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ABSTRACT 

 
Three Essays on US Agricultural Insurance 

 
 

by 
 
 

Taehoo Kim, Doctor of Philosophy 
 

Utah State University, 2016 
 
 

Major Professor: Dr. Man-Keun Kim 
Department: Applied Economics 
 
 

Many economists and policy analysts have conducted studies on crop insurance. 

Three research gaps are identified: i) moral hazard in prevented planting (PP), ii) choice 

of PP and planting a second crop, and iii) selecting margin protection in the Dairy Margin 

Protection Program (MPP-Dairy). 

The first essay analyzes the existence of moral hazard in PP. The PP provision is 

defined as the “failure to plant an insured crop by the final planting date due to adverse 

events”. If the farmer decides not to plant a crop, the farmer receives a PP indemnity. Late 

planting (LP) is an option for the farmer to plant a crop while maintaining crop insurance 

after the final planting date. Crop insurance may alter farmers’ behavior in selecting PP or 

LP and could increase the likelihood of PP claims even though farmers can choose LP. 

This study finds evidence that a farmer with higher insurance coverage tends to choose 

PP more often (moral hazard). Spatial panel models attest to the existence of moral hazard 

in PP empirically. 
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If a farmer chooses PP, s/he receives the PP indemnity and may either leave the 

acreage unplanted or plant a second crop, e.g., soybean for corn. If the farmer plants a 

second crop after the PP claim, the farmer receives a 35% of PP payment. The current 

PP provision fails to provide farmers with an incentive to plant a second crop; 99.9% of 

PP claiming farmers do not plant a second crop. Adjusting PP indemnity payment may 

encourage farmers to plant a second crop. The second essay explores this question using 

a stochastic simulation and suggests to increase the PP payment by 10%-15%. 

The third essay investigates why Wisconsin dairy farmers purchase more 

supplementary protection than California farmers in a MPP-Dairy introduced in the 2014 

Farm Bill. MPP-Dairy provides dairy producers with margin protection when the national 

dairy margin is below a farmer selected threshold. This study determines whether 

conditional probabilities regarding regional and national margins have a role in farmer’s 

decision-making to purchase supplementary coverages using Copula models. Results 

indicate that Wisconsin farmers have higher conditional probabilities and purchase more 

buy-up coverages. 

 

 (110 pages) 
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PUBLIC ABSTRACT 

Three Essays on US Agricultural Insurance 

Taehoo Kim 

 
 

Agricultural insurance programs such as crop insurance and Dairy Margin 

Protection program (MPP-Dairy) are managed by United State Department of Agriculture 

(USDA). The objective of these programs is to help farmers manage their financial risk. 

Agricultural insurance programs have played an important role for farmers in terms of 

maintaining farm profitability. There are several potential problems with insurance 

programs, such as moral hazard and adverse selection, which make them inefficient 

 With respect to these problems, three research gaps are identified: i) moral hazard 

in prevented planting (PP), ii) choice of PP and planting a second crop, and iii) selecting 

margin protection in the Dairy Margin Protection Program (MPP-Dairy). Theories and 

empirical results show that moral hazard exists in PP, meaning that a farmer who 

purchases a higher coverage level is likely to abandon cropping when the farmer 

experiences adverse events such as drought or excess moisture. Second, the farmer may 

not plant a second crop due to a low PP indemnity payment. Increasing the PP indemnity 

payment provides an incentive for the farmer to plant a second crop. Third, dairy farmers 

purchase more supplementary protection in MPP-Dairy when co-movement of dairy 

margins between US and regions is stronger.    
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1. INTRODUCTION 

1.1. Federal Crop Insurance Program 

 The Federal Crop Insurance Program (FCIP) has grown over the past two decades 

(Figure 1-1) which is administered by the Risk Management Agency (RMA) within the 

United States Department of Agriculture (USDA) and delivered by private insurers. FCIP 

provides yield protection to farmers to help cover yield losses from various types of natural 

disasters including, but not limited to, drought, excessive moisture, freeze, and disease. 

Newer coverage options seek to combine yield protection and price protection to protect 

farmers against potential revenue loss, whether due to low yields (yield protection), 

decrease in market price (revenue protection) or a mixture of both.  

The RMA sets the premium rates that can be charged to farmers and determines 

which crops can and cannot be insured. Private insurance companies are then obligated 

to sell insurance indiscriminately to eligible farmers. To reduce the cost to farmers, the 

federal government subsidizes the farmer-paid premiums which are highly dependent on 

the type of insurance coverage and policy. The federal government also provides 

reimbursement to the private insurance companies to offset operating and administrative 

costs that would otherwise be paid by farmers as part of their premium. 

The 2014 Farm Bill eliminated direct payments and expanded crop insurance 

shifting the major means of agricultural supports to the crop insurance program. Hence, 

crop insurance became the central (federal) agricultural policy even though it might be 

expensive to taxpayers (Wright 2014). In 2014 alone, the program insured approximately 

$110 billion in liabilities (liability in Figure 1-1) on 294 million acres nationwide (net acre 

insured in Figure 1-1). Since 1996, insurance policies with a premium remained steady at 
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about 1.2 million (policies with premium in Figure 1-1) but the net acre insured and liability 

has grown significantly (Figure 1-1). Steep increase in policies with a premium in 1995 

was partly due to a substantial rise of premium subsidies in legislative actions in 1994 

(Plastina and Hart 2014) and partly because of the new requirement of purchasing crop 

insurance to obtain other agricultural supports payments, which was eliminated in the 

1996 Farm Bill (Plastina and Hart 2014). 

 

 

Figure 1-1. US Crop Insurance 

Note: Steep increase in policies with premium in 1995 is the result of substantial rise of premium 
subsidies and subscription to receive the other supportive federal program in legislative actions in 
1994. 
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1.1.1. Moral Hazard in Crop Insurance 

It is by now well known that crop insurance may alter farmers’ production practices 

to increase the likelihood of receiving an indemnity (moral hazard). Numerous studies, 

e.g., Chambers (1989), Horowitz and Lichtenberg (1993), Smith and Goodwin (1996), 

Babcock and Hennessy (1996), Wu (1999), and Chambers and Quiggin (2002), have 

examined whether crop insurance affects a farmers’ production behavior. Each of these 

studies shows that there exist changes in input use, i.e., fertilizer and chemicals, validating 

the assumption that moral hazard exists. In other words, farmers who purchase crop 

insurance tend to reduce input applications (Smith and Goodwin 1996) or increase (risk-

increasing) input use (Horowitz and Lichtenberg 1993) to increase the likelihood of 

receiving an indemnity. 

1.1.2. Crop Yield Distribution  

Proper calculation of the insurance premium is important. The RMA incorporates 

the distribution of crop yield in the calculation of the revenue insurance premium rate. 

Many studies, e.g., Nelson and Preckel (1989), Sherrick et al. (2004), and Woodard and 

Sherrick (2011), have attempted to find the best-fitting crop-yield distribution that would 

most accurately calculate this premium for farmers. 

1.1.3. Subsidizing Crop Insurance 

The role of insurance-premium subsidization has been highly debated in the 

literatures (Goodwin and Smith 2013; Coble and Barnett 2013; Wright 2014). Historical 

data suggests that a crop insurance subsidy encourages farmers to purchase crop 

insurance, e.g., the steep increase in policies with premium in 1995 in Figure 1-1. Further, 

the crop insurance subsidy reduces the problem of adverse selection, where otherwise 
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only farmers with high production risk would participate in the program. Wright (2014) also 

points out that crop insurance subsidies have not been prohibited under current WTO 

regulations. However, crop insurance subsidies may have unintended impacts such as 

alteration of farming practice (moral hazard), expansion of crop lands, and related 

environmental concerns. In addition, subsidized crop insurance represents a budgetary 

transfer from taxpayers to farmers and private insurance companies, resulting in potential 

market distortions (Goodwin and Smith 2013). 

1.1.4. Fairness of Premium Rate-making  

The fairness of rate-making (loss ratio, total indemnity payments to total premium, 

must be one) is vital. Historically, loss ratio has been less than 1 or larger than 1 for a 

given crops year (loss ratio in Figure 1-1). Empirical studies by Babcock, Hart, and Hayes 

(2004), Woodard, Sherrick, and Schnitkey (2011), and Hu (2013) question whether current 

rate-making is fair. If rate-making is unfair, the crop insurance program will be lessened 

due to two reasons. First, farmers that incur a loss due to an unfair rate may choose not 

to participate in the crop insurance program in the future. Second, only farmers that make 

a gain from unfair rates would likely participate in the crop insurance program (Goodwin 

1994). In other words, there exists a potential adverse selection problem. 

1.1.5. Time Dependence of Yield Risk 

The premium and indemnity depend on historical yield, which is known as the 

Actual Production History (APH). Both are biased downward over time due to 

technological advances that positively affect yield (Woodard et al. 2012). Since 2012, the 

RMA has implemented a trend-adjusted APH. 
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1.1.6. Research Gaps in the Crop Insurance Literature 

Two research gaps in the crop insurance literature are identified: (i) the existence 

of moral hazard due to prevented planting (PP) program and (ii) understanding the 

farmer’s decision-making process with respect to planting a second crop. 

The PP provision is defined as the “failure to plant an insured crop by the final 

planting date, or within any applicable late planting (LP) period,” due to adverse events 

such as excess moisture or drought (2013 Crop Insurance Handbook, USDA-RMA 2013). 

If a farmer decides not to plant a crop, s/he receives a PP indemnity. PP payments 

currently represent the large share of total indemnity in crop insurance programs. PP 

payments accounted for only 9% of total indemnity payments on average, from 1998 to 

2008. From 2009 to 2013, however, PP payments accounted for roughly 17% of total 

indemnity payments. Farmers tend to choose PP in lieu of LP. This paper examines the 

existence of moral hazard in the choice of PP and LP. In particular, this paper tests the 

hypothesis that a farmer with a higher insurance coverage tend to choose PP more often. 

If a farmer chooses PP, s/he receives the PP indemnity and may either leave the 

acreage unplanted or plant a second crop, e.g., soybean for corn. If the farmer plants a 

second crop, the farmer receives a reduced PP payment (currently, 35% of PP indemnity). 

The current reduced PP payment fails to provide farmers with an incentive to plant a 

second crop (99.9% of PP claiming farmers do not plant the second crop). Adjusting 

reduced PP indemnity payment may therefore encourage farmers to plant a second crop. 

The objective of the second study is to find and suggest the optimal percentage of reduced 

PP payment that may encourage farmers to plant a second crop.  



6 

 

1.2. Dairy Margin Protection Program 

The Dairy Margin Protection Program (MPP-Dairy) administered by Farm Service 

Agency (FAS), USDA, is a financial risk management tool for dairy producers. The 2014 

Farm Bill authorized the MPP-Dairy, which offers dairy producers protection of their milk 

production margin, income-over-feed-cost (IOFC) (Newton, Thraen, and Bozic 2015). The 

MPP-Dairy includes catastrophic coverage with an annual $100 administrative fee, and 

eight buy-up margin coverage levels with premium that varies with the level of protection 

(MPP dairy fact sheet 2014). The national dairy production margin is defined as the 

difference between the all-milk price and average feed costs (MPP dairy factsheet 2014). 

If the national average IOFC margin falls below $4/cwt (catastrophic coverage), MPP-

Dairy provides indemnity payments to dairy farmers. Dairy farmers can purchase buy-up 

(supplementary) coverages with increase in $0.5/cwt up to $8.0/cwt (MPP dairy fact sheet 

2014). The program’s objective is that dairy producers, regardless of size, geographic 

location, or management practice, are offered self-selected protection levels against a 

drop in milk prices, rising feed costs, or a mixture of both (Newton and Thraen 2014).  

2015 MPP-Dairy coverage data by states indicates that, for western states except 

Washington and Montana, less than 36% of those enrolled in the program purchased buy-

up protection. As a reference, California (CA), which is the largest dairy producing state in 

the U.S., had only 29% of the enrolled dairy farms buying supplementary coverage, i.e., 

the majority-enrolled only purchased catastrophic coverage. In contrast, more than 50% 

of enrolled dairy producers in mid-western and eastern states bought buy-up coverages. 

For example, Wisconsin (WI), the second largest dairy producing state in the U.S., had 

56% of enrolled producers buying supplementary coverages. Figure 1-2 shows the MPP-

Dairy participation rates across margin protections in CA and WI. As shown, the 
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distribution of MPP-Dairy participation rates differs in both regions. More than 70% of CA 

dairy producers solely purchased catastrophic protection, while 44% of WI producers 

enrolled solely in catastrophic protection. Instead, WI dairy farms bought buy-up coverage 

levels of $6/cwt and $6.5/cwt, and even the maximum protection level of $8/cwt. 

 

 

Figure 1-2. MPP-Dairy participation rate and margin protection in CA and WI in 2014 

Note: Participation rate is the proportion of dairy producers who purchase dairy margin protection. 
$4/cwt is catastrophic coverage. Producers may purchase buy-up coverage that provides 
payments when margins are between $4.00 and $8.00/cwt. 

 

 

The third essay explores this question, i.e., why western producers (CA producers) 

purchase less/lower buy-up levels than mid-western producers (WI producers). The study 

determines whether conditional probabilities regarding regional and national IOFC 

margins have a role in dairymens’ decisions to purchase supplementary coverage at 

different levels.  
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1.3. Structure of Dissertation 

In sum, three board research gaps are identified in this dissertation, namely 1) moral 

hazard in prevented planting and late planting, 2) the role of decision making with respect 

to prevented planting and planting a second crop, and 3) the role of conditional probability 

in determining dairy margin protection levels. This dissertation begins a discussion on 

these gaps in the crop insurance and MPP-Dairy literature. 

Chapter two presents an overview of the literature regarding crop insurance and 

MPP-Dairy. The existence of moral hazard in prevented planting and late planting is 

examined in chapter three. Expected utility theory, stochastic simulation, and empirical 

analyses are presented. Chapter four investigates the relationship between the PP 

payment and planting a second crop and simulates how adjusting reduced PP indemnity 

payment can encourage farmers to plant a second crop. Chapter five investigates the role 

of conditional probability in influencing the dairy producers’ decision-making on 

purchasing supplementary margin protections in MPP-Dairy. Finally, chapter six provides 

a summary of findings and concludes the dissertation.  
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2. LITERATURE REVIEW IN GENERAL 

Chapter two reviews general literature regarding U.S. crop insurance and Margin 

Protection Program for Dairy Producers (MPP-Dairy). 

2.1. Moral Hazard in Crop Insurance 

Since the 1980s the US crop insurance program has been available to help 

farmers manage their yield and price risk. Researchers have investigated whether the 

crop insurance program gives farmers an incentive to change their production practices 

to receive more insurance indemnity (moral hazard) (Chambers 1989; Horowitz and 

Lichtenberg 1993; Smith and Goodwin 1996; Babcock and Hennessy 1996; Coble et al. 

1997; Chambers and Quiggin 2002; Roberts, Key, and O’Dononghue 2006).  

These studies have examined the existence of moral hazard in crop insurance, 

focusing primarily on the production input-use side. Horowitz and Lichtenberg (1993) study 

moral hazard by examining how corn farmers in the Corn Belt change fertilizer and 

pesticide use with crop insurance. They conclude that farmers who purchase crop 

insurance use more fertilizer and pesticides than those who do not purchase. However, 

both fertilizer and pesticides are risk-increasing inputs (Horowitz and Lichtenberg 1993), 

meaning that the more fertilizer and pesticide use could be considered to be a moral 

hazard.  

Smith and Goodwin (1996) investigate the prevalence of moral hazard induced 

through crop insurance by examining the relationship between chemical use and crop 

insurance purchases for Kansas wheat farmers. Their main result conflicts with that of 

Horowitz and Lichtenberg (1993), as they find that farmers with crop insurance use less 

chemicals. Babcock and Hennessy (1996) also analyze the relationship between crop 
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insurance and fertilizer application for the representative corn farmer in Iowa and show 

that farmers who purchase crop insurance are likely to decrease nitrogen fertilizer 

applications.  

Coble et al. (1997) test for the existence of moral hazard in crop production using 

panel dataset of Kansas wheat farms. They show that moral hazard exists when the crop 

environment is unfavorable, e.g., drought, but does not exist under favorable 

environments, e.g., good weather. They argue that cross sectional studies, such as those 

of Horowitz and Lichtenberg (1993) and Smith and Goodwin (1996), do not allow for 

adequate measurement of moral hazard in crop insurance.  

Wu (1999) studies the effect of crop insurance on crop mix and chemical use in 

the Central Nebraska Basin. He concludes that crop insurance affects crop mix and 

chemical use. Chambers and Quiggin (2002) investigate the effects of area-yield 

insurance 1  on producer’s behavior in crop production. They claim that area-yield 

insurance is not different from other risk management tools available to farmers. 

Roberts, Key, and O’Dononghue (2006) estimate the incidence of moral hazard 

using crop insurance administration data. They argue that previous studies did not control 

for endogeneity of the insurance decision since “insurance adoption is not randomly 

assigned”, in an empirical analysis. To adjust for a non-random assignment of insurance 

adoption, the authors apply the difference-in-difference method and conclude that moral 

hazard exists among wheat and soybeans farms in Texas.  

                                                
1 Crop insurance for both premium rates and indemnities to be based not on the farmer’s individual 
yield but rather on the aggregate yield of a surrounding area (Miranda 1991). 
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2.2. Crop Yield Distribution  

It is crucial to identify which distribution best describes crop-yield variability since 

a crop-yield distribution must be pre-selected to estimate yield risk and ultimately 

determine the insurance premium rate. The RMA currently uses a censored normal 

distribution based on county level crop yield data provided by the National Agricultural 

Statistics Service (NASS) (Coble et al. 2010). However, researchers disagree on whether 

use of the censored normal distribution is appropriate (Coble et al. 2010). 

Just and Weninger (1999) argue that the common assertion of non-normality of 

the yield distribution is not appropriate and suggest that normality of yield distribution is 

reasonable when researchers assess crop insurance programs. Atwood, Shaik, and Watts 

(2002) conduct a normality test using farm-level data of six crops: corn, soybean, wheat, 

cotton, sorghum and barley. They conclude that crop yield is distributed non-normal. They 

also examine the effect of crop insurance premiums under the normality assumption and 

data-based empirical distributions. They show that the premiums based on normal vs non-

normal distribution are significantly different.  

Sherrick et al. (2004) assess variety of crop yield distributions. They compare five 

distributions - normal, logistic, Weibull, beta, lognormal - according to mean percentage 

difference in expected payouts to corn and soybean. They show that choice of distribution 

can result in significantly large differences in indemnity payments.  
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2.3. Subsidizing Crop Insurance2  

Recently, crop insurance subsidies have increased largely due to i) increases in 

the subsidy rate itself (2000: 37%, 2006: 58%, and 2012: 63%), ii) increases in crop price, 

iii) increases in enrolled acres, iv) increases in coverage level (2000: 56%, 2006: 71%, 

2012: 72%, weighted average for corn and soybean), and v) radical shift from yield 

protection to revenue protection(revenue protection3, 2000: 38%, 2006: 61%, 2012: 79% 

for corn and soybean).  

Coble and Barnett (2013) discuss implications associated with these increases; i) 

higher crop insurance subsidies induce higher participation in crop insurance programs, 

ii) there is a correlation between the increase in crop insurance purchases and reduced 

ex-post disaster assistance even if there seem not to be sufficient evidence to show a 

causal relationship between them, iii) there are regional differences in received subsidies 

due to the difference in degree of the risk, iv) higher crop insurance subsidies mask the 

adverse selection and moral hazard effects, and v) induced rent-seeking; the most farmer 

organization are opt to prefer crop insurance program to other farm policy programs, such 

as direct payment or counter-cyclical, or Average Crop Revenue Election (ACRE) 

programs.    

As Goodwin and Smith (2013) point out, the crop insurance subsidy can also alter 

farming practices and lead to expansion of crop lands and related environmental 

concerns. In addition, subsidized crop insurance represents a budgetary transfer from 

                                                
2  The numbers in section 2.3. are from author’s calculation using summary of business data 
provided by the RMA. 
3 Crop Revenue Coverage (CRC), Revenue Assurance (RA), Income Protection (IP), Revenue 
Protection (RP) and Revenue Protection Harvest Price Exclusion (RP-HPE) are included to 
calculate the percentage. 
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taxpayers to farmers and private insurance companies which can lead to market 

distortions.  

2.4. Fairness of Rate-Making and Time Dependence of Yield Risk  

The major technique used to determine the crop insurance premium rate is known 

as Multiple Peril Crop Insurance (MPCI) rate-making. MPCI rate-making depends on the 

loss cost ratio (LCR) approach. MPCI rate-making has been widely criticized because of 

potential biasedness and inefficiencies in determination of coverage guarantees (Skees 

and Reed 1986), state excess loads (Josephson, Lord, and Mitchell 2000), and intra- 

county yield risk heterogeneity (Goodwin 1994). Recently, researchers have focused on 

the time dependence of yield risk (Umarov 2009; Woodard et al. 2012; Adhikari, Knight, 

and Belasco 2013). That is, since measurement of Actual Production History (APH) is 

based on a simple moving average yield over four to ten years, the premium and indemnity 

based on APH is downward biased due to advances in crop-yield technology. Moreover, 

farmers have complained that the current APH calculation does not reflect technical 

advances. In response to these criticisms, the RMA introduced the Trend Adjusted Actual 

Production History (TA-APH) pilot program in the 2012 crop year primarily in the Corn-

Belt regions and has expanded to other regions. 

2.5. Dairy Margin Protection Program 

Few studies are available regarding the MPP-Dairy. A handful of Farmdoc 

publications, such as Newton and Thraen (2014), Newton and Bozic (2014), and Newton 

and Balagtas (2015) address the MPP-Dairy. This is partly because the MPP-Dairy is a 

relatively new policy option included in the 2014 Farm Bill. Historically, dairy policy has 

been designed to increase dairy farmers’ income (Newton, Thraen, and Bozic 2015). 
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Among others, Milk Income Loss Contract (MILC) in 2002 Farm Bill had provided income 

support based on a target milk price. In MILC, a dairy producer receives direct payment 

that is equal to 45% of the difference between the fluid milk price and a reference price, 

16.94/cwt, when the fluid milk price is lower than the reference price. Program participants 

can receive payments on only maximum 2.4 million pounds (Price 2004). Since MILC is 

premised on the assumption of stable, MILC program has failed to provide a safety net for 

dairy farms in the face of the recent rise in feed prices. The 2008 Farm Bill adopted 

variable reference pricing whenever weighted feed cost is above $7.35/cwt (Schnepf 

2012).  

The 2014 Farm Bill replaced income and commodity price support programs with 

Margin Protection Program for Dairy Producers (MPP-Dairy) to protect farmers’ income-

over-feed-cost (IOFC) margins rather than the milk price per se (Farm Service Agency 

2011). The MPP-Dairy includes catastrophic coverage, at no cost to the producer other 

than an annual $100 administrative fee.  Various levels of buy-up coverage are offered 

with premiums that vary with the level of protection (Newton, Thraen, and Bozic 2015). 

Catastrophic coverage provides payments to participating producers when the national 

dairy production margin is below $4/cwt. Producers may purchase buy-up coverage for 

national margins that range from $4.50/cwt to $8.00/cwt, rising by increments of $0.50. 

The program’s objective is to ensure that dairy producers, regardless of their size, 

geographic location or management practices, are offered self-selected protection levels 

against declines in milk prices, rising feed costs, or a mixture of both (Newton and Thraen 

2014; Newton, Thraen, and Bozic 2015). 

Perhaps the first MPP-Dairy study is Newton and Thraen (2014) which classifies 

the MPP-Dairy as a dairy safety net. Newton and Bozic (2014) also explain how the MPP-
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Dairy works and evaluate milk price levels required to trigger the MPP-Dairy. Newton and 

Balagtas (2015) explore the MPP-Dairy participation pattern particularly the relationship 

between the farm size (in terms of annual average milk production) and participation rate. 

They find that the MPP-Dairy participation rate is positively related to dairy farm operation 

size across states. They also find that purchase of the buy-up option is negatively related 

to farm operation size across states. They point out that states with larger average dairy 

farm size tend to exhibit higher participation rates since the $100 administration fee is 

relatively small for larger dairy farms (Newton and Balagtas 2015). Novakovic et al. (2015) 

summarize the enrollment data for the MPP-Dairy program. They find that there is low 

negative correlation between enrollment rate and the number of farms in a state, and 

positive correlation between enrollment rate and average farm size across states, too. 

Also, they find that participation rate for supplementary coverage level of eastern states is 

higher than that of western states.  

Newton, Thraen, and Bozic (2015) argue that MPP-Dairy has led to higher 

taxpayer costs compared with prior dairy farm support programs. Two reasons are 

suggested. First, dairy farmers may be able to predict the national dairy margins quite 

accurately using publicly available information from futures markets, which in turn allows 

them to maximize program returns. Second, the lack of production constraints shifts 

benefits toward larger dairy farms and causes more burden to the US budget.  

Regarding the dairy production margin, which is defined as the difference between 

all-milk price and feed costs, Bozic et al. (2012) shows that the dairy margin exhibits a 

slow mean-reverting path over time when the margins are very high or very low. Their 

findings can be used to design strategies for managing margins, especially in a futures 

market.   



16 

 

Bozic et al. (2014) explore the method to determine Livestock Gross Margin 

Insurance for Dairy Cattle (LGM-Dairy) which is the previous dairy support program. They 

point out that the current rate-making method using a Gaussian copula fails to capture 

crucial features of milk and feed markets. They find that, since 2005, the dependence 

between milk price and corn price has become stronger compared to 1990~2005. This is 

because the number of larger dairy farms (> 1000 dairy cattle) has increased over time, 

and most of large farms purchase their feed from the grain markets. It ties milk price and 

corn price strongly which causes stronger tail dependence which is not captured in the 

Gaussian copula.  
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3. MORAL HAZARD IN PREVENTED PLANTING 

Abstract 

This study examines the existence of moral hazard associated with the choices of 

prevented planting (PP) and late planting (LP). The PP provision is defined as the “failure 

to plant an insured crop by the final planting date due to adverse events” such as excess 

moisture or drought. If the farmer decides not to plant the crop, (after appraised by an 

agency) the farmer receives a PP indemnity. LP is an option for the farmer to plant the 

crop and still maintain the crop insurance when the farmer fails to plant crop by the final 

planting date. However, by choosing the LP option the farmer receive a lower the 

insurance coverage level depending upon the LP date due to potential yield loss. Crop 

insurance may alter farmers’ decision choices in the selection of PP or LP. In other words, 

crop insurance can increase the likelihood of PP claims even though farmers can choose 

LP. In particular, this paper seeks to explain why a farmer with higher insurance coverage 

would tend to choose PP statistically more often, i.e., exhibit moral hazard. A stochastic 

simulation driven by expected utility theory demonstrates the existence of moral hazard in 

PP numerically. Spatial panel econometrics models attest to the existence of moral hazard 

in PP empirically. 

 

Key Words: Crop Insurance, Moral hazard, Prevented Planting, Late Planting 

JEL Codes: D81, G22, Q12, Q14  
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3.1. Introduction 

The Risk Management Agency (RMA) has included prevented planting (PP) in 

crop insurance programs since 1998. The PP provision is defined as the “failure to plant 

an insured crop by the final planting date, or within any applicable late planting (LP) 

period,” due to adverse events such as excess moisture or drought (2013 Crop Insurance 

Handbook, USDA-RMA 2013). If a farmer with a base PP coverage level (base PP) claims 

PP payments, 60% (varies from 25% to 60% depending upon the specific crop insured) 

of the original liability is paid as an indemnity4 on approval of the insurer. The farmer also 

can choose buy-up PP coverage level of 5% and 10%. In this case, PP payments are 

given at 65% and 70% of the original liability, respectively.  

PP payments account for a growing large share of total indemnity from crop 

insurance programs. For example, PP payments accounted for roughly 9% of total 

indemnity on average from 1998 to 2008. From 2009 to 2013, however, PP payments 

accounted for 17% of total indemnity. In 2010 the share of PP payments increased to 

approximately 29% of total indemnity (author’s calculation using Cause of Loss Historical 

Data Files from RMA).  

Late planting (LP) is another option that a farmer may choose when s/he fails to 

plant a crop in the normal planting period. Choosing LP maintains his/her crop insurance, 

but the farmer does not receive PP indemnity and has to lower the insurance coverage 

level depending upon the LP date due to potential yield loss (1% per day after final plating 

                                                
4 PP indemnity payments depend on insurance coverage level, buy-up PP, and choice of a second 
crop after late planting date. For example, if a farmer buys 75% coverage level with base PP, s/he 
receives indemnity, PP indemnity = 0.75*0.60*APH*price election*claimed acre, where APH is the 
actual production history. When s/he chooses to plant a second crop, s/he receives 35% of the PP 
indemnity. 
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date).5 Figure 3-1 presents the timeline for the choice between PP and LP as well as PP 

options for a second crop after claiming PP. 

As evidenced by the recent increase in PP payments, farmers tend to choose PP 

in lieu of LP. Rejesus et al. (2003) and Rejesus, Escalante, and Lovell (2005) show that 

crop insurance provides farmers with an incentive to choose PP. In other words, crop 

insurance may increase the likelihood of PP claims even though farmers have the option 

of choosing LP. In this case moral hazard is observed. If moral hazard exists in PP, 

farmers are inefficiently abandoning cropland. Abandoning cropland in a given year leads 

to two problems. First, insurance premium subsidies paid to farmers has a negative effect 

on production because no crop is produced. Second, it is a contradiction of the goal of 

USDA that promotes agricultural production to improve food security (USDA’s strategic 

Plan FY 2010-2015, Goal 3) (OIG 2013). 

This paper examines the existence of moral hazard associated with the choice of 

PP and LP and, in particular, seeks to explain why a farmer with higher insurance 

coverage tends to choose PP. Specifically, this paper investigates the prevalence of moral 

hazard by examining the effects of crop insurance, its type, and coverage level on the 

farmer’s PP decision. An Intra-seasonal expected utility maximization model for the 

representative farmer is developed in the context of a stochastic simulation. Further, 

spatial panel econometrics models are developed to uncover the relationship between the 

PP ratio and coverage level. 

 

                                                
5 For example, the coverage level is lowered to 0.75*0.95=0.7125, if the insured purchases an 
insurance plan with a 75% coverage level and plants the crop after 5 days of the final planting date. 
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Figure 3-1. Timeline for choice between prevented planting and late planting 

Note: PP = prevented planting, LP = late planting, CV = cover crop, SC = second crop  

Dates are for the typical farm in Iowa. Some texts which are not discussed in this paper are greyed 
out  

 

3.2. Literature Review 

Several studies have examined moral hazard in crop insurance, focusing primarily 

on production inputs. Horowitz and Lichtenberg (1993) study moral hazard by examining 

how corn farmers in the Corn Belt change fertilizer and pesticide use with crop insurance. 

They conclude that farmers who purchase crop insurance use more fertilizer and 

pesticides than those who do not. 

Smith and Goodwin (1996) test for the existence of moral hazard in crop insurance 

by examining the relationship between chemical use and crop insurance purchases by 

Kansas wheat farms. Contrary to Horowitz and Lichtenberg (1993), they conclude that 

farmers with crop insurance use fewer chemicals. Babcock and Hennessy (1996) also 

analyze the relationship between crop insurance and fertilizer application for a 

representative corn farmer in Iowa, and show that farmers who purchase crop insurance 

are more likely to decrease nitrogen fertilizer applications.  
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Coble et al. (1997) test for moral hazard in crop production using a panel dataset 

of Kansas wheat farms. They find that moral hazard exists solely when the cropping 

environment is unfavorable, e.g., drought, and does not exists under favorable 

environments. They argue that single-year cross-sectional data, approach used in 

previous studies by Horowitz and Lichtenberg (1993) and Smith and Goodwin (1996), are 

inadequate for testing for the existence of moral hazard.  

Wu (1999) studies the effect of crop insurance on crop mix and chemical use in 

the Central Nebraska Basin. He concludes that crop insurance affects crop mix and 

chemical use. Chambers and Quiggin (2002) investigate the effects of area-yield 

insurance 6  on producer’s behavior in crop production. They claim that area-yield 

insurance is not different from other risk management tools available to farmers. 

Roberts, Key, and O’Dononghue (2006) estimate the incidence of moral hazard 

using crop insurance administration data. They argue that previous studies did not control 

for endogeneity of the insurance decision since “insurance adoption is not randomly 

assigned”, in an empirical analysis. To adjust for a non-random assignment of insurance 

adoption, the authors apply the difference-in-difference method and conclude that moral 

hazard exists among wheat and soybeans farms in Texas. 

There exist few studies focused on PP. Rejesus et al. (2003) empirically analyze 

potential fraudulence in PP claims. They show that higher insurance coverage level 

induces more fraudulent PP claims. Moreover, they find that revenue protection leads to 

more fraudulent PP claims than that associated with yield protection. Rejesus Escalante 

and Lovell (2005) also analyze the relationship between PP claims, land ownership, and 

                                                
6 Crop insurance for both premium rates and indemnities to be based not on the farmer’s individual 
yield but rather on the aggregate yield of a surrounding area (Miranda 1991). 
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farm business structure. They find that a tenant under a leasing contract has an increased 

the likelihood of claiming more PP. They also find that sole ownership and partnership 

farms claim more PP than cooperative farms.  

This study differs from Rejesus et al. (2003) in two respects. First, this study 

investigates the evidence of moral hazard in choosing PP, not committing PP fraud. 

Second, Rejesus et al. (2003) argue that revenue protection insurance leads to more PP 

claims (PP fraud) than yield protection insurance. This argument is questionable since 

revenue protection schemes such as Crop Revenue Coverage (CRC) and Revenue 

Assurance Harvest Price Option (RA-HPO)7 have an option to choose a higher price 

between an elected price and harvest price. Thus, if a farmer expects the crop price to be 

higher than the elected price at time of harvest, s/he would not file a PP claim, or at least 

the probability of filing a claim would be lower. 

3.3. Moral Hazard in Insurance Economics 

Moral hazard describes a change of the insured’s unobserved behavior caused by 

purchase of insurance contract providing protection against risk. Moral hazard has two 

different definitions in insurance economics, i.e., ex-ante and ex-post moral hazard.  

                                                
7 CRC and RA-HPO have been eliminated since 2011. Currently, revenue protection (RP) and 
revenue protection harvest price exclusion (RP-HPE) are in operation as crop revenue protection 
program. A farmer can choose the higher between elected (guaranteed) price and harvest price in 
RP, while s/he cannot choose the higher price in RP-HPE. Close to 99% of corn farmers currently 
purchase RP policy not RP-HPE in 2013 (author’s calculation using data from 
State/County/Crop/Coverage Level 1989-2015 Data Files and Record Layout, RMA summary of 
business Reports and Data). 
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3.3.1. Ex-Ante Moral Hazard 

Ex-ante moral hazard means the change of insured’s unobserved behavior before 

losses occur. For example, a farmer with crop insurance may decrease (or increase) an 

input uses compared with farmers without crop insurance, as discussed in Horowitz and 

Lichtenberg (1993), Smith and Goodwin (1996), and Coble et al. (1997). This behavior 

affects the probability or size of loss. Deductible and co-insurance are well known as 

insurance design schemes to mitigate ex-ante moral hazard. 

3.3.2. Ex-Post Moral Hazard 

Ex-post moral hazard describes the changes of insured’s behavior after losses 

occur. If insured has a more comprehensive insurance contract, s/he is more likely to claim 

indemnity payments than an insured who has less comprehensive insurance contract. 

Economists are more interested in ex-ante moral hazard than ex-post moral hazard in that 

ex-ante moral hazard describes the change for insured’s behavior more directly. However, 

insurance suppliers are more interested in ex-post moral hazard than ex-ante moral 

hazard because ex-post moral hazard is directly related to their profit. 

3.3.3. Prevented Planting and Ex-Post Moral Hazard 

A farmer claims prevented planting after losses occur. This research examines the 

existence of ex-post moral hazard in PP.  

3.4. PP and LP Decision Making 

Assume that a farmer is risk averse and maximizes expected utility from uncertain 

profit at harvesting time. Suppose that, due to adverse events such as drought or excess 

moisture, the farmer should choose PP or LP. The farmer is at final planting time (see 
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Figure 3-1 PP timeline), i.e., time period 1 ( t = 1) , and should make the insurance 

decision. If the farmer claims PP at t = 1, s/he obtains the profit from the PP indemnity, 

πPP, with certainty, which can be written as 

(3-1) πPP = pgθppθqAPH − c1 − m − ccv, 

where pg is the elected (guaranteed) price by the RMA (Commodity Exchange Price 

Provisions (CEPP) based on data from the futures market), θpp is the PP coverage level 

(60%, 65% or 70% depending upon buy-up), and θ is the insurance coverage rate θ ∈

[50%, x], x varying from 75% to 85% in 5% increments. The term qAPH is the farmer’s 

actual product history (APH) per acre for the past 4-10 years, c1 is the input cost per acre 

for normal planting, m is the crop insurance premium, and ccv is the cost for planting a 

cover crop, which is a requirement of any PP claim.  

If the farmer chooses LP, s/he obtains profit level,  

(3-2) π̃LP = [(p̃q̃ − c1 − m − c2) + indj],   j = yp, rp, 

where tilde above the variable indicates that it is a stochastic variable at t = 1. π̃LP is the 

profit for LP at the harvesting time, t = 2, p̃ is the crop price at t = 2 which is stochastic at 

t = 1, q̃ is the yield at t = 2 which is also stochastic at t = 1, c1 is, again, the input cost per 

acre for the normal planting of the first crop, and c2 is the cost of LP until the harvesting 

time. The term max {0, indj} is the amount of indemnity that the farmer expects at t = 1. 

Depending on types of crop insurance, the indemnity can be rewritten as follows. In the 

case of yield protection, yp, the indemnity is given by 

(3-3) indyp = pg ∙ max{0, ρθqAPH − q̃}, 

where, pg is the elected price if a farmer choose 100% of price election, ρ is the coverage 

reduction factor depending on late planting date (1% per day after normal planting date), 
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θ is the coverage level, qAPH is the APH, and q̃ is the stochastic yield. If the crop yield is 

higher than the coverage level, ρθqAPH, the farmer is not eligible for the yield protection 

indemnity regardless of the price level at harvest time. 

In the case of revenue protection, rp, the indemnity becomes 

(3-4) indrp = max{0, min(2pg, max(pg, p̃)) ∙ ρθqAPH − p̃q̃}. 

If the revenue at the harvesting period, p̃q̃, is greater than the covered revenue, 

min(2pg, max(pg, p̃)) ∙ ρθqAPH , the farmer does not qualify for the receive revenue 

protection indemnity.  

To make the decision process simple, suppose the farmer has either yield 

protection with either 100% price election or revenue protection. The farmer will claim PP 

if  

(3-5) u(πpp) > EU(π̃LP), 

where u(∙) is a strictly increasing twice-continuously differentiable farmer’s utility function 

and EU(∙) is the expected utility function. Conditional on the information known to the 

farmer at t = 1, expected utility can be rewritten as 

(3-6) EU(π̃LP) =  u(E(π̃LP) − RPM), 

where E(π̃LP)  is the farmer’s expected value of π̃LP , and RPM  is the risk premium 

assuming s/he is a risk averter (Chavas 2004, p.36). In other words, the farmer chooses 

PP when  πpp > E(π̃LP) − RPM and indifferent when 

(3-7) πpp = E(π̃LP) − RPM. 

Equation (3-7) can be interpreted as a PP-LP indifference curve (PP-LP curve). 

The PP-LP curve depicts the combinations of E(p̃) and E(q̃) that satisfy equation (3-7) or 
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(3-8) πpp = E[(p̃q̃ − c1 − m − c2) + max{0, indj}] − RPM 

= E(p̃)E(q̃) + cov(p̃, q̃) − c1 − m − c2 + max{0, indj} − RPM, j = yp, rp.  

In the case of yield protection, equation (3-8) can be rewritten as 

(3-9) πpp = E(p̃)E(q̃) + cov(p̃, q̃) − c1 − m − c2 + pg ∙ max{0, ρθqAPH − E(q̃)}) − RPM.  

If ρθqAPH < E(q̃), or guaranteed yield < expected yield, then the expected indemnity = 0. 

Equation (3-9) then becomes  

(3-10) E(p̃)E(q̃) = πpp − cov(p̃, q̃) + c1 + m + c2 + RPM 

⇒  E(q̃) =
1

E(p̃)
(πpp − cov(p̃, q̃) + c1 + m + c2 + RPM). 

If ρθqAPH > E(q̃), or guaranteed yield > expected yield, then the expected indemnity = 

pg(ρθqAPH − E(q̃)). Equation (3-9) then becomes  

(3-11) (E(p̃) − pg)E(q̃) = πpp − cov(p̃, q̃) + c1 + m + c2 − pgρθqAPH + RPM 

⇒ E(q̃) =
1

E(p̃)−pg
(πpp − cov(p̃, q̃) + c1 + m + c2 − pgρθqAPH + RPM). 

In either case, the PP-LP curve is convex toward origin in the q-p plane (hyperbola) as 

shown in Figure 3-2. Above ρθqAPH , i.e., guaranteed yield, the PP-LP curve follows 

equation (3-10) and below ρθqAPH, the PP-LP curve follows equation (3-11) which is flatter 

than the curve equation (3-10). 

Note that the expectation operator in equations (3-7) to (3-11) is not necessarily 

the expected value of a random variable (price and yield). It is more or less like 

anticipated values from the farmer with information at t = 1. For example, suppose that 

the farmer’s expectation (anticipation) of price and yield based on information known to 

her/him at t = 1 is (E(p̃1), E(q̃1)). If the combination of the expected price and yield lies 
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above the PP-LP curve, the farmer would choose LP, otherwise s/he would choose PP. 

In Figure 3-2 (E(p̃1), E(q̃1)) lies on the curve and the farmer is indifferent. 

 

 

Figure 3-2. PP-LP curve for yield protection 

 

In the case of revenue protection, the farmer is indifferent between PP and LP 

when 

(3-12) πpp = E(p̃)E(q̃) + cov(p̃, q̃) − c1 − m − c2 

+ max {0, min (2pg, max (pg, E(p̃))) ∙ ρθqAPH − E(p̃)E(q̃)} − RPM. 

If min (2pg, max (pg, E(p̃))) ∙ ρθqAPH < E(p̃)E(q̃) , i.e., guaranteed revenue < expected 

revenue, the expected revenue protection indemnity is zero then the PP-LP curve in 

equation (3-8) becomes  

(3-13) E(q̃) =
1

E(p̃)
(πpp − cov(p̃, q̃) + c1 + m + c2 + RPM). 

Equation (3-13) is similar to equation (3-10), the PP-LP curve for yield protection.  
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If instead min (2pg, max (pg, E(p̃))) ∙ ρθqAPH > E(p̃)E(q̃), i.e., guaranteed revenue 

> expected revenue, the farmer expects to receive the RP indemnity. When pg < E(p̃) <

2pg, i.e. the price at t = 2 is anticipated to be higher than the elected price but less than 

2pg, the farmer’s expected indemnity would be E(p̃)ρθqAPH −  E(p̃)E(q̃). Note that the 

condition to receive the revenue indemnity, i.e., ρθqAPH >  E(q̃), must hold. In other words, 

farmer’s expected yield must be lower than guaranteed yield, otherwise there is no 

revenue protection indemnity. In this case, the PP-LP curve becomes   

(3-14) πpp = E(p̃)E(q̃) + cov(p̃, q̃) − c1 − m − c2 + E(p̃)ρθqAPH −  E(p̃)E(q̃) − RPM 

⇒   E(p̃) =
1

ρθqAPH
(πpp − cov(p̃, q̃) + c1 + m + c2 + RPM)  

Equation (3-14) tells us that E(p̃) is now a fixed value because all of parameters in the 

right hand side are known to the farmer at t = 1 (vertical line from E(p̃) axis in Figure 3-3).  

The expected indemnity is 2pgρθqAPH − E(p̃)E(q̃)  when E(p̃) > 2pg , i.e. the 

anticipated price at t = 2  is higher than twice of the elected price. In this case, 

2pgρθqAPH > E(p̃)E(q̃) to receive the RP indemnity. Both terms E(p̃) and E(q̃) disappear 

from equation (3-12) and the PP-LP line is not defined. However, the farmer will most likely 

choose LP because the anticipated price is very high. The combination (E(p̃), E(q̃)) will 

be then located on the right hand side of the vertical line in Figure 3-3.  

When E(p̃) < pg, i.e. the price at t = 2 is expected to falls below the elected price, 

the expected indemnity is pgρθqAPH − E(p̃)E(q̃). Again, pgρθqAPH > E(p̃)E(q̃) to satisfy 

the condition of receiving RP indemnity. Note that pgρθqAPH is represented by a grey 

rectangular in Figure 3-3 and the expected revenue should be smaller than the size of the 
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rectangular. It implies that the farmer would choose PP in this case even though the PP-

LP line is not defined because both terms E(p̃) and E(q̃) disappear from equation (3-12). 

 

 

Figure 3-3. PP-LP curve for revenue protection 

 

Once the PP-LP curve is constructed, the change in the probability of choosing PP 

given different insurance coverage rates can be computed as 

(3-15) ∆ Pr(PP) = Pr(PP|θ1) − Pr(PP|θ0), 

where, Pr(PP) is the probability of choosing PP and θ0 and θ1 represent any two coverage 

levels, θ0, θ1ϵ[50%, x]. If ∆ Pr(PP) > 0 , when θ1 > θ0, then, the probability of (ex-post) 

moral hazard increases. Or, simply, the PP-LP curve with higher coverage lies above the 

PP-LP curve with lower insurance coverage. 

3.5. Representative Farmer and Stochastic Simulation 

In this section, stochastic simulation of a representative farmer is developed in order 

to derive numerical PP-LP curves that will show how moral hazard is affected by changes 
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in θ in PP decision making. Our simulation of a representative farmer’s behavior on crop 

insurance is not original to this paper. Babcock and Hennessy (1996) and Coble, Heifner, 

and Zuniga (2000) have previously created a representative farmer. 

3.5.1. Representative Farmer 

A representative farmer is modeled based on corn budget data from Hamilton 

County, Iowa to generate the PP-LP curves. For this simulation, historical corn price and 

yield, insurance premium including subsidy over insurance plans, and farm cost data are 

compiled from Iowa extension, the RMA quick cost estimator, and USDA NASS (Table 3-

1). There are be 48 different crop insurance plans from two different insurance types, RP 

and YP, three different PP coverages,θpp, (60%, 65%, and 70%), and eight different 

insurance coverages,θ, (50%, 55%, 60%, 65%, 70%, 75%, 80%, and 85%). To make the 

comparisons simple, a subset of six crop insurance plans is presented (Simulation have 

been done for all of the possible crop insurance plans). Table 3-1 presents information for 

the representative farmer. 

3.5.2. Risk Premium 

Risk premium is defined as a certain amount of money that farmer is willing to pay to avoid 

the risk. Thus, risk premium is intuitively interpreted as the shadow cost of private risk 

bearing (Chavas 2004). Certainty equivalent means the difference between the expected 

monetary value of the alternative (here, LP profit) and risk premium.    

 

 

 

 



34 

 

Table 3-1. Representative Corn Farmer in Hamilton County, Iowa 

 Yield Protection Revenue Protection 

 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

PP coverage level (θpp) 60% 65% 70% 60% 65% 70% 

Coverage level (θ) 65% 75% 85% 65% 75% 85% 

LP reduction factor ( ρ) 0.95 

Elected price1 (pg) $4.62/bushel 

Volatility of corn price2 0.19 

APH3 (qAPH) 189 bushels/acre 

Avg. yield 179.52 bushels/acre 

St. Dev. of yield 35.42 bushels/acre 

Insurance premium ($/acre) (m) 7 11 17 10 19 37 

Coverage subsidy rate4 0.59 0.55 0.38 0.59 0.55 0.38 

Additional premium for buy-up PP ($/acre)5 0 0.22 0.85 0 0.22 0.85 

Cost at t=1 ($/acre), (c1) $327.8/acre 

Cost of planting cover crop (ccv) $38/acre 

Cost of LP at time period 2 (c2) $424.08/acre 

Correlation between price and yield6 -0.30 

Covariance between price and yield7 -$9.05 

Utility function8 u(π) = −exp(−rπ) 

Risk aversion parameter9 (r) 0.002 

Risk Premium, RPM10 $32.83 $30.47 $27.35 $31.09 $26.71 $21.20 

1 The elected corn price is $4.62/bushel in 2014 and is considered an average price. 
2 Historical corn futures price data from the RMA. 
3 Trend-adjusted APH.  
4 The farmer is responsible for (1 – coverage subsidy rate)×insurance premium. Federal 
government pays subsidy rate × insurance premium.  
5 For example, a farmer in Hamilton County should pay $17+$0.85 to purchase buy-up 10% PP 
(70% coverage) with 85% coverage level (case 3). Buy-up PP premiums differ by county.  
6 For numerical simulation, corn price and yield are generated randomly in consideration of 
correlation between price and yield. The correlation is calculated using historical data from 1990 to 
2005. 
7 Covariance between historical corn price and yield. 
8 Negative exponential utility function exhibits constant absolute risk aversion (CARA), which is 
given by r. This function has been used extensively in decision analysis (Hardaker et al. 2004, 
p.103).  
9 When r = 0, the decision maker is risk neutral and higher values of r imply risk averse decision 
makers. We select r = 0.002 based on Table 2 in Babcock, Choi, and Feinerman (1993). The risk 
aversion coefficient of 0.002 is relatively risk averse farmer. 
10 RPM is calculated using given the utility function and risk aversion coefficient.   
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The risk premium,RPM, in Table 3-1 is derived assuming a negative exponential 

utility function, as follows  

1. Generate random corn price and yield, p̃ and q̃, at the harvesting time, t = 2. 

2. Calculate profit from late planting, π̃LP. 

3. Repeat steps 1 and 2 for 1000 times. 

4. Calculate the certainty equivalent (CE) using simulated profit from step 3 using the 

formula, CE(r) = ln[(
1

1000
∑ exp(−r ∙ πi))

−
1

r
], where i represents each iteration and 

r stands for the absolute risk aversion coefficient (Hardarker et al. 2004, p. 257).  

5. Derive the risk premium following the definition, RPM = E(π̃LP) − u−1(EU(π̃LP)) 

(Chavas 2004, p. 34) which is equivalent to RPM = E(π̃LP) − CE(r). 

3.5.3. PP-LP Curve 

The PP-LP curves are then derived as follows 

1. Generate random corn price and yield, E(p̃) and E(q̃), at the harvesting time t = 2. 

2. Calculate profit in equation (3-2) with insurance indemnity if any using equations 

(3-3) and (3-4).  

3. Using equation (3-5), the farmer decides what to do, i.e., PP or LP. 

4. Repeat steps 1 to 3 for 50,000 times. 

5. Plot the combination of E(p̃) and E(q̃) in red if the farmer chooses PP, otherwise 

in blue. 

 

Figure 3-4 presents the PP-LP curves from the simulation for the farmer who is 

relatively risk averse, r = 0.002. As expected from Figures 3-2 and 3-3, the PP-LP curves 

are negatively sloped and convex towards the origin. 
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Figure 3-4. PP-LP curve from stochastic simulation 

Note: Legend example: RP_65_75 = revenue protection with 65% buy-up PP and 75% insurance 
coverage and YP_65_75 = yield protection with 65% PP and 75% insurance coverage. 

Red area = PP region and blue area = LP region. 

 

 

Figures 3-5 presents the PP-LP curves for cases of yield protection (cases 1, 2, 

and 3 in Table 3-1) and revenue protection (cases 4, 5 and 6 in Table 3-1) to compare the 

effects of different crop insurance coverage levels on the and PP-LP decision. The PP-LP 

curves for revenue protection are truncated where the expected yield is relatively low and 

the expected price is relatively high. This is because a farmer can be protected when yield 

declines as well as price declines. For higher coverage levels, the likelihood of claiming 

PP becomes larger which represents an increase in moral hazard, i.e., ∆ Pr(PP) =

∆(PP|high θ) − ∆(PP|low θ) > 0. Differing with Rejesus et al. (2003), revenue protection 

has a smaller probability of claiming PP than yield protection (Figure 3-6). To identify how 

sensitive to the level of risk aversion coefficient, PP_LP curves for different risk aversion 

coefficients are compared (Figure 3-7). The Figure 3-7 indicates PP_LP curves with higher 

risk aversion coefficient shift proportionally to the right. It means that farmer with more risk 

averse preference is likely to claim PP more. 
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                Panel A. Revenue protection                            Panel B. Yield protection 

 

Figure 3-5. PP-LP curves over different types and coverages of crop insurance 

Note: Legend example: RP_60_65 = revenue protection with 60% PP and 65% insurance coverage 
and YP_70_85 = yield protection with 70 buy-up PP and 85% insurance coverage. 

 

 

 

        Panel A. Case 1        Panel B. Case 2         Panel C. Case 3     

 

Figure 3-6. Comparison of PP-LP curves for revenue protection and yield protection 

Note: Legend example: RP_60_65 = revenue protection with 60% PP and 65% insurance coverage 
and YP_70_85 = yield protection with 70 buy-up PP and 85% insurance coverage. 
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                       Panel A. Case 1                                         Panel B. Case 2 

 

Figure 3-7. Comparison of PP-LP curves for different risk aversion parameters 

Note: Legend example: RP_60_65_1=revenue protection with 60% PP an 65% insurance coverage 
with risk aversion coefficient 0.002, RP_60_65_2= revenue protection with 60% PP an 65% 
insurance coverage with risk aversion coefficient 0.004 and YP_60_65_1=revenue protection with 
60% PP an 65% insurance coverage with risk aversion coefficient 0.002, YP_60_65_2=revenue 
protection with 60% PP an 65% insurance coverage with risk aversion coefficient 0.004. 

 

3.6. Spatial Econometric Model 

3.6.1. Basic Model 

As shown in Figures 3-4, 3-5, and 3-6 the PP-LP curves are a function of crop 

insurance coverage level, types of coverage, expected price, and expected yield. To 

estimate the statistical relationship between the PP ratio and crop insurance coverage 

level, the following regression model is expressed 

(3-16)  yit = β0 + ∑ xitkβk
K
k=1 + εit, 

where yit is the ratio of PP claims to number of earning premium policies in county i at 

time t, xitk is the kth explanatory variable including the insurance coverage level, expected 

price and expected yield in county i at time t, and other control variables as explained in 

the following section.  
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3.6.2. Spatial Model 

Equation (3-16) might be spatially correlated since data are collected at the county 

level. It is plausible that the PP claims in county i may affect the PP claims in a neighboring 

county and vice versa. Omitting a spatial lag of PP claims in the regression model may 

cause omitted variable bias (LeSage and Pace 2009). To control for the spatial correlation, 

equation (3-16) is therefore converted to 

(3-17)  yit = β0 + ρ ∑ wijyjt
N
j=1 + ∑ xitkβk

K
k=1 + εit  → 𝐲 = ρ𝐖𝐲 + 𝐗𝛃 + 𝛆, 

where yit is the PP ratio in county i, yjt is the PP ratio of a neighboring county j, and  wij 

is the spatial weight between county i and j. The coefficient ρ is the spatial correlation 

coefficient, xikt is the kth explanatory variable, such as insurance coverage level, lagged 

corn yield and price, and the (absolute value of) PDSIs. The error term, εit, also spatially 

correlated such that εit = μi + λ ∑ wijεjt
N
j=1 + uit, where λ is the spatial (error) correlation, 

and uit is a white noise error term. Parameters 𝛃′s, ρ, and λ are estimated. In addition, 

equation (3-17) can be rewritten such that 

(3-18)    𝐲 =  (𝐈 − ρ𝐖)−1𝐗𝛃 + (𝐈 − ρ𝐖)−1𝛆, 

where 𝐖 is a spatial weighting matrix, 𝐖 = [wij]. Naturally, it is important to construct the 

weighting matrix 𝐖 in spatial econometrics since the spatial econometrics renders direct 

impact and indirect impact through spatial weighting matrix (LeSage and Pace 2009).  

3.6.3. Estimation 

Maximum likelihood estimation (MLE) is used to estimate the parameters in 

equation (3-17). Fixed effects models are estimated in order to control for an unobserved 

time invariant effect. Random effects model assume the unobserved time invariant 

components are uncorrelated with the explanatory variables (Wooldridge 2010, p. 286), 
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otherwise parameter estimates are inconsistent. In this research, random effects models 

are not considered because unobserved time invariant components, for example, soil 

quality are clearly correlated with explanatory variables, for example, insurance coverage 

level and PP ratio, in equation (3-17).  

Fixed effect models, however, suffer from the “incidental parameter problem” when 

MLE is used, i.e., estimates are inconsistent (Neyman and Scott 1948; Lancaster 2000). 

Inconsistency of parameters occurs because the number of parameters increases when 

the cross-sectional units, N, becomes large relative to the time dimension, T. To overcome 

this problem, Lee and Yu (2010) propose using the Helmert transformation procedure. 

The Helmert transformation (Arellano and Bover 1995) transforms data as follows. First 

define 

(3-19)  ỹit =
1

T−t
∑ yim

T
m=t+1 , 

where ỹit represents the mean obtained from the future values of yit, where T denotes the 

last time period of data.  Then the Helmert transformed data are 

(3-20)  ŷit = √
T−t

T−t+1
(yit − ỹit).  

All explanatory variables and error terms are transformed in the same fashion. Thus 

equation (3-17) becomes 

(3-21)  ŷit = β0 + ρ ∑ wijŷjt
N
j=1 + ∑ x̂itkβk

K
k=1 + ε̂it. 

3.6.4. Data 

Data are collected from various sources. Crop insurance data, such as number of 

policies and number of PP claims, are compiled from the Summary of Business Reports 

and Data (http://www.rma.usda.gov/data/sob.html) and the Summary of Business with 

http://www.rma.usda.gov/data/sob.html
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Month of Loss (http://www.rma.usda.gov/data/cause.html) both provided by the RMA. 

County-level corn yield and corn price data are collected from the USDA NASS database. 

The Palmer Drought Severity Index (PDSI) from the National Oceanic and Atmospheric 

Administration (NOAA) (http://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/climdiv-pdsidv-

v1.0.0-20160204) is also used to control for potentially unexpected yield change.  

A total of 594 counties located in the Corn-Belt8 states are included in the analysis. 

Table 3-2 contains the summary statistics of these variables from 2000-2013. Note that 

data for the year 2010 are dropped from the analysis due to their unreliability. Note that 

reported PP ratios are greater than 1 even 10 in many counties in year 2010. By definition 

of the PP ratio, this is impossible. In addition, some counties are dropped from the dataset 

since they do not have crop insurance data and/or no corn was planted during some years.  

 

Table 3-2. Summary Statistics (2000 – 2013)a  

 Variables  Mean St.Dev Min Max 

PP ratio (yit)   4.97% 14.59% 0% 100% 

Insurance coverage (Covgit) 67.85% 6.31% 50% 83.89% 

(Lagged) Corn Yield (bushel/acre)  142.86 29.71 19 211.5 

(Lagged) Corn Price ($/bushel) 3.47 1.60 1.65 7.34 

Absolute PDSI in April 1.95 1.31 0 7.42 

Absolute PDSI in May 1.99 1.28 0 7.62 

Absolute PDSI in June 1.96 1.37 0 7.9 

a 2010 data are dropped because data for 2010 from the Summary of Business with Month of Loss 
is unreliable. Many counties reported the PP ratio being greater than 1 even 10. By definition of the 
PP ratio, it is impossible. 
b PDSI = Palmer Drought Severity Index. A higher PDSI value implies severe adverse events, such 
as drought or excess moisture, which prevent the planting of corn during planting season. PDSI is 
close to zero for a normal season.  

                                                
8 IL, IN, IA, KY, MI, MN, MO, OH, and WI. 

http://www.rma.usda.gov/data/cause.html
http://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/climdiv-pdsidv-v1.0.0-20160204
http://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/climdiv-pdsidv-v1.0.0-20160204
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The average PP ratio is 4.97% from 2000-2013. The standard deviation of the PP 

ratio is computed to be 14.59%, which shows that the PP ratio has varied substantially 

across counties and over time. This is possibly because of the adverse events occurring 

at planting time over a wide range of regions simultaneously. The variable Covgit is a 

weighted average of insurance coverage levels using insured acres, i.e., Covgit =
∑ ckAkk

∑ Akk

, 

where k =  type of insurance coverage, ck = coverage from 50% to 85%, and Ak= insured 

acres under kth type of crop insurance. The average of insurance coverage rate is 

estimated to be 69.85% with a standard deviation 6.31%. Minimum coverage level is 50%, 

while the maximum coverage level is 84%.  

As in equation (3-16), the anticipated corn yield and price in planting season may 

affect the level of PP claims. As shown in Figures 3-4 and 3-5, a farmer may not claim the 

PP when s/he anticipates the high corn yield and price at the harvesting time. 

Unfortunately, these two variables are not observed directly. Lagged corn yield and prices 

are used as proxy variables for the anticipated corn yield and price. The average of lagged 

corn yield is 142.86 bushels/acre with an average price of $3.47/bushel (Table 3-2). 

A PP claim depends heavily on the weather at planting time. The PDSI9 for April, 

May, and June are included in the analysis to control weather variations especially drought 

or excess soil moisture. A negative PDSI represents the (severity of) drought and positive 

PDSI indicates (severe) excess soil moisture. Both drought and excess soil moisture 

adversely impact corn growth. Following Chen and Miranda (2007), the absolute value of 

                                                
9 The PDSI is a measurement of dryness based on recent precipitation and temperature. The PDSI 
is an effective measure determining long-term drought. A PDSI of 0 is normal, and the negative 
PDSI indicates drought. For example, -2 considered moderate drought, -3 indicates severe drought, 
and -4 of extreme drought. A positive PDSI indicates the excess moisture. For example, +2 
indicates moderate wetness, +3 severe wetness, and +4 is extreme wetness (Alley 1984).  
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the PDSI is used as our explanatory variable. A higher PDSI value indicates the severity 

of adverse events faced by farmers. The average of absolute values of PDSI is given by 

1.82 ~ 1.97 in the planting season. The average of actual PDSI is estimated to be 0.58 ~ 

0.81 which is close to normal. 

3.6.5. Weighting Matrix 

There are various ways to build a weighting matrix, 𝐖 = [wij], such as queen 

contiguity, rook contiguity, and inverse-distance (Drukker, Peng, and Pruncha 2013). The 

queen contiguity method assigns a non-zero spatial weight when a county shares borders 

with neighboring counties as defined in equation (3-22): 

(3-22)   wij = {
1 if boundary i ∩ boundary j ≠ ∅
0 if boundary i ∩ boundary j = ∅

 for ∀i ≠ j and wii = 0 for ∀ i. 

If county i  and j  share at least one boundary (common border), the element of the 

weighting matrix, wij,  takes 1, otherwise 0. County i is given a 0 weight for itself. In other 

words, counties are not considered neighbors to themselves. The rook contiguity is similar 

to queen contiguity but is more restrictive contiguity than queen. The rook contiguity 

assigns a non-zero weight when a county shares a certain portion of boundary with 

neighboring counties. 

An inverse distance spatial weighting matrix is constructed by weights inversely 

related to the distances among counties. The inverse distance method assigns a non-zero 

spatial weight as follows 

(3-23)   wij = {

1

dij
 if dij < d̅

0 if dij > d̅
 for ∀i ≠ j and wii = 0 for ∀ i, 
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where dij  is the distance between county i  and j  and d̅  indicates a predetermined 

threshold (66.4 miles in this study), which makes all the counties in the dataset have at 

least one neighbor. By dropping some observations (explained in data section) there 

exists five counties isolated.  

For the purpose of forming a spatial lag, the matrix 𝐖 can be normalized to avoid 

a singularity of un-normalized spatial weighting matrix (LeSage and Pace 2009; Kelejian 

and Prucha 2010). There are various ways to normalize 𝐖 such as row-sum, minimax, 

and spectral normalization (Drukker, Peng, and Prucha 2013). The row-sum method 

divides each element in 𝐖 by its corresponding row-sum, i.e., w̃ij = wij/ri , where ri is the 

sum of the ith row of 𝐖. However, the normalized weighting matrix under this method is 

asymmetric and this property needs a justification of asymmetry (Kelejian and Prucha 

2010). To make 𝐖 symmetric, the minimax or spectral method can be used. The (i, j)th 

element of normalized minimax weighting matrix, 𝐖̃ is defined such that w̃ij = wij/m and 

m = min {max(ri) , max(ci)}, where ri is the sum of the ith row and ci is the sum of ith 

column (Drukker, Peng, and Prucha 2013). The (i, j)th element of normalized spectral 

weighting matrix, 𝐖̃ is defined such that w̃ij = wij/v, where v is the largest of the moduli 

of the eigenvalues of un-normalized weighting matrix 𝐖 (Drukker, Peng and Prucha 2013). 

In this research, the spectral normalization method is used since there is no reason to 

impose different weights across counties. The user-written command spmat in Stata 

(Drukker, Peng, and Prucha 2013) is used to build and normalize the weighting matrix.  A 

total of 594 counties for 13 years are included in the dataset, and the size of the 

corresponding 𝐖 matrix is (594 counties x 13 years) x (594 counties x 13 years), which is 

a block diagonal.  
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3.6.6. Results and Discussion 

Table 3-3 contains the estimation results of equation (3-17) with four different 

specifications, i) fixed effect model (ρ = 0 and λ = 0), ii) spatial error model (SEM) (ρ = 0 

and λ ≠ 0), iii) spatial autoregressive model (SAR) (ρ ≠ 0  and λ = 0 , and iv) spatial  

autocorrelation model (SAC) (ρ ≠ 0 and λ ≠ 0).  

 

Table 3-3. Estimation Results with Four Spatial Specificationsa 

 (1) (2) (3) (4) 

PP ratio (%) OLS SEM SAR SAC 

Covg 0.304*** 0.195*** 0.160*** 0.189*** 

 (0.055) (0.073) (0.045) (0.063) 

Yield(-1) -0.039*** -0.012 -0.016*** -0.016** 

 (0.006) (0.009) (0.005) (0.008) 

Price(-1) -0.942*** -1.100*** -0.583*** -0.806*** 

 (0.160) (0.368) (0.133) (0.236) 

Apr PDSI -0.661*** 0.230 -0.127 -0.053 

 (0.186) (0.308) (0.148) (0.232) 

May PDSI 2.288*** 1.740*** 0.908*** 1.405*** 

 (0.195) (0.348) (0.166) (0.256) 

Jun PDSI 0.854*** 0.869*** 0.570*** 0.759*** 

 (0.145) (0.306) (0.113) (0.204) 

Constantb -12.543***    

 (3.500)    

Lambda  1.165***  0.701*** 

  (0.005)  (0.030) 

Rho   0.932*** 0.634*** 

   (0.018) (0.034) 

Nc 7722 7128 7128 7128 

BIC 58597.1 52319.9 52487.0 52160.1 

Note: Numbers in parentheses are cluster robust standard errors; Significance levels are 1% (***), 
5% (**), and 10% (*). 
a All the models are fixed effect models, i.e., yit − y̅i∙ = β0 + β(xit − x̅i∙) + (εit − ε̅i∙), to control for the 
unobserved time invariant effect.  
b Spatial models do not have constant terms because of Helmert transformation  
c Spatial models have less observations because of Helmert transformation 
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The relationship between the PP ratio and insurance coverage level is positive and 

statistically significant in all four models, with magnitudes between 0.160 ~ 0.304, which 

is consistent with the theory and simulation results presented in the previous sections. If 

a farmer purchases the higher coverage, s/he would claim PP more when experiencing 

adverse events such as drought or excessive moisture. However, when controlling for 

spatial lag, the magnitude of coverage level of OLS is higher than other spatial models. 

Thus, OLS result implies there may exist for upward biasedness for coverage level due to 

omission of spatial lag of PP ratio. Lagged price (our proxy for the expected price) has a 

negative effect on the PP ratio as expected. If the farmer anticipates a higher price at a 

harvest, s/he would be more likely to plant corn (late planting) instead of claiming PP. In 

spatial models, the values of ρ and 𝜆 are positive and statistically significant, which implies 

that PP ratios and error terms are spatially correlated across counties. 

3.7. Summary and Concluding Remarks 

This study examines the existence of moral hazard in the choices of prevented 

planting (PP) and late planting (LP). The PP provision is defined as the “failure to plant an 

insured crop by the final planting date due to adverse events”, such as excess soil 

moisture or drought. If a farmer decides not to plant a crop, the farmer receives a PP 

indemnity. LP is an option for the farmer to plant the crop and still maintain the crop 

insurance when s/he fails to plant a crop by the final planting date. However, by choosing 

LP option the farmer has to lower the insurance coverage level depending on the LP date 

due to potential yield loss.  
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Crop insurance may alter a farmer’s production choice between PP and LP. In 

other words, crop insurance can increase the likelihood of PP claims even though farmers 

can still choose LP. This paper seeks to find evidence that the farmer with higher insurance 

coverage tends to choose PP more often, which suggests an increase in moral hazard.  

Assuming a relatively risk averse farmer, we derive a PP-LP curve representing 

the farmer’s indifference between PP and LP. As shown in Figures 3-4, 3-5, and 3-6, the 

PP-LP curve is convex to the origin in the expected yield and price plane. These figures 

demonstrate that a farmer chooses LP when s/he expects a higher crop price and yield at 

harvest time. Two important findings from the stochastic simulation are i) farmers with 

higher insurance coverage are more likely to choose PP more, and ii) all else equal, 

farmers with revenue protection, as opposed to yield protection, are less likely to claim PP 

which differs from the findings of Rejesus et al. (2003).  

Empirical research is conducted to estimate the statistical relationship between the 

PP ratio, on the one hand, and insurance coverage level and anticipated price on the 

other. Spatial fixed effect models are estimated to control for unobserved time invariant 

effects and spatial correlation among neighboring counties. Estimation results indicate that 

the PP ratio has a positive relationship with insurance coverage levels and a negative 

relationship with anticipated price. These empirical results correspond to a stochastic 

simulation results.    

Results presented in this study carry important implications for crop insurance. 

Existing (ex-post) moral hazard in PP claim should be mitigated so as not to discourage 

farmers from planting a crop. Abandoning cropland (in a given year) leads to a 

contradiction with USDA’s goal of promoting agricultural production to improve food 
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security (USDA’s strategic Plan FY 2010-2015, Goal 3) (OIG 2013). Exploring how best 

to mitigate moral hazard in the PP provision is an area for future study. 
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4. PREVENTED PLANTING AND PLANTING SECOND CROP 

Abstract 

If a farmer chooses prevented planting (PP), s/he receives the PP indemnity and 

may either leave the acreage unplanted or plant a second crop, e.g., soybean for corn. If 

the farmer chooses to plant a second crop after prevented from planting a first crop, s/he 

receives a reduced PP payment (35% of PP indemnity) and s/he is assigned to 60% of 

the approved yield of the first crop in the APH for the next crop year. The current PP 

provision fails to provide farmers with an incentive to plant a second crop (99.9% of PP 

claiming farmers do not plant the second crop). Adjusting reduced PP indemnity payment 

may encourage farmers to plant a second crop, which is currently fixed at 35% of the total 

PP indemnity. The objective in this second study is to estimate the optimal PP payment 

percentage that may better encourage farmers to plant a second crop, which would help 

achieve a goal of USDA to better promote agricultural production. Using corn-soybean 

budget data from Hamilton County, Iowa, a representative farmer is depicted. We show 

through stochastic simulation, that under the current PP reduction factor, the farmer is 

unlikely to plant a second crop. However, if a reduction factor increases, the farmer 

becomes more likely to do so. This study finds that the optimal reduced PP payment 

percentage is greater than the existing 35%.  

 

Key Words: Crop Insurance Prevented Planting, Second Crop, Expected Utility Theory 

JEL Codes: D81, G22, Q18 
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4.1. Introduction 

The Risk Management Agency (RMA) has included prevented planting (PP) in its 

crop insurance program since 1998. PP is defined as the “failure to plant an insured crop 

by the final planting date, or within any applicable late planting (LP) period due to adverse 

events”, such as excess soil moisture or drought (2013 Crop Insurance Handbook, USDA-

RMA 2013). If a farmer with a base PP coverage level (base PP) claims PP payments, 

60% (varies from 25% to 60% depending on crops insured) of the original liability is paid 

as an indemnity on approval of the insurer. The farmer also can choose to buy-up his or 

her PP coverage level by 5% or 10%. In this case, PP payments are given at 65% and 

70% of the original liability, respectively.  

PP payments currently accounted for the large shares of total indemnity in crop 

insurance programs. PP payments accounted for roughly 9% of total indemnity payments 

from 1998 to 2008. From 2009 to 2013, PP payments accounted for roughly 17% of total 

indemnity, on average. In 2010 alone, the share of PP payments increased to 

approximately 29% of total indemnity (author’s calculation from Indemnities with Month of 

Loss in the RMA Cause of Loss, http://www.rma.usda.gov/data/cause.html).  

Late planting (LP) is another option that a farmer may take when s/he fails to plant 

a (first) crop during the normal planting period. However, by choosing LP, the farmer does 

not receive a full PP indemnity. The coverage level is lowered based on LP date due to 

estimated yield loss (1% per day after final planting date). As evidenced by the recent 

increase in PP payments, farmers tend to choose PP in lieu of LP. Rejesus et al. (2003) 

and Rejesus, Escalante, and Lovell (2005) show that crop insurance provides farmers with 

an incentive to choose PP. Kim and Kim (2015) also find that farmers with higher insurance 

coverage are more likely to claim PP than LP.  

http://www.rma.usda.gov/data/cause.html
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Second crop (SC) is the choice of planting a second crop, e.g., soybeans for corn 

after the LP period and having declared PP. When a farmer chooses to plant a second 

crop s/he receives 35% of the PP indemnity (2013 Crop Insurance Handbook, USDA-

RMA 2013) and is assigned to 60% of the approved yield of the first crop in the Actual 

Production History (APH) for the next crop year. Figure 1 briefly explains the timeline of 

PP, LP, and SC options. 

 

 

Figure 4-1. Timeline for choice between prevented planting and late planting 

Note: PP = prevented planting, LP = late planting, CV = cover crop, SC = second crop. 

Dates are for a typical farm in Iowa. Text which is not the subject of this section is greyed out. 

 

In 2013, the Office of Inspector General (OIG) audited the RMA’s PP provisions. 

The OIG found that “producer’s currently plant only 0.1 percent of prevented planting acres 

to a second crop.” (OIG 2013, p. 8). This implies the current PP provision discourages 

farmers from planting a second crop. Abandoning this cropland in a given year leads to 

two problems. First, insurance premium subsidies paid to farmers are, in effect, wasted 

because no crop is produced. Second, it is a contradiction of the USDA’s goal of promoting 
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agricultural production to improve food security (USDA’s strategic Plan FY 2010-2015, 

Goal 3) (OIG 2013). 

The OIG (2013) points out that the incentive not to plant a second crop is caused 

by the design of the PP provision, which assigns 60% of the approved yield of the first 

crop in the APH calculation for the next crop year. Compared to 1995-1997, when the APH 

adjustment was not included in the PP provision, the ratio between acres planted to a 

second crop and the total PP claim acres was about 36%. In 2008-2011, when the RMA 

included the APH adjustment in the PP provision, this ratio was only 0.1%. The OIG (2013) 

recommended to the RMA “to determine whether an assignment of yield to all PP acres 

is not prohibited…” (OIG 2013, p. 10). Following the OGC’s recommendation, the RMA 

agreed to assess whether the APH adjustment is appropriate. However, “the RMA doesn’t 

anticipate this to be the likely outcome.” (OIG 2013, p.11)  

In addition to modifying the APH calculation, adjusting the PP indemnity payment 

which is currently fixed at 35% of the total PP indemnity may also encourage farmers to 

plant a second crop. The main objective of this study is to estimate the appropriate 

percentage reduction in PP payments for farmers who choose to plant a second crop. A 

conceptual model to characterize the farmer’s choice is developed. An analytical solution 

of the percentage of PP payment may not be easily derived due to the complexity of 

decision making process on PP and SC. Instead, a stochastic simulation is conducted to 

estimate the proper percentage reduction. Specifically, the objective in this paper is to 

discover what percentage reduction in PP payment induces farmers to plant a second 

crop when they fail to plant the first crop and claim PP. 
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4.2. Literature Review 

Few academic studies exist concerning PP. Rejesus et al. (2003) analyze potential 

fraudulence of PP claims. They show empirically that a higher insurance coverage level 

induces more fraudulent PP claims. Also, they find that revenue protection leads to more 

fraudulent PP claims than yield protection. Rejesus, Escalante, and Lovell (2005) also 

analyze the relationship between PP claims and land ownership and farm business 

structure. They find that tenant status under a leasing contract increases the likelihood of 

claiming PP. They also show that sole ownership and partnership farms claim more PP 

than cooperate farms. Kim and Kim (2015) examine the existence of moral hazard 

inherent in the choices of PP and late planting and show that a farmer with higher 

insurance coverage may tend to choose PP more often.  

To the best of author’s knowledge, regarding a choice of second crop, there are 

no academic studies except some University extension reports to introduce and explain 

second crop provision, e.g., Schnitkey (2013) and Edwards (2014). 

4.3. Conceptual Model 

Assume that a farmer is risk averse and maximizes expected utility from uncertain 

profit at harvest time. Suppose that, due to adverse events such as drought or excess soil 

moisture at planting time, the farmer must choose PP or SC. The farmer is at the final 

“late” planting time (See Figure 4-1), time period 1 (t = 1), and must make a decision. If 

the farmer decides to claim PP, s/he obtains the profit from the PP indemnity, πPP, with 

certainty, where 

(4-1) πPP = pg
fcθppθqAPH

fc − c1
fc − mfc − ccv, 
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where the superscript fc indicates a first crop, e.g., corn, pg
fc is the elected (guaranteed) 

price of the first crop, θpp is the PP coverage level (60%, 65% or 70% depending on buy-

up), and θ is the insurance coverage level and θ ∈ [50%, x] with an increase in 5% and x 

varies from 75% to 85% over crops and regions. qAPH
fc  is the APH for the first crop. c1

fc is 

input cost per acre for the normal planting, mfc is the crop insurance premium for the first 

crop, and ccv is the cost for planting the cover crop which is a requirement of PP claim.  

Suppose that a farmer ultimately chooses to plant a second crop, e.g., soybean, 

after declaring PP, then the farmer receives: 

(4-2) π̃sc = α ∙ indpp
fc  + nr̃sc, 

where indpp
fc  represents the PP indemnity for the first crop, and α = 0.35, i.e., the farmer 

receives 35% of the total PP indemnity when s/he chooses to plant a second crop. The 

term nr̃sc is the net return from the second crop at the harvest time. The net return from 

the second crop in equation (4-2) is defined in equation (4-3), which depends on whether 

crop insurance is purchased for the second crop:  

(4-3) nr̃sc = p̃scq̃sc − c1
fc − mfc − c2

sc − msc + max(0, indj
sc) crop insurance purchased, 

nr̃sc = p̃scq̃sc − c1
fc − mfc − c2

sc   crop insurance not purchased, 

where p̃sc is the market price of the second crop at harvest time, which is stochastic at t =

1, q̃sc is the yield of the second crop at the end of the season, which is also stochastic, c1
fc 

indicates the cost of planting the first crop, mfc is the insurance premium for the first crop, 

c2
sc represents the cost of planting, cultivating and harvesting the second crop at t = 2, msc 

is the insurance premium for the second crop, and indj
sc (j = yp, rp)  is the insurance 

indemnity for the second crop, where yp represents the yield protection and rp represents 
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the revenue protection. Note that tilde above the variable indicates that the corresponding 

variable is stochastic to farmers at t = 1. 

The insurance indemnity indj
sc depends on the type of crop insurance chosen. In 

the case of yield protection, indyp
sc , is given by 

(4-4)  indyp
sc = pg

sc max{0, ρθqAPH
sc − q̃sc}, 

where, pg
sc is the elected (guaranteed) price of a second crop, ρ is the coverage reduction 

factor depending on the second crop’s planting date10 (roughly 0.89), θ is the coverage 

level for the second crop, qAPH
sc  is a second crop APH, and q̃sc is the anticipated yield of 

the second crop at t = 2. If the anticipated yield is higher than the production associated 

with coverage level ρθqAPH
sc , the farmer does not receive the yield protection indemnity, 

regardless of the actual price level at harvest time. 

In the case of revenue protection, the anticipated indemnity, indrp
sc , becomes 

(4-5)   indrp
sc = max{0, min(2pg

sc, max(pg
sc, p̃sc)) ∙ ρθqAPH

sc ) − p̃scq̃sc}. 

If the anticipated revenue at the harvest time from planting the second crop, p̃scq̃sc, is 

greater than covered revenue, min(2pg
sc, max(pg

sc, p̃sc)) ∙ ρθqAPH
sc ), the farmer does not 

receive the revenue protection indemnity.  

Assuming that the farmer is risk averse, s/he will choose not to plant a second crop 

when u(πpp) > EU(π̃sc), and s/he will plant a second crop when u(πpp) < EU(π̃sc), where 

u(∙) is a strictly increasing twice-continuously differentiable utility function and EU(∙) is the 

                                                
10 A second crop is planted after the late planting date. In the case of corn in Iowa, the normal 
planting date is May 31, and the late planting date is June 25. The second crop, usually soybeans, 
is planted after June 25, which is a second crop’s late planting period (See Figure 4-1). 
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expectation of the utility function. Data (OIG 2013) reveals that 99.9% acres associated 

with a PP claim are planted to a cover crop, not a second crop, which implies 

(4-6)  u(πpp) > EU(π̃sc).  

Meanwhile, conditional on the information known to the farmer at t = 1 , the 

expected utility is rewritten as EU(π̃sc) = u(E(π̃sc) − RPM), where E(π̃sc) is the farmer’s  

expected value of π̃sc , and RPM  is the risk premium assuming s/he is a risk averter 

(Chavas, 2004, p.36). Since u(∙) is strictly increasing in πpp and π̃sc, equation (4-6) can 

be written as 

(4-7) πpp > E(π̃sc) − RPM. 

We can simulate the farmer’s decision-making process using stochastic 

simulation, i.e., generating random price, p̃sc  and yield, q̃sc , for α = 0.35 . We expect 

equation (4-7) holds for most cases of our simulation, which is consistent with OIG (2013). 

The expression in equation (4-7) cannot be solved analytically for α due to the complexity 

of the decision making problem. The stochastic simulation is undertaken with various 

values of α and the probability of choosing PP determined such that 

(4-8) Pr(PP|α) = Pr( πpp > E(π̃sc) − RPM|α). 

Specifically, the stochastic simulation enables us to find the value of α such that πpp =

E(π̃sc) − RPM, i.e., farmers are indifferent between choosing PP and SC.  

4.4. Representative Farmer and Stochastic Simulation 

A stochastic simulation of representative farmer is used in this study. Simulation 

of the representative farmer’s behavior on crop insurance is not original to this paper. 

Babcock and Hennessy (1996) and Coble, Heifner, and Zuniga (2000) have previously 

created a representative farmer. 
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4.4.1. Representative Farmer 

The representative farmer is created based on corn and soybean budget data from 

Hamilton County, Iowa. For the simulation, historical corn and soybean price and yield, 

insurance premium including subsidies associated with different insurance plans, and 

farming cost data are compiled from Iowa extension, RMA quick cost estimator, and USDA 

NASS (Table 4-1). There are a total of 48 different crop insurance plans pertaining to two 

different insurance types (revenue protection and yield protection), three different PP 

coverages,θpp, (60%, 65%, and 70%), and eight different insurance coverages,θ, (50%, 

55%, 60%, 65%, 70%, 75%, 80%, and 85%). To simplify the comparisons, the 

representative farmer is assumed to choose a single crop insurance plan for a second 

crop, and thus results for a total of six crop insurance plans are presented (simulations 

were done for all of possible crop insurance plans).  

4.4.2. Risk Premium 

The risk premium,RPM, in Table 4-1 is derived assuming a negative exponential 

utility function as follows, 

1. Generate random soybean price and yield, p̃sc and q̃sc, at harvest time considering 

correlation, corr(p̃sc, q̃sc) (Richardson et al. 2000).  

2. Calculate profit from a second crop, π̃sc, including possible insurance indemnity 

associated with this second crop. 

3. Repeat steps 1 and 2 for 1000 times. 

4. Calculate the certainty equivalent (CE) using simulated profit from step 3 using the 

formula, CE(r) = ln[(
1

1000
∑ exp(−r ∙ πi))

−
1

r
], where i represents each iteration and 

r is the absolute risk aversion coefficient (Hardarker et al. 2004, p. 257). 

5. Derive the risk premium following the definition, RPM = E(π̃sc) − u−1(EU(π̃sc)) 

(Chavas 2004, p. 34) which is equivalent to RPM = E(π̃sc) − CE(r). 
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Table 4-1. Representative Corn-Soybeans Farmer in Hamilton County, Iowa 

  Choice of Insurance for Second Crop 

 
Symbols 

No 
Insurance 

Yield Protection Revenue Protection 

 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

  PP coverage level  θpp - 60% 65% 70% 60% 65% 70% 

Coverage level  θ - 65% 75% 85% 65% 75% 85% 

LP reduction factor  ρ - 0.89 

PP indemnity reduction factor  α 0.35 

Corn elected price1  pg
fc $4.62/bushel 

Corn APH2 qAPH
fc  189 bushels/acre  

Soybeans elected price3  pg
sc $11.36/bushel 

Volatility of soybean price4  0.13 

Soybeans APH2  qAPH
sc  - 50 bushels/acre  

Soybeans late planting yield5   20 bu 6 26.5 bushels/acre 

St. dev. of soybean yield  4.46 bushels/acre 

Corn insurance premium mfc - 7 11 17 10 19 37 

Corn insurance subsidy7  - 0.59 0.55 0.38 0.59 0.55 0.38 

Additional premium for buy-up PP8  - 0 0.22 0.85 0 0.22 0.85 

Soybeans insurance premium  msc - 5 9 16 7 13 25 

Soybeans subsidy rate7  - 0.59 0.55 0.38 0.59 0.55 0.38 

Cost at time period 1($/acre)  c1
fc $327.8/acre 

Cost at time period 2($/acre)   c2
sc $186.65/acre 

Corr. Bet/ soybeans price and yield9  -0.24 

Utility function10  u(π) = −exp (−rπ) 

Risk aversion parameter11  r 0.005 

Risk Premium RPM 6.88 3.85 3.65 3.72 2.14 2.13 2.64 
1 The elected corn price is $4.62/bushel in 2014 and is considered as the average price. It is given 
by the RMA based on historical corn futures price data. 2 Trend adjusted APH.  3 The elected 
soybean price is $11.36/bushel in 2014 and is considered as average price. It is calculated by the 
RMA based on historical soybean futures price data.  5 53% (Pedersen, 2008, Iowa Extension) of 
average soybean yield from normal planting due to potential yield loss from late planting.   6 If a 
farmer doesn’t purchase crop insurance for a second crop, the farmer must plant a second crop 
after the late planting date of the second crop, usually July 10 in Iowa (Edwards, 2012, Iowa 
Extension). In this case, the potential yield loss would be 40% of the normal yield.  7 The insured 
is responsible for (1 – coverage subsidy rate)×insurance premium. Federal government pays 
coverage subsidy rate×insurace premium.  8 For example, a farmer in Hamilton County, Iowa 
should pay $11.37+$0.57 to purchase buy-up of 10% PP (70% coverage) with 85% coverage 
level. Additional insurance premiums for buy-up PP differs by counties. If a farmer chooses to 
plant a second crop, s/he will get 65% of the insurance premium back.   9 For numerical simulation, 
soybean price and yield are generated randomly based on the correlation between price and yield. 
The correlation is calculated using historical data from 1990 to 2005.  10 Negative exponential 
utility function exhibits constant absolute risk aversion (CARA), which is given by r. This function 
has been used extensively in decision analysis (Hardaker et al. 2004, p.103).  11 When r = 0, the 
decision maker is risk neutral and higher values of r imply risk averse decision makers. We select 
r = 0.005 as the risk aversion coefficient based on Table 2 in Babcock, Choi, and Feinerman 
(1993). The risk aversion coefficient of 0.005 denotes a relatively risk averse farmer (risk premium 
20% Table 2). 
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4.5. Stochastic Simulation 

Once RPM is calculated for the second crop with different insurance types and 

coverages including no crop insurance for the second crop, πpp and E(π̃sc) − RPM are 

compared assuming α = 0.35 and given various combinations of random prices (p̃sc) and 

yields (q̃sc) for the second crop. Random prices and yields are generated based on the 

correlation between p̃sc  and q̃sc  to maintain a simultaneous price-quantity relationship 

(Richardson et al. 2000).  

Table 4-2 presents our simulation results. As expected, in most cases PP is 

chosen over SC. The probability of choosing PP varies between 81% and 96%. However, 

the probability of choosing PP is not 99.9% when the farmer purchases crop insurance for 

a second crop. This is because assigning 60% of the approved yield of the first crop in the 

APH calculation is not considered explicitly. Assignment of 60% of the approved yield to 

APH calculation may increase the insurance premium and may reduce the expected 

indemnity for the next crop year for the first crop. The probability of choosing PP in this 

case would be higher because the corresponding RPM would be larger than before. 

 

Table 4-2. 𝐏𝐫(𝛑𝐩𝐩 > 𝐄(𝛑̃𝐬𝐜) − 𝐑𝐏𝐌 |𝛂 = 𝟎. 𝟑𝟓) from Stochastic Simulation  

 Choice of Insurance for Second Crop 

 
No 

Insurance 
Yield Protection Revenue Protection 

  Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

PP coverage level, θpp  60% 65% 70% 60% 65% 70% 

Insurance coverage level, θ  65% 75% 85% 65% 75% 85% 

Pr(πpp > E(π̃sc) − RP |α = 0.35)1 100% 85% 93% 96% 81% 86% 91% 

1 Probability of choosing PP and not to plant a second crop. The higher coverage, the higher 
probability of choosing PP because the higher coverage (of the first crop) provides the more PP 
payment. 

Note: choice of insurance plan for the second crop is assumed to be the same for the first crop or 
not purchase insurance for the second crop. 
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Another set of stochastic simulations is conducted to determine appropriate values 

of α that might encourage farmers to plant a second crop. As shown in Figure 4-2, the 

probability of choosing PP decreases when the farmer faces higher values of α. From 

Figure 4-2, the probability of choosing PP depends on type of crop insurance and 

insurance coverage level. In the case of revenue protection, there exists a tipping point 

where the probability of choosing PP would reach zero at roughly when α = 0.6. Beyond 

this point most of farmers choose to plant a second crop. This is because revenue 

protection insurance now guarantees the minimum revenue. At some points, i.e., α ≥ 0.6, 

the profit from a second crop is greater than πpp all the time, i.e., truncated over various 

levels of crop insurance coverages. In the case of yield protection, however, the insurance 

guarantees only yield, not the revenue from a second crop, and thus the farmer is not 

guaranteed minimum revenue.  

Results presented in Figure 4-2 demonstrate some policy implications associated 

with PP provision. First, the current PP reduction factor is too low to induce farmers to 

plant a second crop, which impedes reaching USDA’s goal of promoting agricultural 

production. Second, the optimal reduction factor depends upon the type of insurance and 

insurance coverage. Crop insurance coverage data for 2014 (based on the number of 

policies with premium from Pregenerated SOB Reports in RMA Summary of Business 

Reports and Data, http://www.rma.usda.gov/data/sob.html) show that close to 90% of 

farmers purchase revenue protection. Farmers who purchase revenue protection choose 

coverage levels of 70%(15%), 75%(25%), 80%(24%), and 85%(18%). 

 

 

http://www.rma.usda.gov/data/sob.html


62 

 

 
Figure 4-2. Probability of PP under various PP reduction factor (𝛂) 

Note: Green color = farmer tends to choose second crop, red color = farmer tends to choose more 
PP. Numbers in colored cells represent the probability of choosing PP. 
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In addition, according to PP indemnity data (from Indemnities with Month of Loss in RMA 

Cause of Loss, http://www.rma.usda.gov/data/cause.html), most farmers choose either 

base PP or 10% buy-up PP. Base PP accounted for 61% of total PP indemnity, and 10% 

buy-up PP 38% in 2013.  

In sum, the most popular choice of crop insurance type and coverage in recent 

years has been 75-80% covered revenue protection with base PP. This study estimates 

an optimal reduction factor of 0.45-0.50, which induces most farmers to plant a second 

crop. In cases where a farmer does not purchase crop insurance for a second crop, the 

farmer most often chooses to claim PP, not to plant a second crop. This is because the 

risk of planting a second crop is much higher without insurance. In turn, the farmer faces 

a much higher risk premium, which discourages him/her from planting the second crop. 

The probability of claiming PP is simulated to be close to one until the value of α becomes 

very high like 0.6. 

4.6. Summary and Concluding Remarks 

If a farmer chooses prevented planting (PP), s/he receives a PP indemnity and may 

either leave the acreage unplanted or plant a second crop. e.g., soybean for corn. If the 

farmer plants a second crop after having chosen not to plant a first crop, s/he receives a 

reduced PP payment (35% of PP indemnity) and is assigned to 60% of the approved yield 

of the first crop in the APH for the next crop year. The current PP provision fails to provide 

farmers with an incentive to plant a second crop (99.9% of PP claiming farmers do not 

plant a second crop). Adjusting the PP indemnity payment may encourage farmers to plant 

a second crop, which is currently fixed at 35% of the total PP indemnity.  

http://www.rma.usda.gov/data/cause.html
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The objective in this study is to estimate the optimal percentage reduction in PP 

payment that may encourage farmers to plant a second crop. Assuming a relatively risk 

averse farmer, we derive the probability of choosing PP using corn-soybean budget data 

in Hamilton County, Iowa. Using stochastic simulation based upon a negative exponential 

utility function, and the current reduction factor, most farmers choose not to plant a second 

crop (Table 4-2). However, if the reduction factor increases, the farmer begins planting a 

second crop (Figure 4-2). 

 Policy implications regarding PP provision in crop insurance are twofold. First, the 

current PP reduction factor is not inducing farmers to plant a second crop, which conflicts 

with USDA’s goal of promoting agricultural production. Second, the optimal reduction 

factor depends upon insurance coverage and type. The most popular choice of crop 

insurance type and coverage in recent years has been 75-80% coverage revenue 

protection with base PP. This study suggests an optimal reduction factor of 0.45-0.50 

(from Figure 4-2), which may induce most of farmers to plant a second crop. 

 An obvious extension of this study would be a statistical test of our simulation 

results using historical data for insurance type and coverage, and the planting of a second 

crop. However, statistical analysis is precluded because of 99.9% of farmers chose not to 

plant a second crop. In addition, the suggest of PP payment rate of 0.45-0.50 is based 

upon parameterization for a single crop in a single place (Hamilton County, Iowa) where 

the corn yields tend to be high. Thus, related numerical analysis with parameterization for 

multiple locations should be conducted. 

Additionally, in this study, the representative farmer is assumed to be relatively risk 

averse with a negative exponential utility function. In reality, however, a farmer’s attitude 

toward risk and the type of utility function are unknown to researchers. If farmers are more 
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risk averse than the representative farmer, the risk premium (RPM), would be higher and 

the value of α may also be higher than that of suggested here. 
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5. MARGIN PROTECTION PROGRAM FOR DAIRY: CONDITIONAL PROBABILITY 
AND CHOICE OF MARGIN PROTECTION 

 

Summary 

The Margin Protection Program for dairymen (MPP-Dairy) provides dairy 

producers with insurance coverage (indemnity) when the national dairy margin (all milk 

price minus feed costs) falls beneath a producer-selected threshold level beginning at the 

catastrophic level of $4/cwt, requiring a $100 administration fee. Buy-up or supplementary 

coverage levels incurring additional premium costs are also offered in increments of 

$0.50/cwt, beginning at $4.5/cwt up to $8.0/cwt. MPP-Dairy enrollment data 

(http://www.fsa.usda.gov/programs-and-services/Dairy-MPP/index) indicates that 

California, the nation’s largest dairy producing state, has only 29% of enrolled dairy farms 

purchasing supplementary coverage. In contrast, Wisconsin, the second largest dairy 

producing state, has 56% of enrolled producers purchasing buy-up coverage. This paper 

determines whether conditional probabilities regarding regional and national margins play 

a role in dairymen’s decisions to purchase supplementary coverage. Results indicate that 

Wisconsin producers exhibit larger probabilities of purchasing supplementary coverage 

conditional on regional and national margins than do California producers. 

 
 

Key Words: MPP-Dairy, Expected utility, Copula, conditional probability 

JEL Codes: D81, Q14, Q18   

http://www.fsa.usda.gov/programs-and-services/Dairy-MPP/index
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5.1. Introduction 

The Dairy Margin Protection Program (MPP-Dairy), administered by the Farm 

Service Agency (FSA USDA), is a risk management tool for dairy producers that 

addresses the income-over-feed-costs (IOFC) margin risk. The 2014 Farm Bill authorized 

the MPP-Dairy (FSA 2014), which offers dairy farms protection of their production margins. 

The MPP-Dairy includes catastrophic coverage, at no cost to the producer other than an 

annual $100 administrative fee. Various levels of buy-up coverage are offered with 

premiums that vary with the level of protection (Newton, Thraen, and Bozic 2015). 

Catastrophic coverage provides payments to participating dairy producers when the 

national dairy production margin is below $4/cwt. The national production margin is the 

difference between the monthly average all-milk price and monthly average feed costs 

(which includes the costs of corn, soybean, meal and alfalfa) (Newton, Thraen, and Bozic 

2015). Producers may purchase buy-up coverage for national margins that range from 

$4.50/cwt to $8.00/cwt, rising by increments of $0.50. Producers receive indemnity 

payments when the actual margins (between $4.50 and $8.00/cwt) are below their 

selected margin level (Newton, Thraen, and Bozic 2015). The program’s objective is to 

offer dairy producers (regardless of their size, geographic location, or management 

practices) self-selected protection levels against declines in milk prices, rising feed costs, 

or a mixture of both (Newton and Thraen 2014; Newton, Thraen, and Bozic 2015). 

2015 MPP-Dairy coverage data by states indicate that, for western states other 

than Washington and Montana, less than 36% of those enrolled in the program purchase 

buy-up protection. California (CA), which is the largest dairy producing state in the U.S., 

has only 29% of enrolled dairy farms purchasing supplementary coverage (i.e. the majority 

enrolled solely purchase catastrophic coverage). In contrast, more than 50% of dairy 
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producers in mid-western and eastern states typically purchase buy-up coverage. For 

example, Wisconsin (WI), the second largest dairy producing state in the U.S., has 56% 

of enrolled producers purchasing supplementary coverage. Figure 5-1 shows the MPP-

Dairy participation rates across different margin protection in CA and WI. As shown, the 

distribution of MPP-Dairy participation rates differs in both regions. More than 70% of CA 

dairy producers typically purchase catastrophic protection, while 44% of WI producers do 

so. To the contrary, a larger percentage of WI dairy farms purchase buy-up coverage 

levels of $6/cwt and $6.5/cwt, as well as the maximum protection level of $8/cwt. 

 

 

Figure 5-1. MPP-Dairy participation rate and margin protection in CA and WI in 2015 

Note: Participation rate is the proportion of dairy producers who purchase dairy margin protection. 
$4/cwt is catastrophic coverage. Producers may purchase buy-up coverage that provides additional 
payments when margins are between $4.00 and $8.00/cwt. 
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The objective of this study is to investigate why WI dairy producers may have 

purchased more supplementary coverages than CA dairy producers. There are several 

potential factors explaining this difference, such as farm size (average size of dairy 

operation in CA is much larger than that in WI), regional milk price, regional feed costs, 

technology, and producers’ attitude toward risk. Newton and Balagtas (2015) explore the 

MPP participation pattern focusing on farm size. They find that the enrollment rate is 

positively associated with farm size across state. They also find that supplementary 

coverage is negatively associated with farm size across state. This is because the $100 

administration fee is relatively smaller for larger dairy producers. Thus, states with larger 

farms tend to exhibit higher participation rates (Newton and Balagtas 2015). 

This study attempts to answer this question from a different perspective by 

demonstrating that the dairy production margins in particular the conditional probabilities 

among the national and each local market, may play a key role in determining which farms 

are more likely to purchase supplementary coverage. This is due to the fact that the dairy 

farms receive payments when the national (average) dairy production margin is below 

their selected margin protection level. If a dairy farm can accurately estimate the extent of 

the relationship between the US margin and her/his own margin, i.e., if the farmer can 

estimate how closely the US margin ‘tracks’ the changes in her/his margin, then the farm 

has an incentive to increase its selected protection rate and purchase a buy-up option.  

Expected utility theory, which is used extensively in the insurance literature, is used 

to characterize the role of the conditional probability in the decision to purchase buy-up 

coverage. The level of margin protection is modeled as a function of the conditional 

probability between the margins of US and CA, or between the margins of US and WI, 

whichever the case may be. Comparative statics reveal that there exists a positive 
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relationship between margin protection buy-up and the conditional probability defined over 

the national and local margins. The empirical conditional probability is derived using 

different copula models to see whether WI farms have larger conditional probabilities than 

CA farms.  

Section 5-2 reviews the literature regarding the MPP-Dairy. The conceptual model 

for choice of margin protection and the role of conditional probability is described in section 

5-3. Section 5-4 explores the various copula models used to calculate conditional 

probabilities of dairy production margins between US-CA and US-WI. Section 5-5 

describes the data used. Section 5-6 presents the empirical methods to derive conditional 

probabilities between US-CA and US-WI. Results are discussed in Section 5-7. Section 

5-8 provides a summary. 

5.2. Literature Review  

Few studies have investigated the MPP-Dairy.  A handful of Farmdoc publications, 

such as those by Newton and Thraen (2014), Newton and Bozic (2014), and Newton and 

Balagtas (2015) address the MPP-Dairy. This is partly because the MPP-Dairy is a 

relatively new policy option included in the 2014 Farm Bill. 

Newton and Thraen (2014) describe the MPP-Dairy as a “dairy safety net”. Newton 

and Bozic (2014) evaluate milk prices needed to trigger the MPP-Dairy. Newton and 

Balagtas (2015) explore the MPP-Dairy participation pattern focusing on farm size. They 

find that the enrollment rate is positively related with farm size across states. They also 

find that supplementary coverage is negatively associated with farm size across state. 

This is because the $100 administration fee is relatively small for larger dairy producers. 
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Thus, states with larger farms tend to exhibit higher participation rates (Newton and 

Balagtas 2015).  

Newton, Thraen, and Bozic (2015) argue that MPP-Dairy leads to higher taxpayer 

cost compared with prior dairy support programs. Two reasons are suggested. First, dairy 

farmers may accurately predict the national dairy margins using publicly available 

information from futures markets, which allows them to maximize program returns. 

Second, a general lack of production constraints shifts benefits toward larger dairy farms 

and causes a larger taxpayer burden.  

Regarding the dairy production margin, which is defined as the difference between 

all-milk price and feed costs, Bozic et al. (2012) finds that the dairy margin exhibits a slow 

mean-reverting property when margins are very high or very low. Their findings can be 

used to design risk management strategies for managing margins, especially in a futures 

market.   

Bozic et al. (2014) explore the method used to determine the Livestock Gross 

Margin Insurance for Dairy Cattle (LGM-Dairy), which is the nation’s prior dairy support 

program. They point out that the current rate-making method using a Gaussian copula 

fails to capture crucial features of milk and feed markets. They find that, since 2005, the 

dependence between milk and corn prices became stronger compared to 1990~2005. 

This is because the number of larger dairy farms (> 1000 dairy cattle) has increased over 

time, and most of large farms purchase their feed from grain markets. This causes stronger 

tail dependence, which is not accounted for by the Gaussian copula.  
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5.3. Conceptual Model 

Suppose a dairy farm located in region j chooses a level of margin protection, m̅j. 

To make the problem simple, suppose there are four discrete states of nature (SON) 

governing the US and region jth margins, i.e., S = {S1, S2, S3, S4}. In SON S1 the US margin 

exceeds the producer’s chosen margin of protection (m̅j < mus
H ) denoted by mus

H , and 

region jth’s margin is also high (mj = mj
H) as well.11 Under S1 no MPP-Dairy payment is 

made. In SON S2, the US margin is lower than producer’s protection margin (m̅j > mus
L ) , 

and region jth’s margin is again high (mj = mj
H). In this case, the producer receives an 

MPP-Dairy payment (per-unit of production) of αj(m̅j − mus
L ), where α is the coverage 

level (from 25% to 90%). In SON S3, the US margin is again high (mus = mus
H ) but region 

jth’s margin is low (mj = mj
L).  In SON S4, both the US and regional jth’s margins are low. 

The dairy farm is paid  αj(m̅j − mus
L ). Figure 5-2 presents these four SONs.  

 

  US Margins (mus) 

  Higher than m̅ Lower than m̅ 

Regional Margins (mj) 
High S1 S2 

Low S3 S4 

Figure 5-2. State of nature 

Note: US margin is high when m̅ < mus and the dairy farm doesn’t receive MPP-Dairy payments. 

US margin is low when m̅ > mus and the dairy farm receives MPP-Dairy payments.  

 

                                                
11 Discretizing margins as high vs. low helps to make the model tractable. A high regional margin 
is defined as a margin exceeding the (historical) average, while a low regional margin is defined as 
a margin below the (historical) average. A high US margin occurs when the US margin exceeds a 
farmer selected threshold. A low US margin occurs when the US margin is lower than the farmer 
selected threshold. 
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The corresponding MPP-Dairy premium (per unit of production) is calculated as 

Pj = αjπus(m̅j − mus
L ), where P is the premium per unit of production for dairy farm to 

participate in the MPP-Dairy program ‘buy-up’ program, αj is chosen coverage level, and 

πus = Pr(mus = mus
L ) . 12  The corresponding wealth for the dairy farm (per unit of 

production) located in region j for the SONs is provided in the second column of Table 5-

1. Here w0 represents the producer’s initial wealth level. In S1, for instance, the dairy farm 

receives no MPP-Dairy payment but s\he has a high dairy margin, so the wealth is w0 −

Pj + mj
H. In S2, the producer receives a MPP-Dairy payments with a high dairy margin, so 

the wealth is w0 − Pj + mj
H + αj(m̅j − mus

L ). In S3, the dairy farm doesn’t receive payments 

and s\he has a low dairy margin as well, so the wealth is w0 − Pj + mj
L.  Lastly, in S4, the 

dairy farm receives the payment with a low dairy margin, so the wealth is w0 − Pj + mj
L +

αj(m̅j − mus
L ). 

 

Table 5-1. Wealth and Probability for Four States of Nature 

SON Wealth Probability 

S1 w0 − Pj + mj
H π1 = 1 − πus − πj + πjπus|j 

S2 w0 − Pj + mj
H + αj(m̅j − mus

L ) π2 = πus − πjπus|j 

S3 w0 − Pj + mj
L π3 = πj − πjπus|j 

S4 w0 − Pj + mj
L + αj(m̅j − mus

L ) π4 = πjπus|j 

Note: SON = state of nature. 

π1 = Pr(S1), π2 = Pr(S2) = Pr(mus = mus
L , mj = mj

H), π3 = Pr(S3) = Pr(mus = mus
H , mj =  mj

L), and 

π4 = Pr(S4) = Pr(mus = mus
L , mj = mj

L), where πus = Pr(mus = mus
L ), πj = Pr(mj = mj

L), and πus|j =

Pr(mus = mus
L |mj = mj

L).  

                                                
12 MPP-Dairy premium rates are fixed at predetermined levels for the duration of the farm bill 
(Newton, Thraen and Bozic 2015). This research assumes that these fixed premium rates are 

calculated as Pj = αjπus(m̅ − mus
L ), which satisfies the equivalence principle, i.e., expected MPP-

Dairy payment = premium. 
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The third column of Table 5-1 presents the associated probabilities for each of 

SON, where πus = Pr(mus = mus
L ) , πj = Pr(mj = mj

L) , and πus|j = Pr(mus = mus
L |mj =

mj
L). The probability of S4 can be therefore written as π4 = Pr(S4) = Pr(mus = mus

L , mj =

mj
L) = πjπus|j  using Bayes’ Theorem Pr(mus = mus

L |mj = mj
L) =  

Pr(mus=mus
L ,mj=mj

L)

Pr(mj=mj
L) 

 ↔

πus|j =
Pr(S4)

πj
. Likewise, the probability of S3 is given by π3 = Pr(S3) = Pr(mus = mus

H , mj =

 mj
L) = πj − πjπus|j, and the probability of S2 is given by π2 = Pr(S2) = Pr(mus = mus

L , mj =

mj
H) = πus − πjπus|j. The probability of S1, in turn, can be written as π1 = Pr(S1) = 1 −

Pr(S2) − Pr(S3) − Pr  (S4) = 1 − πus − πj + πjπus|j.   

Assuming a risk averse dairy producer with a strictly twice-continuously 

differentiable utility function, the maximization of the producer’s expected utility function is 

given by 

 (5-1) max
m̅j 

  EUj = π1u(w0 − Pj + mj
H) + π2u (w0 − Pj + mj

H + αj(m̅j − mus
L )) + 

         π3u(w0 − Pj + mj
L) + π4u (w0 − Pj + mj

L + αj(m̅j − mus
L )) 

            subject to Pj = αjπus(m̅j − mus
L ). 

Given αj , the producer’s first order condition ( j  subscript is omitted for expository 

convenience) is given by, 

(5-2)   
∂EU

∂m̅
= −απusπ1u′(1) + α(1 − πus)π2u′(2) − απusπ3u′(3) + α(1 − πus)π4u′(4) = 0. 13 

                                                
13 "1" = w0 − Pj + mj

H, "2" = w0 − Pj + mj
H + αj(m̅j − mus), "3" = w0 − Pj + mj

L, and "4" = w0 − Pj +

mj
L + αj(m̅j − mus). 
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The optimal solution is denoted m̅∗ = m̅(πus, πj, πus|j, w0, αj, mus, mj
H, mj

L)  if an interior 

solution exists14. The second order condition for a local maximum satisfies, 

(5-3)     
∂2EU

∂m̅2 = α2πus
2 π1u′′(1) + α2(1 − πus)2π2u′′(2) + α2πus

2 π3u′′(3) + α2(1 − πus)2π4u′′(4) < 0, 

which holds automatically by our underlying assumption of risk aversion. 

By implicit function theorem, 
∂m̅∗(∙)

∂πus|j
= −

∂2EU

∂m̅̅̅ ∂πus|j

∂2EU

∂m̅̅̅2

,  where the numerator satisfies 

(5-4) 
∂2EU

∂m̅ ∂πus|j
= −απjπusu′(1) − απj(1 − πus)u′(2) + απjπusu′(3) + απj(1 − πus)u′(4) 

→  απjπus(u′(3) − u′(1)) + απi(1 − πus)(u′(4) − u′(2)) > 0, 

which again holds automatically by our underlying assumption of risk aversion. Thus, 

(5-5)  
∂m̅∗(∙)

∂πus|j
= −

∂2EU

∂m̅̅̅ ∂πus|j

∂2EU

∂m̅̅̅2

> 0. 

In words, when the conditional probability, πus|j = Pr(mus = mus
L |mj = mj

L), increases, the 

dairy producer chooses a higher margin protection level.  

 Now the question becomes how to identify empirically the conditional probabilities, 

πus|j. We use the Copula method. Copula models are flexible forms that can be used to 

estimate dependence structures among (stochastic) variables, here, dairy production 

margins. 

5.4. Copula Theory  

Copulas are functions that “join or couple multivariate distribution functions to their 

marginal distribution functions” (Nelson 2006). According to Nelson (2006), Copula 

                                                
14 All the dairy producers are assumed to purchase margin protection. This is not unrealistic since 
dairy producers can purchase catastrophic level with no premium other than $100 administration 
fee.  
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functions provide a flexible dependence structure among N-dimensional multivariate joint 

distribution that can take any distributional form. Consider a continuous N-dimensional 

multivariate joint distribution function F(x1, x2, … , xN) with univariate marginal distributions 

F1(x1), ⋯ , FN(xN)  and inverse probability transforms (quantile functions), F1
−1, ⋯ , FN

−1 . 

Then xi = Fi
−1(ui) ~ Fi, i = 1, ⋯ , N, where ui is a uniformly distributed variable. Hence,  

(5-6) F(x1, x2, … , xN) = F (F1
−1(u1), F2

−1(u2), … , FN
−1(uN)) = C(u1, u2, … , uN). 

By Sklar’s Theorem (Sklar 1973), copula function C(∙) allows a dependence structure 

among marginal distributions by introducing dependence parameter, θ , in the copula 

function:  

(5-7) F(x1, x2, … , xN) = C(u1, u2, … , uN| θ), 

where θ is a scalar-valued dependence parameter. 

5.4.1. Classes of Copula Functions 

Most copula research to date focuses on bivariate copulas, because extensions to 

higher dimensions introduce nontrivial restrictions on dependence (Zimmer 2012). 

Following Zimmer (2012), the bivariate copula is applied in this study. Generally, there are 

two types of copulas, i) Elliptical and ii) Archimedean. Elliptical copulas are symmetrical in 

shape (Meyer 2009), which include Gaussian (normal) copula and student’s t copulas.   

The Bivariate Gaussian copula, Cg, with a dependence parameter θ, is written as  

(5-8) Cg(u1, u2|θ) = Φ(Φ−1(u1), Φ−1(u2)|θ) 

= ∫ ∫
1

2π√(1 − θ2)
exp {

−s2 + 2θst − t2

2(1 − θ2)
} dsdt

Φ−1(u2)

−∞

Φ−1(u1)

−∞

, 

where Φ  is a cumulative standard normal distribution, θ ∈ (−1,1) , and u1 and u2  are 

uniformly distributed variables (Zimmer 2012). The Gaussian copula exhibits asymptotic 
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independence, i.e., dependence approaches zero in upper and lower tail areas 

(Embrechts, Frey, and McNeil 2005). The Gaussian copula has been used widely in 

finance due to its simplicity and familiarity (Zimmer 2012).  

The Bivariate student’s t copula, Ct, with  θ ∈ (−1,1) and degrees of freedom υ, is 

written as 

(5-9) Ct(u1, u2|θ, υ) = tθ,υ (tυ
−1(u1), tυ

−1(u2)|θ, υ) 

= ∫ ∫
1

2π√(1 − θ2)
{1 +

−s2 + 2θst − t2

υ(1 − θ2)
}

−(υ+2)
2

dsdt
tυ

−1(u2)

−∞

tυ
−1(u1)

−∞

, 

where tθ,υ is the cumulative student’s distribution function with degrees of freedom υ and 

dependence parameter θ . u1  and u2  are again uniformly distributed variables. The 

student’s t copula has a symmetric pattern in the upper and lower tail areas and has tail 

dependence in upper and lower tail areas. Both the Gaussian and student’s t copulas 

make use of Pearson linear correlation coefficient as a dependence parameter. There 

exists a strong negative dependence between two random variables when θ approaches 

-1, and a strong positive dependence when θ approaches 1.  

Archimedean copulas such as Gumbel and Clayton can identify asymmetric 

dependence in lower (Clayton) or upper tails (Gumbel). A bivariate Gumbel copula, Cgum 

with a dependence parameter θ, is  

 (5-10)  Cgum(u1, u2|θ) = exp (−((− log u1)θ + (− log u2)θ))

1

θ
, 

where the dependence parameter is restricted to θ ∈ [1, ∞). If two random variables are 

independent, θ approaches 1. When two random variables are strongly dependent, θ 

approaches infinity. The Gumbel copula exhibits asymmetric upper tail dependence.  

 The bivariate Clayton copula, Cc with a dependence parameter θ is written as 
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(5-11)  Cc(u1, u2|θ) = (u1
−θ + u2

−θ − 1)
−

1

θ, 

where the dependence parameter is restricted to θ ∈ (0, ∞). If two random variables are 

independent, θ  approaches 0. Conversely, if two random variables are strongly 

dependent, θ approaches to infinity. The Clayton copula exhibits a lower tail dependence.  

Copulas can be derived from combinations of individual copulas to better fit the 

data. A mixture copula with two different copulas can be written as 

(5-12)  Cm(u1, u2|p, θ1, θ2) = pC1(u1, u2|θ1) + (1 − p)C2(u1, u2|θ2), 

where, p is the proportional contribution of the first copula to the mixture copula, and C1 

and C2 are different two copulas (Zimmer 2012). This type of mixture copula can capture 

lower and upper tail dependence if Gumbel and Clayton copulas are used (Zimmer 2012). 

5.4.2. Dependence Parameter  

The dependence parameter, θ , in Elliptical copulas is simply a (Pearson) 

correlation coefficient. Dependence parameters of Archimedean copulas, however, are 

somewhat ambiguous in measuring how two random variables are dependent, and not 

directly comparable to dependence parameters from Elliptical copulas. The dependence 

parameter,θ, may be converted to a Kendal’s rank correlation, τ, for direct comparison 

with an Elliptical copula. Kendall’s rank correlation (𝜏) is restricted to values between 

(−1,1) like the Pearson linear correlation, though it is not the same type of correlation (i.e. 

rank vs. linear). Table 5-2 shows the relationship between Kendall’s τ and θ for various 

copula functions. 
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Table 5-2. Relationship between 𝛉 and 𝛕 

Copula function 
Dependence parameter 

𝜃-domain 
Kendall’s rank correlation  𝜏 

Gaussian and Student’s t −1 <  𝜃 < 1 
2

𝜋
arcsin (𝜃) 

Gumbel 1 ≤  𝜃 < ∞ 1 − 𝜃−1 

Clayton 0 <  𝜃 < ∞ 1 −
2

𝜃 + 2
 

       Source: Trivedi and Zimmer (2007) Table 2.1 revised. 

 

5.5. Data 

Monthly US average prices for all milk, corn, and alfalfa hay are obtained from the 

National Agricultural Statistics Service (NASS), USDA; and soybean meals prices are 

compiled from Agricultural Marketing Services (AMS), USDA. All data ranges from 

January 2000 to September 2015.  Monthly CA and WI average prices for all milk and 

alfalfa hay are obtained from NASS USDA, and monthly CA and WI average prices for 

corn and soybean meals are obtained from AMS USDA. (NOTE: WI soybean meal prices 

used are same as for the US national average, which are from Decatur, Illinois) 

The dairy production margin, mi, is the difference between all milk price (in $/cwt) 

and ‘converted feed’ cost (i.e. in $/cwt)  of corn, soybean meal and alfalfa hay for region i 

(5-13) mi = Pmilk,i − (1.078Pcorn,i + 0.0137Palfalfa,i + 0.00735PSBM,i), i = US, CA, WI, 

where, Pmilk is all milk price, Pcorn is corn price (per bushel), Palfalfa is alfalfa hay price (per 

ton), and PSBM is soybean meal price (per ton).  

Figure 5-3 shows the US, CA and WI margins from January 2000 to September 

2015. As shown, US and WI margins move very closely together through time. The CA 

margin is lower than that of US and WI in each period. Note that all three margins 
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experienced steep drops to (below 4 $/cwt) in 2009 and 2012 Moreover, CA dairy 

producers experienced negative margins in 2009 and 2012. 

 

 

Figure 5-3. Margin co-movement among US, CA, and WI 

Note: Region i’s margin is calculated as mi = Pmilk − (1.078Pcorn + 0.0137Palfalfa + 0.00735PSBM), 
i = US, CA, and WI; Phillips-Perron test indicates that margins are stationary.  

 

Table 5-3 presents basic statistics for milk price, feed cost and IOFC margins. 

Average US and WI milk prices are aligned around $16.35/cwt. The average CA milk price 

is roughly $1 less than those of US and WI. In contrast, CA (converted) average feed cost 

is higher than that of US and WI by roughly $2 per cwt. The high feed cost in CA is likely 

driven by the fact that large (commercial size) CA dairy farms purchase feed from directly 

crop markets. CA dairy producers may be more sensitive to variation of crop prices. Since 

CA has relatively low milk price and high feed cost, its IOFC margin is less than the 

margins for US and WI. The average US IOFC margin was $8.57/cwt, WI $8.93/cwt, and 

CA $5.21/cwt for 2000~2015. 
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Table 5-3. Basic Statistics for Milk Price, Feed Cost and Margin for 2000-2015 

  Mean St. Dev Min Max 

Milk Price 
($/cwt) 

US 16.37 3.67 11.00 25.70 

WI 16.34 3.72 11.00 25.70 

CA 15.01 3.49 9.92 23.62 

Converted 
Feed Cost 

($/cwt) 

US 7.81 3.03 3.95 15.12 

WI 7.41 3.01 3.42 14.90 

CA 9.80 3.53 5.14 17.76 

Margin 
($/cwt) 

US 8.57 2.63 2.25 15.62 

WI 8.93 2.70 2.55 16.09 

CA 5.21 2.64 -1.97 11.63 

Note: Margin is calculated as mi = Pmilk − (1.078Pcorn + 0.0137Palfalfa + 0.00735PSBM), i = US, CA, 
and WI. 

 

5.6. Empirical Methods 

5.6.1. Specification of Marginal Distributions 

The first step in copula modeling is to specify the marginal distribution functions, 

F1(m1) and F2(m2), where m1 is the US IOFC margin and m2 is a regional (CA or WI) 

dairy margin. An AR(p)-GARCH(1,1) model is used to eliminate the deterministic 

components from the margin variables and to find the dependence structure between 

margins (Zimmer 2012). The AR(p)-GARCH(1,1) model eliminates serial correlation and 

autoregressive conditional heteroscedasticity in margin variables as well. The AR(p)-

GARCH(1,1) model is given by 

(5-14)  mi,t = βi,0 + βi,1mi,t−1 + ⋯ + βi,pmi,t−p + εi,t, 

for i = US, CA, and WI. εi,t is an error term with zero mean and conditional variance, 

(5-15)   σi,t
2 = αi,0 + αi,1εi,t−1

2 + δiσi,t−1
2 . 
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After estimation, a new series m̃i is calculated as  

(5-16)  m̃i,t =
ε̂i,t

√α̂i,0+α̂i,1ε̂2
i,t−1+δ̂iσ̂2

i,t−1

 . 

The series m̃i,t is referred to as a filtered margin.  

5.6.2. Copula Estimation 

Maximum likelihood estimation (MLE) is used to estimate the dependence 

parameter θ. The probability density function (pdf) is rewritten as  

(5-17)    f(m̃us, m̃j) = c(Fus(m̃us), Fj(m̃j)|θ) =
d2C(Fus(m̃us), Fj(m̃j)|θ)

dm̃usdm̃j
fus(m̃us)fj(m̃j), j = CA, WI 

MLE maximizes the natural logarithm of equation (5-17), summing all observations with 

respect to θ. The Bayes Information Criterion (BIC) and Vuong test (Vuong 1989) are used 

for the goodness of fit measures of different choice of copula functions following Zimmer 

(2012).  

5.6.3. Conditional Probability 

The estimation of conditional probabilities for the US margin given the CA (or WI) 

margin is the next estimation step. A conditional probability can be derived from copula 

estimation. The conditional probability is given by  

(5-18)  P̂(m̃us,t < k|m̃j,t < k) =
P̂(m̃us,t<k,m̃j,t<k)

P̂(m̃j,t<k)
=

Ĉ(F̂us(k),F̂j(k)|θ)

F̂j(k)
, j = CA, WI. 

Equation (5-18) gives the probability that the US margin is less than k given that the CA 

(or WI) margin is less than k.  Similarly, for the case where the US margin exceeds k given 

that CA (or WI) margin also exceeds k, the conditional probability is written as 

(5-19)  P̂(m̃us,t > k|m̃j,t > k) =
P̂(m̃us,t>k,m̃j,t>k)

P̂(m̃j,t>k)
=

1−F̂us(k)−F̂j(k)+Ĉ(F̂us(k),F̂j(k)|θ)

1−F̂j(k)
. 
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If the probability  of (filtered) US margin  conditional on (filtered) WI margin is larger 

than the  probability  of (filtered) US margin  conditional on (filtered) CA margin (for a 

certain margin level k),  WI dairy farmers tend to purchase (more) buy-up margin protection 

as shown in equation (5-5), i.e., 
∂m̅∗(∙)

∂πus|j
> 0. 

5.7. Results 

5.7.1. Filtered Margins 

Table 5-4 presents the estimation results for the AR(p)-GARCH(1,1) model in 

equation (5-14). The 3 autoregressive terms for the US and WI margins, and the 2 

autoregressive terms for the CA margin remove autocorrelation, which is confirmed using 

a Breusch-Godfrey test (Breusch 1978; Godfrey 1978). A GARCH(1,1) eliminates 

autoregressive conditional heteroscedasticity in the margin variables, which is confirmed 

using LM tests (Bollerslev 1986). Filtered margins m̃i,t (i = US, CA, WI) in equation (5-16) 

appear to be approximately standard normal. Skewness and kurtosis (S-K) tests fail to 

reject the null hypotheses that the distribution of the filtered margins are normal. In 

addition, Chi square tests of variance fail to reject the null hypothesis that the respective 

variances of the filtered margins are equal to 1. 

Figure 5-4 presents scatterplots of filtered margins between US-CA and US-WI. 

Both plots indicate that US-CA and US-WI exhibit strong positive relationships. US-WI 

seems to have stronger correlation. Figure 5-5 reports comparisons between filtered 

margin kernel density (blue lines) and normal density (red lines) functions. Figure 5-5 

shows that each filtered margin, m̃it, is approximately distributed standard normal. 
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Table 5-4. AR(P)-GARCH(1,1) Estimation Results 

 (1) (2) (3) 
 US filtered margin CA filtered margin WI filtered margin 

Constant (β0) 8.068*** 5.462*** 7.954*** 
 (0.509) (0.728) (0.600) 

ARMA    
L1.AR (β1) 1.660*** 1.387*** 1.692*** 
 (0.090) (0.074) (0.094) 

L2.AR (β2) -0.960*** -0.480*** -1.006*** 
 (0.149) (0.0717) (0.148) 

L3.AR (β3) 0.218**  0.241** 
 (0.082)  (0.079) 

ARCH    
L.ARCH (α1) 0.218* 0.0198 0.251* 

 (0.102) (0.022) (0.180) 
L.GARCH (δ) 0.693*** 0.994*** 0.653*** 

 (0.131) (0.045) (0.131) 
Constant (α0) 0.0522 -0.00565 0.0595 
 (0.036) (0.020) (0.039) 

N 189 189 189 
Log likelihood -191.22 -230.67 -193.68 

Note: Numbers in parentheses are standard errors. Significance levels are 1% (***), 5% (**), and 
10% (*). 

 

 

Figure 5-4. Scatter plot of filtered margins (US-CA and US-WI) 

Note: Filtered margin (m̃it) is the series with filtered out AR(p) and GARCH(1,1) components of the 
margins, mit. 
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Figure 5-5. Filtered margin kernel density functions 

Note: Filtered margin (m̃it) is the series with filtered out AR(p) and GARCH(1,1) components of the 

margins, mit. 

 

5.7.2. Estimates of Dependence15 

Table 5-5 reports estimates of the dependence parameter θ . Parameter θ  is 

converted to Kendall’s τ for comparison across different copulas. As shown in Table 5-5, 

the correlation between US and WI filtered margins is generally larger than that between 

US and CA filtered margins across (single) copulas. For the Gumbel/Clayton mixture, 

estimates of τ are reported for each part of the mixture, with the proportion (p) accounted 

                                                
15 Vector autoregressive (VAR) model is also used to estimates of dependence parameter. The 
VAR model gives a similar result as AR(p)-GARCH(1,1).     
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for by each component - in accordance with equation (5-12).  The estimated proportion 

pertaining to Clayton is estimated to be 0.46 for US-CA and 0.84 for US-WI, indicating 

lower-tail dependence is stronger among US-WI filtered margins. 

All standard errors reported in Table 5-4 are computed using a block bootstrapping 

(Kreiss and Lahiri 2012). Eight overlapping blocks of 24 consecutive observations (which 

provide two years of monthly margin data) are drawn from the original filtered margins. 

The 8 times 24 observations provide a bootstrap sample of similar length to the original 

data. The AR-GARCH and filtered margins are re-estimated using the bootstrap sample. 

This process is repeated 500 times and standard errors are calculated. 

 

 

Table 5-5. Estimates of Dependence (Kendall’s 𝛕) 

Copula US-CA US-WI 

Gaussian   
τ̂ 0.63*** 

 (0.05) 
0.78*** 
(0.04) 

Student’s t   
τ̂ 0.64*** 

(0.06) 
0.78*** 
(0.31) 

Degrees of freedom 9.03 
(40.37) 

10.83 
(18.15) 

Gumbel   
τ̂ 0.61*** 

(0.14) 
0.75*** 
(0.09) 

Clayton   

τ̂ 0.53*** 
(0.07) 

0.72*** 
(0.06) 

Gumbel-Clayton Mixture   

     Gumbel   τ̂ 0.49*** 
(0.11) 

0.50*** 
(0.03) 

     Clayton   τ̂ 0.74*** 
(0.20) 

0.77*** 
(0.08) 

     Proportion due to 

     Clayton  𝑝̂ 

0.46* 
(0.24) 

0.84*** 
(0.22) 

Note: Numbers in parentheses are standard errors. Significance levels are 1% (***), 5% (**), and 
10% (*). 
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5.7.3. Selection of Copula 

Table 5-6 provides the values for the Bayes Information Criterion (BIC) and Vuong 

test statistics (Vuong 1989) to choose the best copula. Gaussian copula is selected for 

both US-CA and US-WI filtered margins, based on having the smallest BIC. Student’s t 

and Gaussian copulas are associated with relatively close BIC values. The Clayton copula 

for US-CA, and Gumbel copula for US-WI produce the worst BIC results. Vuong test 

results are also reported in Table 5-6 comparing each copula to the Gaussian copula. As 

the test statistic follows a normal distribution, significant positive values indicate inferior fit 

compared with the Gaussian copula. Taken together Vuong and BIC values indicate that 

the Gaussian copula is superior to other copulas.  

5.7.4. Conditional Probabilities 

The conditional probabilities in equations (5-18) and (5-19) are calculated across 

different values of k ∈ [−3,3] using the Gaussian copula. The k values can be interpreted 

as the standard deviations of the filtered margins since m̃it  are essentially the 

standardized residuals from the AR-GARCH model. Figure 5-6 presents the conditional 

probabilities associated with different values of the filtered margins. If filtered margin for 

CA falls more than one standard deviation below its mean (k = −1), then the probability 

that the US filtered margin drops more than one standard deviation below its mean is 

approximately 0.65. In contrast, the conditional probability of the US margin subject to the 

WI margin - for this same scenario - is approximately 0.80; which is roughly 23% points 

larger than CA. The conditional probabilities decrease over the values of k , but the 

differences between the conditional probabilities of CA and WI become larger as k 

increases in magnitude. 
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Table 5-6. Goodness of Fit Measures and Vuong Test Statistics 

Copula model US/CA US/WI 

Bayes information criteria   

     Gaussian 850.56 667.89 

     Student’s t 852.87 670.31 

     Gumbel 869.08 715.76 

     Clayton 899.89 707.75 

     Gumbel/Clayton mixture 859.35 704.56 

Vuong test statistics   

     Gaussian - - 

     Student’s t 0.68 0.64 

     Gumbel 1.60 3.64*** 

     Clayton 2.95*** 2.28** 

     Gumbel/Clayton mixture 0.36 1.85* 

Note: The smallest BIC value represents the best fit.  

Vuong test statistics is z =
LR(θg,θa)

√Nω
~N(0,1), where LR(θg, θa) = Lg − La −

kg−ka

2
ln N, Lg= maximum 

log likelihood of Gaussian copula, La = maximum log likelihood of alternative copula, k = number 

of parameters to estimate in models, and N = number of observations. ω is the standard deviation 

of ln
fg(xit|θg)

fa(xit|θa)
. Gaussian copula is preferred with significance level α if the z statistics exceeds the 

positive (1 − α)-quantile of the N(0,1). A copula’s fit is inferior to the Gaussian copula’s at * 0.1, ** 
0.05, and *** 0.01 significance levels. 

 

 
Figure 5-6. Conditional probabilities from Gaussian copula 

Note: Filtered margin (m̃it) is the series filtered out AR(p) and GARCH(1,1) components of margins, 
mit. 
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5.8. Summary and Concluding Remarks 

The MPP-Dairy program contained in the 2014 Farm Bill is a risk management tool 

for dairy producers, offering protection of income-over-feed-cost (IOFC) margin, which is 

defined as the difference between the all-milk price and average feed costs. The MPP-

Dairy includes catastrophic and eight buy-up coverage levels with premiums that vary with 

the level of protection. The program’s objective is to provide dairy producers (regardless 

of size, geographic locations or management practices) self-selected protection levels 

against drops in milk prices, rising feed costs, or a mixture of both.  

2015 MPP-Dairy coverage data by states indicates that California (CA), which is 

the largest dairy producing state in the U.S., has only 29% of the enrolled dairy producers 

purchasing supplementary coverage (i.e. the majority enrolled purchase only catastrophic 

coverage). In contrast, Wisconsin (WI), the second largest dairy producing state in the 

U.S., has 56% of enrolled producers buying supplementary coverages (Figure 5-1). More 

than 70% of CA dairy producers purchased solely catastrophic protection, while 44% of 

WI producers enrolled only in catastrophic protection. Instead, WI dairy farms purchased 

buy-up coverage levels of $6/cwt and $6.5/cwt, and even the maximum protection level of 

$8/cwt (Figure 5-1). 

The objective of the third essay has been to investigate why WI dairy producers 

have purchased more supplementary coverage than CA producers. There are several 

likely factors explaining this difference, such as farm size (average size of dairy operation 

in CA is much larger than that of WI), regional milk price, regional feed costs, technology, 

and producers’ attitudes toward risk. This study demonstrates that the relationships 

between dairy production margins among US and CA and among US and WI, specifically 

the conditional probabilities for the national and each local market, may play a key role in 
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determining which producers purchase supplementary coverage. This is because farms 

receive payments when the national (average) dairy production margin (not their state 

margin) falls below their selected level of margin protection. If a dairy producer knows the 

extent of the relationship between the US margin and her/his margin, i.e., if the producers 

knows how closely the US margin ‘tracks’ the changes in her/his margin, then the producer 

may have an incentive to increase his/her protection and purchase buy-up options.  

 Several different copula models are used to estimate the conditional probability of 

US-CA and US-WI margins, such as Gaussian, Student’s t, Gumbel, Clayton and mixture 

of Clayton-Gumbel. A AR(p)-GARCH(1,1) model is used to eliminate spurious finding due 

to serial correlation and conditional heteroscedasticity from the series data. Filtered 

margins are then obtained from the AR(p)-GARCH models. The filtered margins are 

shown to be distributed normally. The Gaussian copula model is determined to fit the data 

best via BIC and Vuong tests and the corresponding conditional probabilities are 

calculated. Results indicate that the conditional probability of the US margin on the WI 

margin is statistically stronger than that of the US margin conditional on the CA margin. 

Expected utility theory developed in Section 5-3 tell us that WI dairy producers would 

therefore tend to have higher self-selected margin protection. 

 One caveat emerges. Self-selected margin protection may depend heavily on farm 

size (production size) and MPP-Dairy premiums. For example, CA producers are currently 

paying higher premiums because their farm size is, on average, larger than that of WI. It 

is possible for dairy producers in WI to select a higher level of MPP-Dairy.  
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6. SUMMARY AND CONCLUSION 

Agricultural insurance programs such as crop insurance and Dairy Margin 

Protection program (MPP-Dairy) are managed by United State Department of Agriculture 

(USDA). The objective of these programs is to help farmers to manage their financial risk. 

Agricultural insurance programs have played important role for farmers in continuing their 

farming stably. There are several issues in insurance programs such as moral hazard and 

adverse selection which make insurance programs inefficient. Many economists and 

policy analysts have conducted various studies on crop insurance. Among others three 

board research gaps are identified in this research, namely 1) moral hazard in prevented 

planting (PP) and late planting (LP), 2) decision making on PP and planting a second crop 

(SC), and 3) role of conditional probability for selecting dairy margin protection level in 

MPP-Dairy.  

First study analyzes the existence of moral hazard within the choice of PP and LP. 

The PP provision is defined as the “failure to plant an insured crop by the final planting 

date due to adverse events” such as excess moisture or drought. If the farmer decides not 

to plant the crop, (after appraised by an agency) the farmer receives a PP indemnity. LP 

is an option for the farmer to plant the crop and still maintain the crop insurance when the 

farmer fails to plant crop by the final planting date. However, by choosing LP option, the 

farmer has to lower the insurance coverage level depending on the LP date due to 

potential yield loss. Crop insurance may alter farmers’ decision choices in production in 

making the selection of PP or LP. In other words, crop insurance can increase the 

likelihood of PP claims even though farmers can choose LP. Under the assumption that 

the farmer behaves to maximize expected utility, the simulation results show that the 
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higher coverage level induces the claim of PP more. Also, revenue protection is likely to 

claim more PP than yield protection when the farmers expect that anticipated price at the 

harvest time is higher. Spatial panel models attest to the existence of moral hazard in PP 

empirically. 

Second study examines the incentives to choose second crop when the farmers 

claim PP due to adverse events such as drought and excess moisture. If a farmer chooses 

PP, s/he receives the PP indemnity and may either leave the acreage unplanted or plant 

a second crop, e.g., soybean for corn. If the farmer plants a second crop after prevented 

from planting a first crop, the farmer receives a reduced PP payment (35% of PP 

indemnity) and s/he is assigned to the 60% of the approved yield of the first crop in the 

APH for the next crop year. The current PP provision fails to provide farmers with an 

incentive to plant a second crop (99.9% of PP claiming farmers do not plant the second 

crop). It is a contradiction of the goal of USDA that promotes agricultural production to 

improve food security. Adjusting PP indemnity payment may encourage farmers to plant 

a second crop, which is currently fixed at 35% of the total PP indemnity.  

The objective in the second study is to find and suggest the optimal percentage of 

PP payment that may encourage farmers to plant a second crop. In doing so, the goal of 

USDA to promote agricultural production is achieved. Using corn-soybean budget data in 

Hamilton County, Iowa, the representative farmer is created. Using the stochastic 

simulation, under the current reduction factor, most of farmers do not choose to plant a 

second crop. However, if the reduction factor increases, the farmer begins planting the 

second crop. This study suggests the optimal reduction factor would be around 45-50%.  

Third study investigates the role of conditional probability of income-over-feed-cost 

(IOFC) margin when the dairy producers choose the level of supplementary margin 
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protection. MPP-Dairy administered by Farm Service Agency (FAS), USDA, is a risk 

management tool for dairy producers. The 2014 Farm Bill authorized the MPP-Dairy which 

offers dairy producers protection of their milk production margin. 2015 MPP coverage data 

by state indicates that California (CA), the largest dairy producing state, had only 29% of 

enrolled producers buying supplementary coverage. In contrast, Wisconsin (WI), the 

second largest dairy producing state, had 56% of enrolled producers buying 

supplementary coverage. More than 70% of CA dairy producers purchased catastrophic 

protection, $4/cwt, while only 44% of WI producers enrolled in catastrophic protection. 

The role of conditional probability between US IOFC margin and regional margin 

is examined to explain regional differences in the choice of the buy-up levels. Copula 

model reveals that the conditional probability of US IOFC margin subject to the margin in 

WI is much stronger than that of US margin given in CA margin. Expected utility theory 

reveals that WI dairy producers tend to have higher self-selected margin protection. 
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