of carbonate cementation,and horizon 

development.  This is visually apparent when comparing basin floor and alluvial 

fan/wash ssoils but more subtle while observing each geologic unit on its own.  The 

NMDS elucidated the subtle patterns within each geomorphic unit while the CCA 

revealed patterns between geomorphic units.  While CCA is constrained by the 

environmental variables provided in the analysis the NMDS is free to find whatever 

compositional trend may exist. 
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 The patterns revealed in the gradient analyses were consistent with our prediction 

that vegetation characteristics change as soil variables and potential moisture availability 

change with drier sites exhibiting lower cover and species richness.  They also support 

the well cited relationship between soil texture, age, and horizon development and its role 

in water availability.  At the largest scale, we observed that elevation and parent material 

dictate moisture availability. Higher elevation alluvial fans (bajadas) are coarser textured, 

and potentially have more moisture availability than the finer textured, lower elevation 

basin floor (playas) which also has a greater degree of cementation by carbonates.  

Because of soil texture differences and the associated water holding capacities, alluvial 

fans/washes accommodated plant communities with greater diversity and cover than 

basin floor sites.  This observation is consistent with literature citing age-dependent soil 

profile development as one of the strongest predictors of plant community composition in 

arid environments (Hamerlynch et al 2002) with younger soils having more water 

available than older soils (McAuliffe 1994, Nimmo 2009), upper bajadas and coarse soils 

having greater species richness (Barbor and Diaz 1973, Key et al. 1984), and soil particle 

sorting down bajada fans with upper bajadas having a higher proportion of larger soil 

particles than lower bajadas (Phillips and MacMahon 1978, MacMahon and Schimpf 

1981, MacMahon and Wagner 1985, Key et al. 1984, Bowers and Lowe 1986, Parker 

1995).  

 While the classic bajada gradient model has played a vital role in understanding 

arid vegetation patterns, it may oversimplify the complexities and contribution of specific 

soilmap unit.  The topography and parent material in arid regions is heterogeneous, 

resulting in considerable spatial variation in soils (McAullife 1994, Smith et al. 1995).  



30 

Perhaps the gradient model applies broadly from the bajada to playa or within a soil map 

unit, but soil and landscape characteristics may change abruptly.  Webb et al. (2009) 

describe soils as mosaics.  While the gradient hypothesis largely ignores the fact that 

there are different soils with different ages and pedogenic factors that may change soil 

hydraulic properties, the soil mosaic approach recognizes that soils are distinct and 

vegetation will respond accordingly.  Our GIS approach and the geopedological approach 

used by Michaud et al. (2013) are useful to describe the relationship between vegetation, 

soil, parent material, geology, and climate and explore the soil mosaic hypothesis.  GIS 

overlays of geology, soil, and vegetation maps, and digital elevation models will allow 

researchers to explore the value of soil mosaic hypotheses at multiple scales.    

 It is well documented and observed in our study that variations in soil type govern 

plant community characteristics.  Rather than limiting our view to the bajada gradient we 

should look at the landscape as a soil mosaic and consider this mosaic when developing 

monitoring and management activities.  While the gradient model will provide 

generalities as to texture and age across a landscape, the soil mosaic hypothesis will 

provide details.  A soils map will provide insight into the factors that control each 

vegetation community and is essential to understanding desert ecosystem processes.    
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TABLES AND FIGURES 

 

 

Table 2.1.  Vegetation associations of the ULVWCTA. 

Vegetation Association Description 

Area  

(ha) 

Elevation 

 (m) 

Number of plots 

sampled 
Richness 

Density 

(n/ha) 

Larrea tridentata -  Ambrosia 

dumosa Association 

Larrea tridentata and Ambrosia dumosa 

compose ≥70% of the relative density 
5,817 659 to 929 143 34 3889 

Larrea tridentata Association 
Larrea tridentata is the dominant shrub and 

these areas coincide with basin floor soils 
286 729 to 828 11 7 463 

Atriplex polycarpa - Ambrosia 

dumosa Association 

Atriplex polycarpa and Ambrosia dumosa 

dominate in wet, active, and dry washes 
245 658 to 831 19 14 4269 

Ambrosia dumosa - Menodora 

spinescens Association 

Ambrosia dumosa and Menodora spinescens 

make up the greatest shrub density in the basin 

floor 

42 667 to 715 8 17 9502 

Badlands barren ground with some Larrea tridentata 94 705 to 742 6 4 276 

Ambrosia dumosa - Larrea 

tridentata:  Upper Alluvial Fan 

Association 

Ambrosia dumosa in association with Larrea 

tridentada make up the greatest density on the 

upper alluvial fan 

36 798 to 876 8 12 2674 

Ambrosia dumosa - Atriplex 

confertifolia Association 

Ambrosia dumosa in association with Atriplex 

confertifolia characterize this association in the 

basin floor/spring deposit   

445 659 to 724 41 14 2612 
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Table 2.2:  Soil map units of the ULVWCTA. 

Soil Parent material Landform Drainage class (Ksat)* Description 

Arizo Mixed alluvium Channels 
Excessively 

drained 

High to very high (5.95 

to 19.98 in/hr) 
Very gravelly loamy sand 

Dalian-McCullough 

Complex 

Alluvium derived from 

limestone and dolostone 
Fan skirts Well drained High (1.98 to 5.95 in/hr) 

Very gravelly fine sandy 

loam 

Las Vegas 
Alluvium derived from 

limestone   

Basin-floor 

remnants 
Well drained Very low (0 in/hr) Gravelly fine sandy loam 

Las Vegas-DeStazo 

Complex 

Alluvium derived from 

limestone 
Alluvial flats Well drained Very low (0 in/hr) Gravelly fine sandy loam 

Weiser-Wechech 

Association 

Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained 

Moderately high to high 

(0.57 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Weiser   
Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained High (1.98 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Weiser-Goodsprings 

Complex 

Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained High (1.98 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Badland 
Mixed alluvium over 

lacustrine 

Hills on alluvial  

flats   

*Ksat=capacity of the most limiting layer to transmit water 
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Table 2.3:  Geologic units of the ULVWCTA. 

Unit* Parent Material Age Description 

Qai Intermediate fan alluvium Late and middle Pleistocene 
Cemented alluvial-fan gravel, with interbedded sand; 

poorly to moderately well sorted 

Qay Young fan alluvium Holocene and latest Pleistocene 
Noncemented alluvial-fan gravel and sand with weakly 

developed soil. 

Qayo Older young alluvium Holocene and latest Pleistocene 
Noncemented gravel and sand with weakly developed soil 

of alluvial-fan remnants 

Qayy Youngest alluvium Holocene    
Noncemented alluvial-fan gravel and sand of 

intermittently active wash complexes 

Qfy 
Intermittently active fluvial fine-

grained alluvium 
Late Holocene Brown to gray sand, silt, mud, and interbedded gravel. 

Qscd 

Intermediate fine-grained 

deposits associated with past 

ground-water discharge 

Late Pleistocene 
Top 1-2 m is characteristically resistant light-gray 

calcareous mud that is partially cemented with calcite 

Qsu 

Undivided young and 

intermediate fine-grained 

deposits associated with past 

ground-water discharge 

Early Holocene and late Pleistocene 

Light-gray to light-brown unconsolidated silt, sandy silt, 

silty sand, and mud or the top 1-2 m is characteristically 

resistant light-gray calcareous mud that is partially 

cemented with calcite 

*Unit= map unit 
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Table 2.4.  Three-dimensional NMDS results.  The table provides coordinates for  

each variable examined in the NMDS analysis (obtained from a three dimensional 

ordination diagram). The diagram arranges variables such that the distance between 

points corresponds with the dissimilarity between variables.  Larger distances are  

most accurate.                      

NMDS Climate variables NMDS 1 NMDS 2 NMDS 3 

Monthly average daytime temperature (DAYTEMP) 0.71 0.70 -0.10 

Potential evapotranspiration (EVAP) 0.15 0.51 -0.85 

Direct solar radiation (DIRECTSR) -0.43 -0.10 -0.90 

    NMDS Species Variables NMDS 1 NMDS 2 NMDS 3 

Ambrosia dumosa  -0.23 -0.23 0.11 

Atriplex confertifolia   1.47 0.78 0.05 

Atriplex polycarpa  -0.32 0.31 1.22 

Cylindropuntia echinocarpa   -0.62 -0.42 -0.51 

Encelia virginensis   -0.29 -0.63 1.26 

Ephedra nevadensis  0.55 -0.78 0.21 

Ephedra torreyana  1.21 -0.17 -0.34 

Gutierrezia species -0.04 -0.53 1.22 

Hymenoclea salsola   -0.49 -0.04 2.00 

Krameria erecta   0.00 -0.57 -0.44 

Larrea tridentata   -0.48 0.43 -0.11 

Lycium andersonii  0.73 -0.20 0.31 

Menodora spinescens  1.03 -0.81 -0.18 

Opuntia basilaris  -0.69 -0.05 -0.90 

Psorothamnus fremontii  0.11 -0.54 0.07 

Xylorhiza tortifolia  -0.03 -1.43 0.55 

Yucca schidigera  -0.31 -0.57 0.01 

    NMDS Soil Variables NMDS 1 NMDS 2 NMDS 3 

Arizo -0.27 0.04 0.48 

Badland 0.09 0.28 -0.03 

Dalian-McCullough Complex -0.21 -0.01 -0.03 

Las Vegas-DeStazo Complex 0.63 -0.07 -0.06 

Las Vegas 1.06 0.40 0.00 

Weiser -0.30 0.08 -0.23 

Weiser-Wechech Association -0.10 -0.26 -0.04 

(Continued on next page)    
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Table 2.4.  Three-dimensional NMDS results (continued). 

NMDS Vegetation Association Variables NMDS 1 NMDS 2 NMDS 3 

Ambrosia dumosa - Atriplex confertifolia Association 0.99 0.28 -0.02 

Ambrosia dumosa - Larrea tridentata:   

Upper Alluvial Fan Association 0.11 0.00 0.22 

Ambrosia dumosa - Menodora spinescens Association 0.55 -0.46 -0.01 

Atriplex polycarpa - Ambrosia dumosa Association -0.24 0.17 0.78 

Badlands -0.20 -0.31 -0.23 

Larrea tridentata Association -0.43 0.68 -0.16 

Larrea tridentata -  Ambrosia dumosa Association -0.25 -0.12 -0.09 

 

NMDS Geologic Unit Variables NMDS 1 NMDS 2 NMDS 3 

Qai -0.32 -0.38 0.34 

Qay -0.25 -0.13 -0.16 

Qayo 0.22 -0.23 0.04 

Qayy -0.31 0.05 0.37 

Qfy -0.37 0.17 -0.09 

Qscd 0.51 0.21 -0.02 

Qsu -0.63 0.74 -0.15 

    NMDS Parent Material Variables NMDS 1 NMDS 2 NMDS 3 

alluvium -0.21 -0.09 0.02 

spring deposit 0.62 0.19 -0.02 

spring deposit and alluvium -0.18 0.17 -0.07 
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Table 2.5.  CCA results.  The table provides coordinates for each variable examined  

in the CCA analysis (obtained from the ordination diagram). The diagram arranges 

variables such that the distance between points corresponds with the dissimilarity 

between variables.  Larger distances are most accurate 

CCA Soil Variables CCA1 CCA2 

Arizo 1.54 0.04 

Badland -0.09 -0.05 

Dalian-McCullough complex -0.42 -0.11 

Las Vegas-DeStazo complex -0.58 2.63 

Las Vegas -0.57 3.03 

Weiser -0.28 -0.84 

Weiser-Wechech association -0.46 -0.12 

  
  

CCA Vegetation Association Variables CCA1 CCA2 

Ambrosia dumosa - Atriplex confertifolia Association -0.57 3.01 

Ambrosia dumosa - Larrea tridentata:  Upper Alluvial Fan Association -0.57 0.54 

Ambrosia dumosa - Menodora spinescens Association -0.58 2.62 

Atriplex polycarpa - Ambrosia dumosa Association 2.36 0.15 

Badlands -0.50 -0.25 

Larrea tridentata Association -0.42 -0.65 

Larrea tridentata -  Ambrosia dumosa Association -0.39 -0.41 

  
  

CCA Species Variables CCA1 CCA2 

Ambrosia dumosa  -0.26 0.09 

Atriplex confertifolia   -0.45 2.20 

Atriplex polycarpa  2.13 0.08 

Cylindropuntia echinocarpa   -0.38 -0.72 

Encelia virginensis   1.30 -0.03 

Ephedra nevadensis  -0.50 0.44 

Ephedra torreyana  -0.49 1.53 

Gutierrezia species 1.15 0.43 

Hymenoclea salsola   2.07 0.20 

Krameria erecta   -0.44 0.14 

Larrea tridentata   -0.17 -0.27 

Lycium andersonii  -0.22 1.00 

Menodora spinescens  -0.59 2.52 

Opuntia basilaris  -0.46 -0.56 

Psorothamnus fremontii  -0.46 0.07 

Xylorhiza tortifolia  -0.50 0.90 

Yucca schidigera  -0.45 -0.17 

   
CCA Climate Variables CCA1 CCA2 

Average daytime temperature (AVETEMP) 0.15 0.17 

Direct solar radiation (DIRECTSR) -0.24 -0.27 
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Figure 2.1.  Ordination diagram of NMDS axes one and two.  The diagram arranges variables such that the 

distance between points corresponds with the dissimilarity between variables.  Larger distances are most 

accurate.  Species abbreviations:  ambdum = Ambrosia dumosa; atrcon = Atriplex confertifolia; atrpol = 

Atriplex polycarpa; cylech =  Cylindropuntia echinocarpa; encvir = Encelia virginensis; ephnve = 

Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia species; hymsal = Hymenoclea 

salsola; kraere = Krameria erecta; latri = Larrea tridentata; lycand = Lycium andersonii;  menspi = 

Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus fremontii; xyltor = Xylorhiza 

tortifolia; yucsch = Yucca schidigera 

 



43 

 

 

4
3
 

 
 

Figure 2.2.  Ordination diagram of NMDS axes one and three.  The diagram arranges variables such that 

the distance between points corresponds with the dissimilarity between variables.  Larger distances are 

most accurate.  Species abbreviations:  ambdum = Ambrosia dumosa; atrcon = Atriplex confertifolia; atrpol 

= Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = Encelia virginensis; ephnve = 

Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia species; hymsal = Hymenoclea 

salsola; kraere = Krameria erecta; latri = Larrea tridentata; lycand = Lycium andersonii;  menspi = 

Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus fremontii; xyltor = Xylorhiza 

tortifolia; yucsch = Yucca schidigera 
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Figure 2.3.  Ordination diagram of NMDS axes two and three.  The diagram arranges variables such that 

the distance between points corresponds with the dissimilarity between variables.  Larger distances are 

most accurate.  Species abbreviations:  ambdum = Ambrosia dumosa; atrcon = Atriplex confertifolia; atrpol 

= Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = Encelia virginensis; ephnve = 

Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia species; hymsal = Hymenoclea 

salsola; kraere = Krameria erecta; latri = Larrea tridentata; lycand = Lycium andersonii;  menspi = 

Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus fremontii; xyltor = Xylorhiza 

tortifolia; yucsch = Yucca schidigera 
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Figure 2.4.  CCA ordination diagram.  The diagram arranges variables such that the distance between 

points corresponds with the dissimilarity between variables.  Larger distances are most accurate.  Species 

abbreviations:  ambdum = Ambrosia dumosa; atrcon = Atriplex confertifolia; atrpol = Atriplex polycarpa; 

cylech = Cylindropuntia echinocarpa; encvir = Encelia virginensis; ephnve = Ephedra nevadensis; ephtor 

= Ephedra torreyana; gutspp = Gutierrezia species; hymsal = Hymenoclea salsola; kraere = Krameria 

erecta; latri = Larrea tridentata; lycand = Lycium andersonii;  menspi = Menodora spinescens; opubas = 

Opuntia basilaris; psofre = Psorothamnus fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca 

schidigera 
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CHAPTER 3 

 

ABIOTIC INFLUENCE ON COMPETITION AND FACILITATION ON A MOJAVE 

 

 DESERT BAJADA:  A SPATIAL PATTERN ANALYSIS 

 

 

 Abstract.  Despite years of debate concerning the roles of competition and 

facilitation in structuring arid plant communities, the answers are still not apparent.  Plant 

dispersion patterns are often used as indicators of the occurrence either competitive or 

facilitative interactions. This study examined spatial point patterns of woody perennial 

species growing on a Mojave Desert bajada in an effort to gain insights into the plant-

plant interactions shaping the resident communities.  Special focus was given to the 

possible roles of soil and geologic substrate in shaping community spatial characteristics.  

In order to accurately assess dispersion patterns, we utilized two different statistical 

techniques, the more traditional Morisita’s index of dispersion, and a relatively novel 

approach employing Ripley’s K-function to analyze precise spatial data.  Results from 

both methods indicate that random and clumping patterns are the predominant plant 

spatial patterns on this site and patterns changed between soils and geologic substrates of 

different textures and ages.  These results demonstrate the strong influence of substrate in 

shaping plant-plant interactions in arid environments.  They also support previous 

research citing facilitation as an important process driving arid plant community 

structure.  
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INTRODUCTION 

 

 

 Ecologists have long debated the roles of competition and facilitation in 

structuring ecological communities.  Nowhere is this debate more apparent than in arid 

plant communities.  Given that water is the principal limiting factor in desert ecosystems, 

classic theory predicts that plants must compete with neighbors for its uptake.  More 

recently, the stress gradient hypothesis postulates that facilitative, rather than 

competitive, interactions may be more prevalent in harsh environments whereby 

neighbors ameliorate abiotic stress (Bertness and Callaway 1994, Stachowicz 2001, 

Bruno et al. 2003, Armas & Pugnaire 2005, Brooker et al. 2008, Malkinson and 

Tielbörger 2010).   

 Plant dispersion patterns have often served as indicators of the ecological 

processes that may have shaped community structure (Fowler 1986, Legendre and Fortin 

1989, Andersen 1992, Legendre 1993, Haase 1995, Schenk et al. 2003, Rayburn et al. 

2011).  The spatial point pattern or dispersion of individuals in a population describes 

their spacing relative to each other. There are a wide variety of methods available to test 

for spatial pattern, many of which are based on the model of complete spatial randomness 

(CSR).  The null hypothesis under this model is that points (plants) occur independently 

of one another in a random pattern.  Onealternative to this model is clumped (also 

referred to as aggregated, underdispersed, or contagious) dispersion, which indicates that 

the presence of one point increases the probability of finding another in its vicinity.  The 

other alternative is the uniform (also referred to as regular or overdispersed) pattern, 
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which indicates that a point’s presence reduces the probability of finding another nearby 

(Pielou 1960, Bailey and Gatrell 1995, Dale 1999, Marcon 2012).  

 The departures from the null model of CSR are what ecologists use to make 

inferences about community forming processes.  In desert perennial communities, 

clumped patterns have been attributed to plant-plant facilitation, heterogeneity of soil 

resources, limited seed dispersal, or vegetative reproduction (Bertness and Callaway 

1994, Schlesinger et al. 1996, Schlesinger and Pilmanis 1998, Walker et al. 2001, Titus et 

al. 2002, Brooker et al. 2008), whereas uniform patterns have been associated with plant-

plant competition for limited resources leading to density-dependent mortality (Ebert and 

McMaster 1981, MacMahon and Schimpf 1981, Philips and MacMahon 1981, Prentice 

and Werger 1985, Perry et al. 2002, Schenk et al. 2003, Perry et al. 2009).  Fowler (1986) 

explained that the variable climates of deserts tend to produce fluctuating resource levels, 

which, at times, may cause the size of populations to decrease below the level at which 

competition would occur.  However, if a series of “good” years where resource 

availability and the carrying capacity of the environment increases, is followed by a 

“bad” year where resource levels drop, competition for resources becomes intense.  

Competition should convert clumped distributions into random ones, and random 

distributions into uniform ones, with uniform distributions originating during long 

droughts.  Based on this hypothesis, smaller plants should show more clumped patterns 

while larger individuals should tend toward uniformity (Philips and MacMahon 1981, 

Cody 1986, Skarpe 1991, Haase et al. 1996).  
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Drought induced perennial plant mortality may be one of the most important 

processes affecting plant community structure in deserts and drought response tends to be 

soil specific (Hamerlynck and McAuliffe 2008, McAuliffe and Hamerlynck 2010).  Soil 

texture, age, and horizon development dictate water availability.  Subtle differences in 

soil properties may lead to large differences in the amount of water that can be stored and 

absorbed (Yang and Lowe 1956, MacMahon and Wagner 1985, Hamerlynck et al. 2000, 

Hamerlynck et al. 2002, Hamerlynck et al. 2004, McAuliffe et al. 2007, Ignace and 

Huxman 2009, Webb 2009, Schwinning et al. 2011).  Soil hydrologic properties thus 

direct the distribution and pattern of plant communities. 

The phenomenon of soil particle sorting on bajada gradients and its influence on 

plant communities has been well established (Philips and MacMahon 1978, MacMahon 

and Schimpf 1981, MacMahon and Wagner 1985, Bowers and Lowe 1986).  This model 

works as a generalization; smooth gradients such as this rarely exist (Parker 1995).  The 

classic bajada gradient model oversimplifies the complexities of specific soil and 

geologic (i.e. parent material) types.  Several studies have investigated water relations 

and growth patterns between soil types (Smith et al. 1995, Hamerlynck et al. 2000, 

Hamerlynck et al. 2002), but to our knowledge, only one that has looked at the influence 

of soil type on dispersion patterns.  Schenk et al. (2003) examined the spatial pattern of a 

single species, A. dumosa, on two different geologic substrates.  They found that subtle 

differences in substrate were correlated with differences in the spatial distribution of A. 

dumosa plants.   
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This study will investigate the dispersion patterns within and among plant 

communities across a Mojave Desert bajada.  Species spatial patterns will be examined 

between plant communities on different soil and geologic substrates.  We will give 

special focus to the dominant shrubs, L. tridentata and A. dumosa which cover 

approximately 70% of the Mojave Desert (MacMahon 2000, Rundel and Gibson 1996).  

Given the large role of soil properties in structuring desert plant communities, we expect 

that changes in plant dispersion patterns will coincide with changes in soil and geologic 

types.  Specifically, we expect to see dispersion patterns shift from clumped to uniform as 

environmental stress increases. 

Historically, clumped and random patterns are detected more often in the desert 

southwest, but there have been a few reported cases of uniformity in L. tridentata 

(Barbour 1969, Woodell et al. 1969, Fonteyn and Mahall 1981, Philips and MacMahon 

1981, Schlesinger and Jones 1984).  These occurrences are often challenged on the 

premise of methodological and statistical inadequacies (Anderson 1971, Barbour 1973, 

King and Woodell 1973, Ebert and McMaster 1981, King and Woodell 1984, Prentice 

and Werger 1985, Fowler 1986, King and Woodell 1987, Cox 1987).  In particular, 

spatial pattern is scale dependent and results vary based on plot size and plant density.  In 

addition, L. tridentata, the most prominent warm desert shrub, is difficult to count as 

individual shrubs due to its clonal growth patterns (Ebert and McMaster 1981, King and 

Woodell 1984, Schlesinger and Jones 1984, Fowler 1986).  In addition to methodological 

difficulties, care must be taken in inferring causation given the many different processes 

that may generate the same spatial patterns (Perry et al. 2002, Escudero et al. 2005).  It is 
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likely that spatial patterns are the product of multiple interacting processes that change 

based on the age or life history of individuals (Schenk et al. 2003, Escudero et al. 2005, 

Miriti 2006).  Current research efforts are focusing more on how competition and 

facilitation balance in harsh environments (Schenk and Mahall 2002, Escudero et al. 

2005, Armas & Pugnaire 2005, Miriti 2007). 

 In order to accurately assess dispersion patterns, we will utilize two different 

statistical techniques and compare the results.  The first, Morisita’s index of dispersion, 

will be used on a broad scale dataset composed of species count data.  The second 

technique is a relatively novel approach that employs Ripley’s K-function to analyze 

precise spatial data in order to determine dispersion patterns (Rayburn et al. 2011).  By 

using two different techniques, we aim to eliminate sources of bias imposed by only 

using one statistical method.  With reliable results, we hope to shed some light on the 

long held controversy between competition and facilitation in arid plant communities. 

   

 

METHODS 

 

 

Study area 

 

 The Upper Las Vegas Wash Conservation Transfer Area (ULVWCTA), Nevada, 

consists of a 7,400 ha land parcel of Mojave Desert vegetation on alluvial fan (bajada) 

and basin floor deposits derived from the Spring and Sheep Mountains.  The area sits 

north of Las Vegas and is transected by a complex of Pleistocene spring deposits and 

their attendant washes.  A research team from Utah State University was tasked with 

creating vegetation and soils maps of the ULVWCTA.  This effort identified seven 
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vegetation associations and eight soil types across the site (MacMahon et al. 2008).  

These maps, in addition to geologic data obtained from a USGS map (1:100,000 

Geologic and Geophysical maps of the Las Vegas 30’ X 60’ Quadrangle, Clark and Nye 

Counties, Nevada, and Inyo County, California (Page et al. 2005), were used in the 

spatial analyses.  Tables 3.1, 3.2, and 3.3 provide lists and descriptions of each vegetation 

association, soil type, and geologic unit respectively.   

Vegetation sampling and analyses 

Mapping dataset.  The vegetation data collected for the MacMahon et al. (2008) 

mapping effort was used as the first dataset for spatial analysis.  A stratified sampling 

design provided a total of 240 plots sampled across the ULVWCTA.  Two strata, based 

on broad geomorphic categories, were identified.  The first was defined as alluvial 

fan/wash and totaled 5,270 ha (71%) of the ULVWCTA.  The second stratum (2,130 ha, 

29%) was defined as basin floor/spring deposit, and was associated with past ground-

water discharge (evidenced by highly calcareous spring deposits) and lacustrine 

sediments. 

 A total of 240 plots were sampled across the ULVWCTA.  Initially, the mapping 

data consisted of 163 sample plots that were systematically distributed along 13 north-

south transects spaced 2000 meters apart.  Vegetation data were collected every 100 

meters in the basin floor/spring deposit stratum and every 500 meters in the alluvial 

fan/wash stratum. Preliminary evaluation of these data indicated inadequate coverage of 

the area, so an additional 77 sample plots were established and surveyed to increase 

sampling intensity where vegetation variation was greater, and where spectral reflectance 
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data from Landsat 7 and ASTER satellites suggested greater complexity in geomorphic 

surfaces and vegetation. 

 Each sample plot consisted of the area of a circle with a 10-m radius. Each 

circular plot was divided into quarters by an east-west and a north-south line.  One 

quarter of each plot was used to survey vegetation.  The quarter chosen for sampling was 

rotated in a clockwise manner from one sample plot to the next.  Vegetation data were 

collected for woody perennials only.  For each plant within the sample quarter, the 

height, width in two directions (the longest width and the width perpendicular to this), 

and species were recorded.   

Plant spatial patterns for this dataset were assessed using Morisita’s index of 

dispersion, a quadrat based method (Hurlbert 1990, Bailey and Gatrell 1995, Dale 1999, 

Dale et al. 2002, Perry et al. 2002).  This method uses counts of plants in quadrats in 

order to determine random, clumped, or uniform dispersion patterns.  Morisita’s Index of 

Dispersion was designed to remove the effect of quadrat size on the measure of 

aggregation.  Morisita’s Index of Dispersion can be defined as (Morisita 1959, Krebs 

1999): 

 

𝐼𝑑 = 𝑛 [
∑ 𝑥2 −  ∑ 𝑥

(∑ 𝑥)2 − ∑ 𝑥
] 

 

 

Where 𝐼𝑑 = Morisita’s index of dispersion 

 n = sample size 

 ∑ 𝑥 = Sum of the quadrat counts =  𝑥1 + 𝑥2  + 𝑥3 … 
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 ∑ 𝑥2 = sum of quadrat counts squared =  𝑥1
2 + 𝑥2

2 + 𝑥2
3 

 

 𝐼𝑑  values range from from 0 to n. 𝐼𝑑 = 1 for random patterns.  Uniform patterns fall 

between 0 and 1 and clumped patterns fall between 1 and n.   

 Morisita’s Index can be standardized on a scale of -1 to +1.  To calculate the 

standardized Morisita index ( 𝐼𝑝), the Morisita's index of dispersion (𝐼𝑑) and two critical 

values, the uniform index (𝑀𝑢) and the clumped index (𝑀𝑐) are calculated first: 

 

Uniform index =  

𝑀𝑢 =


.975
2 − 𝑛 + ∑ 𝑥𝑖

(∑ 𝑥𝑖) − 1
 

 

 

Clumped Index =  

𝑀𝑐 =


.025
2 − 𝑛 + ∑ 𝑥𝑖

(∑ 𝑥𝑖) − 1
 

 

where 
.975
2  and  

.025
2  are the values of the chi-squared with (n-1) degrees of freedom that 

have 97.5% or 2.5% of the area to the right,  n is the number of quadrats, and 𝑥𝑖 is the 

number of plants in quadrat i (i = 1, …, n).  The 𝐼𝑝 is then calculated by one of the four 

following formulas: 
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 when 𝐼𝑑 ≥ 𝑀𝑐 > 1.0:    

𝐼𝑝 = 0.5 + 0.5 (
𝐼𝑑 −  𝑀𝑐

𝑛 − 𝑀𝑐 
) 

 

 

 

when 𝑀𝑐 > 𝐼𝑑  ≥ 1.0:     

𝐼𝑝 = 0.5 (
𝐼𝑑 −  1

 𝑀𝑐 − 1
) 

 

when 1.0 > 𝐼𝑑  > 𝑀𝑢:     

𝐼𝑝 = −0.5 (
𝐼𝑑 −  1

 𝑀𝑢 − 1
) 

 

when 1.0 > 𝑀𝑢 > 𝐼𝑑:     

𝐼𝑝 =  −0.5 + 0.5 (
𝐼𝑑 −  𝑀𝑢

 𝑀𝑢 
) 

 

The standardized Morisita index (Ip) is independent of sample size and population density 

and ranges from -1 to +1, with 95% confidence limits at +0.5 and -0.5. For random 

patterns, Ip equals zero, clumped patterns above zero, and uniform patterns below zero 

(Krebs 1989). Analyses were conducted using the Vegan package (version 2.0-0, Oksanen 

et al. 2011) for R (version 2.13.2; R Development Core Team, Vienna, Austria 2011).  

Transect dataset.  In addition to the broad scale mapping dataset, two additional 

transects were surveyed in order to observe species spatial patterns at a finer scale with 

more precise spatial data.  The first transect consisted of 13, 20 x 20 m plots.  Plots were 

established every 300 meters as well as where known vegetation, soil, or geologic 

changes occurred.  These changes were assessed by overlaying vegetation, soil, and 
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geology maps within a GIS system.  Plots were placed within the boundaries of known 

vegetation, soil, and geologic units.  If a plot happened to fall in an area that was heavily 

dissected, a suitable homogenous site was located in the near vicinity.  This transect was 

3862 m long and ranged between 791 m - 865 m elevation.  It crossed five different 

geologic types, three soil types, and three vegetation associations and was designed to 

capture differences that may exist between soil, geology, and vegetation types.   

The second transect was constrained to the upper bajada in the Larrea tridentata - 

Ambrosia dumosa association.  This association is characterized by areas where L. 

tridentata and A. dumosa comprise ≥70% of the relative plant density.  Soil type and 

geologic type did not change within this transect.  It consisted of 10, 20 x 20 m plots, was 

3058 m long, and ranged from 835 m – 870 m elevation.  This transect was designed to 

see if spatial patterns changed with mild elevation changes. 

 Within each 20 x 20 m plot, plant dimensions of woody species only were 

measured as described for the mapping dataset.  In addition, plant locations (UTM 

coordinates) were measured using a ProMark™ 3 survey grade GPS unit.  Locations 

were post-processed using GNSS Solutions software (v.3.10.01, Magellan Navigation 

2007) with the resulting point locations being within three centimeters from actual plant 

center (Rayburn et al. 2011).    

 The UTM coordinates from the transect datasets were analyzed using Ripley’s K- 

function, a second-order statistic (Dale 1999).  Second-order statistics are based on the 

distribution of pairs of points.  Ripley’s K-function uses information on all inter-point 

distances over a range of distance scales (t), therefore it is able to detect mixed patterns at 
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different scales (Weigand and Maloney 2004).  It is a cumulative test and allows 

inferences to be made at specific distances (Perry et al. 2006).  Ripley’s K-function can 

be defined as (Andersen 1992, Haase 1995, Schiffers et al. 2008): 

 

 

𝐾̂(t) = n
-2

A ∑ ∑𝑤𝑖𝑗
−1

 It (uij) 

                i ≠ j 

      Where, n = the number of events (plants) in the study plot 

A = area of the plot  

It  =  a counter variable, if ui j< t then It = 1, otherwise zero 

  ui j= the distance between events i and j 

  wij= a weighting factor to correct for edge effects 

  t = a given range of distances 

 For ease of interpretation, Ripley’s K-function is often transformed into the linear 

L-function (Haase 1995, Dale 1999, Dale et al. 2002, Li and Zhang 2007): 

𝐿̂(t) = √𝐾̂(𝑡)/𝜋  

The L-function was plotted as (𝐿̂(t) – t) against t.  Under the null hypothesis of CSR, the 

transformation has an expected value of 0 for all values of t.  Monte Carlo permutations 

(Nsim = 199) were used to produce a 95% confidence intervals for 𝐿̂(t) to test the 

departure of the pattern from CSR.  Rejection limits are estimated as simulation 



58 

 

 

5
8
 

envelopes (Haase 1995, Perry et al. 2006).   Positive values above the upper confidence 

envelope indicate a clumped distribution and negative values below the confidence 

envelope indicate uniform pattern.  Values within the confidence envelope indicate 

random pattern.  Analyses were performed using the Spatstat package (version 1.24-2, 

Baddeley & Turner 2005) for R (version 2.13.2; R Development Core Team, Vienna, 

Austria 2011).  For comparison, the transect dataset was also analyzed using Morisita’s 

Index of Dispersion. 

 

RESULTS 

 

 

Mapping dataset, Morisita’s index of dispersion 

 

 A total of 6,759 individual plants were identified and measured within the 240 

mapping plots.  Appendix A provides a list of all species that were identified during field 

work on the ULVWCTA.  Appendix B provides a list of all the mapping plots with 

corresponding elevation, vegetation associations, soil types, and geologic units.  

Appendix C provides a list and frequency count for all species identified in the mapping 

plots.   

 Morisita’s Index of Dispersion was used to distinguish dispersion patterns for 

woody perennials measured in the mapping dataset.  Analyses were run for all plots 

together, by soil type, vegetation association, geologic unit, and by size class.  Species 

that occurred in less than ten plots overall were not included in the analyses.  Size classes 

were based on cover, with cover calculated as the area of an ellipse (long width x width 

perpendicular to the long width x π).  The size classes were <100 cm2, 100-1,000 cm2, 
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1,000-104 cm2, 104-105 cm2, and >105 cm2.  In some cases, common species were absent or 

occurred in only one plot in some soil types, vegetation associations, geologic units, or 

size classes.  In these cases, the statistical software did not run the analysis and “NA” was 

entered in the results table for the respective species. Both the Morisita’s Index of 

dispersion (Id) and the standardized Morisita Index (Ip) are reported.  Results for all plots 

together and by size class are reported in Table 3.4, results by soil type are in Table 3.5, 

results by vegetation association are in Table 3.6, and results by geologic unit are in 

Table 3.7.     

 Every species exhibited a clumped pattern when all plots were examined together.  

Most species displayed a clumped pattern within soil, vegetation, geology, and size class 

subsets.  There were 22 cases that deviated from a clumped pattern, all of which were 

uniform in pattern.  After close inspection, 19 of these cases appear to be an artifact of 

small sample sizes in which there were only a few individuals in the given sample subset 

and all of these individuals occurred in separate plots.  These cases of deviation from 

random pattern are likely unreliable and marked with an asterisk in the results tables.  

The three remaining instances of uniform pattern had larger sample sizes and involved L. 

tridentata.  One of these cases occurred in the largest size class, one occurred in the 

Ambrosia dumosa - Larrea tridentata:  Upper Alluvial Fan Association, and one occurred 

in the Qfy geologic unit.   

Transect dataset, L-function analyses 

 

 A total of 2,348 plants were measured and mapped with the ProMark™ 3 GPS 

unit in the 23 transect plots.  Appendix G provides a list of all the transect plots with 

corresponding elevation, vegetation associations, soil types, and geologic units.  
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Appendix H provides a list and frequency count for all species identified in the transect 

plots.   

 Three different L-function analyses were run for each plot.  The first included all 

species together.  If sample size permitted, additional analyses were run for A. dumosa 

alone and L. tridentata alone.  All results have been summarized in Table 3.8 (Transect 1) 

and Table 3.9 (Transect 2).  Results were interpreted from plots of (𝐿̂(t) – t) against t with 

a 95% confidence envelope.  These plots are provided in Appendix I.   

 Transect 1.  When observing all species together, all plots showed a random 

pattern for either all or some of the observed spatial scales (t).  Plots 4, 5, 12, and 13 

showed significant clumping at distances greater than 0.5.  Plots 3, 9, and 10 showed 

significant clumping at smaller distances (t ≈ 0.5 – 1.5).  In addition, plot 9 showed 

significant clumping when t ≈ 4.0 – 5.5. 

 When A. dumosa was analyzed alone, plots 10, 12, and 13 showed significant 

clumping at distances greater than t ≈ 0.6 – 1.0.  Plots 1, 3, 6, and 9 showed finer scale to 

intermediate clumping (t ≈ 0.6 – 4.0).  L. tridentata showed significant clumping in four 

plots at intermediate to larger distances (t ≈ 1.3 – 6).    

 Transect 2.  When observing all species together, all plots showed a random 

pattern for either all or some of the observed spatial scales (t).  Plots 1, 4, and 8 showed 

significant clumping at smaller distances (t ≈ 0.5 – 1.5) while plots 4 and 8 showed 

additional clumping at intermediate distances (t ≈ 2.4 – 4.9).  Looking at A. dumosa 

alone, plots 3, 4, 5, 6, and 8 showed significant clumping at smaller scales (t ≈ 0.5 – 3.3) 
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and plot 6 showed significant clumping when t > 3.0.  L. tridentata displayed a random 

pattern at all scales.  

Transect dataset, Morisita’s Index of Dispersion 

 Morisita’s Index of Dispersion was used to distinguish dispersion patterns for 

woody perennials measured in the transect dataset.  Analyses were run for all plots 

together and by size class.  In some cases, species were absent or occurred in only one 

plot in some size classes.  In these cases, the statistical software did not run the analysis 

and “NA” was entered in the results table for the respective species. Results are reported 

in Table 3.10.  Both the Morisita’s Index of dispersion (Id) and the standardized Morisita 

Index (Ip) are reported. 

 Most species displayed a clumped pattern.  There were six cases that deviated 

from a clumped pattern, all of which appear to be an artifact of small sample sizes where 

there were only a few individuals in the given sample subset and all of these individuals 

occurred in separate plots.  These cases of deviation from random pattern are likely 

unreliable and marked with an asterisk in the results table.  

  

DISCUSSION 

 

 

 The objective of this study was to identify the spatial patterns of woody perennial 

species growing on the ULVWCTA and compare the patterns between plant 

communities, soil types, geologic types, and plant size categories.  Results from both the 

mapping and transect datasets analyzed with Morisita’s Index of Dispersion and the 

transect dataset analyzed with the L-function indicate that random and clumping patterns 
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are the dominant plant spatial patterns across the ULVWCTA.  However, Morisita’s 

Index of Dispersion reported a majority of patterns as clumped with only three uniform 

patterns while the L-function reported a majority of patterns as random with some 

clumping at certain spatial scales.  The L-function didn’t report any uniform patterns.  

These differences are likely due to mathematical and scale differences between the two 

statistical techniques.   Results from each dataset are discussed in detail below. 

Mapping dataset, Morisita’s index of dispersion 

 

There were three instances of uniform pattern identified in mapping dataset 

analyzed with Morisita’s index of dispersion.  The rest were clumped.  All three instances 

of uniform pattern involved L. tridentata and are discussed in the following paragraphs. 

 In the mapping dataset, L.  tridentata changes from clumped in all of the smaller 

size classes to uniform in the largest.  This pattern supports earlier observations that there 

is a positive correlation between plant size and distance between plants (Philips and 

MacMahon 1981, Fowler 1986).  There were ten plots with L. tridentata in the largest 

size class.  Of these plots, eight have younger, Holocene aged, alluvial fan/wash geology 

(Qay Qayy, or Qfy).  The soils in these areas are weakly developed and composed of 

coarse soil particles.  L. tridentata has likely reached large sizes on these sites due to 

extra water availability from channel activity in addition to water seepage into the coarse, 

weakly developed soils.  Previous research supports the pattern of L. tridentata growing 

larger on younger soils (McAuliffe 1994, Hamerlynck et al. 2002, McAuliffe et al. 2007). 

The larger L. tridentata have probably experienced a series of resource pulses with a 
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corresponding fluctuation in carrying capacity.  Resource competition during drought 

periods may have produced the uniform distribution through density dependent mortality.  

The other two plots with large uniform L. tridentata occurred on basin 

floor/spring deposit soils with geologic unit Qscd.  These are older, lower elevation sites 

of the Late Pleistocene, composed of fine-grained soils of light-gray calcareous mud 

associated with past ground water discharge.  Water availability is typically low on these 

soils which may have led to competition among plants for available moisture.  Evidence 

of this is seen in the low plant diversity and density on these sites.  Large L. tridentata 

plants exist as some of the only vegetation in the area and likely used much of the 

available water resources.   

 L. tridentata exhibits another uniform pattern in the Ambrosia dumosa - Larrea 

tridentata:  Upper Alluvial Fan Association.  There were nine plots sampled in this 

association and all nine had uniform distribution of L. tridentata.  There were 22 L. 

tridentata plants throughout the nine plots, ranging from one to five plants per plot. This 

association has the highest mean elevation of all the associations and occurs on the 

Weiser-Wechech soil association and Qayo geologic unit (an “older” young alluvium of 

the Holocene and latest Pleistocene).  The Weiser-Wechech soil is characterized by an 

accumulation of calcium carbonate as coatings and a trace of secondary silica on the 

bottoms of rock fragments in the subsoil with the possibility of a petrocalcic horizon 

which may limit plant available moisture.  Overall plant density was low and six of the 

nine plots contained A. confertifolia and/or Psorothamnus fremontii.  A. confertifolia and 

P. fremonttii are often associated with gypsiferous soils in the Mojave (Meyer 1986) and 
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the soils in this association are suspected to have a higher alkalinity than the surrounding 

alluvial fan areas (MacMahon et al. 2008).  Soil texture and chemistry and possible 

petrocalcic horizons have likely limited water availability on these sites thus promoting 

the uniform pattern of L. tridentata through competition. 

 L. tridentata also presented a uniform pattern in the geologic unit Qfy.  Qfy is a 

younger, intermittently active, fine grain alluvial deposit with sand, silt, mud, and 

interbedded gravel.  There were only four plots sampled in the Qfy unit, three of which 

occurred on the Dalian-McCullough soil complex and one on Las Vegas-DeStazo complex.    

The Dalian-McCullough complex is a very gravelly fine sandy loam occurring on fan skirts 

which transition to lower elevation alluvial flats and the Las Vegas-DeStazo complex is a 

gravelly sandy loam occurring on alluvial flats.  Vegetation in these plots was sparse, 

consisting primarily of A. dumosa and/or L. tridentata.  This is another example of fine 

grained soils limiting plant available moisture, a possible explanation for the uniform pattern 

observed in L. tridentata.  

Transect dataset, L-Function analyses 
 

 Transect 1.  Spatial patterns in Transect 1 appear to change as soil type, geologic 

unit, and vegetation association change down the bajada (Plots 1-5), across a wash (Plot 

6) and badland area (Plots 7 and 8), and rise again onto another fan (Plots 9-13).  Plots 1-

5 occur on the Weiser-Wechech soil association.  Plots 1 and 2 are in the Qay geologic 

unit and the Larrea tridentata - Ambrosia dumosa vegetation association while plots 3, 4, 

and 5 are in the Qayo geologic unit and Ambrosia dumosa - Larrea tridentata:  Upper 

Alluvial Fan vegetation association.  Plots 1 and 2 show random plant patterns across all 

species combined and some clumping at intermediate distances for both A. dumosa alone 
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(only Plot 1) and L. tridentata alone (only Plot 2). More clumping patterns appear as the 

vegetation and geology change in Plots 3, 4, and 5.  Plot 3 shows some clumping at small 

scales across all species while Plots 4 and 5 show more clumping at all scales across all 

species.  The clumping patterns persist when observing A. dumosa and L. tridentata alone 

although there weren’t enough A. dumosa individuals in Plots 4 and 5 to analyze this 

species individually.  Plots 4 and 5 are sparse with desert pavement covering most of the 

plot area.  The patterns for L. tridentata on plots 3, 4, and 5 contradict those from the 

mapping dataset on the Qayo geologic unit and Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan vegetation association where we observed uniform patterns.  It is 

possible that the prevalence of desert pavement on plots 4 and 5 has forced the plants into 

clumping patterns.   

 Plot 6 is in the Larrea tridentata - Ambrosia dumosa vegetation association but 

sits within the Dalian-McCullough soil complex and Qayy geologic unit.  This is a 

younger alluvial fan site with intermittently active washes.  This plot shows random 

pattern across all species and for L. tridentata alone.  A. dumosa shows some clumping at 

intermediate distances.  Plots 7 and 8 are in the Badland soil type, L. tridentata vegetation 

association, with geologic unit Qscd.  These are spring deposit areas typified by light-

gray calcareous soils with sparse vegetation.  This is one of the most stressful habitats in 

the ULVWCTA as evidenced by the scant plant cover.  Dispersion patterns were random 

across all species and for L. tridentata alone.  There weren’t enough A. dumosa 

individuals to analyze individually.  The prevalence of random patterns and lack of 

clumping patterns could be indicative of a trend towards competitive uniform patterns.  
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 Plots 9-13 increase in elevation (after Plot 8) and are all within the Weiser-

Wechech soil association, Larrea tridentata - Ambrosia dumosa vegetation association, 

and have either Qay or Qayo geology.  Plots 9, 10, 12, and 13 show some clumping for 

all species together and for A. dumosa alone.  L. tridentata has an entirely random pattern 

for all plots except Plot 13 where it shows clumping at larger scales.  Plot 13 is sparse 

and a majority of the plot is covered by desert pavement.  Again, the clumping patterns 

are possibly due to habitat heterogeneity from desert pavement sites.  Plot 11 shows 

random patterns for all analyses.   

 Transect 2.  Transect 2 was designed to keep soil type, geologic unit, and 

vegetation association constant in order to observe pattern changes that may occur with 

subtle elevation changes.  All plots in Transect 2 were in the Weiser-Wechech soil 

association, the Qay geologic unit, and the Larrea tridentata -  Ambrosia dumosa 

vegetation association.  Overall, there were some clumping patterns for all species 

together (Plots 1, 4, and 8) and for A. dumosa alone (Plots 3-6 and 8).  L. tridentata 

exhibited random patterns in all plots.  Clumping patterns for A. dumosa alone occurred 

at smaller scales similar to the pattern observed in Transect 1.  There didn’t appear to be 

any pattern changes associated with the elevation change in this transect.   

While the results from the two datasets and analytical techniques differ, they still 

support previous findings that clumped and random patterns are more common than 

uniform patterns in desert plant species (Barbour 1969, Woodell et al. 1969, Barbour and 

Diaz 1973, Philips and MacMahon 1981, Schlesinger and Jones 1984, Cody 1986, 

Fowler 1986, Manning and Barbour 1988, Smith 1997, Eccles et al. 1999, Rayburn et al. 
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2011).  The patterns we observed for L. tridentata and A. dumosa were also similar to 

those observed in previous work.  Namely, we saw a prevalence of clumped patterns for 

A. dumosa (Fonteyn and Mahall 1981, Schlesinger and Jones 1984, Miriti 2006) and 

some evidence of the clumped to random to uniform pattern progression with increasing 

plant size in L. tridentata.  It has been proposed that in order for regular patterns to 

develop, a species must be long lived and have episodic seedling establishment 

generating even aged stands (Barbour 1973, Fonteyn and Mahall 1981), both of which 

have been observed in L. tridentata (Barbour 1969, Mabry et al. 1977).  L. tridentata is 

an exceptionally drought hardy, long lived species, some of which have been established 

in the Mojave Desert for thousands of years (Mabry et al. 1977, Vasek 1980, Koehler et 

al. 2005), possibly long enough to develop uniform patterns.  A. dumosa is a shorter 

lived, drought deciduous, natural colonizer where individuals may not survive long 

droughts to develop uniform patterns.  When looking at decade scale severe drought, 

McAuliffe and Hamerlynck (2010) saw greater A. dumosa mortality as opposed to L. 

tridentata.   

This study also shows a predominance of clumping patterns occurring at smaller 

scales.  This supports models showing that the roles of facilitation and competition are 

influenced by lifestage (Callaway 1995, Callaway and Walker 1997, Miriti 2006).  

Seedlings are often found spatially aggregated with adult nurse plants which improve the 

harshness of the environment (Padien and Lajtha 1992, McAuliffe 1984, McAuliffe 1988, 

Callaway and Walker 1997, Toft and Fraizer 2003, Miriti 2006, Kéfi et al 2008).  As the 
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seedlings grow, they often become competitors of the nurse plant, as seen in widespread 

nurse plant mortality (McAuliffe 1988, Callaway and Walker 1997).   

 While statistics are capable of labeling patterns, we are still left hypothesizing 

what processes generate the patterns.  Based on the frequency of clumped and random 

patterns, we could conclude that this study supports theories claiming that net positive 

interactions are a dominant force in harsh environments.  However, the observed 

clumping may be result a of habitat heterogeneity, not necessarily facilitative 

interactions.  Given that arid ecosystems are naturally heterogeneous and nurse plants are 

a common feature, future research should look to unravel the relative role of each of these 

in generating the clumped patterns of desert perennials.   

 Regardless of the abundance of clumped and random patterns and the paucity of 

uniform patterns, we can’t conclude that competition isn’t an important process in arid 

plant communities.  Barbour (1973), and Philips and MacMahon (1981) emphasize that 

uniform patterns are rare and unlikely to form given the heterogeneous nature of arid 

environments.  In addition, periodic drought may force plants back into clumped patterns 

before uniform patterns have time to develop.  Given that we only see uniform patterns in 

the long lived L. tridentata, we conclude that it takes a tremendous amount of time for 

uniform patterns to develop.  The prevalence of random patterns in L. tridentata 

identified by the L-function may be a reflection of a changing community, one that has 

not aged enough to form uniform patterns.  On the other hand, it may also be direct result 

of habitat heterogeneity.  If patterns really do change from clumped to random to uniform 

under increasing competitive pressure, then these plants should be experiencing 
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competitive interactions once one plant in a clump grows large enough to consume 

resources needed by neighbors.  

If we continue to use the uniform pattern as an indication of competition, more 

long term studies need to examine how long uniform patterns take to emerge.  We may 

be looking for evidence that can never be observed in our lifetime.  We also suggest 

examining pattern at smaller scales, at the site of nurse plants and individual islands of 

fertility.  Miriti (2006) notes that seedling location under an adult canopy may enhance 

growth but that overcrowding from other juveniles may reduce survival and outweigh 

facilitative benefits.  Perhaps uniform patterns may exist within a small clump or island.  

Interestingly, though not statistically significant, the L-function plots from the transect 

datasets show small scale dispersion patterns (<0.5 meters) dipping towards uniform in 

all but two plots (Appendix I). 

 Despite years of debate concerning the roles of competition and facilitation in 

structuring arid plant communities (Goldberg and Novoplansky 1997, Chesson et al. 

2004, Maestre et al. 2009), the answers are still not apparent.  Clearly, competitive and 

facilitative interactions may fluctuate or act simultaneously in complex ways (Callaway 

1995, Schenk and Mahall 2002, Butterfield et al. 2010).  We have seen evidence of 

multiple working hypotheses including the stress gradient hypothesis, competition for 

limited water, and ontogenetic shift between facilitation and competition.  Future 

research should focus on the interchange between positive and negative interactions and 

how plant age, size, and density might affect these relationships.   
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 On the whole, our results exemplify the influence of soil and geologic properties 

in shaping plant dispersion patterns in arid ecosystems.  As predicted, we saw plant 

dispersion patterns shift from clumping to random to uniform as environmental stress 

increased.  With the exception of large L. tridentata growing on geologic units Qay 

Qayy, and Qfy, our data show dispersion patterns tending toward random or uniformity 

on older finer soils with more horizon development where moisture is not readily 

accessible. We suggest that habitat heterogeneity plays a larger role in determining plant 

spatial patterns than either competition or facilitation.  As such, soil, geology, and parent 

material should always be considered when designing prospective research on arid plant 

communities.  Understanding the relationship among these abiotic factors and plant-plant 

interactions is essential in making careful conservation and management decisions for 

desert ecosystems.   
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TABLES AND FIGURES 

 

 

Table 3.1.  Vegetation associations of the ULVWCTA. 

Vegetation Association Description 

Area  

(ha) 

Elevation 

 (m) 

Number of plots 

sampled 
Richness 

Density 

(n/ha) 

Larrea tridentata -  Ambrosia 

dumosa Association 

Larrea tridentata and Ambrosia dumosa 

compose ≥70% of the relative density 
5,817 659 to 929 143 34 3889 

Larrea tridentata Association 
Larrea tridentata is the dominant shrub and 

these areas coincide with basin floor soils 
286 729 to 828 11 7 463 

Atriplex polycarpa - Ambrosia 

dumosa Association 

Atriplex polycarpa and Ambrosia dumosa 

dominate in wet, active, and dry washes 
245 658 to 831 19 14 4269 

Ambrosia dumosa - Menodora 

spinescens Association 

Ambrosia dumosa and Menodora spinescens 

make up the greatest shrub density in the basin 

floor 

42 667 to 715 8 17 9502 

Badlands barren ground with some Larrea tridentata 94 705 to 742 6 4 276 

Ambrosia dumosa - Larrea 

tridentata:  Upper Alluvial Fan 

Association 

Ambrosia dumosa in association with Larrea 

tridentada make up the greatest density on the 

upper alluvial fan 

36 798 to 876 8 12 2674 

Ambrosia dumosa - Atriplex 

confertifolia Association 

Ambrosia dumosa in association with Atriplex 

confertifolia characterize this association in the 

basin floor/spring deposit   

445 659 to 724 41 14 2612 
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Table 3.2:  Soil map units of the ULVWCTA. 

Soil Parent material Landform Drainage class (Ksat)* Description 

Arizo Mixed alluvium Channels 
Excessively 

drained 

High to very high (5.95 

to 19.98 in/hr) 
Very gravelly loamy sand 

Dalian-

McCullough 

Complex 

Alluvium derived from 

limestone and dolostone 
Fan skirts Well drained High (1.98 to 5.95 in/hr) 

Very gravelly fine sandy 

loam 

Las Vegas 
Alluvium derived from 

limestone   

Basin-floor 

remnants 
Well drained Very low (0 in/hr) Gravelly fine sandy loam 

Las Vegas-

DeStazo Complex 

Alluvium derived from 

limestone 
Alluvial flats Well drained Very low (0 in/hr) Gravelly fine sandy loam 

Weiser-Wechech 

Association 

Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained 

Moderately high to high 

(0.57 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Weiser   
Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained High (1.98 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Weiser-

Goodsprings 

Complex 

Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained High (1.98 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Badland 
Mixed alluvium over 

lacustrine 

Hills on alluvial  

flats   

*Ksat=capacity of the most limiting layer to transmit water 
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Table 3.3:  Geologic units of the ULVWCTA. 

Unit* Parent Material Age Description 

Qai Intermediate fan alluvium Late and middle Pleistocene 
Cemented alluvial-fan gravel, with interbedded sand; 

poorly to moderately well sorted 

Qay Young fan alluvium Holocene and latest Pleistocene 
Noncemented alluvial-fan gravel and sand with weakly 

developed soil. 

Qayo Older young alluvium Holocene and latest Pleistocene 
Noncemented gravel and sand with weakly developed soil 

of alluvial-fan remnants 

Qayy Youngest alluvium Holocene    
Noncemented alluvial-fan gravel and sand of 

intermittently active wash complexes 

Qfy 
Intermittently active fluvial fine-

grained alluvium 
Late Holocene Brown to gray sand, silt, mud, and interbedded gravel. 

Qscd 

Intermediate fine-grained 

deposits associated with past 

ground-water discharge 

Late Pleistocene 
Top 1-2 m is characteristically resistant light-gray 

calcareous mud that is partially cemented with calcite 

Qsu 

Undivided young and 

intermediate fine-grained 

deposits associated with past 

ground-water discharge 

Early Holocene and late Pleistocene 

Light-gray to light-brown unconsolidated silt, sandy silt, 

silty sand, and mud or the top 1-2 m is characteristically 

resistant light-gray calcareous mud that is partially 

cemented with calcite 

*Unit= map unit 
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       Table 3.4.  Morisita’s index (Id) and standardized Morisita index (Ip) results by size class.  Results are reported for species            

       occurring in ten or more of the 240 sampled plots.  Id reports values from 0 to n.  The pattern is uniform if 0< Id<1, clumped  

       if 1< Id <n, and random if Id =1.  Ip reports values from -1.0 to +1.0.  The pattern is random if Ip =0, clumped if Ip >0 and  

       uniform if Ip<0.  “NA” is reported where there are one or less occurrences; “C” = clumped pattern; “U” = uniform pattern;  

       “R” = random pattern.  Pattern results marked with an asterisk (*) are likely unreliable and result of small sample size within  

       that particular subset. 

 

All <100 cm2
 100-1000 cm2

 1000-104 cm2
 

Species  Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  2.38 0.50 C 2.90 0.51 C 5.03 0.51 C 2.22 0.50 C 

Atriplex confertifolia   9.00 0.52 C 6.83 0.54 C 4.78 0.51 C 7.90 0.52 C 

Atriplex polycarpa  21.91 0.54 C 0.00 -0.05 U* 52.77 0.67 C 26.78 0.56 C 

Cylindropuntia echinocarpa   6.64 0.51 C 0.00 -0.05 U* 3.24 0.50 C 7.51 0.51 C 

Encelia virginensis   37.12 0.57 C NA NA NA 42.76 0.63 C 27.14 0.56 C 

Ephedra nevadensis  16.75 0.53 C NA NA NA 28.76 0.59 C 13.20 0.53 C 

Ephedra torreyana  6.85 0.51 C NA NA NA 49.00 0.62 C 5.71 0.51 C 

Gutierrezia species 33.76 0.57 C 15.71 0.61 C 23.84 0.58 C 21.71 0.54 C 

Hymenoclea salsola   50.02 0.60 C NA NA NA 91.47 0.80 C 38.41 0.59 C 

Krameria erecta   3.12 0.50 C NA NA NA 4.08 0.35 C 3.23 0.50 C 

Larrea tridentata   1.72 0.50 C 0.00 -0.07 U* 1.60 0.44 C 2.02 0.50 C 

Lycium species 5.48 0.51 C NA NA NA 5.42 0.51 C 5.97 0.51 C 

Menodora spinescens  23.31 0.55 C NA NA NA 14.48 0.54 C 22.45 0.55 C 

Opuntia basilaris  2.64 0.24 C NA NA NA NA NA NA 3.24 0.29 C 

Psorothamnus fremontii  9.41 0.52 C NA NA NA NA NA NA 10.70 0.52 C 

Xylorhiza tortifolia  24.68 0.55 C 0.00 -0.05 U* 16.04 0.54 C 23.78 0.55 C 

Yucca schidigera  2.64 0.24 C NA NA NA NA NA NA 0.00 -0.04 U* 

       (Continued on next page) 
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            Table 3.4.  Morisita’s index (Id) and standardized Morisita index (Ip) results by 

                                            size class (continued). 

 
104-105 cm2

 >105 cm2
 

Species  Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  1.98 0.50 C NA NA NA 

Atriplex confertifolia   0.00 -0.07 U* NA NA NA 

Atriplex polycarpa  18.63 0.54 C 0.00 -0.13 U* 

Cylindropuntia echinocarpa   0.00 -0.04 U* NA NA NA 

Encelia virginensis   8.00 0.51 C NA NA NA 

Ephedra nevadensis  NA NA NA NA NA NA 

Ephedra torreyana  5.33 0.50 C NA NA NA 

Gutierrezia species NA NA NA NA NA NA 

Hymenoclea salsola   40.30 0.59 C NA NA NA 

Krameria erecta   2.59 0.50 C NA NA NA 

Larrea tridentata   1.51 0.50 C 0.72 -0.21 U 

Lycium species 5.03 0.51 C NA NA NA 

Menodora spinescens  20.80 0.52 C NA NA NA 

Opuntia basilaris  NA NA NA NA NA NA 

Psorothamnus fremontii  8.27 0.51 C NA NA NA 

Xylorhiza tortifolia  NA NA NA NA NA NA 

Yucca schidigera  5.78 0.46 C NA NA NA 
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     Table 3.5.  Morisita’s index (Id) and standardized Morisita index (Ip) results by soil unit.  Results are reported for species  

     occurring in ten or more of the 240 sampled plots.  Id reports values from 0 to n.  The pattern is uniform if 0< Id<1, clumped if  

     1< Id <n, and random if Id =1.  Ip reports values from -1.0 to +1.0.  The pattern is random if Ip =0, clumped if Ip >0 and uniform if 

     Ip<0.  “NA” is reported where there are one or less occurrences; “C” = clumped pattern; “U” = uniform pattern; “R” = random  

     pattern.  Pattern results marked with an asterisk (*) are likely unreliable and result of small sample size within that particular    

     subset.  The Weiser-Goodsprings Complex is not reported due to lack of data. 

 

All plots Arizo Badland 

Dalian-McCullough 

Complex 

Species  Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  2.38 0.50 C 1.93 0.52 C 4.37 0.56 C 1.88 0.51 C 

Atriplex confertifolia   9.00 0.52 C NA NA NA 5.13 0.57 C 14.49 0.68 C 

Atriplex polycarpa  21.91 0.54 C 3.40 0.54 C 4.07 0.53 C 10.28 0.60 C 

Cylindropuntia echinocarpa   6.64 0.51 C 0.00 -0.04 U* NA NA NA NA NA NA 

Encelia virginensis   37.12 0.57 C 4.51 0.55 C NA NA NA NA NA NA 

Ephedra nevadensis  16.75 0.53 C 0.00 -0.04 U* NA NA NA NA NA NA 

Ephedra torreyana  6.85 0.51 C NA NA NA 0.00 -0.08 U* 6.10 0.55 C 

Gutierrezia species 33.76 0.57 C 8.06 0.61 C NA NA NA NA NA NA 

Hymenoclea salsola   50.02 0.60 C 7.61 0.61 C NA NA NA NA NA NA 

Krameria erecta   3.12 0.50 C 8.70 0.62 C 5.33 0.53 C 2.28 0.51 C 

Larrea tridentata   1.72 0.50 C 1.35 0.50 C 2.17 0.52 C 1.33 0.50 C 

Lycium species 5.48 0.51 C 3.33 0.50 C 7.00 0.58 C NA NA NA 

Menodora spinescens  23.31 0.55 C NA NA NA NA NA NA NA NA NA 

Opuntia basilaris  2.64 0.24 C NA NA NA NA NA NA NA NA NA 

Psorothamnus fremontii  9.41 0.52 C NA NA NA NA NA NA 15.86 0.68 C 

Xylorhiza tortifolia  24.68 0.55 C NA NA NA NA NA NA NA NA NA 

Yucca schidigera  2.64 0.24 C NA NA NA NA NA NA NA NA NA 

     (Continued on next page) 
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    Table 3.5.  Morisita’s index (Id) and standardized Morisita index (Ip) results by soil unit (continued).  

 

Las Vegas-DeStazo 

Complex Las Vegas 

Weiser-Wechech 

Association Weiser 

Species  Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  2.03 0.53 C 4.23 0.58 C 1.63 0.51 C 2.65 0.52 C 

Atriplex confertifolia   3.02 0.55 C 1.75 0.52 C 14.04 0.60 C 12.62 0.63 C 

Atriplex polycarpa  NA NA NA NA NA NA NA NA NA NA NA NA 

Cylindropuntia echinocarpa   NA NA NA NA NA NA 1.32 0.09 C 3.04 0.52 C 

Encelia virginensis   NA NA NA NA NA NA 34.85 0.78 C NA NA NA 

Ephedra nevadensis  2.52 0.53 C NA NA NA 8.75 0.56 C NA NA NA 

Ephedra torreyana  2.42 0.52 C 1.62 0.28 C 12.00 0.55 C 20.48 0.71 C 

Gutierrezia species 13.14 0.81 C NA NA NA 18.24 0.64 C NA NA NA 

Hymenoclea salsola   NA NA NA NA NA NA 34.29 0.77 C NA NA NA 

Krameria erecta   1.89 0.52 C 10.00 0.69 C 1.82 0.51 C 3.36 0.52 C 

Larrea tridentata   1.46 0.50 C 2.70 0.53 C 1.40 0.50 C 1.28 0.50 C 

Lycium species 1.87 0.52 C 2.08 0.49 C 4.27 0.52 C 8.03 0.57 C 

Menodora spinescens  2.66 0.54 C 8.82 0.69 C 36.00 0.77 C 32.80 0.88 C 

Opuntia basilaris  NA NA NA NA NA NA 0.00 -0.16 U* 2.05 0.16 C 

Psorothamnus fremontii  0.00 -0.10 U* NA NA NA 3.41 0.52 C NA NA NA 

Xylorhiza tortifolia  15.56 0.87 C 7.00 0.42 C 13.19 0.59 C NA NA NA 

Yucca schidigera  NA NA NA NA NA NA 0.00 -0.26 U* NA NA NA 
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     Table 3.6.  Morisita’s index (Id) and standardized Morisita index (Ip) results by vegetation association.  Results are reported for 

     species occurring in ten or more of the 240 sampled plots.  Id reports values from 0 to n.  The pattern is uniform if 0< Id<1,  

     clumped if 1< Id <n, and random if Id =1.  Ip reports values from -1.0 to +1.0.  The pattern is random if Ip =0, clumped if Ip >0 and  

     uniform if Ip<0.  “NA” is reported where there are one or less occurrences; “C” = clumped pattern; “U” = uniform pattern; “R” =         

     random pattern.  Pattern results marked with an asterisk (*) are likely unreliable and result of small sample size within that    

     particular subset.   

 

All plots 

Ambrosia dumosa - 

Atriplex confertifolia 

Association 

Ambrosia dumosa - Larrea 

tridentata:  Upper Alluvial 

Fan Association 

Ambrosia dumosa - 

Menodora spinescens 

Association 

Species  Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  2.38 0.50 C 3.22 0.53 C 1.47 0.52 C 1.23 0.51 C 

Atriplex confertifolia   9.00 0.52 C 2.15 0.51 C 2.11 0.54 C 1.81 0.54 C 

Atriplex polycarpa  21.91 0.54 C NA NA NA NA NA NA NA NA NA 

Cylindropuntia echinocarpa   6.64 0.51 C NA NA NA NA NA NA NA NA NA 

Encelia virginensis   37.12 0.57 C NA NA NA NA NA NA NA NA NA 

Ephedra nevadensis  16.75 0.53 C 6.01 0.55 C 8.18 0.95 C 2.40 0.31 C 

Ephedra torreyana  6.85 0.51 C 2.29 0.51 C NA NA NA 1.85 0.51 C 

Gutierrezia species 33.76 0.57 C NA NA NA NA NA NA 5.26 0.78 C 

Hymenoclea salsola   50.02 0.60 C NA NA NA NA NA NA NA NA NA 

Krameria erecta   3.12 0.50 C 3.77 0.53 C NA NA NA 1.59 0.52 C 

Larrea tridentata   1.72 0.50 C 2.19 0.51 C 0.87 -0.33 U 1.26 0.43 C 

Lycium species 5.48 0.51 C 3.06 0.52 C NA NA NA 1.17 0.21 C 

Menodora spinescens  23.31 0.55 C 9.10 0.60 C NA NA NA 1.63 0.53 C 

Opuntia basilaris  2.64 0.24 C NA NA NA NA NA NA NA NA NA 

Psorothamnus fremontii  9.41 0.52 C NA NA NA 1.80 0.51 C NA NA NA 

Xylorhiza tortifolia  24.68 0.55 C NA NA NA NA NA NA 4.98 0.75 C 

Yucca schidigera  2.64 0.24 C NA NA NA 0.00 -0.09 U* NA NA NA 
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     Table 3.6.  Morisita’s index (Id) and standardized Morisita index (Ip) results by vegetation association (continued).   

 

Atriplex polycarpa - 

Ambrosia dumosa 

Association Badlands 

Larrea tridentata -  

Ambrosia dumosa 

Association 

Larrea tridentata 

Association 

Species  Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  2.34 0.53 C NA NA NA 1.94 0.50 C 6.29 0.72 C 

Atriplex confertifolia   NA NA NA NA NA NA 10.55 0.52 C NA NA NA 

Atriplex polycarpa  2.29 0.53 C NA NA NA 16.11 0.55 C NA NA NA 

Cylindropuntia echinocarpa   NA NA NA NA NA NA 4.21 0.51 C NA NA NA 

Encelia virginensis   3.98 0.56 C NA NA NA 55.93 0.69 C NA NA NA 

Ephedra nevadensis  NA NA NA NA NA NA 8.08 0.52 C NA NA NA 

Ephedra torreyana  NA NA NA NA NA NA 12.04 0.53 C NA NA NA 

Gutierrezia species 5.80 0.62 C NA NA NA 41.77 0.64 C NA NA NA 

Hymenoclea salsola   5.42 0.62 C NA NA NA 41.74 0.63 C NA NA NA 

Krameria erecta   NA NA NA NA NA NA 2.33 0.50 C NA NA NA 

Larrea tridentata   1.58 0.51 C NA NA NA 1.38 0.50 C 1.16 0.14 C 

Lycium species 2.96 0.51 C NA NA NA 6.32 0.52 C NA NA NA 

Menodora spinescens  NA NA NA NA NA NA NA NA NA NA NA NA 

Opuntia basilaris  NA NA NA NA NA NA 1.86 0.15 C NA NA NA 

Psorothamnus fremontii  NA NA NA NA NA NA 8.19 0.52 C 3.67 0.25 C 

Xylorhiza tortifolia  NA NA NA NA NA NA 20.45 0.56 C NA NA NA 

Yucca schidigera  NA NA NA NA NA NA 2.20 0.19 C NA NA NA 
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     Table 3.7.  Morisita’s index (Id) and standardized Morisita index (Ip) results by geologic unit.  Results are reported for species    

     occurring in ten or more of the 240 sampled plots.  Id reports values from 0 to n.  The pattern is uniform if 0< Id<1, clumped if  

     1< Id <n, and random if Id =1.  Ip reports values from -1.0 to +1.0.  The pattern is random if Ip =0, clumped if Ip >0 and uniform if 

     Ip<0.  “NA” is reported where there are one or less occurrences; “C” = clumped pattern; “U” = uniform pattern; “R” = random   

     pattern.    Pattern results marked with an asterisk (*) are likely unreliable and result of small sample size within that particular    

     subset.    

 

All Qai Qay Qayo 

Species  Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  2.38 0.50 C 1.73 0.85 C 2.09 0.51 C 1.98 0.52 C 

Atriplex confertifolia   9.00 0.52 C NA NA NA 42.78 0.74 C 3.02 0.53 C 

Atriplex polycarpa  21.91 0.54 C NA NA NA 42.14 0.73 C NA NA NA 

Cylindropuntia echinocarpa   6.64 0.51 C NA NA NA 3.13 0.51 C NA NA NA 

Encelia virginensis   37.12 0.57 C NA NA NA 51.12 0.78 C NA NA NA 

Ephedra nevadensis  16.75 0.53 C NA NA NA 12.35 0.56 C 7.26 0.61 C 

Ephedra torreyana  6.85 0.51 C NA NA NA 13.41 0.56 C 5.03 0.55 C 

Gutierrezia species 33.76 0.57 C NA NA NA 39.09 0.72 C NA NA NA 

Hymenoclea salsola   50.02 0.60 C NA NA NA 50.29 0.77 C NA NA NA 

Krameria erecta   3.12 0.50 C NA NA NA 1.88 0.50 C 3.13 0.53 C 

Larrea tridentata   1.72 0.50 C NA NA NA 1.31 0.50 C 1.49 0.51 C 

Lycium species 5.48 0.51 C 1.00 0.00 R* 13.69 0.56 C 2.12 0.51 C 

Menodora spinescens  23.31 0.55 C NA NA NA NA NA NA 8.62 0.64 C 

Opuntia basilaris  2.64 0.24 C NA NA NA 2.44 0.21 C 0.00 -0.08 U* 

Psorothamnus fremontii  9.41 0.52 C NA NA NA 6.29 0.52 C 5.60 0.57 C 

Xylorhiza tortifolia  24.68 0.55 C NA NA NA 44.00 0.72 C 6.46 0.58 C 

Yucca schidigera  2.64 0.24 C NA NA NA 1.96 0.16 C 0.00 -0.12 U* 
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     Table 3.7.  Morisita’s index (Id) and standardized Morisita index (Ip) results by geologic unit (continued).   

 

Qayy Qfy Qscd Qsu 

Species  Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  1.79 0.51 C 1.72 0.61 C 3.99 0.52 C NA NA NA 

Atriplex confertifolia   NA NA NA NA NA NA 3.88 0.52 C NA NA NA 

Atriplex polycarpa  4.61 0.55 C NA NA NA 13.39 0.56 C NA NA NA 

Cylindropuntia echinocarpa   0.00 -0.07 U* NA NA NA NA NA NA NA NA NA 

Encelia virginensis   6.76 0.56 C NA NA NA NA NA NA NA NA NA 

Ephedra nevadensis  0.00 -0.03 U* NA NA NA 8.68 0.55 C NA NA NA 

Ephedra torreyana  10.67 0.58 C NA NA NA 4.54 0.52 C NA NA NA 

Gutierrezia species 10.75 0.62 C NA NA NA 49.29 0.82 C NA NA NA 

Hymenoclea salsola   10.15 0.61 C NA NA NA NA NA NA NA NA NA 

Krameria erecta   6.09 0.56 C NA NA NA 5.24 0.53 C NA NA NA 

Larrea tridentata   1.36 0.50 C 0.94 -0.24 U 3.05 0.51 C 1.38 0.46 C 

Lycium species 2.22 0.26 C NA NA NA 4.00 0.52 C NA NA NA 

Menodora spinescens  NA NA NA NA NA NA 10.37 0.56 C NA NA NA 

Opuntia basilaris  NA NA NA NA NA NA NA NA NA NA NA NA 

Psorothamnus fremontii  13.33 0.55 C NA NA NA 7.50 0.50 C NA NA NA 

Xylorhiza tortifolia  NA NA NA NA NA NA 32.95 0.71 C NA NA NA 

Yucca schidigera  NA NA NA NA NA NA NA NA NA NA NA NA 
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             Table 3.8.  L-funtion results for Transect 1.  Results are presented for all 

  species together, Ambrosia dumosa alone, and Larrea tridentata alone.   

  Species dispersion pattern is presented as clumped, random, or uniform.   

  Patterns were identified by observing the L-function plots (Appendix I).    

Plot All Species Ambrosia dumosa Larrea tridentata 

1 Random 
Random, clumped 

when  2.0 < t > 4.0 
Random 

2 Random Random 
Random, clumped 

when 3.3 < t >  3.6 

3 
Random, clumped 

when 0.5 < t > 1.1 

Random, clumped 

when  0.6 < t > 0 .8 

and 1.1 < t > 1.3 

Random, clumped 

when t > 5.6 

4 
Random, clumped 

when t > 0.5 
NA 

Random, clumped 

when 1.3 < t > 4.0 

and t > 4.7 

5 
Random, clumped 

when 0.3 < t > 5.6 
NA Random 

6 Random 
Random, clumped 

when 2.8 < t > 3.7 
Random 

7 Random NA Random 

8 Random NA Random 

9 

Random, clumped 

when 0.5 < t > 1.8 

and 4 < t > 5.5 

Random, clumped 

when 0.6 < t > 2.8 
Random 

10 
Random, clumped 

when 0.6 < t > 1.6 

Random, clumped 

when t > 1.0 
Random 

11 Random Random Random 

12 
Random, clumped 

when t > 0.4 

Random, clumped 

when t > 0.6 
Random 

13 
Random, clumped 

when t > 0.5 

Random, clumped 

at t > 0.9 

Random, clumped 

when 4.4 < t > 5.1 

and t > 5.5 

 



91 

 

 

9
1
 

  Table 3.9.  L-funtion results for Transect 2.  Results are presented for all 

  species together, Ambrosia dumosa alone, and Larrea tridentata alone.   

  Species dispersion pattern is presented as clumped, random, or uniform.   

  Patterns were identified by observing the L-function plots (Appendix I).    

Plot All Species Ambrosia dumosa Larrea tridentata 

1 
Random, clumped 

when 0.9 < t > 1.0 
Random Random 

2 Random Random Random 

3 Random 
Random, clumped 

when 0.8 < t > 1.0 
Random 

4 

Random, clumped 

when 0.5 < t >  1.0 

and 3.9 < t >  4.9 

Random, clumped 

when 0.5 < t > 0.6 
Random 

5 Random 
Random, clumped 

when 0.9 < t > 1.2 
Random 

6 Random 

Random, clumped 

when 0.6 < t > 1.1 

and t > 3.0 

Random 

7 Random Random Random 

8 

Random, clumped 

when 1.25 < t > 1.5 

and 2.4 < t > 2.6 

Random, clumped 

when 0.5 < t > 3.3 
Random 

9 Random Random Random 

10 Random Random Random 
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     Table 3.10.  Morisita’s index (Id) and standardized Morisita index (Ip) overall and size class results for the transect data.  Results  

     Id reports values from 0 to n.  The pattern is uniform if 0< Id<1, clumped if 1< Id <n, and random if Id =1.  Ip reports values from 

     -1.0 to +1.0.  The pattern is random if Ip =0, clumped if Ip >0 and uniform if Ip<0.  “NA” is reported where there are one or less      

     occurrences; “C” = clumped pattern; “U” = uniform pattern; “R” = random pattern.  Pattern results marked with an asterisk (*)  

     are likely unreliable and result of small sample size within that particular subset. 

 

All <100 cm2
 100-1000 cm2

 1000-104 cm2
 

Species Id Ip Pattern Id Ip Pattern Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  1.45 0.51 C 0.00 -0.26 U* 1.26 0.50 C 1.46 0.51 C 

Atriplex confertifolia   NA NA NA NA NA NA 22.00 1.00 C NA NA NA 

Bebbia juncea  NA NA NA NA NA NA NA NA NA 23.00 1.00 C 

Cylindropuntia echinocarpa   2.13 0.52 C 3.25 0.53 C 1.92 0.51 C 4.60 0.52 C 

Echinocactus polycephalus  1.92 0.25 C NA NA NA NA NA NA 1.64 0.15 C 

Encelia virginensis   NA NA NA NA NA NA 22.00 1.00 C 23.00 1.00 C 

Ephedra torreyana  7.67 0.45 C NA NA NA NA NA NA 7.67 0.45 C 

Ferocactus cylindraceus  0.00 -0.05 U* NA NA NA NA NA NA NA NA NA 

Gutierrezia species NA NA NA NA NA NA NA NA NA 23.00 1.00 C 

Hymenoclea salsola   NA NA NA NA NA NA NA NA NA NA NA NA 

Krameria erecta   1.54 0.51 C NA NA NA 1.62 0.34 C 1.57 0.51 C 

Larrea tridentata   1.14 0.50 C 0.00 -0.13 U* 1.36 0.28 C 1.39 0.51 C 

Lycium species 15.33 0.80 C NA NA NA NA NA NA 23.00 1.00 C 

Opuntia basilaris  3.24 0.52 C NA NA NA 7.33 0.44 C 3.83 0.52 C 

Psorothamnus fremontii  2.67 0.52 C NA NA NA NA NA NA 1.53 0.09 C 

Stephanomeria pauciflora  NA NA NA 13.00 1.00 C 22.00 1.00 C 23.00 1.00 C 

Xylorhiza tortifolia  NA NA NA NA NA NA NA NA NA 23.00 1.00 C 

Yucca schidigera  1.75 0.36 C NA NA NA 0.00 -0.09 U* 7.67 0.45 C 

     (Continued on next page) 
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                                             Table 3.10.  Morisita’s index (Id) and standardized Morisita index (Ip) results 

            (continued). 

   104-105 cm2
 >105 cm2

 

Species Id Ip Pattern Id Ip Pattern 

Ambrosia dumosa  1.88 0.52 C NA NA NA 

Atriplex confertifolia   NA NA NA NA NA NA 

Bebbia juncea  23.00 1.00 C NA NA NA 

Cylindropuntia echinocarpa   0.00 -0.05 U* NA NA NA 

Echinocactus polycephalus  NA NA NA NA NA NA 

Encelia virginensis   NA NA NA NA NA NA 

Ephedra torreyana  NA NA NA NA NA NA 

Ferocactus cylindraceus  NA NA NA NA NA NA 

Gutierrezia species NA NA NA NA NA NA 

Hymenoclea salsola   23.00 1.00 C NA NA NA 

Krameria erecta   2.51 0.50 C NA NA NA 

Larrea tridentata   1.07 0.50 C 1.20 0.06 C 

Lycium species 0.00 -0.05 U* NA NA NA 

Opuntia basilaris  NA NA NA NA NA NA 

Psorothamnus fremontii  2.71 0.52 C NA NA NA 

Stephanomeria pauciflora  NA NA NA NA NA NA 

Xylorhiza tortifolia  NA NA NA NA NA NA 

Yucca schidigera  1.64 0.15 C NA NA NA 
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CHAPTER 4 

 

BIOMASS AND ABUNDANCE PATTERNS AMONG PLANT COMMUNITIES IN  

 

THE MOJAVE DESERT:  EXAMINING THE ROLE OF SELF-THINNING 

 

 

 Abstract.  The self-thinning rule, a theory based on plant-plant competitive 

interactions, predicts a negative relationship between mean plant biomass and plant 

density.  Ecologists have begun to question the applicability of the classic self-thinning 

rule and competition in arid environments, citing that facilitative interactions may cause 

the relationship to be weaker or perhaps positive.  We investigated the relationship 

between plant size and abundance within and among plant communities growing on a 

Mojave Desert bajada.   The objectives of this study were twofold.  The first was to 

examine the patterns of biomass and abundance within and among plant communities 

growing on different soil types and geologic substrates.  Overall, we saw biomass and 

abundance patterns change significantly between soil, geology, and plant community 

associations.  The second objective was to ascertain if the entire bajada community, and 

Larrea tridentata and Ambrosia dumosa individually, exhibited the self-thinning 

relationship. Our results did not provide evidence of self-thinning relationships, but 

instead showed significant positive relationships in the log-log plots of plot density vs. 

total plot volume for all species together, for L. tridentata alone, and A. dumosa alone.  

Our results support the strong role of substrate in determining plant community structure 

as well as theories predicting that facilitation is a dominant component in arid plant 

communities.   
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INTRODUCTION 

 

 

 The relationship between body size and abundance has been a central focus in 

ecology.  For terrestrial plants, total abundance per unit area has been shown to decline 

with increasing mean plant size (Enquist et al. 1998, Belgrano et al. 2002, White et al. 

2007).  This well-known relationship is commonly referred to as the self-thinning rule 

and is depicted by a log-log plot of mean plant biomass vs. plant density (Antinovics and 

Levin 1980, Westoby 1984, Weller 1987, Kerkhoff and Enquist 2007, White et al. 2007).  

Specifically, plant density decreases linearly as plant mass increases, with a predicted 

slope between -3/2 and -4/3 (Westoby 1984, Weller 1987, Damuth 1998, Enquist et al. 

1998, Enquist and Niklas 2001, Belgrano et al. 2002, Kerkhoff and Enquist 2006, 2007). 

This relationship has been demonstrated in both single and mixed species stands and 

across 23 orders of magnitude (Enquist et al. 1998).  The self-thinning rule has been 

described as the only rule or law in plant ecology (Weller 1989). 

The thinning rule is based on the assumption that plants compete for limited 

resources within a given area and resource supply limits community carrying capacity 

(Enquist et al. 1998, White et al. 2007, Ernest et al. 2009).  Assuming that plants grow 

until they are limited by resources, and larger plants use more resources within a 

community, an increase in plant size should necessitate a decrease in density (Van Valen 

1973, Kerkhoff and Enquist 2007).  This is also known as density-dependent mortality 

(White 1981).  For self-thinning to occur, it is assumed that the community is in a 

demographically steady state at carrying capacity and total resource use is in a steady 
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state with resource supply (Enquist and Niklas 2001, Houlahan et al. 2007, Kerkhoff and 

Enquist 2007).   

  While the term “self-thinning” has been used to describe both intra and 

interspecific stands, it is important to note that the classic self-thinning rule was 

originally used to describe intraspecific stands (Lonsdale 1990).  Classic self-thinning 

describes a dynamic relationship between biomass and density of a single species stand 

over time (Weller 1989, Scrosati 2005).  While the self-thinning rule is often used to 

describe the interspecific relationship between biomass and density, it is a static 

relationship showing a single moment of time (Weller 1989, Scrosati 2005).    

 There has been considerable discussion regarding the relationship between the 

slope of the self-thinning relationship and which size variables are to be analyzed.  Both 

the mean plant biomass and total stand biomass have been reported in the literature 

(Scrosati 2005).  When plotting mean plant biomass against density, the slope is 

predicted to be -3/2 to -4/3, depending on how it was derived (Westoby 1981, Weller 

1987, 1989, Enquist et al. 1998).  However, if total stand biomass per unit area is plotted 

against density per unit area, the slope is predicted to be -1/3 to -1/2 (Westoby 1981, 

Weller 1989, Enquist et al. 1998).  Weller (1987) states that total stand biomass should be 

preferred over mean plant biomass in the calculation of thinning lines.  He explains that 

average plant size can be statistically misleading because average size increases when 

small individuals die, even if the survivors do not actually grow whereas, total stand 

biomass increases only through growth and decreases with mortality.   
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While there has been some debate regarding the numerical value of the self-

thinning slope (Enquist et al. 1998, Dai et al. 2009, Ernest et al. 2009, Wang et al. 2013), 

recent research has questioned the applicability of the thinning rule in arid environments 

(Deng et al. 2006, Lin et al. 2013, Wang et al. 2013).  The self-thinning relationship is a 

consequence of competitive interactions within a population or community that is at 

carrying capacity with a steady state of resource use and supply.  Given that water is 

thought to be the principal limiting factor in desert ecosystems, classic theory predicts 

that plants must compete with neighbors for its uptake.  However, it has been suggested 

that facilitative, rather than competitive, interactions may be more prevalent in harsh 

environments whereby neighbors ameliorate abiotic stress (Bertness and Callaway 1994, 

Stachowicz 2001, Bruno et al. 2003, Armas & Pugnaire 2005, Brooker et al. 2008, 

Malkinson and Tielbörger 2010).  Furthermore, resource supply is not steady in arid 

environments (Fowler 1986, Chesson et al. 2004, Schwinning and Sala 2004).  

Fluctuating resource levels may cause variations in the size and carrying capacity of a 

population which in turn might stimulate either competitive or facilitative interactions 

between plants.  To add to the complexity, water availability is soil specific.  Subtle 

differences in soil texture, age, and horizon development may lead to large differences in 

the amount of water that can be stored and absorbed (Yang and Lowe 1956, MacMahon 

and Wagner 1985, Hamerlynck et al. 2000, Hamerlynck et al. 2002, Hamerlynck et al. 

2004, McAuliffe et al. 2007, Ignace and Huxman 2009, Webb 2009, Schwinning et al. 

2011).  Soil hydrologic properties thus influence the patterns of biomass and abundance 

in arid plant communities. 
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Those investigating the self-thinning rule in arid environments have shown that 

the thinning relationship is weaker under increased aridity (Deng et al. 2006, Chu et al. 

2008, Lin et al. 2013) and have proposed that facilitative interactions may offset or delay 

the negative effects of competition (Deng et al. 2006, Chu et al. 2008, 2009, 2010).  Deng 

et al. (2006) postulated a positive relationship where facilitation is commonly observed, 

due to the positive effect of neighboring plants.  To our knowledge, few studies have 

observed the proposed self-thinning relationship in arid environments.  Allen et al. (2008) 

reported a negative relationship between Larrea tridentata density and average plant size 

with a slope of -3/4, thereby supporting the self-thinning rule.  They assert that their 

study is the first to document such a relationship for a single species in a water limited 

ecosystem and use this as evidence that xeric plant populations are regulated by 

competition.  

This study will explore the relationship between biomass and abundance within 

and among plant communities growing on a Mojave Desert bajada.   Our first objective is 

to determine if biomass and abundance patterns are significantly different between plant 

communities.  Because soil and geology serve as the resource template for arid plant 

communities, we will compare biomass and density patterns between communities 

growing on different soil types and geologic substrates.  We will give special focus to the 

dominant shrubs, Larrea tridentata and Ambrosia dumosa, which cover approximately 

70% of the Mojave Desert (MacMahon 2000, Rundel and Gibson 1996).  We expect that 

changes in biomass and abundance patterns will coincide with changes in soil and 

geologic types with more arid substrates supporting fewer and smaller individuals.  
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Our second objective is to ascertain if the entire bajada community, and L. 

tridentata and A. dumosa individually, exhibit the self-thinning relationship.  If the self-

thinning law if evident and competitive interactions are structuring this site, we expect to 

see larger biomass values coinciding with lower densities and smaller biomass values 

corresponding to greater densities.  Understanding how biomass is partitioned within 

communities may offer insights into the mechanisms structuring communities (Enquist 

and Niklas 2001, White et al. 2007).  

 

METHODS 

 

 

Study area 

 The Upper Las Vegas Wash Conservation Transfer Area (ULVWCTA), Nevada, 

consists of a 7,400 ha land parcel of Mojave Desert vegetation on alluvial fan (bajada) 

and basin floor deposits derived from the Spring and Sheep Mountains.  The area sits 

north of Las Vegas and is transected by a complex of Pleistocene spring deposits and 

their attendant washes.  A research team from Utah State University was tasked with 

creating vegetation and soils maps of the ULVWCTA.  This effort identified seven 

vegetation associations and eight soil map units across the site (MacMahon et al. 2008).  

These maps, in addition to geologic data obtained from a USGS map (1:100,000 

Geologic and Geophysical maps of the Las Vegas 30’ X 60’ Quadrangle, Clark and Nye 

Counties, Nevada, and Inyo County, California (Page et al. 2005), were used in the 

spatial analyses.  Tables 4.1, 4.2, and 4.3 provide lists and descriptions of each vegetation 

association, soil type, and geologic unit respectively. 
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Vegetation sampling 

The vegetation data collected for the MacMahon et al. (2008) mapping effort was used as 

the first dataset for spatial analysis.  A stratified sampling design provided a total of 240 

plots sampled across the ULVWCTA.  Two strata, based on broad geomorphic 

categories, were identified.  The first was defined as alluvial fan/wash and totaled 5,270 

ha (71%) of the ULVWCTA.  The second stratum (2,130 ha, 29%) was defined as basin 

floor/spring deposit, and was associated with past ground-water discharge (evidenced by 

highly calcareous spring deposits) and lacustrine sediments. 

 A total of 240 plots were sampled across the ULVWCTA.  Initially, the mapping 

data consisted of 163 sample plots that were systematically distributed along 13 north-

south transects spaced 2000 meters apart.  Vegetation data were collected every 100 

meters in the basin floor/spring deposit stratum and every 500 meters in the alluvial 

fan/wash stratum. Preliminary evaluation of these data indicated inadequate coverage of 

the area, so an additional 77 sample plots were established and surveyed to increase 

sampling intensity where vegetation variation was greater, and where spectral reflectance 

data from Landsat 7 and ASTER satellites suggested greater complexity in geomorphic 

surfaces and vegetation. 

 Each sample plot consisted of the area of a circle with a 10-m radius. Each 

circular plot was divided into quarters by an east-west and a north-south line.  One 

quarter of each plot was used to survey vegetation.  The quarter chosen for sampling was 

rotated in a clockwise manner from one sample plot to the next.  Vegetation data were 

collected for woody perennials only.  For each plant within the sample quarter, the 
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height, width in two directions (the longest width and the width perpendicular to this), 

and species were recorded.   

Analytical methods 

 Biomass and abundance patterns between plant communities growing on different 

soil types and geologic substrates were compared using one-way analysis of variance 

(ANOVA).  Plant volume was used as a non-destructive proxy for biomass. Total plant 

volume and density, L. tridentata volume and density, and A. dumosa volume and density 

were compared in each vegetation association, soil type, and geologic substrate.  With the 

exception of L. tridentata, shrub volume was calculated as an oblate ellipsoid (Phillips and 

MacMahon 1981).  The volume for L. tridentata was calculated as an inverted elliptical cone 

(Chew and Chew 1965, Schlesinger and Jones 1984).  Shrub density was calculated as the 

number of individuals/plot.  The area sampled in each plot (1/4 of the circle) was 78.5m
2
.  

All volume and density measures were cube root transformed to meet assumptions of 

normality.  Relevant post-hoc pairwise comparisons were made using the Tukey-Kramer 

procedure.  All values were reported as back-transformed means with standard errors and 

significance was determined at P < 0.05.   Analyses were performed using SAS software, 

Version 9.2 of the SAS System for Windows (SAS Institute Inc. 2011).  

 The relationship between plant size (volume) and abundance (density) was 

assessed using Ordinary Least Squares Regression (OLS).  The log of plot density 

(dependent variable) was linearly regressed on both the log of total plot volume and on 

the log of mean plot volume (independent variables).  While many size-abundance 

studies use mass as the size metric, it is also customary to use volume as it is directly 
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proportional to mass (White et al. 2007).  Analyses were performed in R (version 2.13.2; 

R Development Core Team, Vienna, Austria 2011).  Plots devoid of plant material were 

omitted from the analyses. 

 

RESULTS 

 

 

A total of 6,759 individual plants (39 different species) were identified and 

measured within the 240 mapping plots.  Thirteen plots did not contain vegetation.  

Appendix A provides a list of all species that were identified during field work on the 

ULVWCTA.  Appendix B provides a list of all the mapping plots with corresponding 

elevation, vegetation associations, soil types, and geologic units.  Appendix C provides a 

list and frequency count for all species identified in the mapping plots.  The Weiser-

Goodsprings soil complex was not included in the analyses as it only had one sampling 

plot. 

One-way analysis of variance.  There was a significant effect of soil map unit on 

plot volume (ANOVA, F(6, 232) = 26.38, P < .0001) and plot density (ANOVA,  F(6, 232) = 

17.29, P < .0001) .  Post-hoc comparisons using the Tukey-Kramer test indicated that 

Arizo (M = 5.14, SE = 0.80), Weiser (M = 4.09, SE = 0.57), and Weiser-Wechech (M = 

3.84, SE = 0.46) had the greatest shrub volume while the Badland (M = 0.29, SE = 0.13), 

Las Vegas-DeStazo Complex (M = 1.08, SE = 0.36), and Las Vegas (M = 0.30, SE = 

0.16) had the least.  Shrub density was greatest on the Arizo (M = 0.43, SE = 0.06), Las 

Vegas-DeStazo Complex (M = 0.44, SE = 0.08), and the Weiser-Wechech (M = 0.43, SE 

= 0.04) types while the Badland (M = 0.06, SE = 0.02), Las Vegas (M = 0.15, SE = 0.04), 
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and Weiser (M = 0.21, SE = 0.03) were less dense.  Figure 4.1 provides a graphical 

summary of these results.     

The effects of soil type on volume and density were also significant when L. 

tridentata and A. dumosa were analyzed individually.  L. tridentata volume (ANOVA F(6, 

197) = 11.35, P < .0001) and density (ANOVA,  F(6, 197) = 10.71, P < .0001) differed by 

soil type as did  A. dumosa volume (ANOVA, F(6, 176) = 3.63, P = .002) and density 

(ANOVA, F(6, 176) = 6.20, P < .0001). Post hoc comparisons showed that L. tridentata 

volume was greatest on the Arizo (M = 2.84, SE = 0.45), Weiser (M = 4.21, SE = 0.54), 

and the Weiser-Wechech (M = 2.60, SE = 0.32) types and least on the Las Vegas-

DeStazo Complex (M = 0.47, SE = 0.20). L. tridentata density was greatest on the Weiser 

(M = 0.09, SE = 0.01) and the Weiser-Wechech (M = 0.09, SE = 0.01) types and lowest 

on the Badland (M = 0.03, SE = 0.01), Las Vegas (M = 0.03, SE = 0.01), and Las Vegas-

DeStazo Complex (M = 0.03, SE = 0.01) types.  A. dumosa volume was greatest on the 

Weiser-Wechech (M = 0.53, SE = 0.07) soil and least on the Badland (M = 0.15, SE = 

0.07) soil.  A. dumosa density was greatest on the Las Vegas-DeStazo Complex (M = 

0.31, SE = 0.07) and less dense on the Badland (M = 0.09, SE = 0.04) and Weiser (M = 

0.07, SE = 0.02) soils.  Figure 4.1 provides a graphical summary of these results. 

 Considering all species, there was a significant effect of geologic type on plot 

volume (ANOVA, F(6, 233) = 21.91, P < .0001) and plot density (ANOVA,  F(6, 233) = 6.45, 

P < .0001).  Post-hoc comparisons using the Tukey-Kramer test indicated that shrub 

volume was greatest on the Qayy unit (M = 4.72, SE = 0.68) and lowest on the Qscd unit 

(M = 0.52, SE = 0.12) while density was greatest on the Qayy unit (M = 0.39, SE = 0.05) 
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and lowest on the Qsu unit (M = 0.05, SE = 0.07).  Figure 4.2 provides a graphical 

summary of these results.  L. tridentata volume (ANOVA, F(5, 197) = 7.70, P < .0001)  and 

density (ANOVA, F(5, 197) = 10.95, P < .0001) varied between geologic types, however 

post hoc tests did not distinguish between groups.  A. dumosa volume (ANOVA, F(5, 177) 

= 1.28, P = 0.273) and density (ANOVA, F(5, 177) = 0.62, P = 0.687) were not affected by 

geologic type.  Figure 4.2 provides a graphical summary of these results. 

There was a significant effect of vegetation association on plot volume (ANOVA, 

F(6, 232) = 27.56, P < .0001) and plot density (ANOVA,  F(6, 232) = 15.50, P < .0001) .  

Post-hoc comparisons using the Tukey-Kramer test indicated that shrub volume was 

greatest on the Atriplex polycarpa - Ambrosia dumosa (M = 5.81, SE = 1.08) and Larrea 

tridentata - Ambrosia dumosa (M = 3.40, SE = 0.27) Associations and least on Ambrosia 

dumosa - Atriplex confertifolia (M = 0.35, SE = 0.12) and Badlands (M = 0.004, SE = 

0.04) Associations.  Plant density was greatest on the Ambrosia dumosa - Menodora 

spinescens Association (M = 0.93, SE = 0.20) and least on the Badlands (M = 0.02, SE = 

0.02) and Larrea tridentata Association (M = 0.03, SE = 0.02).  Figure 4.3 provides a 

graphical summary of these results. 

The effect of vegetation association on volume and density was also significant 

when L. tridentata and A. dumosa were analyzed individually.  L. tridentata volume 

(ANOVA F(5, 197) = 9.86, p < .0001) and density (ANOVA,  F(5, 197) = 13.88, P < .0001) 

differed by vegetation association as did  A. dumosa volume (ANOVA, F(5, 177) = 3.58, P 

< .004) and density (ANOVA, F(5, 177) = 4.21, P = .001).  Post hoc comparisons showed 

that L. tridentata volume was greatest on the Atriplex polycarpa - Ambrosia dumosa (M = 
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2.63, SE = 0.65) and Larrea tridentata - Ambrosia dumosa (M = 2.82, SE = 0.23) 

Associations and least on the Ambrosia dumosa - Atriplex confertifolia Association (M = 

0.56, SE = 0.22).  L. tridentata density was greatest on the Larrea tridentata - Ambrosia 

dumosa Association (M = 0.08, SE = 0.005) and least on the Ambrosia dumosa - Atriplex 

confertifolia (M = 0.02, SE = 0.005) and Larrea tridentata (M = 0.02, SE = 0.008) 

associations.  Post hoc tests for A. dumosa volume did not show differences between 

vegetation associations.  A. dumosa density was greatest on the Ambrosia dumosa - 

Menodora spinescens Association (M = 0.53, SE = 0.15) and least on the Larrea 

tridentata Association (M = 0.05, SE = 0.08). Figure 4.3 provides a graphical summary of 

these results. 

Ordinary least squares regression.  The log-log plot of plot density vs. total plot 

volume revealed a significant positive relationship when all species were analyzed 

together (F(1,222) = 64.13, P < .0001, R
2
 = 0.221), for L. tridentata alone (F(1,201) = 156.7, 

P < .0001, R
2
 = 0.435), and A. dumosa alone (F(1,182) = 419.1, P < .0001, R

2
 = 0.696) 

(Figure 4.4).  The log-log of plot density vs. mean plot volume was not significant for all 

species analyzed together (F(1,222) = 3.509, P = 0.062, R
2
 = 0.011) and for L. tridentata 

alone (F(1,201) = 0.00002, P = 0.996, R
2
 = -0.005) (Figure 4.5).  The plot for A. dumosa 

alone had a significant P-value, however the R
2
 value indicates that the relationship is 

extremely weak to nonexistent (F(1,182) = 7.48, P = 0.007, R
2
 = 0.034) (Figure 4.5). 

 

 

 

 



106 

 

 

1
06
 

DISCUSSION 

 

 

 The objective of this study was to examine the relationship between biomass and 

abundance patterns of woody perennial species growing on the ULVWCTA and compare 

patterns between soil types, geologic types, and plant communities.  Results from 

ANOVA analyses and post-hoc comparisons using the Tukey-Kramer test show shrub 

volume and density measurements to be broadly split between the two prominent 

geomorphic categories (parent material) present on the ULVWCTA: alluvium and spring 

deposits.  This agrees with previous investigations that have also exposed this distinction 

(see Chapters 2 and 3).  In general, the alluvium sites are younger, composed of larger 

particles with weakly developed horizons located on bajada fans or active channels.  

Alluvial sites typically have more moisture available than lower elevation spring deposits 

sites (playas).  Prominent alluvium soil types include Weiser, the Dalian- McCullogh 

Complex, the Weiser-Wechech Association, and Arizo.  Geologic types associated with 

these locations include Qay, Qayo, and Qayy.  Vegetation associations include the Larrea 

tridentata - Ambrosia dumosa Association, Atriplex polycarpa - Ambrosia dumosa 

Association, and the Ambrosia dumosa - Larrea tridentata:  Upper Alluvial Fan 

Association.  

 Spring deposit sites are older and composed of smaller soil particles with more 

horizon development, some of which are cemented with calcite.  These areas are 

associated with past ground water discharge and include the Las Vegas and Las Vegas-

Destazo Complex soil types.  The prominent geologic unit is Qscd and vegetation 

associations include Ambrosia dumosa - Atriplex confertifolia Association, Ambrosia 
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dumosa - Menodora spinescens Association, Badlands, and the Larrea tridentata 

Association.  Spring deposit sites and their associated soil, geology, and vegetation types 

are generally hotter, drier, and lower in elevation than alluvium sites. 

One-way analysis of variance.  Shrub volume measurements were greatest on 

alluvial soils, geology, and vegetation associations.  These results are consistent with our 

prediction that changes in biomass patterns would coincide with changes in soil and 

geologic types with more arid, spring deposit substrates supporting smaller individuals.  

When all woody perennial species were analyzed together, shrub volume was greatest on 

alluvium soils (Arizo, Weiser, and Weiser-Wechech), geology (Qayy), and vegetation 

(Atriplex polycarpa - Ambrosia dumosa and Larrea tridentata - Ambrosia dumosa 

Associations).  Shrub volume was least on spring deposit soils (Badland, Las Vegas-

DeStazo Complex, and Las Vegas), geology (Qscd), and vegetation (Ambrosia dumosa - 

Atriplex confertifolia and Badlands Associations).  L. tridentata volume was greatest on 

alluvial soil types (Arizo, Weiser, and Weiser-Wechech) and vegetation associations 

(Atriplex polycarpa - Ambrosia dumosa and Larrea tridentata - Ambrosia dumosa 

Associations) and least on a spring deposit soil (Las Vegas-DeStazo Complex) and 

vegetation associations (Ambrosia dumosa - Atriplex confertifolia Association). Post-hoc 

comparisons for L. tridentata volume did not reveal significant differences between 

geologic types.  A. dumosa volume was greatest on alluvium soil (Weiser-Wechech) and 

least on spring deposit soil (Badland).   Post-hoc comparisons for A. dumosa volume did 

not reveal significant differences between geologic types or vegetation associations. 
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 Changes in shrub density measurements were not as straightforward as predicted 

with shrub density varying between spring deposit and alluvium soil and vegetation 

types.  When all species were analyzed together, the greatest shrub densities were found 

on both alluvium (Arizo and Weiser-Wechech) and spring deposit (Las Vegas-DeStazo 

Complex) soil types, alluvium geology (Qayy), and a spring deposit vegetation 

association (Ambrosia dumosa - Menodora spinescens Association).  The lowest shrub 

densities were found on both alluvium (Weiser) and spring deposit (Badland and Las 

Vegas) soil types and only on spring deposit geology (Qscd) and vegetation associations 

(Badlands and Larrea tridentata Associations).  L. tridentata density was greatest on 

alluvial soil types (Weiser and Weiser-Wechech) and vegetation associations (Larrea 

tridentata - Ambrosia dumosa Association) and least on the spring deposit soils (Badland, 

Las Vegas, and Las Vegas-DeStazo Complex) and vegetation associations (Ambrosia 

dumosa - Atriplex confertifolia and Larrea tridentata Associations). Post-hoc 

comparisons for L. tridentata density did not reveal significant differences among 

geologic groups.  A. dumosa density was greatest on the spring deposit soil (Las Vegas-

DeStazo Complex) and vegetation association (Ambrosia dumosa - Menodora spinescens 

Association) and least on spring deposit soil (Badland) and vegetation association 

(Larrea tridentata Association).  Post-hoc comparisons for A. dumosa density did not 

reveal significant differences between geologic types.  The high densities occurring on 

the spring deposit soil (Las Vegas-DeStazo Complex) and vegetation association 

(Ambrosia dumosa - Menodora spinescens Association) are result of the high numbers of 

A. dumosa individuals growing in these areas.   
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 Overall, our results are consistent with literature citing soil development as one of 

the strongest predictors of plant community structure in arid environments (see Chapter 

2).  Generally, shrubs grew larger on alluvial sites with more potential moisture 

availability.  There was a distinction between the two dominant species with L. tridentata 

having greater volume and density on alluvial substrates and A. dumosa having greater 

volume on alluvium but greater density on spring deposits.  Similar to our observations, 

L. tridentata has been reported to dominate on younger, weakly developed, Holocene 

aged soils with gravelly alluvium as opposed to older, more developed, Pleistocene aged 

soils with possible calcic and argillic horizons (McAuliffe 1994, Miller and Huenneke 

2000, Hamerlynck et al. 2002, McAuliffe et al. 2007, Hamerlynck and McAuliffe 2010).  

Schenk et al. (2003) noted the distinction between habitats for L. tridentata and A. 

dumosa finding the density, cover, and biomass of L. tridentata to be greater on alluvium 

soils while the density, cover, and biomass of A. dumosa was greater on finer grained 

soils.  Hamerlynck et al. (2002) also found the density of A. dumosa to increase with soil 

horizon development.  A. dumosa is a more shallow rooted, shorter lived, drought 

deciduous, and natural colonizer compared to L. tridentata, which could explain the 

higher densities observed on the shallow spring deposit soils.   

Ordinary Least Squares Regression.  While the results of our ANOVA analyses 

agreed with our predictions and evidence of previous investigations, the results from our 

regression analysis do not agree with classic self-thinning models.  On the contrary, the 

log-log plot of plot density vs. total plot volume revealed a significant positive 

relationship when all species were analyzed together, for L. tridentata alone, and A. 
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dumosa alone.  Based on the recommendations provided by Weller (1987) we will focus 

our discussion on the relationship between total plot biomass vs. density rather than mean 

plot biomass vs. density. 

The self-thinning rule is based on the assumption that plants are competing for 

limited resources within a given area and resource supply limits community carrying 

capacity (Enquist et al. 1998, White et al. 2007, Ernest et al. 2009).  It is presumed that 

the community is in a demographically steady state at carrying capacity and total 

resource use is in a steady state with resource supply for self-thinning to occur.  Based on 

these assumptions, we could simply conclude that the plant communities on the 

ULVWCTA violate these assumptions and self-thinning isn’t occurring.  However, our 

regression models may provide evidence to a long standing debate in desert plant 

ecology.   

For decades, ecologists have argued the roles of competition and facilitation in 

structuring arid plant communities.  Plant dispersion patterns are often assessed for 

evidence of either competition or facilitation.  Clumped patterns have been attributed to 

plant-plant facilitation, heterogeneity of soil resources, limited seed dispersal, and 

vegetative reproduction (Bertness and Callaway 1994, Schlesinger et al. 1996, 

Schlesinger and Pilmanis 1998, Walker et al. 2001, Titus et al. 2002, Brooker et al. 

2008), whereas uniform patterns have been associated with plant-plant competition for 

limited resources leading to density dependent mortality (Ebert and McMaster 1981, 

MacMahon and Schimpf 1981, Philips and MacMahon 1981, Prentice and Werger 1985, 

Perry et al. 2002, Schenk et al. 2003, Perry et al. 2009). Competition should convert 
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clumped distributions into random ones, and random distributions into uniform ones, 

with uniform distribution originating from competition for water during long droughts.  

Based on this hypothesis, smaller plants should show more clumping patterns while 

larger individuals should tend toward uniformity (Philips and MacMahon 1981, Cody 

1986, Skarpe 1991, Haase et al. 1996). 

Despite the long held notion that plants must compete for limited water resources, 

there has been little evidence to support this hypothesis.  Historically, clumped and 

random patterns have been detected more often in the desert southwest (Barbour 1969, 

Woodell et al. 1969, Barbour and Diaz 1973, Philips and MacMahon 1981, Schlesinger 

and Jones 1984, Cody 1986, Fowler 1986, Manning and Barbour 1988, Smith 1997, 

Eccles et al. 1999, Rayburn et al. 2011, see Chapter 3).  There have only been a few 

reported cases of uniformity seen in L. tridentata (Barbour 1969, Woodell et al. 1969, 

Fonteyn and Mahall 1981, Philips and MacMahon 1981, Schlesinger and Jones 1984, see 

Chapter 3), many of which have been challenged on the premise of methodological and 

statistical inadequacies (Anderson 1971, Barbour 1973, King and Woodell 1973, Ebert 

and McMaster 1981, King and Woodell 1984, Prentice and Werger 1985, Fowler 1986, 

King and Woodell 1987, Cox 1987). In addition to methodological difficulties, care must 

be taken in inferring causation given the many different processes that may generate the 

same spatial patterns (Perry et al. 2002, Schenk et al. 2003, Escudero et al. 2005, Miriti 

2006).   

Given the frequency of evidence for facilitation on the ULVWCTA and for arid 

environments in general, it is possible that the positive relationship observed in the log-
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log plot of total plot volume vs. plot density provides added evidence to the facilitation 

vs. competition debate.  Theoretically, this plot shows that as more shrubs are packed into 

a plot, volume increases rather than decreases as it would under competitive forces.  

These results imply an overall positive effect from increased density, thus backing the 

proposal of Deng et al. (2006) who proposed a positive relationship between biomass and 

density where facilitation is commonly observed and others who proposed that 

facilitative interactions may offset the negative effects of competition thereby rendering 

the thinning relationship weaker under increased aridity (Deng et al. 2006, Chu et al. 

2008, 2009, Lin et al. 2013).  This may also provide evidence for the stress gradient 

hypothesis under which facilitative, rather than competitive, interactions are more 

prevalent in harsh environments. 

The log-log plots of plot density vs. total plot volume for L. tridentata alone, and 

A. dumosa alone corroborate earlier work with these species.  The strong positive 

relationship detected between plot density and total plot volume for A. dumosa supports a 

long line of evidence showing a prevalence of clumped patterns (i.e. facilitation) in A. 

dumosa (Fonteyn and Mahall 1981, Schlesinger and Jones 1984, Miriti 2006, see Chapter 

3).  While the relationship between plot density and total plot volume for L. tridentata is 

somewhat weaker than that for A. dumosa, this supports observations of mostly clumped 

and random dispersion patterns seen in L. tridentata with few instances of uniformity (i.e. 

possible self-thinning).  Miller and Huenneke (2000) also observed a positive relationship 

between total biomass and density for L. tridentata.  Our results do not agree with those 

of Allen et al. (2008) or Chew and Chew (1965) who reported a negative relationship 
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between L. tridentata density and plant size (in the Chihuahuan and Sonoran Deserts, 

respectively.  

While we saw overall significant positive relationships on the log-log plots of plot 

density vs. total volume, the results from the log-log plot of plot density vs. mean plot 

volume were generally insignificant.  The results from these analyses showed that there 

were essentially no relationships between plot density vs. mean plot volume for all 

species analyzed together, for L. tridentata alone, and for A. dumosa alone.  Although 

insignificant, these results are also contradictory with the classic self-thinning model and 

provide meaningful information regarding the relationship between biomass and 

abundance in arid environments.  While they don’t provide evidence of facilitation like 

the plots of plot density vs. total plot volume, they may provide additional confirmation 

that competition isn’t acting as the prevailing plant-plant interaction.   

The objectives of this study were twofold.  The first was to examine the patterns 

of biomass and abundance within and among plant communities growing on different soil 

types and geologic substrates.  Overall, we saw biomass and abundance patterns change 

significantly between soil, geology, and plant community associations, with soil and 

parent material driving these patterns.  These findings support previous work citing soil 

development as one of the strongest predictors of plant community structure in arid 

environments.   

The second objective was to determine if the bajada community, and L. tridentata 

and A. dumosa individually, exhibited the self-thinning relationship.  Our results did not 

provide evidence of self-thinning relationships, but instead showed significant positive 
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relationships in the log-log plots of plot density vs. total plot volume for all species 

together, for L. tridentata alone, and A. dumosa alone.  In light of the numerous studies 

providing evidence of possible facilitative interactions, we feel comfortable adding our 

findings to the collection of results leading plant ecologists to consider that facilitative 

rather than competitive interactions are the dominant biotic force shaping arid plant 

communities.  Given that plants in arid environments are known to have an increased 

root:shoot ratio (Casper et al. 2003), future studies should investigate the relationship 

between root biomass and abundance.  The belowground space between desert perennials 

has been said to be saturated with roots and may resemble a closed canopy like the plant 

communities measured in traditional self-thinning studies.  It is possible that the log-log 

relationship between root biomass and density may provide different results.    

In addition to adding clarification in the facilitation vs. competition debate, this 

research aids in understanding the roles of biotic vs. abiotic regulation in arid 

environments.  Our results add to the mounting evidence which supports the large role 

that soil and geologic properties take in generating biomass and abundance patterns in 

arid plant communities.  Combining this knowledge with the accumulating 

documentation of facilitative interactions, we propose that abiotic pressure, primarily soil 

available moisture, is the prevailing driver of arid plant community structure.  Under this 

scenario, facilitation is seen as the dominant biotic force to offset abiotic pressure.  

Understanding the relationship between abiotic factors and plant-plant interactions is 

essential in making careful conservation and management decisions for desert 

ecosystems.   
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TABLES AND FIGURES 

 

 

Table 4.1.  Vegetation associations of the ULVWCTA. 

Vegetation Association Description 

Area  

(ha) 

Elevation 

 (m) 

Number of plots 

sampled 
Richness 

Density 

(n/ha) 

Larrea tridentata -  Ambrosia 

dumosa Association 

Larrea tridentata and Ambrosia dumosa 

compose ≥70% of the relative density 
5,817 659 to 929 143 34 3889 

Larrea tridentata Association 
Larrea tridentata is the dominant shrub and 

these areas coincide with basin floor soils 
286 729 to 828 11 7 463 

Atriplex polycarpa - Ambrosia 

dumosa Association 

Atriplex polycarpa and Ambrosia dumosa 

dominate in wet, active, and dry washes 
245 658 to 831 19 14 4269 

Ambrosia dumosa - Menodora 

spinescens Association 

Ambrosia dumosa and Menodora spinescens 

make up the greatest shrub density in the basin 

floor 

42 667 to 715 8 17 9502 

Badlands barren ground with some Larrea tridentata 94 705 to 742 6 4 276 

Ambrosia dumosa - Larrea 

tridentata:  Upper Alluvial 

Fan Association 

Ambrosia dumosa in association with Larrea 

tridentada make up the greatest density on the 

upper alluvial fan 

36 798 to 876 8 12 2674 

Ambrosia dumosa - Atriplex 

confertifolia Association 

Ambrosia dumosa in association with Atriplex 

confertifolia characterize this association in the 

basin floor/spring deposit   

445 659 to 724 41 14 2612 
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Table 4.2:  Soil map units of the ULVWCTA. 

Soil Parent material Landform Drainage class (Ksat)* Description 

Arizo Mixed alluvium Channels 
Excessively 

drained 

High to very high (5.95 to 

19.98 in/hr) 

Very gravelly loamy 

sand 

Dalian-McCullough 

Complex 

Alluvium derived from 

limestone and dolostone 
Fan skirts Well drained High (1.98 to 5.95 in/hr) 

Very gravelly fine sandy 

loam 

Las Vegas 
Alluvium derived from 

limestone   

Basin-floor 

remnants 
Well drained Very low (0 in/hr) Gravelly fine sandy loam 

Las Vegas-DeStazo 

Complex 

Alluvium derived from 

limestone 
Alluvial flats Well drained Very low (0 in/hr) Gravelly fine sandy loam 

Weiser-Wechech 

Association 

Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained 

Moderately high to high 

(0.57 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Weiser   
Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained High (1.98 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Weiser-Goodsprings 

Complex 

Alluvium derived from 

limestone and dolomite 
Fan remnants Well drained High (1.98 to 5.95 in/hr) 

Extremely gravelly fine 

sandy loam 

Badland 
Mixed alluvium over 

lacustrine 
Hills on alluvial flats 

*Ksat=capacity of the most limiting layer to transmit water 
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Table 4.3:  Geologic units of the ULVWCTA. 

Unit* Parent Material Age Description 

Qai Intermediate fan alluvium Late and middle Pleistocene 
Cemented alluvial-fan gravel, with interbedded sand; poorly 

to moderately well sorted 

Qay Young fan alluvium Holocene and latest Pleistocene 
Noncemented alluvial-fan gravel and sand with weakly 

developed soil. 

Qayo Older young alluvium Holocene and latest Pleistocene 
Noncemented gravel and sand with weakly developed soil 

of alluvial-fan remnants 

Qayy Youngest alluvium Holocene    
Noncemented alluvial-fan gravel and sand of intermittently 

active wash complexes 

Qfy 
Intermittently active fluvial fine-

grained alluvium 
Late Holocene Brown to gray sand, silt, mud, and interbedded gravel. 

Qscd 

Intermediate fine-grained deposits 

associated with past ground-water 

discharge 

Late Pleistocene 
Top 1-2 m is characteristically resistant light-gray 

calcareous mud that is partially cemented with calcite 

Qsu 

Undivided young and 

intermediate fine-grained deposits 

associated with past ground-water 

discharge 

Early Holocene and late Pleistocene 

Light-gray to light-brown unconsolidated silt, sandy silt, 

silty sand, and mud or the top 1-2 m is characteristically 

resistant light-gray calcareous mud that is partially 

cemented with calcite 

*Unit= map unit 
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Figure 4.1.  Results of post-hoc comparisons of mean plot volume and density by soil map unit using the Tukey-Kramer test.  Graphs show  

means and standard errors.  Different letters represent significant differences at P < 0.05.  Means and standard errors were back-transformed from  

cube root transformed estimates.  Soil abbreviations:  AR = Arizo; BL = Badland; DM = Dalian-McCullough Complex; LD = Las Vegas-DeStazo 

Complex; LV = Las Vegas; WE = Weiser; WW = Weiser-Wechech Association.   

 

 

 

 



 

 

1
27
 1

2
7
 

 

 
 

Figure 4.2.  Results of post-hoc comparisons of mean plot volume and density by geologic type using the Tukey-Kramer test.  Graphs show  

means and standard errors.  Different letters represent significant differences at P < 0.05.  Graphs without letters indicate no significant  

differences.  Means and standard errors were back-transformed from cube root transformed estimates.  Geology abbreviations:  QI = Qai;  

QY = Qay; QO = Qayo; YY = Qayy, QF = Qfy; QD = Qscd; QU = Qsu.  
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Figure 4.3.  Results of post-hoc comparisons of mean plot volume and density by vegetation association using the Tukey-Kramer test.  Graphs  

show means and standard errors.  Different letters represent significant differences at P < 0.05.  Graphs without letters indicate no significant 

differences.  Means and standard errors were back-transformed from cube root transformed estimates.  Vegetation abbreviations:  AD =  

Ambrosia dumosa - Atriplex confertifolia Association; AU = Ambrosia dumosa - Larrea tridentata:  Upper Alluvial Fan Association; AM =  

Ambrosia dumosa - Menodora spinescens Association; AP = Atriplex polycarpa - Ambrosia dumosa Association, BL = Badlands; LT = Larrea 

tridentata Association; LA = Larrea tridentata -  Ambrosia dumosa Association.   
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Figure 4.4.  OLS regression results showing the log-log plots of total plot volume vs. plot density. Plots are 

for all species sampled on the ULVWCTA (F(1,222) = 64.13, P < .0001, R
2
 = 0.221), for all Larrea tridentata 

shrubs sampled on the ULVWCTA F(1,201) = 156.7, P < .0001, R
2
 = 0.435), and for all Ambrosia dumosa s 

hrubs sampled on the ULVWCTA (F(1,182) = 419.1, P < .0001).  Results are significant at P < 0.05. 
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Figure 4.5.  OLS regression results showing the log-log plots of mean plot volume vs. plot density.  Plots 

are for all species sampled on the ULVWCTA (F(1,222) = 3.509, P = 0.062, R
2
 = 0.011), for all Larrea 

tridentata shrubs sampled on the ULVWCTA (F(1,201) = 0.00002, P = 0.996, R
2
 = -0.005), and for all 

Ambrosia dumosa shrubs sampled on the ULVWCTA (F(1,182) = 7.48, P = 0.007, R
2
 = 0.034).  Results are 

significant at P < 05.   
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CHAPTER 5 

 

SUMMARY 

 

  

 Ecological communities are complex, the structure of which equals the sum of the 

interactions between community characteristics and the abiotic and biotic factors shaping 

them.  Because of this complexity, communities are often studied in their component 

parts, giving special focus to one or two aspects of community structure.  While this 

might be the most practical method to study communities, this approach often neglects 

other characteristics that, with their inclusion, would paint a more complete picture of 

community ecology.   

The studies described in this dissertation were conducted in an effort to synthesize 

the complexity that is inherent in ecological communities.  Following Tillman’s (1982) 

list of characteristics describing community structure (species composition, abundance, 

diversity, the spatial and temporal patterning of species abundances, and morphological 

characteristics of the dominant species), we designed this dissertation to address each 

characteristic so as to gain a more complete understanding of the plant communities 

inhabiting the ULVWCTA.  While the individual studies follow traditional methodology 

and break communities into their component parts, each study was designed to address a 

separate component of community structure, which, taken as a whole, would provide 

more well-defined account of arid plant community structure. 

Specifically, Chapter 2 examined the abiotic influences on species composition, 

abundance, and diversity for each plant community on the ULVWCTA.  While it is 

known that soil, geology, topography, and bioclimatic factors influence arid plant 
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communities, the relative contribution of these factors has remained unclear.  This study 

confirmed the overall importance of substrate properties (i.e. soil map unit and geologic 

unit) on plant community structure.  Subtle differences in substrate texture and age may 

lead to large differences in plant available water. 

 Knowing that substrate and climate and their influence on potential water 

availability appear to direct species composition and abundance for plant communities on 

the ULVWCTA, Chapters 3 and 4 focused on the interplay between soil and geologic 

variables and other aspects of community structure.  Chapter 3 investigated the biotic 

influences within each plant community on the ULVWCTA.  While numerous studies 

have analyzed dispersion patterns as a means to generate hypotheses regarding the biotic 

influences on community structure, most were limited to one or several species or did not 

incorporate substrate as an important control factor.  Our study was novel in that it 

compared dispersion patterns between entire plant communities growing on different 

substrates.  Our results indicate that random and clumping patterns occur more often than 

uniform spatial patterns, indicating that facilitation may be the predominant plant-plant 

interaction on this site.  We also saw dispersion patterns change between soils and 

geologic substrates of different textures and ages, demonstrating the strong influence of 

substrate in shaping plant-plant interactions in arid environments.   

Chapter 4 examined patterns of size and abundance within and among plant 

communities growing on different substrates across the ULVWCTA and also investigated 

the self-thinning relationship and its applicability in this arid environment.  There have 

been conflicting results in the few studies have investigated the role of self-thinning in 
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arid environments, with some observing a self-thinning relationship and others citing a 

weak relationship.  Overall, we saw plant size and abundance patterns change 

significantly between soil map units, geologic units, and plant community associations. In 

addition, our results did not provide evidence of self-thinning relationships, but instead 

showed significant positive relationships in the log-log plots of plot density vs. total plot 

volume for all species together, for L. tridentata alone, and A. dumosa alone.  Our results 

support the strong role of substrate variables in determining plant community structure as 

well as theories predicting that facilitation is a dominant component in arid plant 

communities.   

 By addressing multiple aspects of community structure in addition to both the 

abiotic and biotic variables influencing these characteristics, we have been afforded a 

more complete understanding of plant community dynamics on the ULVWCTA.  Taken 

as a unit, each study provides support for the others.  Overall, each study emphasized the 

importance of substrate variables and their role in shaping plant community structure on 

the ULVWCTA.  Future studies should provide this same emphasis, addressing plant 

communities and the underlying substrate as a unit, whether for research or management 

purposes. In addition, Chapters 3 and 4 provide evidence of the strong role that 

facilitation plays on this site and possibly arid plant communities as a whole.  Ecologists 

have long debated the roles of competition and facilitation in arid environments and 

should consider a multifaceted approach like the one described here to gain perspective to 

these long standing questions.   
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 Our approach, while not simple, is important for community ecology as a science.  

It is difficult to understand community structure using only smaller, fragmented studies.  

The comprehensive approach described here will enable ecologists to gain a more 

complete understanding of community dynamics and apply this knowledge to various 

climate change and land management scenarios.  This is particularly important for arid 

and semi-arid environments which cover approximately one third of the earth’s land area 

may be some of the most sensitive to climate change (Maestre et al. 2005).  In addition, 

there is a growing need for large ecological assessments which provide datasets such as 

the one described here.  These large datasets provide the opportunity for more 

comprehensive community studies.   

Despite the need for more holistic community studies, this dissertation has 

revealed a large disconnect between theoretical, mathematical, and applied ecology, one 

that could impede progress for practical purposes.  Essentially, the smaller areas of study 

that make up current community ecology are individual topics in ecology in their own 

right, each with a rich and complicated history of theory and methodology.  Essentially, 

each chapter of this dissertation could have been a stand- alone research topic.  It was 

challenging to combine these topics and understand the intricacies in the background 

literature and statistical approaches.  As such, most of the statistical methods presented 

are not practical for an applied ecologist, land manager, or ecological consultant needing 

to manage and inventory ecological communities and make on the ground decisions.  In 

summary, community ecology is in need of a more collaborative and multidisciplinary 
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approach in addition to developing practical methodology for field ecologists that goes 

beyond simple maps and basic descriptions.   
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Appendix A.  Woody perennial species identified in the ULVWCTA.   

 

Names and authorities follow those used by the USDA (http://plants.usda.gov).  Names 

do not necessarily follow those of general usage. 

 

 

AGAVACEAE – Agave Family 

 

Yucca brevifolia Engelm.  Joshua Tree.  Tree/shrub.  (YUCBRE). 

 

Yucca schidigera Roezl ex Ortgies.  Mojave Yucca.  Tree/shrub.  (YUCSCH). 

 

 

ASTERACEAE – Sunflower Family 

 

Acamptopappus shockleyi A. Gray.  Shockley's goldenhead.  Subshrub.  (ACASHO). 

 

Ambrosia dumosa (A. Gray) Payne.  Burrobush.  Shrub/subshrub.  (AMBDUM). 

 

Amphipappus fremontii Torr. & A. Gray ex A. Gray.  Fremont's chaffbush.  Shrub.   

(AMPFRE). 

 

Bebbia juncea (Benth.) Greene.  Sweetbush.  Shrub/subshrub.  (BENJUN). 

 

Encelia virginensis A. Nelson.  Virgin River brittlebush.  Shrub.  (ENCVIR). 

 

Ericameria paniculata (A. Gray) Rydb.  Mojave rabbitbrush.  Shrub.  (ERIPAN).   

 

Gutierrezia Lag. Snakeweed.  (GUTSPP). 

 

Hymenoclea salsola Torr. & A. Gray.  Burrobrush.  Subshrub.  (HYMSAL). 

 

Lygodesmia juncea (Pursh) D. Don ex Hook. Rush skeletonplant.  Forb/herb.  

(LYGJUN). 

 

Porophyllum gracile Benth.  Slender poreleaf.  Subshrub.  (PORGRA). 

 

Psilostrophe cooperi (A. Gray) Greene.  Whitestem Paperflower.  Subshrub/forb.  

(PSICOO). 

 

Stephanomeria pauciflora (Torr.) A. Nelson.  Brownplume wirelettuce.  Subshrub/forb.  

(STEPAU). 

 

http://plants.usda.gov/
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Xylorhiza tortifolia (Torr. & Gray) Greene.  Mojave Woodyaster.  Subshrub/forb.  

(XYLTOR). 

 

BRASSICACEAE – Mustard Family 

 

Lepidium fremontii S. Watson.  Desert pepperweed.  Shrub/subshrub.  (LEPFRE). 

 

 

CACTACEAE – Cactus Family 

 

Cylindropuntia echinocarpa (Engelm. & J.M. Bigelow) F.M. Knuth.  Wiggins' cholla.  

Shrub.  (CYLECH). 

 

Cylindropuntia ramosissima (Engelm.) F.M. Knuth.  Branched pencil cholla.  Shrub.  

(CYLRAM) 

 

Echinocactus polycephalus Engelm. & J.M. Bigelow.  Cottontop cactus.  Shrub.  

(ECHPOL). 

 

Echinocereus engelmannii (Parry ex Engelm.) Lem.  Engelmann's hedgehog cactus.  

Shrub.  (ECHENG). 

 

Ferocactus cylindraceus (Engelm.) Orcutt. California barrel cactus.  Shrub.  (FERCYL). 

 

Opuntia basilaris Engelm. & J.M. Bigelow.  Beavertail pricklypear.  Shrub.  (OPUBAS).   

 

 

CHENOPODIACEAE – Goosefoot Family 

 

Atriplex canescens (Pursh) Nutt.  Fourwing saltbush.  Shrub.  (ATRCAN). 

 

Atriplex confertifolia (Torr. & Frém.) S. Watson.  Shadscale saltbush.  Shrub/subshrub.  

(ATRCON). 

 

Atriplex polycarpa (Torr.) S. Watson.  Cattle saltbush.  Shrub.  (ATRPOL). 

 

Krascheninnikovia lanata (Pursh) A. Meeuse & Smit.  Winterfat.  Shrub/subshrub.  

(KRALAN). 

 

EPHEDRACEAE - Ephedra Family 

 

Ephedra nevadensis S. Watson.  Nevada jointfir.  Shrub/subshrub.  (EPHNEV). 

 

Ephedra torreyana S. Watson.  Torrey's jointfir.  Shrub/subshrub.  (EPHTOR) 
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FABACEAE - Pea Family 

 

Acacia greggii A. Gray.  Catclaw acacia.  Tree/shrub.  (ACAGRE). 

 

Psorothamnus fremontii (Torr. ex A. Gray) Barneby.  Fremont's dalea.  Shrub.  

(PSOFRE). 

 

 

KRAMERIACEAE – Krameria Family 

 

Krameria erecta Willd. ex J.A. Schult.  Littleleaf ratany.  Shrub/subshrub.  (KRAERA).  

 

 

OLEACEAE – Olive Family 

 

Menodora spinescens A. Gray.  Spiny menodora.  Shrub.  (MENSPI) 

 

 

ONAGRACEAE - EVENING PRIMROSE FAMILY 

 

Gaura coccinea Nutt. ex Pursh. Scarlet beeblossom.  Subshrub/forb.  (GAUCOC). 

 

 

POLYGONACEAE – Buckwheat Family 

 

Eriogonum corymbosum Benth. var. nilesii Reveal.  Las Vegas wild buckwheat.  Shrub.  

(ERICOR). 

 

Eriogonum fasciculatum Benth.  Eastern Mojave buckwheat.  Shrub/subshrub.  

(ERIFAC). 

 

RUTACEAE – Rue Family 

 

Thamnosma montana Torr. & Frém.  Turpentinebroom.  Subshrub.  (THAMON). 

 

 

SOLANACEAE – Nightshade Family 

 

Lycium andersonii A. Gray.  Water jacket.  Shrub.  (LYCAND). 

 

Lycium L.  Desert-thorn.  (LYCSPP). 

 

 



140 

 

 

1
40
 

ZYGOPHYLLACEAE – Caltrop Family 

 

Larrea tridentata (DC.) Coville.  Creosote bush.  Shrub/subshrub.  (LARTRI). 
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Appendix B.  Plots with corresponding elevation, vegetation associations, soil map units, 

and geologic units. 

 

Table B.1.  Plots with elevation, vegetation associations, soil types, and geologic units. 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

1 2879 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

2 2912 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

3 2942 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

4 2729 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayy 

5 2736 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qscd 

6 2737 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

7 2748 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

8 2749 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

9 2776 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

10 2799 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

11 2823 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

12 2774 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

13 2726 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

14 2708 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

15 2700 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

16 2690 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

17 2668 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

18 2660 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

19 2670 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

20 2676 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

21 2678 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

22 2679 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

23 2683 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

24 2694 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

25 2719 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

26 2737 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

27 2755 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

28 2770 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

29 2827 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

30 2760 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

31 2700 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

32 2649 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

33 2611 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

34 2603 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

35 2595 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

36 2599 Larrea tridentata Association Badland Qsu 

37 2589 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

38 2585 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

39 2584 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

40 2579 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

41 2577 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

42 2598 Larrea tridentata Association Badland Qscd 

43 2578 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

44 2579 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

45 2598 Larrea tridentata Association Badland Qscd 

46 2597 Larrea tridentata Association Badland Qscd 

47 2586 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

(Continued on next page) 

 



143 

 

 

1
43
 

Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

48 2592 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

49 2592 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

50 2593 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

51 2594 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

52 2598 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

53 2599 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayo 

54 2829 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

55 2760 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

56 2692 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

57 2631 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

58 2578 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

59 2534 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

60 2528 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

61 2526 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayo 

62 2523 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayo 

63 2522 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

64 2521 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

65 2515 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

66 2513 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

67 2511 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

68 2510 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

69 2508 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

70 2508 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

71 2505 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

72 2506 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Badland Qscd 

73 2501 
Larrea tridentata -  Ambrosia dumosa 

Association 
Badland Qscd 

74 2498 
Larrea tridentata -  Ambrosia dumosa 

Association 
Badland Qscd 

75 2498 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

76 2495 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

77 2489 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qay 

78 2487 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

79 2481 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

80 2482 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

81 2478 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

82 2475 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

83 2438 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

84 2437 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qfy 

85 2435 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qfy 

86 2435 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qfy 

87 2434 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

88 2434 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

89 2431 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

90 2430 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

91 2429 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

92 2426 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

93 2424 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

94 2422 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

95 2403 Badlands Badland Qscd 

96 2397 Badlands Badland Qscd 

97 2391 Badlands Badland Qscd 

98 2377 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

99 2375 Badlands Arizo Qscd 

100 2371 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

101 2371 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

104 2416 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

105 2362 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

106 2354 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

107 2346 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

108 2340 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Dalian-McCullough 

Complex 
Qscd 

109 2343 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Badland Qscd 

110 2334 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Badland Qscd 

111 2332 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

112 2331 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

113 2332 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

114 2330 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

115 2471 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

116 2400 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

117 2347 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

118 2303 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

119 2295 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

120 2290 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

121 2266 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

     

122 2259 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

123 2280 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Badland Qscd 

124 2283 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qayo 

125 2281 
Ambrosia dumosa - Menodora 

spinescens Association 
Las Vegas Qscd 

126 2281 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

127 2278 
Ambrosia dumosa - Menodora 

spinescens Association 

Las Vegas-DeStazo 

Complex 
Qscd 

128 2279 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

129 2277 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qayo 

130 2272 
Ambrosia dumosa - Menodora 

spinescens Association 

Las Vegas-DeStazo 

Complex 
Qscd 

131 2280 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Weiser Qayo 

132 2277 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Weiser Qayo 

133 2277 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

134 2545 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

135 2463 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

136 2387 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

137 2317 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

138 2266 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

139 2248 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

140 2239 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

141 2232 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

142 2203 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

143 2229 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

144 2221 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

145 2228 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

146 2227 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

147 2226 Human modified Las Vegas Qscd 

148 2530 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

149 2451 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

150 2380 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

151 2317 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

152 2271 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

153 2236 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

154 2555 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

155 2495 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

156 2438 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

157 2380 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

158 2324 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

159 2273 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

160 2692 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Goodsprings 

Complex 
Qai 

161 2621 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qai 

162 2546 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

163 2475 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

164 2406 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

165 2338 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qayy 

1000 2449 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

1001 2431 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map unit, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Units Geologic Unit 

1002 2397 
Larrea tridentata -  Ambrosia dumosa 

Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1003 2424 Larrea tridentata Association 
Las Vegas-DeStazo 

Complex 
Qscd 

1004 2408 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

1005 2408 
Larrea tridentata -  Ambrosia dumosa 

Association 

Las Vegas-DeStazo 

Complex 
Qfy 

1006 2408 Badlands Badland Qscd 

1007 2400 Larrea tridentata Association 
Las Vegas-DeStazo 

Complex 
Qscd 

1008 2380 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Badland Qscd 

1009 2393 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

1010 2380 Badlands Badland Qscd 

1011 2367 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1012 2384 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

1014 2359 
Larrea tridentata -  Ambrosia dumosa 

Association 
Badland Qscd 

1015 2309 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

1016 2331 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1017 2326 
Ambrosia dumosa - Menodora 

spinescens Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1018 2299 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

1019 2318 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Badland Qscd 

1020 2323 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Weiser Qscd 

1021 2324 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qscd 

1022 2313 
Ambrosia dumosa - Menodora 

spinescens Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1023 2315 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1024 2315 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1025 2307 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

1026 2312 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Weiser Qayo 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

1027 2308 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1028 2302 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Badland Qscd 

1029 2297 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1030 2310 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

1031 2289 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Badland Qscd 

1032 2301 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Weiser Qayo 

1033 2291 
Ambrosia dumosa - Menodora 

spinescens Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1034 2290 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1035 2269 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1036 2269 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1037 2271 
Larrea tridentata -  Ambrosia dumosa 

Association 
Badland Qscd 

1038 2262 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1039 2238 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

1040 2279 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser Qay 

1041 2256 
Larrea tridentata -  Ambrosia dumosa 

Association 
Badland Qay 

1042 2242 
Ambrosia dumosa - Menodora 

spinescens Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1043 2251 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1044 2250 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

1045 2222 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

1046 2244 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1047 2236 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1048 2235 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

1049 2202 
Ambrosia dumosa - Atriplex 

confertifolia Association 
Las Vegas Qscd 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Unit Geologic Unit 

1050 2197 
Ambrosia dumosa - Menodora 

spinescens Association 

Las Vegas-DeStazo 

Complex 
Qscd 

1051 2195 
Ambrosia dumosa - Atriplex 

confertifolia Association 

Dalian-McCullough 

Complex 
Qay 

1052 2170 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Weiser Qayy 

1053 2722 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qayy 

1054 2721 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

1055 2739 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

1056 2701 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

1057 2697 Larrea tridentata Association Badland Qscd 

1058 2675 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

1059 2680 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

1060 2695 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

1061 2669 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

1062 2659 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

1063 2630 Larrea tridentata Association 
Weiser-Wechech 

Association 
Qay 

1064 2641 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 

Weiser-Wechech 

Association 
Qayo 

1065 2616 Larrea tridentata Association Badland Qscd 

1066 2595 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

1067 2564 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

1068 2562 
Larrea tridentata -  Ambrosia dumosa 

Association 
Badland Qsu 

1069 2561 Larrea tridentata Association Badland Qscd 

1070 2548 
Larrea tridentata -  Ambrosia dumosa 

Association 

Weiser-Wechech 

Association 
Qay 

1071 2547 Larrea tridentata Association Badland Qsu 

1072 2529 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

1073 2508 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

1074 2499 
Larrea tridentata -  Ambrosia dumosa 

Association 
Arizo Qayy 

(Continued on next page) 
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Table B.1.  Plots with elevation, vegetation associations, soil map units, and geologic 

units (continued). 
Plot 

Number 

Elevation 

(m) 
Vegetation Association Soil Map Units Geologic Unit 

1075 2488 
Larrea tridentata -  Ambrosia dumosa 

Association 
Badland Qscd 

1076 2465 
Atriplex polycarpa - Ambrosia 

dumosa Association 
Arizo Qayy 

1077 2454 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 

 

 

1
52
 

Appendix C.  Species found within each survey plot 

(Species abbreviations can be found in Appendix A) 

 

Table C.1.  Plot, species, number of occurrences, and sum of cover  
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1 ambdum 14 6.56 

1 ephnev 1 0.29 

1 kraere 1 0.67 

1 lartri 13 17.95 

1 opubas 1 0.53 

2 ambdum 2 4.15 

2 lartri 9 25.82 

3 ambdum 39 20.58 

3 cylech 1 0.14 

3 ephnev 5 7.06 

3 kraere 4 5.38 

3 lartri 3 4.42 

3 lycand 1 0.81 

3 opubas 1 0.48 

4 ambdum 46 17.88 

4 cylram 2 0.82 

4 ephtor 2 0.53 

4 kraere 2 1.10 

4 lartri 9 19.05 

4 lycand 2 1.34 

5 ambdum 13 6.49 

5 cylech 1 0.01 

5 kraere 8 6.77 

5 lartri 22 27.09 

5 lycand 1 0.76 

5 opubas 1 0.40 

6 ambdum 35 18.82 

6 cylech 1 0.03 

6 encvir 2 0.82 

6 erifac 1 0.19 

6 kraere 6 4.11 

6 lartri 14 13.38 

6 lycand 2 2.01 

6 yucsch 1 2.01 

7 ambdum 8 3.10 

7 kraere 2 1.45 

7 lartri 14 20.56 

7 lycand 1 1.47 

8 ambdum 73 30.23 

8 echpol 1 0.07 

8 ephnev 6 1.02 

8 kraere 8 5.75 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

8 xyltor 3 0.16 

9 ambdum 40 23.44 

9 ephnev 2 1.77 

9 kraere 4 3.67 

9 lartri 13 35.24 

9 lycand 4 9.18 

10 ambdum 63 29.30 

10 echpol 1 0.47 

10 ephnev 2 3.90 

10 erifac 7 2.27 

10 guacoc 1 0.29 

10 gutspp 24 0.37 

10 kraere 4 3.06 

10 kralan 1 0.09 

10 lartri 8 11.68 

10 lycand 5 10.47 

10 psicoo 2 0.17 

10 yucsch 1 0.11 

11 ambdum 6 4.25 

11 atrcon 2 2.49 

11 lartri 4 8.05 

11 psofre 5 8.16 

11 yucbre 1 3.88 

12 ambdum 4 2.05 

12 atrcon 5 1.07 

12 lartri 4 12.36 

12 opubas 1 0.22 

12 yucsch 1 4.62 

13 ambdum 4 4.85 

13 atrcon 8 3.26 

13 lartri 1 2.53 

13 psofre 1 6.60 

14 ambdum 23 18.07 

14 lartri 3 5.55 

14 menspi 4 2.62 

14 psofre 5 19.25 

14 xyltor 5 0.76 

15 ambdum 17 12.32 

15 atrcon 1 0.04 

15 ephnev 1 0.40 

15 lartri 4 11.51 

15 psofre 1 0.36 

16 ambdum 3 3.20 

16 atrcon 1 0.04 

16 lartri 2 3.10 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

17 ambdum 19 18.79 

17 atrpol 1 0.58 

17 encvir 2 0.02 

17 hymsal 1 0.38 

17 lartri 2 26.76 

17 yucbre 1 5.66 

18 ambdum 42 33.89 

18 cylech 1 0.29 

18 eripan 1 3.82 

18 lartri 2 17.17 

18 lycand 1 1.15 

18 stepau 9 3.83 

19 ambdum 30 26.97 

19 kraere 2 3.77 

19 lartri 18 33.90 

19 yucsch 1 0.17 

20 ambdum 1 0.16 

20 kraere 4 3.16 

20 lartri 26 36.30 

21 ambdum 9 7.60 

21 echeng 1 0.30 

21 kraere 3 3.82 

21 lartri 24 29.70 

22 ambdum 12 10.62 

22 cylech 1 2.43 

22 lartri 14 24.84 

22 yucsch 1 7.02 

23 ambdum 14 9.89 

23 cylech 1 0.14 

23 echpol 1 1.07 

23 kraere 6 5.48 

23 lartri 8 23.16 

24 ambdum 14 13.34 

24 kraere 1 0.59 

24 lartri 14 26.14 

25 ambdum 32 24.28 

25 gutspp 1 0.09 

25 kraere 3 3.48 

25 lartri 6 12.90 

25 lycand 1 1.79 

25 yucsch 1 8.27 

26 ambdum 1 3.21 

26 xyltor 2 0.57 

27 ambdum 43 19.14 

27 echeng 1 0.12 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

27 encvir 1 0.64 

27 ephnev 3 8.82 

27 erifac 3 0.06 

27 gutspp 3 0.03 

27 kraere 6 7.75 

27 lartri 6 9.83 

27 porgra 1 0.45 

27 psofre 1 2.46 

27 yucsch 1 1.47 

28 ambdum 68 38.80 

28 ephnev 3 4.77 

28 erifac 3 0.72 

28 kraere 9 7.80 

28 lartri 9 10.10 

28 lycand 1 1.42 

28 yucsch 1 2.78 

29 ambdum 11 10.33 

29 cylech 2 2.13 

29 kraere 1 0.61 

29 lartri 9 15.23 

29 opubas 1 0.46 

29 psofre 2 5.37 

30 ambdum 4 4.17 

30 kraere 3 1.56 

30 lartri 10 14.38 

30 opubas 1 0.00 

30 psofre 2 0.55 

31 ambdum 21 15.77 

31 cylech 2 0.17 

31 echeng 9 1.81 

31 lartri 6 17.00 

32 ambdum 2 0.93 

32 kraere 5 2.10 

32 lartri 16 18.87 

32 psofre 5 3.42 

33 ambdum 1 0.14 

33 cylech 1 0.00 

33 kraere 1 0.96 

33 lartri 14 33.46 

34 ambdum 1 0.29 

34 kraere 2 1.08 

34 lartri 13 22.27 

35 ambdum 30 15.51 

35 cylech 1 0.18 

35 kraere 3 2.99 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

35 lartri 3 5.22 

35 psofre 1 2.54 

36 lartri 4 5.22 

37 ambdum 36 23.12 

37 kraere 1 0.58 

37 lartri 1 3.40 

37 lycand 1 0.70 

37 xyltor 2 0.43 

38 ambdum 14 13.03 

38 atrpol 3 10.72 

38 hymsal 4 7.39 

38 lartri 2 3.05 

39 ambdum 9 5.73 

39 atrpol 7 13.52 

39 lartri 7 12.71 

40 atrpol 41 143.41 

40 lartri 2 3.46 

40 lycand 1 2.47 

41 ambdum 14 7.10 

41 atrpol 3 7.62 

41 lartri 3 5.02 

42 No plants 1 0.00 

43 ambdum 47 34.66 

43 gutspp 28 1.96 

43 lartri 6 24.80 

44 ambdum 39 18.12 

44 kraere 2 2.06 

44 lartri 7 9.69 

45 ambdum 6 3.47 

45 lartri 2 3.56 

45 psofre 2 2.24 

45 thamon 1 2.40 

45 xyltor 2 0.52 

46 lartri 1 0.60 

47 ambdum 22 12.57 

47 encvir 13 1.47 

47 hymsal 6 5.16 

47 lartri 2 7.63 

47 lycand 1 0.89 

47 lygjun 3 6.75 

47 porgra 4 0.18 

47 psofre 3 6.86 

47 yucsch 1 0.89 

48 ambdum 7 3.32 

48 lartri 5 14.45 

(Continued on next page) 



157 

 

 

1
57
 

Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

49 ambdum 15 11.95 

49 lartri 2 4.65 

50 ambdum 51 24.10 

50 ephnev 3 1.06 

50 kraere 7 3.77 

50 lartri 8 11.02 

50 opubas 1 0.11 

51 ambdum 1 1.00 

51 ephnev 3 3.47 

51 lartri 1 0.16 

51 lycand 1 3.55 

52 ambdum 24 10.52 

52 erifac 1 0.47 

52 kraere 13 8.57 

52 lartri 6 5.29 

52 lycand 4 4.71 

52 menspi 1 0.16 

52 xyltor 4 0.79 

53 ambdum 28 28.10 

53 ephnev 4 2.27 

53 kraere 5 3.18 

53 lartri 7 6.88 

53 lycand 2 5.65 

53 lygjun 1 7.35 

54 ambdum 27 22.38 

54 cylech 1 0.44 

54 echpol 1 0.03 

54 kraere 4 3.78 

54 lartri 7 6.07 

54 psofre 2 2.20 

55 ambdum 16 10.68 

55 echpol 1 0.66 

55 kraere 1 0.75 

55 lartri 9 15.82 

56 ambdum 32 20.45 

56 kraere 6 4.37 

56 lartri 6 9.15 

56 psofre 1 1.09 

57 ambdum 31 17.55 

57 cylech 1 0.01 

57 kraere 2 0.95 

57 lartri 7 7.70 

58 ambdum 37 29.21 

58 kraere 1 1.48 

58 lartri 3 7.56 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

59 ambdum 16 8.25 

59 kraere 6 3.44 

59 lartri 20 21.79 

60 ambdum 3 1.72 

60 kraere 1 0.59 

60 lartri 3 9.03 

61 ambdum 13 6.10 

61 ephtor 1 1.19 

61 kraere 1 0.34 

61 lartri 1 4.54 

62 ambdum 46 23.36 

62 kraere 1 0.65 

62 lartri 8 9.94 

63 ambdum 49 24.94 

63 ephtor 1 1.05 

63 lartri 5 9.18 

64 ambdum 11 8.19 

64 ephtor 1 0.39 

64 kraere 2 1.84 

64 lartri 3 5.92 

65 ambdum 75 24.38 

65 ephtor 1 0.30 

65 kraere 3 3.27 

65 lartri 7 2.49 

66 ambdum 27 12.90 

66 lartri 8 12.67 

67 ambdum 49 25.49 

67 atrpol 3 2.94 

67 ephtor 1 0.45 

67 kraere 2 0.86 

67 lartri 7 13.07 

68 ambdum 6 2.61 

68 atrcon 1 0.90 

68 ephtor 1 0.15 

68 kraere 2 2.66 

68 lartri 3 5.13 

69 ambdum 34 16.78 

69 atrcon 1 0.16 

69 ephtor 6 4.15 

69 kraere 1 1.03 

69 lartri 5 4.96 

70 lartri 2 5.53 

71 ambdum 46 27.19 

71 ephnev 1 0.61 

71 kraere 4 2.80 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

71 lartri 6 9.00 

72 atrcon 1 2.32 

72 atrpol 1 3.09 

72 lartri 7 13.35 

72 lycand 3 0.71 

73 ambdum 10 3.05 

73 atrcon 1 0.11 

73 lartri 4 25.09 

74 ambdum 15 6.74 

74 atrpol 2 1.30 

74 kraere 1 0.51 

74 lartri 5 11.55 

74 lycand 3 1.04 

75 ambdum 11 6.56 

75 atrpol 4 4.58 

75 kraere 1 1.62 

75 lartri 8 8.09 

76 ambdum 10 6.02 

76 atrcon 1 0.37 

76 kraere 1 0.24 

76 lartri 3 4.55 

77 ambdum 7 3.76 

77 atrpol 19 45.10 

77 encvir 1 0.01 

77 lartri 8 12.90 

77 lycand 3 3.67 

78 ambdum 14 9.77 

78 atrpol 2 2.02 

78 lartri 4 10.52 

79 ambdum 4 1.00 

79 atrpol 55 50.58 

79 lartri 1 0.03 

80 atrpol 19 23.56 

80 lartri 8 9.92 

81 ambdum 3 2.18 

81 atrpol 10 11.87 

81 lartri 1 5.89 

82 atrpol 9 15.33 

82 eripan 18 18.71 

82 hymsal 1 4.21 

83 ambdum 41 23.71 

83 lartri 6 28.09 

84 ambdum 6 3.28 

84 lartri 3 6.71 

85 ambdum 36 24.29 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

85 lartri 6 26.29 

86 lartri 7 9.19 

87 ambdum 13 8.66 

87 lartri 4 32.79 

88 lartri 2 5.77 

89 ambdum 3 1.07 

89 lartri 3 4.94 

90 ambdum 16 12.75 

90 lartri 1 1.05 

91 ambdum 11 8.53 

91 lartri 3 7.73 

92 ambdum 14 14.46 

92 lartri 3 7.63 

93 No plants 1 0.00 

94 ambdum 13 15.12 

94 lartri 3 9.53 

95 No plants 1 0.00 

96 No plants 1 0.00 

97 No plants 1 0.00 

98 ambdum 47 21.35 

98 encvir 1 0.13 

98 hymsal 3 1.50 

98 lartri 5 13.47 

99 ambdum 7 3.70 

99 kraere 1 1.52 

99 lartri 2 3.37 

99 stepau 3 1.09 

100 ambdum 49 29.99 

100 ephnev 1 0.22 

100 ephtor 3 2.94 

100 gutspp 2 0.24 

100 kraere 2 0.89 

100 lartri 9 8.33 

101 ambdum 8 2.36 

101 lartri 5 8.38 

104 kraere 2 1.10 

104 lartri 17 30.36 

105 ambdum 3 1.31 

105 kraere 4 2.31 

105 lartri 14 29.13 

106 ambdum 3 2.73 

106 cylech 1 0.11 

106 kraere 3 4.25 

106 lartri 14 29.05 

107 No plants 1 0.00 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

108 ambdum 14 13.27 

108 atrcon 8 1.12 

109 atrcon 2 0.08 

109 ephtor 1 0.21 

110 atrcon 1 0.01 

110 ephtor 1 0.27 

111 atrcon 6 0.32 

111 ephnev 3 0.16 

111 lartri 3 1.78 

111 lycand 1 1.33 

112 ambdum 25 11.95 

112 atrcon 20 2.60 

112 ephnev 2 0.59 

112 ephtor 1 1.07 

112 kraere 5 1.20 

112 lycand 3 1.40 

112 menspi 1 0.06 

113 ambdum 1 0.29 

113 atrcon 50 2.96 

113 kraere 1 0.68 

113 lartri 1 0.27 

113 lycand 11 4.55 

114 ambdum 29 10.17 

114 atrcon 15 2.13 

114 ephnev 3 1.10 

114 ephtor 1 0.66 

114 kraere 6 3.77 

114 lartri 2 0.45 

114 menspi 8 3.29 

115 ambdum 5 7.42 

115 cylech 6 2.28 

115 kraere 3 5.82 

115 lartri 5 7.89 

116 ambdum 5 9.43 

116 cylech 1 0.29 

116 kraere 3 1.48 

116 lartri 6 12.23 

117 ambdum 5 4.45 

117 cylech 1 0.03 

117 kraere 2 5.14 

117 lartri 3 14.90 

118 ambdum 5 2.83 

118 kraere 6 4.94 

118 lartri 10 17.42 

119 ambdum 1 1.99 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

119 kraere 1 2.29 

119 lartri 3 9.40 

120 lartri 1 3.81 

121 ambdum 21 8.73 

121 lartri 15 29.16 

122 ambdum 13 3.83 

122 atrcan 2 1.79 

122 atrpol 13 10.42 

122 encvir 6 4.26 

122 eripan 1 1.94 

122 gutspp 14 1.48 

122 hymsal 8 6.96 

122 lartri 3 0.90 

123 ambdum 1 0.80 

123 atrcon 1 0.09 

123 lartri 1 1.13 

124 ambdum 11 8.66 

124 atrcon 4 0.37 

124 ephtor 2 0.53 

124 lartri 1 0.77 

124 lycand 3 2.05 

124 lycspp 1 0.60 

124 menspi 2 0.27 

125 acasho 2 0.24 

125 ambdum 25 13.77 

125 atrcon 9 0.50 

125 ephtor 2 0.25 

125 kraere 1 1.71 

125 kralan 1 0.10 

125 lartri 4 2.53 

125 lycand 2 0.19 

125 menspi 19 6.04 

125 xyltor 1 0.10 

126 atrcon 16 0.23 

126 lepfre 1 0.04 

127 ambdum 22 14.03 

127 atrcon 4 0.83 

127 ephnev 3 2.20 

127 ephtor 4 1.21 

127 lartri 1 2.91 

127 lycand 3 0.61 

127 menspi 6 1.70 

127 xyltor 1 0.28 

128 atrcon 5 0.23 

128 ephtor 2 0.40 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

128 ericor 1 0.49 

128 lycand 2 0.21 

129 ambdum 19 5.42 

129 atrcon 5 0.10 

129 ephtor 3 4.50 

129 kraere 5 2.97 

129 lartri 1 1.41 

129 lycand 1 0.06 

129 menspi 13 3.63 

129 xyltor 2 0.23 

130 ambdum 28 8.10 

130 atrcon 13 3.03 

130 ephtor 2 1.09 

130 kraere 12 3.96 

130 lartri 3 3.42 

130 lycand 7 3.22 

130 lycspp 1 0.08 

130 menspi 5 0.77 

131 ambdum 19 7.01 

131 atrcon 5 0.37 

131 ephtor 5 1.40 

131 kraere 1 0.90 

131 lycand 3 0.07 

131 menspi 3 0.90 

132 ambdum 13 2.50 

132 atrcon 10 1.08 

132 ephnev 1 0.03 

132 ephtor 1 0.17 

132 kraere 1 1.21 

132 lartri 1 0.36 

132 lycand 2 0.48 

132 menspi 20 5.09 

133 atrcon 8 0.11 

133 ericor 2 6.53 

134 ambdum 1 2.34 

134 cylech 1 0.01 

134 lartri 12 35.04 

135 ambdum 1 0.47 

135 cylech 4 3.55 

135 kraere 1 1.20 

135 lartri 7 20.91 

136 cylech 2 0.72 

136 lartri 14 45.82 

136 yucsch 1 3.14 

137 lartri 12 25.22 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

137 opubas 1 0.58 

138 ambdum 3 6.29 

138 kraere 1 2.19 

138 lartri 5 11.06 

139 ambdum 13 13.46 

139 cylech 1 0.03 

139 kraere 5 5.32 

139 lartri 7 13.70 

140 ambdum 5 2.37 

140 kraere 10 5.58 

140 lartri 6 11.80 

141 ambdum 1 0.44 

141 kraere 2 0.91 

142 ambdum 53 19.49 

142 kraere 3 3.84 

142 lartri 7 5.83 

143 atrcon 5 0.33 

144 ambdum 1 0.30 

144 atrcon 1 0.01 

144 lartri 1 2.46 

145 ambdum 7 2.96 

145 atrcon 8 1.63 

145 lartri 1 1.50 

145 lycand 3 1.72 

146 atrcon 2 0.09 

146 lartri 3 8.05 

147 No plants 1 0.00 

148 ambdum 1 3.35 

148 lartri 8 27.27 

149 fercyl 1 0.20 

149 lartri 16 31.19 

150 ambdum 1 2.16 

150 cylech 2 2.74 

150 lartri 10 31.87 

150 opubas 1 0.74 

151 ambdum 3 5.44 

151 kraere 1 1.92 

151 lartri 9 28.40 

151 opubas 1 0.25 

152 ambdum 2 2.84 

152 cylech 1 0.02 

152 kraere 1 1.15 

152 lartri 13 33.45 

153 ambdum 1 1.88 

153 lartri 5 11.43 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

154 lartri 6 16.79 

155 ambdum 6 7.87 

155 cylech 1 0.05 

155 lartri 9 28.79 

156 lartri 8 15.22 

156 opubas 1 0.50 

157 ambdum 1 1.67 

157 cylech 1 0.07 

157 lartri 18 41.17 

158 ambdum 24 26.60 

158 lartri 4 19.87 

159 ambdum 7 7.63 

159 cylech 1 0.70 

159 lartri 9 13.72 

160 ambdum 3 0.97 

160 lycand 3 3.67 

160 porgra 1 0.70 

161 ambdum 39 12.88 

161 ampfre 3 0.98 

161 encvir 2 0.53 

161 kraere 1 0.12 

161 lartri 4 13.50 

161 lycand 1 0.03 

161 porgra 9 7.09 

161 xyltor 1 0.12 

162 ambdum 11 10.02 

162 lartri 4 15.18 

163 ambdum 26 15.74 

163 cylech 1 0.64 

163 lartri 9 16.36 

163 opubas 2 0.49 

164 ambdum 22 17.09 

164 cylech 1 0.05 

164 fercyl 2 0.05 

164 kraere 1 0.97 

164 lartri 2 5.13 

164 lycand 3 3.79 

165 ambdum 13 8.33 

165 cylech 1 0.00 

165 fercyl 1 0.02 

165 lartri 7 26.37 

165 opubas 1 0.02 

1000 ambdum 2 2.23 

1000 lartri 4 9.50 

1001 ambdum 8 4.54 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1001 kraere 1 0.84 

1001 lartri 7 13.77 

1002 ambdum 2 2.19 

1002 atrcon 1 1.07 

1002 kraere 1 1.22 

1002 lartri 3 3.24 

1002 lycand 1 2.07 

1002 psofre 1 0.83 

1003 ephtor 1 0.45 

1003 lartri 1 3.82 

1003 psofre 1 2.68 

1004 ambdum 17 8.98 

1004 kraere 6 2.80 

1004 lartri 2 1.33 

1005 ambdum 24 9.93 

1005 ephnev 1 0.34 

1005 ephtor 2 1.24 

1005 kraere 4 4.11 

1005 lartri 6 2.48 

1006 No plants 1 0.00 

1007 lartri 1 3.02 

1008 No plants 1 0.00 

1009 ambdum 7 8.73 

1009 kraere 11 7.72 

1009 lartri 7 7.94 

1010 No plants 1 0.00 

1011 ambdum 19 6.33 

1011 atrcon 13 2.76 

1011 ephtor 5 1.02 

1011 lartri 3 3.17 

1011 lycand 3 1.43 

1011 psofre 1 1.58 

1012 ambdum 21 25.16 

1012 lartri 11 30.42 

1014 ambdum 22 10.57 

1014 atrpol 3 2.31 

1014 lartri 4 1.64 

1015 lartri 4 4.61 

1016 atrcon 4 0.23 

1016 lartri 1 2.13 

1016 lycand 1 0.99 

1017 ambdum 40 6.70 

1017 ephnev 1 1.09 

1017 kraere 7 8.43 

1017 lartri 7 7.40 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1017 menspi 2 0.29 

1018 atrpol 14 32.90 

1018 encvir 3 1.26 

1018 gutspp 6 2.25 

1018 hymsal 21 28.62 

1018 lartri 9 11.19 

1019 ambdum 2 0.79 

1019 atrcon 1 0.19 

1020 atrcon 18 1.10 

1021 ambdum 10 7.33 

1021 kraere 2 1.42 

1022 ambdum 52 9.48 

1022 atrcon 3 0.28 

1022 ephnev 1 0.84 

1022 gutspp 12 0.88 

1022 kraere 6 6.28 

1022 lartri 6 4.65 

1022 lycand 3 2.57 

1022 menspi 8 6.40 

1022 xyltor 8 1.22 

1023 atrcon 6 0.03 

1024 ambdum 31 14.46 

1024 atrcon 16 1.54 

1024 ephnev 5 1.00 

1024 ephtor 1 0.27 

1024 kraere 6 3.57 

1024 lartri 2 2.40 

1024 lycand 5 2.52 

1024 menspi 4 0.75 

1025 ambdum 7 3.48 

1025 lartri 10 31.00 

1026 ambdum 2 0.48 

1026 atrcon 7 1.08 

1026 ephtor 1 0.63 

1026 kraere 2 0.81 

1026 lartri 2 2.48 

1026 lycand 5 6.26 

1027 atrcon 7 0.56 

1027 ephtor 1 0.22 

1027 lartri 1 0.80 

1028 No plants 1 0.00 

1029 ambdum 6 1.50 

1029 ephnev 7 1.13 

1029 kraere 3 0.80 

1029 lartri 1 0.35 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1029 lycand 3 0.78 

1030 ambdum 1 0.36 

1030 lartri 1 4.48 

1031 ambdum 25 13.07 

1031 atrcon 9 0.84 

1031 ephtor 1 0.26 

1031 kraere 3 2.07 

1031 lartri 2 1.01 

1031 lycand 3 2.87 

1031 menspi 1 0.07 

1032 lartri 7 27.82 

1033 ambdum 36 13.52 

1033 atrcon 10 2.12 

1033 ephtor 5 3.65 

1033 gutspp 3 0.98 

1033 kraere 5 1.79 

1033 lartri 1 0.45 

1033 lycand 4 1.29 

1033 menspi 11 2.21 

1034 atrcon 3 0.10 

1035 atrcon 8 1.13 

1035 ephtor 1 0.22 

1035 lepfre 1 0.32 

1035 lycand 2 0.38 

1035 menspi 1 0.33 

1036 atrcon 6 0.77 

1036 ephtor 1 1.29 

1036 lepfre 2 1.06 

1037 ambdum 2 1.04 

1037 atrpol 2 7.12 

1037 kraere 2 1.48 

1037 lartri 1 1.08 

1038 atrcon 28 3.00 

1038 ephnev 4 1.32 

1039 ambdum 45 13.67 

1039 atrpol 10 15.78 

1039 lartri 12 19.39 

1040 ambdum 4 3.92 

1040 kraere 1 0.62 

1040 lartri 5 7.75 

1041 ambdum 17 10.11 

1041 atrcon 3 0.27 

1041 atrpol 3 0.32 

1041 kraere 1 0.23 

1041 lartri 2 3.37 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1042 ambdum 66 15.33 

1042 kraere 4 3.49 

1042 lartri 8 10.36 

1042 lycand 3 1.35 

1042 menspi 2 0.53 

1043 atrcon 10 0.76 

1043 ephtor 2 0.13 

1043 kraere 1 0.17 

1043 lepfre 3 0.17 

1044 ambdum 29 17.38 

1044 cylech 1 0.05 

1044 lartri 4 8.21 

1044 psofre 3 17.82 

1044 xyltor 1 0.00 

1044 yucsch 2 4.40 

1045 ambdum 6 3.66 

1045 atrcan 4 9.09 

1045 atrpol 14 26.62 

1045 encvir 2 0.22 

1045 gutspp 6 0.97 

1045 hymsal 4 2.87 

1045 lartri 15 60.67 

1045 lycand 2 2.22 

1046 No plants 1 0.00 

1047 atrcon 2 0.89 

1047 lycand 1 0.08 

1047 lycspp 3 0.42 

1048 ambdum 3 0.58 

1048 atrcon 6 0.69 

1048 lartri 3 4.92 

1049 ambdum 18 15.12 

1049 lartri 6 20.72 

1050 acagre 2 48.19 

1050 ambdum 92 22.99 

1050 atrcan 4 1.16 

1050 lartri 1 4.35 

1050 lepfre 1 1.48 

1050 lycand 1 0.76 

1051 ambdum 2 0.51 

1051 atrcon 16 3.74 

1051 ephtor 1 0.18 

1051 kraere 2 1.10 

1051 lartri 2 4.23 

1052 ambdum 4 1.46 

1052 atrpol 9 32.92 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1052 lartri 3 15.33 

1053 ambdum 15 6.85 

1053 kraere 5 3.48 

1053 lartri 3 6.66 

1053 lycand 1 0.10 

1053 psofre 2 2.74 

1054 ambdum 60 25.02 

1054 atrcon 2 0.89 

1054 cylech 1 0.07 

1054 echeng 2 1.56 

1054 kraere 5 5.01 

1054 lartri 2 8.86 

1054 lycand 1 1.37 

1054 psofre 1 2.60 

1055 ambdum 49 21.97 

1055 echeng 1 0.02 

1055 hymsal 2 2.00 

1055 lartri 3 36.59 

1056 ambdum 25 11.54 

1056 cylram 1 0.44 

1056 ephnev 1 0.99 

1056 kraere 12 7.44 

1056 lartri 6 6.13 

1057 lartri 5 15.03 

1058 ambdum 20 16.44 

1058 encvir 3 0.27 

1058 gutspp 3 2.57 

1058 hymsal 26 18.43 

1058 lartri 3 18.73 

1059 ambdum 21 11.95 

1059 kraere 5 4.35 

1059 lartri 12 21.82 

1060 ambdum 6 4.49 

1060 encvir 1 0.50 

1060 lartri 3 6.95 

1060 psofre 1 3.06 

1061 ambdum 18 14.07 

1061 atrcon 2 0.10 

1061 ephnev 21 4.84 

1061 lartri 5 6.00 

1061 psofre 2 4.00 

1061 yucsch 1 0.36 

1062 ambdum 50 28.84 

1062 kraere 5 5.46 

1062 lartri 15 23.40 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1062 yucsch 1 0.03 

1063 lartri 1 11.08 

1064 ambdum 5 2.17 

1064 lartri 5 7.56 

1065 lartri 1 4.56 

1066 ambdum 51 37.19 

1066 cylech 1 0.20 

1066 ephnev 2 1.97 

1066 ephtor 1 1.57 

1066 kraere 6 2.68 

1066 lartri 8 8.93 

1067 acasho 1 0.18 

1067 ambdum 45 26.17 

1067 ephnev 2 4.11 

1067 ephtor 2 1.46 

1067 gutspp 16 1.14 

1067 lartri 4 3.80 

1067 psofre 2 11.55 

1068 ambdum 2 1.54 

1068 lartri 9 16.53 

1069 ambdum 2 0.88 

1069 atrcon 6 2.25 

1069 lartri 2 1.75 

1070 ambdum 54 23.18 

1070 echpol 1 0.72 

1070 ephnev 2 1.65 

1070 kraere 2 5.66 

1070 lartri 4 12.26 

1070 psofre 2 0.68 

1071 lartri 1 0.78 

1072 ambdum 28 12.73 

1072 atrcon 1 0.85 

1072 kraere 6 3.47 

1072 lartri 2 1.79 

1072 psofre 4 8.61 

1073 ambdum 22 17.67 

1073 lartri 6 15.60 

1074 ambdum 10 5.33 

1074 atrpol 5 10.81 

1074 lartri 6 17.55 

1075 No plants 1 0.00 

1076 ambdum 6 4.61 

1076 atrpol 10 30.49 

1076 lartri 1 7.15 

1077 ambdum 17 12.25 

(Continued on next page) 
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Table C.1.  Plot, species, number of occurrences, and sum of cover (continued). 
Plot Number Woody Plant Species Abbreviation No. Of Occurrences Sum Of Cover By Species 

1077 atrpol 2 0.68 

1077 ephtor 1 0.27 

1077 kraere 3 1.77 

1077 lartri 5 5.19 
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Appendix D.  Scree plot of NMDS dimensions vs. stress values 

 

 

 

 
 Figure D.1.  Scree plot depicting NMDS stress value for analyses run in  

 one, two, three, four, five, and six dimensions.  Stress values were  

            determined after 500 iterations. 
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Appendix E.  NMDS ordination results 

 

 
 

 Figure E.1.  Ordination diagram of NMDS axes one and two with geology variables.   

 The diagram arranges variables such that the distance between points corresponds with the 

 dissimilarity between variables.  Larger distances are most accurate.  Species  

 abbreviations:  ambdum  = Ambrosia dumosa; atrcon = Atriplex confertifolia; atrpol  =  

 Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = Encelia virginensis;  

 ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia species;  

 hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; 

  lycand = Lycium andersonii;  menspi = Menodora spinescens; opubas = Opuntia  

 basilaris; psofre = Psorothamnus fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca 

 schidigera.   

 



175 

 

 

1
75
 

 
 

Figure E.2.  Ordination diagram of NMDS axes one and two with soil variables.  The diagram arranges 

variables such that the distance between points corresponds with the  dissimilarity between variables.  

Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia dumosa; atrcon = 

Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = Encelia 

virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia species; 

hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; lycand = Lycium 

andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus 

fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera   
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Figure E.3.  Ordination diagram of NMDS axes one and two with vegetation association variables.  The 

diagram arranges variables such that the distance between points corresponds with the dissimilarity 

between variables.  Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia 

dumosa; atrcon = Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; 

encvir = Encelia virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = 

Gutierrezia species; hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; 

lycand = Lycium andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = 

Psorothamnus fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera  
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Figure E.4.  Ordination diagram of NMDS axes one and three with geology variables.  The diagram 

arranges variables such that the distance between points corresponds with the  dissimilarity between 

variables.  Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia dumosa; 

atrcon = Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = 

Encelia virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia 

species; hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; lycand = 

Lycium andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus 

fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera.   
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Figure E.5.  Ordination diagram of NMDS axes one and three with soil variables.  The diagram arranges 

variables such that the distance between points corresponds with the  dissimilarity between variables.  

Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia dumosa; atrcon = 

Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = Encelia 

virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia 

species;hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata;  lycand = 

Lycium andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus 

fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera   
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Figure E.6.  Ordination diagram of NMDS axes one and three with vegetation association variables.  The 

diagram arranges variables such that the distance between points corresponds with the dissimilarity 

between variables.  Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia 

dumosa; atrcon = Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; 

encvir = Encelia virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = 

Gutierrezia species; hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; 

lycand = Lycium andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = 

Psorothamnus fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera 
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Figure E.7.  Ordination diagram of NMDS axes two and three with geology variables.  The diagram 

arranges variables such that the distance between points corresponds with the dissimilarity between 

variables.  Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia dumosa; 

atrcon = Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = 

Encelia virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia 

species; hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; lycand = 

Lycium andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus 

fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera.   
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Figure E.8.  Ordination diagram of NMDS axes one and three with soil variables.  The diagram arranges 

variables such that the distance between points corresponds with the  dissimilarity between variables.  

Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia dumosa; atrcon = 

Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; encvir = Encelia 

virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = Gutierrezia species;  

hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; lycand = Lycium 

andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = Psorothamnus 

fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera   
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Figure E.9.  Ordination diagram of NMDS axes two and three with vegetation association variables.  The 

diagram arranges variables such that the distance between points corresponds with the dissimilarity 

between variables.  Larger distances are most accurate.  Species abbreviations:  ambdum  = Ambrosia 

dumosa; atrcon = Atriplex confertifolia; atrpol  = Atriplex polycarpa; cylech = Cylindropuntia echinocarpa; 

encvir = Encelia virginensis; ephnve = Ephedra nevadensis; ephtor = Ephedra torreyana; gutspp = 

Gutierrezia species; hymsal = Hymenoclea salsola; kraere = Krameria erecta; latri = Larrea tridentata; 

lycand = Lycium andersonii;  menspi = Menodora spinescens; opubas = Opuntia basilaris; psofre = 

Psorothamnus fremontii; xyltor = Xylorhiza tortifolia; yucsch = Yucca schidigera 
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Table E.1.  NMDS plot scores by axis. 
Plot 

Number NMDS 1 NMDS 2 NMDS 3 

Plot 

Number NMDS 1 NMDS 2 NMDS 3 

1 -0.232 -0.291 -0.666 31 -0.591 -0.013 0.106 

2 -0.471 0.323 -0.002 32 -0.129 -0.037 -0.619 

3 0.246 -0.833 -0.435 33 -0.368 0.283 -0.527 

4 0.154 -0.175 0.013 34 -0.317 0.196 -0.499 

5 0.007 -0.274 -0.619 35 -0.170 -0.614 -0.175 

6 0.125 -0.695 0.046 36 -0.704 0.914 -0.201 

7 0.034 -0.006 -0.292 37 0.035 -0.617 0.346 

8 -0.061 -0.626 -0.083 38 -0.343 -0.218 0.773 

9 0.216 -0.321 0.075 39 -0.396 0.192 0.343 

10 0.366 -0.611 0.261 40 0.306 0.522 1.239 

11 0.628 0.395 0.129 41 -0.412 0.043 0.419 

12 0.517 0.617 -0.494 43 -0.503 -0.182 0.450 

13 0.812 0.339 0.207 44 -0.230 -0.258 -0.098 

14 -0.003 -0.996 0.594 45 -0.408 -0.788 0.544 

15 -0.086 0.059 0.305 46 -0.704 0.914 -0.201 

16 -0.089 0.247 0.157 47 0.074 -0.574 0.860 

17 -0.483 0.100 0.255 48 -0.475 0.285 0.030 

18 -0.207 -0.091 0.394 49 -0.574 -0.041 0.254 

19 -0.223 -0.181 -0.137 50 -0.080 -0.545 -0.199 

20 -0.349 0.175 -0.607 51 0.823 -0.422 1.007 

21 -0.235 -0.106 -0.286 52 0.374 -0.805 -0.278 

22 -0.891 -0.517 -0.031 53 0.263 -0.557 0.100 

23 -0.226 -0.253 -0.335 54 -0.195 -0.636 -0.158 

24 -0.297 0.003 -0.053 55 -0.273 -0.068 -0.077 

25 0.107 -0.695 0.143 56 -0.167 -0.425 -0.161 

26 -0.495 -1.118 0.683 57 -0.261 -0.276 -0.020 

27 0.147 -0.954 -0.088 58 -0.252 -0.327 0.001 

28 0.174 -0.727 -0.066 59 -0.229 -0.137 -0.262 

29 -0.509 -0.706 -0.604 60 -0.252 -0.032 -0.252 

30 -0.159 -0.129 -0.327 61 0.244 -0.156 -0.243 

(Continued on next page) 
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Table E.1.  NMDS plot scores by axis (continued). 
Plot 

Number NMDS 1 NMDS 2 NMDS 3 

Plot 

Number NMDS 1 NMDS 2 NMDS 3 

62 -0.277 -0.201 0.043 92 -0.565 0.016 0.216 

63 -0.041 -0.013 0.434 94 -0.557 0.035 0.202 

64 0.062 -0.290 -0.238 98 -0.516 -0.097 0.388 

65 0.042 -0.520 -0.152 99 -0.203 -0.314 -0.231 

66 -0.536 0.101 0.161 100 0.259 -0.467 0.265 

67 -0.027 -0.201 0.125 101 -0.479 0.263 0.048 

68 0.501 -0.067 -0.361 104 -0.415 0.358 -0.609 

69 0.482 -0.290 -0.225 105 -0.273 0.065 -0.442 

70 -0.704 0.914 -0.201 106 -0.279 -0.093 -0.466 

71 -0.135 -0.409 -0.043 108 0.678 0.301 0.535 

72 0.602 0.756 0.154 109 1.718 0.333 -0.424 

73 -0.152 0.418 -0.017 110 1.900 -0.233 -0.651 

74 0.024 -0.097 0.074 111 0.849 0.571 0.346 

75 -0.193 -0.252 -0.111 112 0.944 -0.248 0.025 

76 0.222 0.058 -0.011 113 1.216 0.147 -0.063 

77 0.086 0.201 0.715 114 0.855 -0.355 -0.385 

78 -0.469 0.111 0.256 115 -0.165 -0.570 -0.570 

79 -0.038 -0.136 1.266 116 -0.300 -0.292 -0.202 

80 -0.677 0.829 0.445 117 -0.207 -0.260 -0.417 

81 -0.371 0.236 0.413 118 -0.204 -0.163 -0.462 

82 -0.537 0.321 2.124 119 -0.224 -0.148 -0.380 

83 -0.526 0.130 0.142 120 -0.704 0.914 -0.201 

84 -0.499 0.198 0.097 121 -0.480 0.259 0.052 

85 -0.530 0.119 0.150 122 -0.147 -0.428 1.443 

86 -0.704 0.914 -0.201 123 0.161 0.311 0.105 

87 -0.477 0.269 0.044 124 0.788 -0.214 0.358 

88 -0.704 0.914 -0.201 125 0.727 -0.585 -0.159 

89 -0.473 0.291 0.026 126 1.702 0.962 0.078 

90 -0.618 -0.296 0.430 127 0.863 -0.447 0.376 

91 -0.539 0.094 0.167 128 1.652 0.116 0.059 

(Continued on next page) 
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Table E.1.  NMDS plot scores by axis (continued). 
Plot 

Number NMDS 1 NMDS 2 NMDS 3 

Plot 

Number NMDS 1 NMDS 2 NMDS 3 

129 0.832 -0.613 -0.577 161 -0.317 -0.375 0.336 

130 0.852 -0.222 -0.168 162 -0.513 0.159 0.121 

131 0.847 -0.464 -0.259 163 -0.795 -0.433 -0.108 

132 1.041 -0.331 -0.356 164 0.153 -0.402 0.190 

133 1.701 0.962 0.078 165 -0.540 0.173 -0.008 

134 -0.479 0.417 -0.098 1000 -0.475 0.284 0.032 

135 -0.306 -0.092 -0.893 1001 -0.254 -0.059 -0.177 

136 -1.142 0.362 -0.305 1002 0.742 -0.092 -0.109 

137 -0.970 0.481 -0.665 1003 0.258 0.697 -0.845 

138 -0.220 -0.186 -0.235 1004 -0.215 -0.578 -0.192 

139 -0.214 -0.317 -0.245 1005 0.268 -0.542 -0.392 

140 -0.180 -0.236 -0.506 1007 -0.704 0.914 -0.201 

141 -0.038 -0.890 -0.654 1009 -0.165 -0.415 -0.362 

142 -0.213 -0.401 -0.152 1011 0.921 0.048 0.213 

143 1.703 0.961 0.082 1012 -0.524 0.133 0.140 

144 -0.121 0.419 -0.014 1014 -0.459 -0.130 0.536 

145 0.790 0.196 0.290 1015 -0.704 0.914 -0.201 

146 0.009 0.932 -0.137 1016 0.655 0.765 0.149 

148 -0.470 0.355 -0.027 1017 0.064 -0.582 -0.474 

149 -0.704 0.914 -0.201 1018 -0.384 0.107 1.530 

150 -0.970 -0.162 -0.659 1019 0.762 0.341 0.466 

151 -0.209 -0.084 -0.528 1020 1.703 0.961 0.081 

152 -0.276 0.069 -0.320 1021 -0.293 -0.854 -0.244 

153 -0.471 0.322 0.000 1022 0.771 -0.893 0.013 

154 -0.704 0.914 -0.201 1023 1.702 0.961 0.080 

155 -0.514 0.217 -0.003 1024 0.753 -0.377 -0.071 

156 -0.971 0.448 -0.719 1025 -0.469 0.364 -0.032 

157 -0.526 0.459 -0.161 1026 1.056 -0.089 -0.161 

158 -0.550 0.064 0.183 1027 1.032 0.673 -0.174 

159 -0.692 -0.120 0.009 1029 0.439 -0.830 -0.098 

(Continued on next page) 
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Table E.1.  NMDS plot scores by axis (continued). 
Plot 

Number NMDS 1 NMDS 2 NMDS 3 

Plot 

Number NMDS 1 NMDS 2 NMDS 3 

1030 -0.470 0.411 -0.056 1054 0.399 -0.323 -0.083 

1031 0.690 -0.322 -0.025 1055 -0.503 0.132 0.220 

1032 -0.704 0.914 -0.201 1056 -0.038 -0.561 -0.325 

1033 1.047 -0.401 -0.043 1057 -0.704 0.914 -0.201 

1034 1.702 0.961 0.081 1058 -0.348 -0.357 0.855 

1035 1.621 0.167 0.087 1059 -0.220 -0.184 -0.237 

1036 1.687 0.398 -0.375 1060 -0.560 -0.470 0.434 

1037 -0.186 -0.673 -0.405 1061 0.222 -0.466 0.639 

1038 1.615 0.611 0.391 1062 -0.212 -0.260 -0.162 

1039 -0.418 0.141 0.327 1063 -0.704 0.914 -0.201 

1040 -0.248 -0.095 -0.152 1064 -0.479 0.262 0.049 

1041 0.211 0.009 0.100 1065 -0.704 0.914 -0.201 

1042 0.158 -0.402 -0.142 1066 0.235 -0.557 -0.071 

1043 1.307 0.239 -0.449 1067 0.421 -0.731 0.658 

1044 -0.520 -0.795 0.395 1068 -0.469 0.392 -0.047 

1045 -0.090 0.391 0.762 1069 0.767 0.521 0.064 

1047 1.566 0.711 0.217 1070 -0.044 -0.518 -0.174 

1048 0.358 0.534 -0.002 1071 -0.704 0.914 -0.201 

1049 -0.517 0.150 0.129 1072 0.498 -0.347 -0.384 

1050 -0.121 -0.113 0.506 1073 -0.541 0.092 0.168 

1051 0.813 0.197 -0.313 1074 -0.409 0.256 0.270 

1052 -0.400 0.461 0.426 1076 -0.341 0.132 0.527 

1053 0.012 -0.468 -0.332 1077 0.023 -0.329 -0.097 
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Appendix F.  CCA Plot Scores 

 

 

Table F.1.  CCA plot scores by axis 
Plot 

Number CCA 1 CCA 2 

Plot 

Number CCA 1 CCA 2 

Plot 

Number CCA 1 CCA 2 

1 -0.408 -1.044 31 -0.418 -0.616 62 -0.463 -0.068 

2 -0.355 -1.387 32 -0.457 -1.111 63 -0.475 0.274 

3 -0.627 0.833 33 -0.345 -1.625 64 -0.494 0.021 

4 -0.436 -0.174 34 -0.356 -1.558 65 -0.536 0.539 

5 -0.451 -0.789 35 -0.552 0.133 66 -0.420 -0.542 

6 -0.439 0.062 36 -0.330 -1.706 67 -0.145 -0.007 

7 -0.385 -0.847 37 -0.499 0.553 68 -0.544 0.823 

8 -0.529 0.261 38 1.953 0.506 69 -0.560 1.685 

9 -0.441 0.285 39 1.536 -0.367 70 -0.330 -1.706 

10 -0.491 1.344 40 3.979 0.529 71 -0.500 0.133 

11 -0.625 1.205 41 1.338 -0.032 72 0.314 0.822 

12 -0.510 -0.522 43 -0.348 -0.261 73 -0.351 -1.397 

13 -0.701 2.763 44 -0.475 -0.125 74 -0.128 -0.373 

14 -0.694 1.233 45 -0.557 0.002 75 0.559 -0.296 

15 -0.439 -0.423 46 -0.330 -1.706 76 -0.455 0.119 

16 -0.423 -0.444 47 0.236 0.247 77 2.748 0.388 

17 -0.308 -0.722 48 -0.363 -1.275 78 -0.001 -0.498 

18 -0.450 -0.055 49 -0.458 -0.045 79 4.066 0.483 

19 -0.436 -0.592 50 -0.506 0.043 80 2.829 -0.166 

20 -0.373 -1.488 51 -0.670 4.003 81 2.323 -0.152 

21 -0.412 -1.036 52 -0.579 1.412 82 4.133 0.655 

22 -0.482 -1.221 53 -0.519 1.097 83 -0.412 -0.650 

23 -0.452 -0.755 54 -0.543 0.160 84 -0.389 -0.949 

24 -0.397 -0.900 55 -0.414 -0.730 85 -0.416 -0.598 

25 -0.541 -0.030 56 -0.517 0.034 86 -0.330 -1.706 

26 -0.578 1.385 57 -0.469 -0.068 87 -0.367 -1.224 

27 -0.600 0.521 58 -0.487 0.157 88 -0.330 -1.706 

28 -0.571 0.498 59 -0.428 -0.869 89 -0.362 -1.297 

29 -0.517 -0.826 60 -0.385 -1.219 90 -0.495 0.426 

30 -0.421 -0.985 61 -0.495 0.649 91 -0.424 -0.495 

(Continued on next page) 
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Table F.1.  CCA plot scores by axis (continued) 
Plot 

Number CCA 1 CCA 2 

Plot 

Number CCA 1 CCA 2 

Plot 

Number CCA 1 CCA 2 

92 -0.447 -0.196 129 -0.795 5.982 161 -0.364 -0.528 

94 -0.439 -0.291 130 -0.618 3.781 162 -0.401 -0.789 

98 -0.244 -0.226 131 -0.662 3.657 163 -0.431 -0.698 

99 -0.500 -0.248 132 -0.879 9.547 164 -0.476 0.976 

100 -0.499 0.818 133 -0.875 14.099 165 -0.373 -1.154 

101 -0.369 -1.198 134 -0.341 -1.563 1000 -0.364 -1.268 

104 -0.348 -1.615 135 -0.414 -1.937 1001 -0.395 -1.045 

105 -0.374 -1.429 136 -0.371 -1.709 1002 -0.545 2.410 

106 -0.407 -1.232 137 -0.343 -1.749 1003 -0.590 -0.128 

108 -0.537 1.650 138 -0.446 -0.669 1004 -0.565 0.434 

109 -0.933 11.000 139 -0.490 -0.325 1005 -0.603 1.033 

110 -0.953 9.961 140 -0.500 -0.689 1007 -0.330 -1.706 

111 -0.443 2.911 141 -0.744 0.815 1009 -0.561 -0.050 

112 -0.617 3.549 142 -0.519 0.182 1011 -0.594 3.511 

113 -0.610 8.119 143 -0.875 14.099 1012 -0.411 -0.662 

114 -0.737 4.708 144 -0.352 -1.384 1014 0.255 0.322 

115 -0.558 -0.604 145 -0.532 4.249 1015 -0.330 -1.706 

116 -0.440 -0.648 146 -0.336 -1.522 1016 -0.394 1.753 

117 -0.473 -0.743 148 -0.350 -1.454 1017 -0.605 0.289 

118 -0.453 -0.933 149 -0.330 -1.706 1018 3.373 0.519 

119 -0.444 -0.933 150 -0.382 -1.822 1019 -0.578 3.164 

120 -0.330 -1.706 151 -0.389 -1.231 1020 -0.875 14.099 

121 -0.371 -1.175 152 -0.360 -1.452 1021 -0.565 0.653 

122 2.995 0.649 153 -0.355 -1.380 1022 -0.627 4.266 

123 -0.424 -0.119 154 -0.330 -1.706 1023 -0.875 14.099 

124 -0.527 2.505 155 -0.369 -1.216 1024 -0.593 2.386 

125 -0.680 4.557 156 -0.348 -1.767 1025 -0.348 -1.473 

126 -0.875 14.099 157 -0.338 -1.621 1026 -0.507 4.954 

127 -0.615 2.785 158 -0.432 -0.385 1027 -0.610 5.492 

128 -0.798 10.140 159 -0.405 -1.000 1029 -0.659 2.015 

(Continued on next page) 
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Table F.1.  CCA plot scores by axis (continued) 

Plot 

Number CCA 1 CCA 2 

Plot 

Number CCA 1 CCA 2 

Plot 

Number CCA 1 CCA 2 

1030 -0.343 -1.535 1045 1.051 -0.699 1061 -0.610 0.499 

1031 -0.546 2.078 1047 -0.838 13.468 1062 -0.469 -0.305 

1032 -0.330 -1.706 1048 -0.408 0.273 1063 -0.330 -1.706 

1033 -0.568 4.668 1049 -0.405 -0.733 1064 -0.370 -1.191 

1034 -0.875 14.099 1050 -0.478 0.400 1065 -0.330 -1.706 

1035 -0.844 12.546 1051 -0.619 4.977 1066 -0.528 0.564 

1036 -0.925 11.419 1052 2.637 -0.189 1067 -0.577 0.904 

1037 2.562 0.333 1053 -0.563 -0.109 1068 -0.345 -1.510 

1038 -0.908 10.652 1054 -0.541 0.610 1069 -0.613 5.992 

1039 1.070 -0.354 1055 -0.251 -0.770 1070 -0.528 0.072 

1040 -0.413 -0.838 1056 -0.584 0.232 1071 -0.330 -1.706 

1041 -0.375 0.320 1057 -0.330 -1.706 1072 -0.675 0.864 

1042 -0.495 0.382 1058 1.177 0.154 1073 -0.425 -0.481 

1043 -0.881 11.512 1059 -0.446 -0.684 1074 1.082 -0.639 

1044 -0.659 -0.007 1060 -0.404 -0.522 1076 2.890 0.125 

      

1077 -0.342 0.155 
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Appendix G.  Transect plots with corresponding elevation, vegetation associations, soil 

types, and geologic units. 

 

Table G.1.  Transect plots with corresponding elevation, vegetation associations, soil 

types, and geologic units.  Transect 1 = T1 and Transect 2 = T2. 

Plot 
Elevation 

(m) 
Vegetation Association Soil Type 

Geologic 

Unit 

T1-1 2856 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T1-2 2779 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T1-3 2726 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 
Weiser-Wechech Association Qayo 

T1-4 2694 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 
Weiser-Wechech Association Qayo 

T1-5 2669 
Ambrosia dumosa - Larrea tridentata:  

Upper Alluvial Fan Association 
Weiser-Wechech Association Qayo 

T1-6 2633 
Larrea tridentata -  Ambrosia dumosa 

Association 

Dalian-McCullough 

Complex 
Qayy 

T1-7 2638 Larrea tridentata Association Badland Qse 

T1-8 2639 Larrea tridentata Association Badland Qscd 

T1-9 2664 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T1-10 2682 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qayo 

T1-11 2707 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qayo 

T1-12 2726 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T1-13 2742 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qayo 

T2-1 2840 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-2 2796 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-3 2762 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-4 2726 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-5 2692 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-6 2676 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-7 2656 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-8 2637 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

T2-9 2627 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 

(Continued on next page) 
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Table G.1.  Transect plots with corresponding elevation, vegetation associations, soil 

types, and geologic units.  Transect 1 = T1 and Transect 2 = T2 (continued). 

Plot 
Elevation 

(m) 
Vegetation Association Soil Type 

Geologic 

Unit 

T2-10 2598 
Larrea tridentata -  Ambrosia dumosa 

Association 
Weiser-Wechech Association Qay 
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Appendix H.  Species found within each transect survey plot 

(Species abbreviations can be found in Appendix A) 

 

            Table H.1.  Plot, species, and number of occurrences for Transect 1 (T1)  

 and Transect 2 (T2). 

Plot Number Woody Plant Species Abbreviation No. Of Occurrences 

T1-1 ambdum 51 

T1-1 cylech 2 

T1-1 kraere 8 

T1-1 lartri 51 

T1-1 opubas 4 

T1-2 ambdum 35 

T1-2 cylech 6 

T1-2 kraere 11 

T1-2 lartri 45 

T1-2 opubas 1 

T1-2 yucsch 2 

T1-3 ambdum 58 

T1-3 cylech 1 

T1-3 kraere 14 

T1-3 lartri 63 

T1-3 opubas 3 

T1-3 psofre 1 

T1-3 yucsch 3 

T1-4 ambdum 3 

T1-4 kraere 5 

T1-4 lartri 24 

T1-5 ambdum 9 

T1-5 atrcon 3 

T1-5 lartri 14 

T1-5 psofre 3 

T1-5 yucsch 2 

T1-6 ambdum 101 

T1-6 bebjun 8 

T1-6 encvir 9 

T1-6 ephtor 2 

T1-6 gutspp 3 

T1-6 hymsal 3 

T1-6 lartri 15 

T1-6 psofre 3 

(Continued on next page) 
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Table H.1.  Plot, species, and number of occurrences for Transect 1 (T1)  

and Transect 2 (T2) (continued). 

Plot Number Woody Plant Species Abbreviation No. Of Occurrences 

T1-6 stepau 25 

T1-7 ambdum 9 

T1-7 lartri 17 

T1-8 lartri 10 

T1-9 ambdum 31 

T1-9 kraere 19 

T1-9 lartri 63 

T1-10 ambdum 16 

T1-10 kraere 1 

T1-10 lartri 37 

T1-11 ambdum 57 

T1-11 echpol 1 

T1-11 kraere 11 

T1-11 lartri 42 

T1-11 lycspp 1 

T1-12 ambdum 43 

T1-12 cylech 1 

T1-12 kraere 10 

T1-12 lartri 23 

T1-12 yucsch 2 

T1-13 ambdum 41 

T1-13 kraere 9 

T1-13 lartri 29 

T1-13 lycspp 5 

T1-13 xyltor 2 

T2-1 ambdum 38 

T2-1 cylech 4 

T2-1 echpol 1 

T2-1 kraere 15 

T2-1 lartri 43 

T2-1 yucsch 1 

T2-2 ambdum 38 

T2-2 cylech 9 

T2-2 lartri 64 

T2-3 ambdum 88 

T2-3 cylech 7 

T2-3 echpol 2 

(Continued on next page) 
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Table H.1.  Plot, species, and number of occurrences for Transect 1 (T1)  

and Transect 2 (T2) (continued). 

Plot Number Woody Plant Species Abbreviation No. Of Occurrences 

T2-3 ephtor 1 

T2-3 kraere 16 

T2-3 lartri 44 

T2-3 yucsch 2 

T2-4 ambdum 136 

T2-4 cylech 5 

T2-4 echpol 2 

T2-4 fercyl 1 

T2-4 kraere 12 

T2-4 lartri 29 

T2-4 psofre 2 

T2-5 ambdum 57 

T2-5 cylech 3 

T2-5 echpol 2 

T2-5 kraere 13 

T2-5 lartri 40 

T2-5 opubas 2 

T2-6 ambdum 39 

T2-6 cylech 6 

T2-6 kraere 12 

T2-6 lartri 37 

T2-6 psofre 4 

T2-7 ambdum 36 

T2-7 cylech 5 

T2-7 kraere 30 

T2-7 lartri 42 

T2-7 opubas 1 

T2-7 psofre 6 

T2-8 ambdum 93 

T2-8 cylech 9 

T2-8 kraere 7 

T2-8 lartri 39 

T2-8 opubas 2 

T2-9 ambdum 42 

T2-9 echpol 1 

T2-9 fercyl 1 

T2-9 kraere 15 

(Continued on next page) 
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Table H.1.  Plot, species, and number of occurrences for Transect 1 (T1)  

and Transect 2 (T2) (continued). 

Plot Number Woody Plant Species Abbreviation No. Of Occurrences 

T2-9 lartri 31 

T2-9 psofre 2 

T2-9 yucsch 2 

T2-10 ambdum 69 

T2-10 kraere 27 

T2-10 lartri 38 

T2-10 psofre 3 

T2-10 yucsch 1 
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Appendix I.  L-function plots 

 

Plot I.1.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

1.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.2.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

2.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 

 



198 

 

 

1
98
 

 

Plot I.3.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

3.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.4.  L-function plots for all species and L. tridentata alone  in Transect 1 (T1) Plot 4.  Solid lines 

represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte Carlo simulation 

envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope indicate significant 

clumping relative to the null hypothesis of complete spatial randomness, while values less than the lower 

simulation envelope indicate significant uniformity.  Horizontal axis values represent the scale (t, in 

meters) over which the pattern was tested. 
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Plot I.5.  L-function plots for all species and L. tridentata alone  in Transect 1 (T1) Plot 5.  Solid lines 

represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte Carlo simulation 

envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope indicate significant 

clumping relative to the null hypothesis of complete spatial randomness, while values less than the lower 

simulation envelope indicate significant uniformity.  Horizontal axis values represent the scale (t, in 

meters) over which the pattern was tested. 
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Plot I.6.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

6.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.7.  L-function plots for all species and L. tridentata alone  in Transect 1 (T1) Plot 7.  Solid lines 

represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte Carlo simulation 

envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope indicate significant 

clumping relative to the null hypothesis of complete spatial randomness, while values less than the lower 

simulation envelope indicate significant uniformity.  Horizontal axis values represent the scale (t, in 

meters) over which the pattern was tested. 
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Plot I.8.  L-function plots for all species and L. tridentata alone  in Transect 1 (T1) Plot 8.  Solid lines 

represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte Carlo simulation 

envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope indicate significant 

clumping relative to the null hypothesis of complete spatial randomness, while values less than the lower 

simulation envelope indicate significant uniformity.  Horizontal axis values represent the scale (t, in 

meters) over which the pattern was tested. 
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Plot I.9.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

9.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.10.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

10.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.11.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

11.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.12.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

12.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.13.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 1 (T1) Plot 

13.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.14.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

1.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.15.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

2.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.16.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

3.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.17.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

4.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.18.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

5.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.19.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

6.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.20.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

7.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.21.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

8.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.22.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

9.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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Plot I.23.  L-function plots for all species, A.  dumosa alone, and L. tridentata alone  in Transect 2 (T2) Plot 

10.  Solid lines represent the estimated L-statistic plotted as (L(t) − t). Shaded areas represent the Monte 

Carlo simulation envelopes (Nsim=199). Values of (L(r) − t) greater than the upper simulation envelope 

indicate significant clumping relative to the null hypothesis of complete spatial randomness, while values 

less than the lower simulation envelope indicate significant uniformity.  Horizontal axis values represent 

the scale (t, in meters) over which the pattern was tested. 
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