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ABSTRACT 

 
 

Spider Aggregate Glue Sequence Characterization 
 

and Expression 
 
 

by 
 
 

Kyle R. Berg, Master of Science 
 

Utah State University, 2016 
 
 

Major Professor:  Dr. Randolph V. Lewis 
Department:  Biology 
 
 
 Spider aggregate glue is secreted on to the webs of many spiders in the superfamily 

Araneoidea. Aggregate glue is sticky when wet and has a unique stress strain curve that varies 

depending on the relative humidity and speed of probe retraction.  These features make it an 

attractive target for applications such as underwater adhesives or surgical glues.  However, little 

is known about the genetic sequence of the glue protein itself.  In this work, a method is 

identified to isolate the remainder of the aggregate gene sequence, and genetic constructs glue 

are created using known aggregate gene sequence.  One construct is expressed in E. coli BL21 

cells and the protein is tested for its adhesive properties. 

(68 pages) 



	

	

iv 
PUBLIC ABSTRACT 

 
 

Spider Aggregate Glue Sequence Characterization 
 

and Expression 
 

Kyle Berg 
 

 Orb-weaving spiders create a glue which is secreted onto the web to capture and 

retain insects.  This glue is made from aggregate protein.  Aggregate glue is sticky when 

wet and can stretch far when pulled at slow speeds, and pull back with a greater force if 

pulled at high speeds which helps it achieve its purpose as the adhesive that keeps insects 

in the web. These features also make it an attractive target for applications such as a 

surgical glue or underwater adhesive.  Unfortunately, very little is known about the 

aggregate glue gene, and knowledge of the genetic sequence is necessary to create a 

synthetic aggregate glue.  In this work, a method is identified that will likely be able to 

find the rest of the glue sequence.  In addition, using what is known about the gene, a 

synthetic glue sequence was extrapolated and used to create a synthetic glue using 

bacteria.  Finally, this glue has begun preliminary testing as an adhesive.   
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CHAPTER 1 

INTRODUCTION 

	

Spiders in the superfamily 

Araneoidea are known for 

constructing large orb webs to 

capture and retain their prey.  Orb 

weaving spiders have the ability to 

synthesize six silks and one glue 

that are all evolutionarily derived 

from the same family of proteins.1,2  

The proteins and glue are all 

extruded from  spinnerets on the 

posterior end of the spider, and 

these spinnerets have been used for 

decades as evolutionary evidence 

for the classification of spiders.3 

The spiders use these proteins to 

construct different elements of 

their webs, and each type of silk 

has distinct mechanical properties.  For example, major ampullate silk is used to create 

the scaffolding of the web, piriform silk is used to lash the web to external objects, and 

the aciniform and tubuliform silks are used in creating the egg sac.  Among orb weavers, 

Figure 1.1  A comparison of aggregate glue 
webs vs cribellate silk webs A) A web utilizing 
aggregate glue as an adhesive B)A web utilizing 
cribellate silk as an adhesive  C) Aggregate glue 
droplets on flagelliform silk D) Cribellate silk  
E) Aggregate gland spigots (AG) flanking a 
flagelliform silk gland spigot (FL) on the 
spinneret.  F) The cribellum of a cribellate 
spinning spider G) The pseudoflagelliform core 
fiber of the cribellate capture spiral.7 
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two different methods are used to add stickiness to the web.  The first is the extrusion of 

cribellate silk onto the capture spiral, and the second is to secrete a solution containing 

aggregate protein onto the capture spiral. (Figure 1.1) 

Cribellate silk consists of thousands of threads extruded from the cribellum4, an 

oval like plate on the spinneret of the spider. The cribellate silk surrounds a core axial 

fiber of pseudoflagelliform silk.  Although the core fiber will rupture at moderate 

extension, the surrounding cribellate silk continues to extend and maintain fiber integrity 

to extensions up to 500% of its original length.5  The adhesive ability of the thread is 

proportional to the number of fibers extruded by the criblellum.4  The primary adhesive 

force of these fibers are van der Waals and hygroscopic forces which increase with 

increasing humidity.6  However, since the evolution of orb weaving spiders in the late 

Cretaceous, a general shift has been seen from spiders spinning cribellate capture threads 

to adhesive capture threads containing aggregate protein.7 This shift is explained because, 

although a similar amount of volume is used in creating both types of fibers, aggregate 

fibers create a stickier web with greater prey capture potential.4,6,8 Today only 5% of 

known orb weaving species use cribellate capture threads.9  

 In contrast to cribellate silk which creates weaker adhesion at many points of 

contact, aggregate adhesive fibers create larger adhesive forces at fewer points of contact.  

The two adhesives vary substantially in form and function and it is still debated whether 

the evolution of orb webs happened once, and that the two types of adhesive webs were 

not the result of convergent evolution,7  or that orb webs evolved multiple times, with 

cribellar spiders being much more closely related to mostly webless spiders than adhesive 

capture thread spiders.10  
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The capture spiral in adhesive 

webs is created by the extrusion 

of a central flagelliform fiber 

which is simultaneously covered 

in a viscid aqueous coating by 

the flanking aggregate gland 

spigots (Figure 1 E).  Droplets 

may be large and relatively 

further spaced, or smaller and 

more closely spaced depending 

on the species of spider.11  At the center of each droplet is an opaque granule.  This 

granule was originally thought to harbor the glycoprotein glue responsible for the 

adhesive forces of the fibers.  It was later shown that granule size had no correlation with 

adhesive force of the fibers, and it was hypothesized that there were, in fact, three layers 

to this glue.12  The first granule layer serves as an anchor for the clear glycoprotein glue 

second layer and on top of this is the aqueous coating.  The aqueous coating is reported to 

contain water soluble compounds related to neurotransmitters, salts, small peptides, and 

glycoproteins.13,14  The salts are reported to assist in the solvation of the glycoprotein 

glue in these droplets and increase their adhesive properties.15,16 All of these layers 

together help plasticize the flagelliform core fiber and allow it to extend without breaking 

when impacted by prey.12 (Figure 1.2) 

 

Figure 1.2 An illustration of the three components 
of aggregate glue.12 
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One of the most interesting aspects of 

aggregate glue droplets are their ability to 

vary the Young’s Modulus depending on 

both the relative humidity and the speed 

with which a probe is retracted.  When 

pulled with a higher retractive velocity, the 

stress vs strain curve shows increased 

stress and decreased strain.  In addition, 

when tested under three different relative 

humidities (RH), the glue shows highest 

stress and strain at 40% RH and lower 

values at both 15% RH and 90% RH17 

(Figure 1.3). These properties make 

aggregate glue very useful for its intended 

purpose of keeping insects in the web and it 

also makes aggregate glue an attractive target 

for production of a synthetic aggregate glue 

for use as an underwater adhesive or surgical 

glue. 

Much is not known about the glue.  Most of the genetic and protein sequence is 

unknown.  The secondary and tertiary structures of aggregate glue protein are unknown 

as well as how the protein interacts with itself and other materials that come in contact 

with it at the molecular level.  

Figure 1.3 Stress vs Strain curves for 
aggregate glue under a)15% RH, 
b)40%RH, and c)90%RH.  Pull speeds 
were 100um/s (circles), 50um/s 
(squares), 10um/s (triangles), 1um/s 
(inverted triangles).17 

B	

A	

C	



	 5 
The work in this thesis does not address the structural data mentioned, rather it 

focuses on the genetic aspect of aggregate glue.  As will be addressed, the genetic work 

done on the aggregate gene is lacking in both quality and quantity.  In this thesis the 

aggregate glue gene will be partially elucidated, and using that knowledge, a synthetic 

aggregate construct will be created and expressed in E. coli.  
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CHAPTER 2 

AGGREGATE SILK WORK AT THE GENETIC LEVEL 

 

Introduction 

In relation to its counterparts in the web, the aggregate gland is very much 

understudied at the genetic level.  In order to create a synthetic aggregate glue, genetic 

sequence data must be obtained to create a construct which can be transformed into an 

expression organism for production and purification.   

The first work to obtain aggregate sequence data was published in 20091.  cDNAs 

were isolated from N. clavipes and sequence data obtained for two proteins named Asg1 

and Asg2.  Short protein sequence information was obtained by collecting spider web raw 

material and dissolving the glue in water.  Since all other web components are insoluble 

in water it was presumed that any protein found was aggregate protein.  The solution was 

deglycosylated and mass spectrometry was used to determine three common sequences in 

the protein: Gly-Ser-Ser-Val-Ser, Gly-Leu-Gly-Val, and Ala-Gly-Pro-Gly-Thr.  From 

these sequences, a degenerative probe was created to screen a cDNA library created from 

the Aggregate gland mRNA.  In this manner, two proteins were identified and named 

Asg1 and Asg2 which both contain N and O-linked glycosylation sites.  The authors also 

reported that the cDNAs isolated contain full length proteins.  Using Northern blot 

analysis, the authors claim that the mRNA transcripts for these two proteins are present 

only in aggregate gland mRNAs, and not in other silk gland mRNA supporting the 

hypothesis that these two proteins are components of the glycoprotein glue found on the 

capture spiral of orb webs.  A repetitive region was identified and it was found that Asg1 
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and Asg2 shared this repetitive region but each protein was translated from a different 

frame on opposite strands of this region of DNA. 

There are several problems with this study.  All of the peptide sequences found in 

the study were from Asg 2.  The similarity in DNA sequence to Asg1is only a tenuous 

link at best to claim that they are expressed on opposite strands of the same DNA 

sequence.  This is especially true considering the number of duplication events that have 

occurred in the superfamily Aranaeoida only in silk sequences.  The statement in the 

paper that other silk glands were tested by Northern blot is not substantiated by data in 

the paper or supplemental data. In the analysis of deglycosylated proteins, no control was 

run of the aggregate glue before deglycosylation, and the claim that other bands in the 

sample are the deglycosylation enzymes is not substantiated by data.   

In addition to these discrepancies, in house work (Supplemental Data) screening 

an aggregate library showed that a segment of the putative repetitive region is not 

actually present in the DNA, which, if true, eliminates that section as the “repetitive 

region” and brings into question whether or not aggregate glue has a repetitive region.  In 

addition, this work shows an open reading frame upstream of the published start codon of 

Asg2 indicating that the published start codon is not the true start codon, and the protein 

is likely larger than previously believed. 

Additional work with aggregate was needed to determine what data from the 2009 

was reliable and to elucidate additional aggregate protein sequence.   
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Isolating an Aggregate Clone 

To isolate a clone containing genetic material of the aggregate gland, spiders of 

the species N. clavipes were anesthetized using CO2 and dissected to isolate the 

aggregate gland.  It was important to remove any flagelliform gland present as the 

flagelliform gland is found encased by the aggregate gland.  The aggregate glands were 

flash frozen in liquid nitrogen and stored for later RNA isolations.   

All surfaces and tools used while working with RNA were treated with RNase 

Zap and rinsed with Diethylpyrocarbonate (DEPC) treated water.  Aggregate glandular 

material was then digested using Trizol Reagent and total RNA was isolated using the 

manufacturer’s protocol.  mRNA was further isolated using the Fast Trac Magnetic bead 

Kit (Invitrogen). RNA integrity was assessed using a denaturing formaldehyde agarose 

gel.  RNA was visualized using Sybr Green II stain.  First strand cDNA synthesis was 

accomplished by using the reverse transcriptase MMLV.  Second strand synthesis was 

accomplished using the NEBNext mRNA 

Second Strand Synthesis Module, followed 

by the NEBNext End Repair Module to 

produce blunt ended cDNA.  cDNA was 

found to have an average molecular weight 

of 6Kb by Gel electrophoresis (Figure 2.1). 

Vector DNA was prepared by 

transforming pBluescript II SK + into BL21 

E. coli cells and plating on ampicillin 
Figure 2.1 Insert cDNA used in library 
construction. 
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containing LB agar plates (100ug/mL).  An 

individual colony was selected for growth in 

ampicillin containing LB broth (100ug/mL).  

Vector DNA was isolated using an IBI mini 

plasmid kit and cut using the restriction 

enzyme EcoRV for blunt ended cuts.  It was 

simultaneously treated with recombinant 

shrimp alkaline phosphatase (rSAP) to 

dephosphorylate the plasmid ends to prevent 

self-ligation. (Figure 2.2) 

Vector DNA and cDNA were ligated using T4 DNA ligase(NEB) at a 2:1 molar 

ratio at 16°C for 8 hours followed by incubation at 4°C overnight.  The reaction was heat 

inactivated at 65°C for 15 minutes and chilled on ice.  A series of dilutions of ligated 

DNA were created and 1uL of each dilution was transformed into ElectroMAX DH10B 

E. coli (Invitrogen) at 1800V.  It was found that a 1:250 dilution of the ligation reaction 

mixture gave approximately 1000 colony forming units (cfu) per plate when 

electroporated with ElectroMAX DH10B cells (Invitrogen) at 1800V.   

Colonies were lifted onto nitrocellulose, and later, nylon membranes by laying 4 

strips of plastic wrap on the bench that was then overlaid with Whatman 5mm paper.  

Each strip of Whatman paper was saturated with a different solution according to the 

protocol.  The first was with a 5mM EDTA, 1%SDS solution, the second was a 

denaturation solution containing a 0.5M NaOH, 1.5M NaCl solution, the third was a 

neutralization solution containing 1 M Tris, 1.5 M NaCl, pH 7, and the last was a solution 

Figure 2.2 Digest of pBluescriptII sk+ 
with EcoRV. 
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containing 2x Saline Sodium Citrate (SSC).  Membranes were placed on the plates, and 

then removed and inverted to place the bacteria side up on each Whatman paper saturated 

with solution for 5 minutes each.  Membranes were allowed to dry for 30-45 minutes and 

DNA was crosslinked to the membrane by exposure to UV light using a VWR UV 

Crosslinker at 120,000 microjoules per cm2 for two minutes.  Membranes were then 

ready for hybridization and visualization. 

 

Fluorescent Visualization Using AlexaFluor 647 

Probes were designed using a combination of in house work and the published 

2009 paper.  An approximate 100 base pair region was selected for its high G-C content 

(>60%) in a region of the gene that was identical in all sources.  This was important 

because the fluorescent dye chemically links to the G and C residues.  The probe was 

then fluorescently labeled by incubation with Alexafluor 647 for 10 minutes at 90°C 

following the manufacturer’s protocol.  Probe labeling efficiency was calculated using a 

NanoDrop 2000 spectrophotometer and found to be acceptable, as per the recommended 

ratio of acceptable probe labeling of 30-40 bases per dye molecule. 

Membranes were heat sealed in hybridization bags (KPL) and prehybridized for 

4-6 hours at 37°C in a prehybridization solution (6xSSC, 0.05M sodium phosphate 

pH6.8, 1mM EDTA, 5x Denhardt’s reagent, and 100ug/mL denatured fragmented salmon 

sperm DNA).  Prehybridization solution was removed and replaced with hybridization 

solution (prehybridization solution + 100mg/mL dextran sulfate and labeled probe at 

180pM) and incubated overnight at 37°C in a shaking water bath.  Membranes were then 

rinsed three times in ice cold 6x SSC followed by two 30 minute incubations in ice cold 
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6xSSC.  Filters were then rinsed twice in tetraethylammonium chloride (TEACl)wash 

solution (2.4M TEACl, 50mM Tris-Cl pH 8, 0.2mM EDTA pH 7.6, 1mg/mL SDS) at 

37°C followed by two incubations in TEACl wash solution at 52°C.  Membranes were 

then removed and secured to a strip of exposed x-ray film for support, and covered with 

plastic wrap to prevent complete drying of the membranes.  They were placed in a 

cassette with fresh x-ray film in a dark room and allowed to develop.  15 minute, 1 hour, 

3 hours, overnight, and over the weekend exposures were tested all with negative results.   

In order to determine whether there were truly no positive plasmid colonies or if 

some other step in the process was responsible for the lack of results, a positive control 

plasmid was synthesized using Geneart (Thermofisher), which contained a 4x repeat of 

the probe sequence.  The plasmid was transformed into ElectroMAX DH10B cells and 

the hybridization protocol was repeated.  Exposures again showed no positive colonies.  

In a final attempt to determine what was not working, a dot blot using the labeled probe 

DNA itself was prepared at various concentrations and crosslinked to the membrane 

using UV light.  After attempting the visualization protocol, these once again came up 

negative; therefore, an alternative visualization method was required. 

 

Chromogenic Detection using a Biotinylated Probe and an Alkaline Phosphatase-
Streptavidin Conjugate 
 

The Biotin Chromogenic Detection Kit (Thermofisher) was selected as an 

alternative method of screening colonies.  Probes were ordered from IDT (IDTdna.com) 

including a biotinylation modification on the 5’end of the probe.  A new hybridization 

method was selected according to the manufacturer’s supplemental protocol.  Membranes 
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were heat sealed in hybridization bags containing a new prehybridization solution 

(6xSSC, 5x Denhardt’s Reagent, 0.5% SDS, 50% (v/v) deionized formamide, 50ug/mL 

sheared denatured salmon sperm DNA) for 2-4 hours at 42°C in a shaking water bath 

(0.2mL/cm2).  Prehybridization solution was removed and replaced with a new 

hybridization solution (new prehybridization solution + probe at ~100ng/mL) and 

incubated overnight at 42°C (0.1mL/cm2).  Membranes were then washed twice at room 

temperature in 2x SSC 0.1%SDS for 10 minutes.  Membranes were then washed twice in 

0.1xSSC 0.1%SDS at 65°C for 20 minutes.  Membranes were briefly placed on Whatman 

5mm paper to remove excess liquid. 

Detection was accomplished by first washing each membrane in 15mL 

blocking/wash buffer for 5 minutes on a shaker plate with moderate shaking.  The 

membranes were then incubated in 15mL blocking solution for 30 minutes with moderate 

shaking, followed by incubation with 10mL diluted streptavidin-AP conjugate in 

blocking solution for 30 minutes.  Membranes were then washed twice with 30 mL 

blocking/wash buffer for 15 minutes.  They were then washed with 10 mL detection 

buffer.  Membranes were then removed and placed in the hood for detection.  Each 

membrane was developed in a separate petri dish with 5mL substrate solution, covered 

with aluminum foil, and allowed to develop overnight.  Membranes were then rinsed with 

18.2 MOhm water and evaluated. 

The positive control when subjected to this hybridization and detection protocol 

showed all positive colonies.  The procedure was then done on a series of library 

transformations.  All colonies once again showed up positive.  It was then necessary to 

prepare a negative control to visualize the difference between positive and negative 
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colonies if there was one.  Empty vector DH10B bacteria were created and the procedure 

was repeated on both positive and negative colonies.  It was found that all bacterial 

colonies develop a light purple, whereas truly positive colonies developed a dark, nearly 

black color.  (Figure 2.3)	Screening commenced on the aggregate library once again.  

Due to a dilution error, plates were transformed at 10 times the expected cfu density. 

(Figure 2.4) As a result, colonies were selected, but needed further separation. Selected 

colonies were grown up overnight in 5 mL LB-Amp media.  They were then streaked out 

on fresh ampicillin containing plates.  These plates were subjected to colony lifts, 

followed by the chromogenic hybridization and 

detection protocols above and colonies were further 

screened.  Several of the plates showed positive 

colonies (Figure 2.5), but most were in the thick 

band of the streak and no colonies were found that 

were completely isolated. This procedure was 

repeated to isolate a clone with aggregate genetic 

material.  False positives were occasionally seen 

Figure 2.3 Chromogenic detection of empty vector colonies(A), positive 
colonies(B), and positive colonies overlaid on top of a library transformation(C). 

Figure 2.4 Example library post 
detection at 10x the normal cfu 
density. 
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when a colony lift pulled up a chunk of bacteria in the heavy portion of the streak.  

Although these were followed for subsequent overnight cultures and further screening, 

the area appearing like a positive result could be predicted before the screening as clumps 

of bacteria will show up positive in AP-streptavidin chromogenic detection whether or 

not they contain genetic material recognized by the probe.   

Unfortunately, a period of time passed when the lab was unable to obtain a critical 

component of the screening process 

(Deionized Formamide) and in that time, 

many plates went bad and further 

screenings showed up negative.  It is also 

possible, that on occasion, when attempting 

to streak out the bacteria to isolate a clone, 

the bacteria containing the construct of 

interest were selected against in the 

overnight culture.   

Library screening commenced 
Figure 2.6 Example membrane with 
false positive results due to absence of 
shaking in the water bath. 

Figure 2.5 Plates resulting from primary colony picks that appear to contain positive 
colonies in the streaks. 
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again, positive colonies were seen and followed.  Because what appeared to be positive 

colonies in areas of the plate were being visualized where no bacteria existed (Figure 

2.6), a negative control consisting of a membrane that was never in contact with a 

bacterial plate was screened and showed background that appeared positive.  During this 

time, the shaker component of the shaking water bath had malfunctioned and was not 

shaking the membranes properly in the bath.  The bath was repaired and the background 

positive results disappeared.  Screening commenced once again, but was discontinued 

shortly thereafter, as a different technique was showing more promise for isolating 

aggregate genetic material. 

 

5’ RACE 

5’RACE seemed a promising alternative method to detect the unknown 5’ end of 

the mRNA transcript.  5’RACE works by creating several primers based off the reverse 

compliment of the known 3’ end, SP1 (manufacturer prescribed name, not an acronym) is 

the furthest downstream, followed by SP2, and SP3.  Using a reverse transcriptase, 

reportedly up to 14,000 bases can be reverse transcribed into DNA from a primer SP1.  

The RNA is degraded and a recombinant terminal transferase enzyme then selectively 

adds a poly alanine (poly-A) tail onto the reverse complement 3’ end of the single 

stranded DNA which is located at the 5’end of the coding strand.  A polymerase chain 

reaction is used with an anchor primer that binds to the newly formed poly-A tail and the 

second design primer SP2.  From the resulting reaction mixture, a nested PCR reaction  
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5.  Additional Information on this Product

www.roche-applied-science.com 24
5‘/3‘ RACE Kit, 2nd Generation y Version 13

5′ RACE Overview

Overview / 5´ RACE 

mRNA 5´ 

SP 1 

(A)n-3´ synthesis of first strand 
cDNA with primer SP 1 

cDNA 

Purify cDNA with 

(A)n-3´ 
3´ degradation of the mRNA 

template by the RNase H 
activity of Transcriptor 

High Pure PCR Product Purification Kit Reverse Transcriptase 

3´-(A)n AAAA tailing of the purified cDNA 
with dATP and TdT 

Oligo(dT)-Anchor primer 
           ( T )n T T T T V     

                                 (A)n AAAA 
SP 2 

amplification of the tailed 
cDNA by PCR using the 
Oligo(dT)-Anchor primer and 
a nested SP 2 primer 

PCR Anchor 
primer 

                                                                                                                                  second PCR with the PCR Anchor 
                                                                                                                                  primer and a SP3 primer 

SP 3  
 
 

PCR product ready for: 

agarose gel electrophoresis 
analysis by hybridisation or cloning 

V = A, C or G 

 
5’ RACE allows the amplification of unknown sequences at the 5’ end of the mRNA.

Figure 2.7 Overview of 5’RACE.  Reverse transcription using primer SP1, addition 
of the 5’ poly A tail, amplification using primers SP2 and the Oligo(dT)-Anchor 
primer, and the secondary amplification using the Oligo(dT)-Anchor primer and 
primer SP3.  Figure from Roche 5’/3’ RACE Kit instruction manual. 
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can be accomplished using the anchor primer and design primer SP3 to further amplify 

the DNA product. (Figure 2.7) 

The 5’/3’RACE Kit, 2nd Generation (Roche) was 

obtained, as well as designed primers SP1, SP2, and SP3 

(Supplemental Data Race Design).  Both total RNA and mRNA 

were isolated from N. clavipes aggregate glandular material as 

previously described. (Figure 2.8) The first round and second 

round PCR were done with both the High Fidelity Polymerase 

Mix(Roche) and the Long Template Polymerase Mix (Roche).  

Manufacturer’s protocol was followed.  Results of the PCR 

were run on a 1% agarose gel, and visualized with ethidium 

bromide.  It was found that first round PCR gave smears of 

DNA in every reaction condition, although a brighter and larger 

smear was seen when mRNA template was used, rather than 

total RNA.  The Long Template Polymerase Mix resulted in a 

higher molecular weight product than the High Fidelity 

Polymerase Mix in every case. This is exemplified in reactions 

4 vs 3 of the 1st round of PCR, but is also seen in other lanes.  

Nested PCR resulted in even brighter bands with molecular 

weights ranging from 20+ KB to about .5 KB.  (Figure 2.9) 

Two reaction mixtures, 4L reaction (mRNA LT/LT) and 4H reaction (mRNA 

LT/HF), were selected for their high molecular weight products, and a portion of the 

reaction mixture was run on a LMP agarose gel.  DNA greater than 3KB was cut out 

Figure 2.8 RNA used 
in RACE experiment. 
L=ladder (degraded) 
M=messenger RNA 
T=Total RNA 

L M T 
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using a clean razor blade  and reisolated by melting the LMP agarose at 65°C then the 

DNA was isolated on a Qiagen PCR clean-up kit following manufacturer’s protocol, 

except the binding and wash steps were done by heating the solutions to 65° C before 

centrifuging the column to ensure that the agarose was melted and not able to clog the 

column.  A portion was run on a 1% agarose gel to verify the DNA was still present 

before ligating into pBluescript II SK+ and transforming into ElectroMAX DH10B e-coli 

as previously described for cDNA library creation.  (Figure 2.10) Blue white screening 

was used to select colonies containing insert DNA and approximately 100 colonies were 

Figure 2.9 Results from 5’RACE experiment.  In the first round of PCR, lane 1 used 
total RNA as a template and the High Fidelity enzyme mix.  Lane 2 used total RNA as 
a template and the Long Template enzyme mix.  Lane 3 used mRNA as a template and 
the High Fidelity Enzyme mix. Lane 4 used mRNA as a template and the Long 
Template enzyme mix.  Lanes 5 and 6 were negative controls.  In the second round of 
nested PCR, reactions corresponding to lanes 1-4 were each run again each with either 
the Long template enzyme mix (L) or the High Fidelity enzyme mix (H). 
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selected over a series of two 

weeks.  The colonies were grown 

in an overnight 5 mL LB culture 

will ampicillin at 100ug/mL, and 

then DNA was isolated via 

centrifugal miniprep.  Plasmid 

DNA was cut with EcoRI to get a 

single cut.  Unfortunately, it was 

found that many of the plasmids 

contained small fragments of DNA, and only a couple had insert sizes of greater than 

1KB.(Figure 2.11)  No colonies were selected to send in for sequencing, since 3kB+ was 

required to find any useful data. During this time a manuscript was sent to our lab from 

the Hayashi lab at UC Riverside.  The paper was published in 2016  and addressed many 

of the discrepancies of the paper published in 2009.2  It was discovered that the 353 BP 

region purportedly shared between Asg1 and Asg2 was not found in the N. clavipes 

genomic contigs of Asg2 and since this was a critical part of the previously reported 

repetitive region of Asg2, it was reported that it would be impossible for that repetitive 

region to actually exist.  This data corresponds precisely with the in house data performed 

in the Lewis Laboratory prior to undertaking this work (Supplemental Data).  In addition, 

the researchers found additional sequence data that included the known C-terminus of the 

protein, a linker region, and about two and a half repeats of what appeared to be a large 

repetitive region, each repeat consisting of about 100 amino acids.  With evolutionary  

Figure 2.10 Gels of the 4H reaction and 4L 
reaction after selecting for fragments larger than 
3kb. 
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data comparing the C-termius to other members of the silk protein family, it was 

proposed to rename Asg2 to Agsp1 (aggregate spidroin protein 1).   

 The authors also found that, with respect to Asg1, it was found that Asg1 is not 

specific to aggregate glands, in  fact, homologs to the Asg1 protein are found in the 

Stegodyphus mimosarum genome, a spider that does not produce aggregate glue or 

contain aggregate glands.2 It was proposed that Asg1 is actually part of a conserved chitin 

binding domain type 2. It was proposed that this protein is expressed in silk glands to 

bind chitin in the silk gland duct and walls, which explains the presence of Asg1 mRNA 

in the aggregate gland cells. It is important to note that the Asg2 genetic material 

elucidated by Collin et al. is not a full aggregate sequence. (Figure 2.12) The N-terminus 

of the aggregate gene has yet to be discovered.  It is proposed that 5’RACE is a likely 

way in which this genetic sequence data could be revealed.  If time allows, N-terminal 

Figure 2.11 Minipreps from multiple colonies transformed with 4H and 4L selected 
for greater than 3kb fragment sizes ligated into pBluescript II (sk+).  Vector size is 
3kb, therefore the largest inserts approach 2kb for a total of 5kb. 
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data will be sought in this thesis, however pursuit of this data ceased to allow for the 

creation of a synthetic construct utilizing the data from Collin et al. 

   

 In summary, two methods have been identified able to elucidate additional genetic 

data on the aggregate gene.  DNA sequences of greater than 20 kilobases have been 

Figure 2.12  Data from Collin et al2. (a) Diagram of the inferred organization of 
ASG2. The repetitive region contains an unknown (n) number of repeats followed 
by the linker and carboxyl (C)-terminal regions. Ellipsis signifies unknown 
sequence. (b) Alignment of exemplar ASG2 repeat units indicating sequences 
predicted to form β-sheet (blue shading) or β-turn/random coil structure (green 
shading). (c) Alignment of linker regions. Amino acids depicted by single letter 
IUPAC abbreviations. Red indicates amino acids conserved across species and 
black arrow indicates location where additional sequence from P. tep whole 
genome assembly contig 63868 was added to the P. tep capture contig from Collin 
et al. 
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isolated but not yet cloned.  This is much greater than the 3 kilobases identified by Collin 

et al.  

 While obtaining large DNA sequences is viewed as progress towards obtaining 

the genetic sequence data for spider aggregate glue, this also served as a hinderance with 

large fragments of DNA being more difficult to clone and sequence.  Given sufficient 

time, cloning large portions of the aggregate glue gene should be possible using the 

techniques described in this chapter.  In this thesis the data was not pursued to allow for 

creation of the synthetic glue. 
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CHAPTER 3 

CREATION OF A SYNTHETIC AGGREGATE CONSTRUCT 

	

 

Utilizing the data prepared by Collin et al1 a synthetic analog of aggregate glue 

gene was created. (Figure 3.1) Assuming the upstream data follows the pattern 

established by many silk proteins, aggregate should have a C-terminal domain, a 

repetitive region, a linker region, and an N-terminal domain.  Each part would need to be 

synthesized individually and then sub-cloned together. 

  

 

Figure 3.1  A diagram of a finished aggregate gene construct including the repetitive 
region (blue), linker region(yellow), and c-terminal region(pink).  The remainder of 
the plasmid is represented by the grey region.   
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Design 

The C-terminal domain was determined to be similar enough in structure to use 

the common C-terminal domain found in the other silk constructs created in the lab.1,2  

Therefore, the C-terminal domain was designed for the purpose of adding it to the 

constructs if needed, but not ordered.  The C-terminal domain used was already cloned 

into the plasmid pET19K (containing a kanamycin resistance gene) and named 

pET19KT.  The plasmid is also His tagged at the N- terminus of the open reading frame. 

(Figure 3.2) 

 

 

Figure 3.2  Diagram of the expression vector pET19KT along with the multiple cloning 
site(MCS) used in this experiment. The C terminal region is shaded pink, and the 
remainder of the vector is shaded grey. 
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The linker region was designed and ordered from GeneArt with the restriction site 

BamHI on the outer edges of the sequence for cloning into the pET19KT vector.  The 

insert had a total sequence length of 1089 base pairs. 

The repetitive region was designed and ordered from GeneArt in iterations of 3 

repeats as follows:  NdeI, AgeI, Repeat 1, Repeat 2, Repeat 3, BspEI, and finally XhoI 

for a total of 1122 base pairs.  The outer flanking restriction sites would be used for 

cloning into the pET19KT vector.  The inner two restriction enzymes would be used to 

create a non-regenerable restriction site for splicing together repetitive regions of the 

protein DNA sequence.3 

 

Methods 

pET19KT was transformed by electroporation at 1800V into BL21 cells and 

plated on kanamycin containing LB plates at 50ug/mL.  Islolated colonies were then 

selected and grown in a 5 mL LB overnight culture with kanamycin at 50ug/mL.  

Plasmids were then isolated from bacteria, and cut with BamHI and verified to be the 

correct size of 6087 base pairs (Figure 3.3)  Both digested and undigested vector were 

then stored at -20°C until further cloning steps.   

The ordered aggregate linker was delivered in the vector pMA-T with ampicillin 

resistance.  It was transformed at 1800 V into electrocompetent BL21 cells and plated on 

ampicillin containing LB plates at 100ug/mL.  Isolated colonies were then selected and 

grown in an overnight 5mL LB culture with ampicillin at 100ug/mL.  Plasmids were then 

isolated by centrifugal miniprep and vector was cut with BamHI.  pET19KT was also cut 

with BamHI and dephosphorylated using rSAP to prevent self-ligation.  Both were run on 
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a 0.7% LMP agarose gel.  The gel was cut down the edge of the lane containing the linker 

and visualized using ethidium bromide next to a ruler.  The section that was not stained 

with ethidium was cut at the appropriate area to remove the band containing the linker 

and the DNA was isolated using a Wizard SC Gel/PCR purification kit.  The DNA was 

then ligated with T4 DNA ligase into the the pET19KT vector. Transformation into BL21 

cells resulted in very few colonies, so the transformation was reattempted with 

ElectroMAX DH10B cells.  A 1:500 dilution of ligation reaction product was used to 

create sufficiently isolated bacteria to select for growth in an overnight culture.  Plasmids 

Figure 3.3 Ligation of the linker region(yellow) into the expression vector pET19KT.  
Reactions 1, 2, 3, 5 and 6 were sequenced.  Plasmids with the insert in the forward 
orientation are denoted with (f).  Plasmids with the insert in the reverse orientation are 
denoted with (r).    
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were mini prepped and then cut with BamHI to verify the presence of the insert.  Of the 6 

colonies selected, 5 showed the proper banding pattern and were sent in for sequencing.  

Of those five colonies, two contained the insert in the proper orientation.  These were 

labeled pET19KTL and used for subsequent cloning steps.   

To test the influence of the repetitive region on the protein on adhesive properties, 

constructs were prepared containing 3x, 6x, 9x and 12x repeats.  The ordered 3x 

repetitive region was delivered in the pMK-RQ-Bb vector which contains a gene that 

confers kanamycin resistance.   (Figure 3.4) The kanamycin resistance gene also contains 

the restriction site NcoI which was used in subsequent steps.  XL1 Blue cells were 

transformed with this vector.  Isolated colonies were selected for an overnight culture in 

LB broth, and the plasmid DNA was then isolated using the IBR High Speed Mini Kit.  

Figure 3.4 Design of the repetitive region vector for sub-cloning.  3x repetitive region is 
denoted in blue.  The grey and tan regions are shaded for convenience in differentiating 
locations of the plasmid with respect to the NcoI restriction site. 
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The resulting plasmid was first digested using the XhoI restriction enzyme to determine 

that the plasmid was the correct length.    An aliquot of isolated plasmid was digested 

with NcoI and AgeI, and a second aliquot was digested with NcoI and BspEI.  The 

digests were then separated by size on 0.7% low melting point agarose using a voltage of 

50 V and the desired bands were cut out of the gel with a razor blade and isolated as 

reported above for the linker.  It is important to note that an unexpected cut was observed 

when digesting with AgeI, but it was determined that the additional cut appeared in the 

parent plasmid, rather than the desired fragment.  AgeI and BspEI both leave identical 

sticky ends that will ligate together.  Therefore, when ligated with T4 Ligase the resulting 

plasmid contained two repeats of the sticky ends and the internal AgeI and BspEI sites 

were destroyed, leaving only the flanking AgeI and BspEI sites.  The NcoI sites were 

ligated together as well, reproducing the parent plasmid pMK-RQ-Bb with a 6x repeat of 

the aggregate repetitive region. (Figure 3.5)  The procedure utilizing the non-regenerative 

restriction sites was repeated with a 6x and a 3x plasmid to produce a 9x repetitive region 

(Figure 3.6), as well as a 6x and a 6x plasmid to produce a 12x repetitive region (Figure 

3.7), to produce the four desired constructs containing 3, 6, 9, and 12 repeats of the 

aggregate repetitive region.  Each was then digested with NdeI and XhoI to remove the 

entire repetitive region for cloning into pET19KTL.(Figure 3.8)  It is important to note 

that the 6x repetitive region was very close in size to the parent plasmid, the plasmid was 

cut an additional time using NcoI to ensure sufficient separation for subsequent LMP 

agarose extraction and purification as previously described. 
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Figure 3.5 Formation of the 6x repetitive region.  Repetitive region is shaded in blue.  
The figure shows the destruction of the AgeI and BspEI sites during ligation by 
creating a non-palindrome at the site.  Sizes of all plasmids were checked by gel 
electrophoresis and indicated with red arrows.  Segments excised and purified are 
circled in red. 
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Figure 3.6:  Formation of the 9x repetitive region.  Repetitive region is shaded in blue.  
The figure shows the destruction of the AgeI and BspEI sites during ligation by creating 
a non-palindrome at the site.  Sizes of all plasmids were checked by gel electrophoresis 
and indicated with red arrows.  Segments excised and purified are circled in red. 
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Figure 3.7 Formation of the 12x repetitive region.  Repetitive region is shaded in blue.  
The figure shows the destruction of the AgeI and BspEI sites during ligation by creating 
a non-palindrome at the site.  Sizes of all plasmids were checked by gel electrophoresis 
and indicated with red arrows.  Segments excised and purified are circled in red. 
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The vector pET19KTL was prepared by digesting first with NdeI for 1 hour and 

then adding XhoI and allowing it to digest for an additional two hours.  This was done 

because NdeI requires a larger amount of non-restriction site DNA to function properly 

and the two sites were found directly adjacent to one another.  It was then ligated to each 

of the repetitive regions in four separate ligation reactions. (Figure 3.8) These were 

transformed into ElectroMAX DH10B cells and grown on plates with kanamycin at 

50ug/mL.  A 1:100 ligation reaction dilution usually resulted in sufficiently isolated 

Figure 3.8 Insertion of the repetitive regions into the pET19KT Ag Link vector.  
Digestion with NdeI and XhoI removed the repetitive region from the pMK-RQ-Bb 
plasmid after which it was ligated into the pET19KT Ag Link vector cut with the same 
restriction enzymes. 
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colonies for subsequent overnight cultures in kanamycin LB broth again at 50ug/mL. The 

vectors were isolated by centrifugal miniprep and two digestions were done for each 

selected colony.  The first was a single cut using NdeI to verify size.  The second was cut 

with both NdeI and NfeI. The NfeI site is found a few base pairs further downstream 

Figure 3.9 Verification of fragment sizes of 3x, 6x, 9x, and 12x repetitive regions 
inserted into the vector pET19KT Ag Link.  Two digests were completed for each 
reaction.  The left reaction was a single cut using NdeI.  The right reaction was a 
double cut on both ends of the construct using NdeI and NfeI.   
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from the BamHI site where the linker was inserted.  This removed the insert in its entirety 

and allowed for the entire construct present in the plasmid to be visualized.  Results 

indicated that construction and ligation of 3x, 6x, and 9x repeats were successful on the 

first attempt.  The 12x repeat reaction was initially unsuccessful but was reattempted and 

successfully cloned.  (Figure 3.9) 

In summary, the information from Collin et al. was successfully taken and used to 

create four synthetic aggregate constructs with repetitive regions ranging from 3-12 

repeats of the repetitive region.  These constructs can now be used for cloning into 

bacterial or other expression systems for production of the synthetic glue. 
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CHAPTER 4 

PRODUCING A SYNTHETIC AGGREGATE PROTEIN (AGS1) 

		

Few attempts have been made to produce a synthetic aggregate gland protein. 

This chapter is intended more as a starting point for expression of an aggregate gland 

protein construct, rather than a comprehensive expression study. 

An expression study was done in a 200 mL LB broth flask study.  3x, 6x, and 9x 

constructs were transformed into E. coli BL21 bacteria with 4GPP, a helper expression 

vector containing the genes for the tRNAs of glycine and proline.  Since the protein has a 

relatively high proportion of proline and glycine it was predicted to support expression.   

A starter 5mL culture was done overnight and used to seed the flask study.  Kanamycin 

and chloramphenicol were used as the 4GPP vector encodes chloramphenicol resistance 

and the construct plasmid encodes kanamycin resistance.  Flasks were induced with IPTG 

at an OD of approximately 0.51 and samples were taken every hour for 4 hours.  Western 

Blot analysis with a mouse anti-His tag antibody and a rabbit anti-mouse IgG antibody 

C B A 

Figure 4.1 Western blots from LB flask study for 3x (A), 6x (B), and 9x (C) repeats.  
The expected molecular weight of 130 kDa is marked with a blue arrow.  The observed 
band at approximately 80 kDa is marked with a red arrow.  Lane 2=Ladder.  Lanes 3-7 
are the soluble fractions at time t=0, 1, 2, 3, and 4 hours post induction respectively. 
Lanes 8-12 are the insoluble fractions at time t=0, 1, 2, 3, and 4 hours post induction 
respectively. 
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revealed that the 3x construct appeared to express at a molecular weight of	approximately 

80kDa.  (Figure 4.1) The expected weight of the 3x construct protein is 131kDa.  The 

bands did appear to smear both up and down, indicating that a larger protein may be  

expressed, but the ribosome is terminating translation prior to the stop codon.  No  

expression was seen in the 6x construct.   A high molecular weight smear was seen in the  

9x Construct.   

A second flask study using 500mL Terrific Broth was attempted.  In this 

experiment, only the 3x and 6x constructs were used, but both were done with and 

without the helper vector 4GPP.  Visualization of the western blot used the same method 

as described above.  However, no results were visualized on the positive control nor in 

the samples of the western blots.  It was determined to be ineffective and other routes of 

production were pursued. 

Table 4.1 2L fermentation run data comparing the glucose levels and optical 
densities (OD) of runs 3xa and 3xc. 

Time	(hr.)	 OD	3xa	 OD	3xc	 Glucose	3xa	(g/L)	 Glucose	3xc	
(g/L)	

0	 0.186	 0.233	 18.3	 17.4	
13.5	 21.4	 39.4	 48.4	 30.7	
13.75	 22.2	 38.4	 46.9	 26.7	
14.75	 35	 68	 32.9	 5	
15.25	 44.6	 77.4	 25.6	 <2.3	
15.75	 56	 88.2	 17.1	 <2.3	
16.25	 68.8	 103.6	 8.8	 9.8	
16.75	 81.6	 104	 8.8	 19.7	
17.25	 98	 100.8	 4.3	 23.8	
17.75	 98.4	 104.4	 5.6	 18.9	
18.25	 96.4	 101.6	 13.8	 8.4	
18.75	 86.4	 97.2	 15.5	 9.9	
19.25	 81.6	 93.6	 33.7	 13.3	
20.25	 82	 92.4	 33.4	 17.6	
21.25	 81.6	 NA	 22.5	 NA	
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A 2L fermentation run was also attempted.  To test if the lower than expected 

molecular weight of the 3x construct was the result of a premature stop codon introduced 

by mutation, a different clone containing the 3x construct DNA was also tested.  The 

original was labeled 3xa and the second 3xc. 	Unfortunately, glucose levels rose to high 

levels in the fermentation run 3xc and to unacceptable levels in 3xa. (Table 4.1) They 

also dropped to very low levels in 3xc.  Abnormal sugar levels can cause expression 

anomalies by stressing the bacteria1.  In the insoluble fraction of 3xa, (Figure 4.2 B) a 

faint band is seen at approximately 30 kDa, two heavier bands at 50 and 55 kDa were 

A					0					1					2					3					4							 B				0					1						2					3					4							

C				0					1					2					3					4							 D				0					1						2					3					4							

Figure 4.2 Western blots of 3xa soluble fraction using the anti-His tag primary 
antibody (A), 3xa insoluble fraction (B), 3xc soluble fraction (C), and 3xc insoluble 
fraction (D) at times t=0, 1, 2, 3, and 4 hours post induction.  Arrows indicate the 
bands at 30, 50, and 55 kDa. 
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seen and the band appears to smear upward above those bands.  No bands were visualized 

in the soluble fraction, or in the 3xc soluble and insoluble western blots. (Figure 4.2 A, C, 

and D)  The fermentation runs were repeated and care was taken to avoid any large 

fluctuations in glucose levels. (Table 4.2) Western blots were accomplished by  

suspending the bacteria from 4 hours post induction in Lysis Buffer (20mM Tris, 0.5M  

NaCl, 0.5% sarkosyl).  Western blot analysis using an anti-His tag primary antibody   

in the soluble fraction, or in the 3xc soluble and insoluble western blots. (Figure 4.2 A, C, 

and D)  The fermentation runs were repeated and care was taken to avoid any large 

fluctuations in glucose levels. (Table 4.2) Western blots were accomplished by 

Table 4.2 Fermentation run data comparing the glucose levels and optical densities 
(OD) of the second set of runs for 3xa and 3xc.  Induction time noted with an 
asterisk (*).  

	
Time(hr.)	 OD	3xa	 OD	3xc	 Glucose	3xa	(g/L)	 Glucose	3xc	(g/L)	

0	 0.182	 0	 23.7	 22.8	
8.5	 27.4	 25	 7.2	 9.3	
9	 30.6	 31.4	 12.3	 10.9	
9.5	 42.8	 40.2	 13.7	 15.7	
10	 49.4	 49.2	 17.1	 16.7	
10.5	 65	 59	 18.7	 16.7	
11	 69.6	 62.8	 16.2	 14.6	
11.5	 81.2	 79.8	 14.1	 16.7	
12	 90.8	 96	 16.3	 22.3	
12.5	 95.6	 94	 17.6	 15.3	
13	 88	 96.8	 20.3	 9.8	

13.33*	 115.6	 100	 31.5	 11.3	
13.83	 114.4	 101.2	 22.6	 15.5	
14.5	 105.2	 96.8	 11.6	 19.5	
15	 	 	 14.7	 19.6	
15.5	 111.6	 105.6	 16.6	 15.9	
16	 	 	 26.3	 25.4	

16.5	hr.	 105.6	 99.6	 28.3	 23.1	
17.	hr.	 	 	 25.9	 21.2	
17.5	hr.	 114.8	 104	 22.7	 18.7	
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suspending the bacteria from 4 hours post induction in Lysis Buffer (20mM Tris, 0.5M 

NaCl, 0.5% sarkosyl).  Western blot analysis using an anti-His tag primary antibody  

repeatedly did not show the positive control.  A new positive control was obtained and it 

was determined that the anti-His tag antibody was not detecting the protein of interest on 

the western blot. (Figure 4.3) To determine if the protein was not transferring to the  

membrane, a Coomassie blue was attempted on the gel post-transfer. (Figure 4.4 C) It 

appeared that several proteins were not transferring, but no bands were visualized at the 

proper molecular weight for the aggregate protein construct, although there appeared to  

be a smear at the higher molecular weight range. Exact molecular weights are not known 

because the ladder fully transferred from the gel.  Concurrently, a western blot using a 

primary antibody specific to the His tag and another to the C-terminus of the protein were 

attempted. (Figure 4.4 A and B) Protein samples were concentrated to four times the 

original concentration using a Savant SpeedVac and showed a protein with the expected 

molecular weight of approximately 130 kDa, as well as several truncated iterations of the  

Figure 4.3 A) Western blot using His-tag antibody of the soluble fractions from 3xa 
and 3xc.  B) Western blot using His-tag antibody of the insoluble fractions from 
runs 3xa and 3xc. The band at 37kDa is a known E. coli contaminating protein that 
is visualized using the mouse anti-His tag primary antibody.	

A																																																								B
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protein. It seemed as though there were equal amounts of the protein in both the soluble 

and insoluble fractions; therefore, the percentage of sarkosyl was increased for future 

runs. 

A preliminary purification using 50g wet weight from fermentation run 3xc was 

attempted by suspending bacteria in 

50 mL of lysis buffer (20mM Tris, 

0.5M NaCl, 1% sarkosyl (w/v)).  

Lysate was collected after sonication 

for 15 minutes and heat treated at 

70° C for 30 minutes, after which it 

was centrifuged and supernatant was 

collected.  A portion of the 

supernatant was treated with 20% 

ethanol and the other portion was set 

aside in order to test both a 

Figure 4.5 Western blot using C-terminus 
antibody(A) and Coomassie Blue (B) of the final 
pellets from 10%(1), 12.5%(2) and 15%(3) 
ammonium sulfate precipitations. 

	1				2			3				L				1			2			3		L 

A																						B 

Figure 4.4 A) Western blot using His-tag antibody.  B) Western blot using C-
terminus antibody.  A faint band at approximately 130 kDa is illustrated by the red 
arrow. C) Coomassie of the gel used for western post transfer.  Lanes include 
positive control (+), soluble fraction from run 3xa (1,5), insoluble fraction from 
run 3xa (2,6), soluble fraction from run 3xc (4,7), and insoluble fraction from run 
3xc (3,8) all at 4 hours post induction. 

+						L			1				2				3				4				5			6			7				8								+				L				1					2				3				4				5				6			7				8											+				L				1				2		 3				4				5				6				7				8

A																																																																B																																																											 C
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purification with and without ethanol at the same time.  Samples were refrigerated 

overnight and a new precipitate was observed and collected by centrifugation.	  The 

supernatants were separated and ammonium sulfate was added to a saturation of 5%, 

10%, 15%, and 20 %.  Pellets were collected by centrifugation and samples were run and 

analyzed using Coomassie blue and western blot analysis.  It was determined that the 

aggregate construct was found best at 10% ammonium sulfate precipitation without using 

the ethanol treatment. The purification was repeated using 10%, 12.5% and 15% 

ammonium sulfate saturations. When run next to each other, it appeared that the 15% 

ammonium sulfate precipitation yielded the most promising results, although the protein 

was still not pure (Figure 4.5). Lane 3 was used in later runs as a positive control. 

AKTA His tag affinity chromatography was selected as another option for 

purification.  Following sonication and heat treatment, the supernatant was diluted by a 

factor of 10 in binding buffer (.5mM Imidazole, 0.02M Tris, 0.5M NaCl) and loaded on 

Figure 4.6 A) Western blot of AKTA run using a nickel column with an anti-C-
terminus primary antibody B) Coomassie blue of the same protein samples.  Lanes 
containing positive control (+) ladder (L), sample diluted by a factor of 10 (1) flow 
through (2), wash fraction A2 (3), wash fraction B1 (4), wash fraction B4 (5), elution 
fraction B5(6), elution fraction C1 (7), elution fraction C2 (8), elution Fraction C3 (9), 
and elution fraction C5 (10). Arrow indicates High molecular weight bands visualized 
on the western blot.	

+				L				1				2				3				4				5				6				7				8				9			10				+			L				1				2				3			4			5				6				7				8			9			10

A																																																																										 B
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to a nickel column.  Protein was eluted with elution buffer (0.5M Imidazole, 0.02M Tris, 

0.5M NaCl) and fractions were collected.  A peak was seen at fractions B5 and C1 and 

followed by a shoulder.  A Coomassie blue and western blot was done on the sample and 

some high molecular weight bands were observed.  Some of the bands were of a high 

enough molecular weight to indicate that there was some kind of multimerization 

occurring in the sample.  (Figure 4.6) 

Fractions B5 and C1 were combined and 300 uL ethanol was added to a 1.2 mL 

portion of the sample to create a 20% ethanol solution.  The pellet was collected by 

centrifugation and was run on a gel.  It appeared that the majority of our protein 

precipitated in the pellet, but a major contaminating protein remained in the supernatant.  

(Figure 4.7) It also appeared that much of the protein re-dissolved when prepping the 

pellet for loading on a gel by placing the pellet in a 100mM tris 20% glycerol solution.  

An extra western blot was run with this sample to see if anything could be seen using the 

A																																											B																																														C

+						L							1						2						3						4					5						+							L							1							2							3							4							5								+					L						1					2 3					4					5	

Figure 4.7 A) Western of ethanol precipitation purification with an anti C-terminus 
primary antibody. B) Western of ethanol precipitation purification with an anti-His tag 
primary antibody.  C)  Coomassie blue of the same protein samples.  Lanes containing 
positive control (+) ladder (L) sample diluted by a factor of 10 from AKTA run (1), 
fraction B5 (2), fraction C1 (3) 20% ethanol pellet (4) 20% ethanol supernatant (5). 
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anti-His tag antibody.  It showed that something was being pulled out of the solution with 

a His tag, and that it could be seen in the samples, but not on the positive control, which 

was the 15% ammonium sulfate precipitation from a previous experiment (Figure 4.5 

lane 3).  Unfortunately, no bands could be seen, just a smear.   

  It was then decided to try a 20% ethanol precipitation followed by a re-dissolution 

in an aqueous solution prior to loading the sample on the AKTA for His tag affinity 

chromatography.  Purification proceeded as described previously, but after heat treatment 

ethanol was added to create a 20% solution.  The pellet was collected and suspended in a 

solution containing 100mM tris and 20% glycerol and heated to 70°C and heated for 3 

hours with agitation.  The solution was centrifuged and the supernatant was collected and 

loaded on to a nickel column as previously described.  No definitive peak was seen, but 

some protein came off the column during the elution step.  Results were inconclusive, the 

C-terminus antibody had too much background, but it appeared with the His tag antibody 

that the protein stayed in solution with the ethanol precipitation.  Additional experiments 
+							5*			4*		L					1				2					3				4			5				6		 +					5*			4*		L					1				2					3				4				5				6																								+						5*			4*			L					1					2					3	 4					5					6

A																																																																													B																																														 C

Figure 4.8 A) Western of lysis buffer experiment with an anti C-terminus primary 
antibody. B) Western of lysis buffer experiment with anti-His tag primary antibody 
C) Coomassie of the same protein samples.  Lanes containing positive control (+) 
Lane 5 from the first ethanol experiment (5*), Lane 4 from the first ethanol 
experiment (4*), Ladder (L), supernatant of lysis buffer without additives (1), pellet 
of lysis buffer without additives (2), supernatant of lysis buffer with urea (3), pellet 
of lysis buffer with urea (4), supernatant of lysis buffer with sarkosyl (5), pellet of 
lysis buffer with sarkosyl (6).  Arrow indicates aggregate protein in the	supernatant.	
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are required to determine exactly how 20% ethanol affects the solubility of the 3x 

aggregate construct. 

Some unanswered question were left from the original ethanol precipitation 

experiment.  Why did the positive control give a positive result with the anti-C-terminus 

antibody, but not the anti-His tag antibody?  And if the C-terminus is transcribed last, 

how can bands be seen at molecular weights lower than the full length protein?  The 

possibility of some sort of cleavage of the protein had been considered, such that the C-

terminus was transcribed and then cleaved into smaller fragments.  It was also possible 

that the C-terminus antibody used was not monoclonal.  Also, the C-terminus antibody is 

very old and it is possible that it is going bad.  An additional experiment was completed 

that helped answer this question because of some of the lanes used for positive controls in 

this experiment. 

In this experiment the issue of additives to the lysis buffer was addressed.  Lysis 

Buffer (.5M NaCl, 20mM Tris), Lysis Buffer with Urea (.5M NaCl, 20mM Tris, .5M 

urea,) and Lysis Buffer with sarkosyl (.5M NaCl, 20mM Tris, 1% sarkosyl) were all used 

and sonicated at an amplitude of 40 for 15 minutes.  The resulting solution was heat 

treated at 80°C for an hour before being centrifuged and the pellets collected.   It was 

found that sarkosyl was most effective at pulling the protein into the supernatant. 

Laemmi Sample Buffer was obtained and used for the first time in this experiment.  

Using this sample buffer, the smears seen in lanes 4 and 5 from the ethanol experiment 

(Figure 4.7) were resolved into bands.  Perhaps most importantly, we see exactly what we 

expect to see using both the C-terminus and His tag antibodies.  Since the His tag is 

translated first, we would expect all iterations of this protein to contain the His tag and all 
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would be visible by western blot.  Since the C-terminus is translated last we would expect 

only the full length protein to be visible by western blot.   This is exactly what we see in 

lanes 4* and 5*. (Figure 4.8) This also reveals that the majority of the impurities in the 

samples are, in fact, shortened versions of the protein. 

The above are all of the expression experiments attempted thus far.  Additional 

runs should be completed to produce and purify the full length protein of each construct.  

It is suggested that expression be attempted in Sf9 cells, an insect line that would be more 

likely able to express full length protein,2,3 and glycosylate the protein correctly.4,5  It is 

also recommended to attempt dialysis or another method to remove the smaller protein 

fragments from the samples post AKTA to improve the purity of the protein. 

 

Mechanical Testing 

Since full length protein was in both samples and most of the impurities from the 

sample are in fact shortened iterations of our protein, the combined fractions B5 and C1 

from the AKTA purification were frozen and lyophilized to perform a preliminary test on 

the adhesive properties of the protein.  A 10% (w/v) solution was created and sonicated at 

an amplitude of 1 for two minutes and then heated in the microwave until the bottom of 

the vial read above 250° C by Fluke 561 IR Thermometer.  Samples were then 

centrifuged to remove any insoluble impurities.  The solution was then sprayed onto 

sixteen samples, four each of aluminum, polycarbonate, polyurethane, and 

polypropylene.  This was followed by an application of 50uL of the protein solution to 

each sample.  Samples were then adhered together and held with clips during the curing 

process.  Samples were cured for approximately 24 hours and then tested.  Only the 
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polyurethane, polypropylene, and one of the polycarbonate samples remained adhered 

after the curing process.  The polycarbonate and all but one of the the polyurethane 

samples were broken in the process of loading the samples to be tested.  One 

polypropylene sample was tested against the weight of its own sample, which gave the 

required force to break greater than 1.29KPa.  One polyurethane sample was tested by 

free hanging weights and gave a force to break greater than 4.129 kPa and less than 7.018 

kPa. 

Further testing of the aggregate protein is needed.  More work must be competed 

to provide a purer protein sample absent of truncated iterations of the protein to more 

effectively test the adhesive properties of the protein. In nature, the glue functions while 

wet, so underwater testing is another avenue that should be explored.  

Other factors such as glycosylation and protein size also need to be addressed to 

better mimic the native protein.  It is reasonable to assume that glycosylation may be a 

key factor to the ability of this protein to function as a glue.  Multiple examples of 

adhesive proteins such as Mucins6,7, or cell adhesive proteins such as Galectins8,9 or 

TSLC110 are glycosylated in nature and it is assumed that glycosylation is important to 

their roles as adhesive proteins.  Other adhesive proteins have been shown to require 

glycosylation for their adhesion11.  Aggregate protein is unique from other spidroins 

because it is the only known glycosylated spidroin.  Since its purpose in the web is 

unique, adhesion rather than structure, it can be inferred that glycosylation is a necessary 

difference that allows this spidroin its adhesive qualities. 

In summary, the 3 repeat aggregate construct with a size of approximately 130 kDa 

has been successfully produced in a bacterial system. The other three constructs with 6, 9, 
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and 12 repeats with protein sizes of approximately 170, 210, and 250 kDa may hinder its 

expression in a bacterial system as bacteria natively produce proteins with sizes of around 

100 kDa or less. 

The synthetic 3x construct did not appear to be very adhesive.  We strongly suspect 

this is due to lack of glycosylation and protein size. These issues can be addressed by 

expressing the protein in eukaryotic cells such as yeast or SF9 cells.  It is recommended 

to use SF9 cells because they are more closely related to spider cells evolutionarily than 

yeast or mammalian cells and therefore more likely to glycosylate correctly. 
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CHAPTER 5 

CONCLUSION 

	

In this work, genetic material has been isolated for the spider aggregate glue gene 

with DNA fragments of greater than 20 kilobases.  These fragments have yet to be cloned 

successfully, but the techniques used can be implemented in later work for the 

identification of additional spider glue genetic material.   

Sequences characterized by Collin et al. have been used to create four synthetic 

constructs of the aggregate glue gene ranging in size from 3-12 iterations of the repetitive 

region.  The construct with 3 repeats has been successfully expressed in bacteria and 

partially purified.  In addition, preliminary testing of this protein as an adhesive has 

begun. 

Aggregate spider glue represents an exciting new biomaterial with unique 

physical properties that could be used in many different adhesive situations.   Underwater 

adhesives and in a surgical setting can be imagined because of its unique ability to remain 

sticky when wet.  Since spiders cannot be farmed for the purpose of collecting this glue, 

expressing this glue in other organisms seems the most likely way that this biomaterial 

will be able to be mass produced and used in any setting other than on a spider’s web.   

Incomplete genetic information was first found by Choresh et al.1 and then 

additional genetic information was found by Collin et al.2  Collin et al. found that the 

aggregate gene contains a C-terminal region similar to other spidroins, an approximately 

1Kb linker region, as well as a repetitive region consisting of approximately 300 base 

pair repeats.2  Only two and a half repeats were found in this fashion; therefore, it is 
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important to elucidate the sequence up to the N-terminus to determine how many repeats 

are formed and if there are any other motifs present in the aggregate glue gene.  The 

research in this thesis contributes to the genetic work done by others by demonstrating 

that 5’ race has the potential to determine additional sequence data.  cDNA fragments of 

the aggregate gene were created in this manner with a length of greater than 20kb.  When 

using 5’ RACE, care should be taken to design primers only outside the repetitive region 

of the gene as failure to do so will cause the primer to bind at multiple sites and give 

conflicting data using the 5’ RACE technique.   

This work has also built upon the data provided by Collin et al. to build a 

synthetic aggregate construct for expressing glue proteins with various lengths of the 

repetitive region.  Constructs with 3, 6, 9, and 12 repeats have been created, and 

expression of these constructs has begun in E. coli.  It is suggested that these constructs 

also be expressed in Sf9 cells3 for two reasons.  The first is that E. coli have trouble 

making proteins of such large size (130 kDa- 250kDa).4,5  The eukaryotic Sf9 cells 

naturally produce larger proteins than E. coli and it therefore follows that they would not 

have as much trouble producing full length protein.  In addition, Sf9 cells can 

glycosylate6, and aggregate protein is a known glycosylated protein.7,8  Since Sf9 cells 

are an insect cell line, it seems that they would be more likely to correctly glycosylate 

this protein than other eukaryotic cells such as yeast.   

Research should continue to characterize the proteins produced by the genetic 

constructs created in this work.  It is suggested that NMR and mass spectrometry would 

be likely ways to characterize this water soluble protein at the molecular level.  

Mechanically these proteins should be tested to determine if the adhesive properties are 
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similar to that of natural spider aggregate glue and if increasing the repetitive region 

increases the adhesive properties of the glue.   
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APPENDIX A 

 
SUPPLEMENTAL DATA 

 
 

Aggregate Genetic and Protein Sequence 
 

 
Asg2 Grand Composite: 
2905bp 
 
TTGAAACCGGACCCGATGGAAAACCAAGTAAGCTCGTCGTTCCCACCACACCGAAAAGG
CCACGAGGACCAGGAGGAAGTCCTTTAGGTCCAGGAACGCAATTCCAAACTCCAGGAAC
AACTCCAACTCCCGTTCCCGGACCAGATGGTAAACCATTGCAAATTGTTCCCGCTGGTC
CAGGTACCACCCCCGGAACAGTGACCGGCCCAGACGGCAAACCAAGTAAATTCGTCGTT
CCCGACGGAGCATTCACGACACCAGGCTCAATCCCCGGTCCAGACGGAAAACCGCTCCC
AGTTGAACCAGCTGGTCCAGGCACCACTCCGGGACTCCAAACCGGACCCGATGGCAAAC
CAAGTAAACTCGTTGTTCCTACGACAACGAAGGGTCCAGGATCTGGTGTTCCTCCTGGA
TTACTTTTCCCTACTCCAGCAACTACACCAACTCCAGTTCCCGGTCCTCGTGGAGAACC
TGTTCAGATTATGGCAGCAGGTCCTGGTACTACTCCTGGTACTGTGACAGGTCCTGAGG
GTGAACCAGTTAAATTTATCGTTCCAAATGGGGCATTCTCAACTCCAGGTTCAATTCCA
GGCCCTGATGGAAAACCAATTCACGTCGAACCAGCTGGTCCTGGAACTACTCCGGGAGC
AAGGACTGGACCTGATGGAAATATAGTTAAAATATACTTGCCTTCTACTCCCAGTACCC
CTCCTCCTCCTTTGGCAACCACTCCTGCTGATGTAATGGGATCTGATGGGCAACCAATT
CTTATTTATCCTGCTGGTCCAGGAACTACTCCAGGAACAGTTACTGGTCCCGATGGGAA
GCCTACAAAGTTTATTGTTCCTTTGGGAGCCTTTACCACTCCTGGTTCTATACCAGGTC
CTGATGGAACACCAATACCTGTAGAACCAGCTGGTCCTGGAACAACTCCGGGTGTTGAA
ACAGATTCTGATGGAAACGTGAATAAGATTATTTTACCCACTACTCCAAAAAGACCATC
TCATCCTTCTCCGATGCCGCTTACAACTACTCCAATACCTAGTGATGGATCTAAACCTA
TTCAAATTGTTCCGGCTGGTCCTGGAACAACTCCAGGTACAGTCACTGGTTCTGATGGA
AAACCGACAAAATTTATTGTTCCGCAGGGAGCTTTTATAACCCCTGGTACAATTCCAGG
TCCTGACGGAAATCCTGTACCAGTTGAACCAGAAGGACCAGGAAATAGTCCCGGTGTTC
AGACTGGACCTAACGGCAATATTATTAAAATTGTAATTCCCACAACTACTCCTCTTCCA
CCACCCCCAGGACCTTTGGACCCTGCCAGTGAGCCTATTGCACCTTTTGGACCTGGTAA
TGTACCTAATTCTCCTAAATCTCCCGGCAATTATCCCGGATATTCTTTCCAATTCCCGG
GTTACCCTGATGCTCCAGGTTCCATAGGCCCTCTGGGATATTTAGATTTCAGCCAATTG
CCTAGTAGTATGTCCCCTGAAATGGAAGGCAATATTGGTTTCCTTCCGGATTTCAGTTC
TGAAATCGGAGGTCCATTCCCTGGTTTTCCACCAGGTCCAGATAACTCAGGTCCAGGGG
GATTTTTAAATGTTCATTCTCTCCCTGATTTTGTGAATCCAGGATATGGATTCCCTGGT
TCTCCTCAAGCCCCATTGGGTTTCCTAAACTTTAGTCTTTTACCGGACGATTACAATCC
AGGATTCCCTGGTCAGTTGGTTTTCCCTGGTTATCCCGGCTCTCCAGGAAGTAGTGGCC
AATTTCCCGGAGGATTCTTGAGTCTCGATGAATTACCGGAAGATGTTAGGAATATGTTG
AACAACACTTTCAGTTTACCCGAATTATTGCATTCTCTACAGCCTCTCTTCCCTGGAAG
ATCAATCAATTCTGGTGTCATTCCAAAAGACAATTTACAAAATATTCCAGGATTTAGCG
GTACTTACGATAATCTAAGACTTTCAAACATTGGAGATAACAATAACCCTACCGGAGGT
GTGTTCTACCTTCCTGAAATGGTACGACTCATTAGTTATCTTCCTGTAGGATCATTCCC
TAATGGCCCTGGAACAATCAATCAGAACGGTGGATTCGGCCATCCATTTAATTTCCCAG
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GATTAAATGGCGCCCCGGGATACATTTGCGACTATCTGGATAACATCGATGTAACAGGT
GGAAGCTCAGATGACTTGGGAGGAGAAATCAGAGGAAATGACAATGGTCCATCGGGTGA
CGTAGCGGATGCGGCTCCTGGAAGTGATGTAGGTGCTCCAGCTCCTACAGGAAATACAG
CAGCTCCATCAGGGCAGAGCATGAGTTCTTCGAAACTTCAACCACCTGAAAACCAAGGT
ATGCCCGAATCTGACTGCGATGATGATGTGTTTTCCACCTTCATGAAAGCAAGATCTGC
CCTTATGGATGTATCTTCTAGTACAGGAGTCAATCCAATTAGCCAGCTAACTCAAGACA
TCATCTCTGGAATCAATCCATCTGAAGACAGTGTTGATTACAATAAATTTTTTAATAAA
CTTTCATCTCTACTTTCCCAAGTACGCTCGGGTTCTTCTGATAAACCTAATAAAGAACT
ATTATCAATCTTAATGGAAGGTTTAGTGGCCGCATTGGAAGCTCTAAACGCCGCAAAGA
TCAGTGGATTCCGAGACGACTATTATGTACCTAGCGATGTACCAGTGTATACGTCATTC
CTTTCCGAGATACTTTATTGAAGCAAACAAGCATTTGCAGTGATATAAAAATTTTTTTC
TAATGAATAACATTTTATATACATGTAAGAAACACATATATAATAGTAAAATTTTGTGC
GAACAATTCAAACTTTGTGTGATACTAAAGACTTCATAATAAAATATTTGTCGTTGTAA
AAAAACCTCGTGCC 
 
The Blue sequence is the portion filled in by PCR of gDNA. The yellow sequences are 
the primers that were used for the PCR.  All sequences in black are from the cDNA.  The 
size of the total sequence, including the portion filled in from gDNA, corresponds to the 
size of the cDNA insert found on gels.   
 
      E  T  G  P  D  G  K  P  S  K  L  V  V  P  T  T  P  K  R  P   
3     gaaaccggacccgatggaaaaccaagtaagctcgtcgttcccaccacaccgaaaaggcca  62 
      R  G  P  G  G  S  P  L  G  P  G  T  Q  F  Q  T  P  G  T  T   
63    cgaggaccaggaggaagtcctttaggtccaggaacgcaattccaaactccaggaacaact  122 
      P  T  P  V  P  G  P  D  G  K  P  L  Q  I  V  P  A  G  P  G   
123   ccaactcccgttcccggaccagatggtaaaccattgcaaattgttcccgctggtccaggt  182 
      T  T  P  G  T  V  T  G  P  D  G  K  P  S  K  F  V  V  P  D   
183   accacccccggaacagtgaccggcccagacggcaaaccaagtaaattcgtcgttcccgac  242 
      G  A  F  T  T  P  G  S  I  P  G  P  D  G  K  P  L  P  V  E   
243   ggagcattcacgacaccaggctcaatccccggtccagacggaaaaccgctcccagttgaa  302 
      P  A  G  P  G  T  T  P  G  L  Q  T  G  P  D  G  K  P  S  K   
303   ccagctggtccaggcaccactccgggactccaaaccggacccgatggcaaaccaagtaaa  362 
      L  V  V  P  T  T  T  K  G  P  G  S  G  V  P  P  G  L  L  F   
363   ctcgttgttcctacgacaacgaagggtccaggatctggtgttcctcctggattacttttc  422 
      P  T  P  A  T  T  P  T  P  V  P  G  P  R  G  E  P  V  Q  I   
423   cctactccagcaactacaccaactccagttcccggtcctcgtggagaacctgttcagatt  482 
      M  A  A  G  P  G  T  T  P  G  T  V  T  G  P  E  G  E  P  V   
483   atggcagcaggtcctggtactactcctggtactgtgacaggtcctgagggtgaaccagtt  542 
      K  F  I  V  P  N  G  A  F  S  T  P  G  S  I  P  G  P  D  G   
543   aaatttatcgttccaaatggggcattctcaactccaggttcaattccaggccctgatgga  602 
      K  P  I  H  V  E  P  A  G  P  G  T  T  P  G  A  R  T  G  P   
603   aaaccaattcacgtcgaaccagctggtcctggaactactccgggagcaaggactggacct  662 
      D  G  N  I  V  K  I  Y  L  P  S  T  P  S  T  P  P  P  P  L   
663   gatggaaatatagttaaaatatacttgccttctactcccagtacccctcctcctcctttg  722 
      A  T  T  P  A  D  V  M  G  S  D  G  Q  P  I  L  I  Y  P  A   
723   gcaaccactcctgctgatgtaatgggatctgatgggcaaccaattcttatttatcctgct  782 
      G  P  G  T  T  P  G  T  V  T  G  P  D  G  K  P  T  K  F  I   
783   ggtccaggaactactccaggaacagttactggtcccgatgggaagcctacaaagtttatt  842 
      V  P  L  G  A  F  T  T  P  G  S  I  P  G  P  D  G  T  P  I   
843   gttcctttgggagcctttaccactcctggttctataccaggtcctgatggaacaccaata  902 
      P  V  E  P  A  G  P  G  T  T  P  G  V  E  T  D  S  D  G  N   
903   cctgtagaaccagctggtcctggaacaactccgggtgttgaaacagattctgatggaaac  962 
      V  N  K  I  I  L  P  T  T  P  K  R  P  S  H  P  S  P  M  P   
963   gtgaataagattattttacccactactccaaaaagaccatctcatccttctccgatgccg  1022 
      L  T  T  T  P  I  P  S  D  G  S  K  P  I  Q  I  V  P  A  G   
1023  cttacaactactccaatacctagtgatggatctaaacctattcaaattgttccggctggt  1082 
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      P  G  T  T  P  G  T  V  T  G  S  D  G  K  P  T  K  F  I  V   
1083  cctggaacaactccaggtacagtcactggttctgatggaaaaccgacaaaatttattgtt  1142 
      P  Q  G  A  F  I  T  P  G  T  I  P  G  P  D  G  N  P  V  P   
1143  ccgcagggagcttttataacccctggtacaattccaggtcctgacggaaatcctgtacca  1202 
      V  E  P  E  G  P  G  N  S  P  G  V  Q  T  G  P  N  G  N  I   
1203  gttgaaccagaaggaccaggaaatagtcccggtgttcagactggacctaacggcaatatt  1262 
      I  K  I  V  I  P  T  T  T  P  L  P  P  P  P  G  P  L  D  P   
1263  attaaaattgtaattcccacaactactcctcttccaccacccccaggacctttggaccct  1322 
      A  S  E  P  I  A  P  F  G  P  G  N  V  P  N  S  P  K  S  P   
1323  gccagtgagcctattgcaccttttggacctggtaatgtacctaattctcctaaatctccc  1382 
      G  N  Y  P  G  Y  S  F  Q  F  P  G  Y  P  D  A  P  G  S  I   
1383  ggcaattatcccggatattctttccaattcccgggttaccctgatgctccaggttccata  1442 
      G  P  L  G  Y  L  D  F  S  Q  L  P  S  S  M  S  P  E  M  E   
1443  ggccctctgggatatttagatttcagccaattgcctagtagtatgtcccctgaaatggaa  1502 
      G  N  I  G  F  L  P  D  F  S  S  E  I  G  G  P  F  P  G  F   
1503  ggcaatattggtttccttccggatttcagttctgaaatcggaggtccattccctggtttt  1562 
      P  P  G  P  D  N  S  G  P  G  G  F  L  N  V  H  S  L  P  D   
1563  ccaccaggtccagataactcaggtccagggggatttttaaatgttcattctctccctgat  1622 
      F  V  N  P  G  Y  G  F  P  G  S  P  Q  A  P  L  G  F  L  N   
1623  tttgtgaatccaggatatggattccctggttctcctcaagccccattgggtttcctaaac  1682 
      F  S  L  L  P  D  D  Y  N  P  G  F  P  G  Q  L  V  F  P  G   
1683  tttagtcttttaccggacgattacaatccaggattccctggtcagttggttttccctggt  1742 
      Y  P  G  S  P  G  S  S  G  Q  F  P  G  G  F  L  S  L  D  E   
1743  tatcccggctctccaggaagtagtggccaatttcccggaggattcttgagtctcgatgaa  1802 
      L  P  E  D  V  R  N  M  L  N  N  T  F  S  L  P  E  L  L  H   
1803  ttaccggaagatgttaggaatatgttgaacaacactttcagtttacccgaattattgcat  1862 
      S  L  Q  P  L  F  P  G  R  S  I  N  S  G  V  I  P  K  D  N   
1863  tctctacagcctctcttccctggaagatcaatcaattctggtgtcattccaaaagacaat  1922 
      L  Q  N  I  P  G  F  S  G  T  Y  D  N  L  R  L  S  N  I  G   
1923  ttacaaaatattccaggatttagcggtacttacgataatctaagactttcaaacattgga  1982 
      D  N  N  N  P  T  G  G  V  F  Y  L  P  E  M  V  R  L  I  S   
1983  gataacaataaccctaccggaggtgtgttctaccttcctgaaatggtacgactcattagt  2042 
      Y  L  P  V  G  S  F  P  N  G  P  G  T  I  N  Q  N  G  G  F   
2043  tatcttcctgtaggatcattccctaatggccctggaacaatcaatcagaacggtggattc  2102 
      G  H  P  F  N  F  P  G  L  N  G  A  P  G  Y  I  C  D  Y  L   
2103  ggccatccatttaatttcccaggattaaatggcgccccgggatacatttgcgactatctg  2162 
      D  N  I  D  V  T  G  G  S  S  D  D  L  G  G  E  I  R  G  N   
2163  gataacatcgatgtaacaggtggaagctcagatgacttgggaggagaaatcagaggaaat  2222 
      D  N  G  P  S  G  D  V  A  D  A  A  P  G  S  D  V  G  A  P   
2223  gacaatggtccatcgggtgacgtagcggatgcggctcctggaagtgatgtaggtgctcca  2282 
      A  P  T  G  N  T  A  A  P  S  G  Q  S  M  S  S  S  K  L  Q   
2283  gctcctacaggaaatacagcagctccatcagggcagagcatgagttcttcgaaacttcaa  2342 
      P  P  E  N  Q  G  M  P  E  S  D  C  D  D  D  V  F  S  T  F   
2343  ccacctgaaaaccaaggtatgcccgaatctgactgcgatgatgatgtgttttccaccttc  2402 
      M  K  A  R  S  A  L  M  D  V  S  S  S  T  G  V  N  P  I  S   
2403  atgaaagcaagatctgcccttatggatgtatcttctagtacaggagtcaatccaattagc  2462 
      Q  L  T  Q  D  I  I  S  G  I  N  P  S  E  D  S  V  D  Y  N   
2463  cagctaactcaagacatcatctctggaatcaatccatctgaagacagtgttgattacaat  2522 
      K  F  F  N  K  L  S  S  L  L  S  Q  V  R  S  G  S  S  D  K   
2523  aaattttttaataaactttcatctctactttcccaagtacgctcgggttcttctgataaa  2582 
      P  N  K∆∆E  L  L  S  I  L  M  E  G  L  V  A  A  L  E  A  L   
2583  cctaataaagaactattatcaatcttaatggaaggtttagtggccgcattggaagctcta  2642 
      N  A  A  K  I  S  G  F  R  D  D  Y  Y  V  P  S  D  V  P  V   
2643  aacgccgcaaagatcagtggattccgagacgactattatgtacctagcgatgtaccagtg  2702 
      Y  T  S  F  L  S  E  I  L  Y  *  
2703  tatacgtcattcctttccgagatactttattgaagcaaacaagcatttgcagtgatataa  2762  
2763  aaatttttttctaatgaataacattttatatacatgtaagaaacacatatataatagtaa  2822 
2823  aattttgtgcgaacaattcaaactttgtgtgatactaaagacttcataataaaatatttg  2882 
2883  tcgttgtaaaaaaacctcgtgcc  2905 
 

>Asg2_Grand_Align Translated - Frame 3 
910 AA 
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ETGPDGKPSKLVVPTTPKRPRGPGGSPLGPGTQFQTPGTTPTPVPGPDGKPLQIVPAGP
GTTPGTVTGPDGKPSKFVVPDGAFTTPGSIPGPDGKPLPVEPAGPGTTPGLQTGPDGKP
SKLVVPTTTKGPGSGVPPGLLFPTPATTPTPVPGPRGEPVQIMAAGPGTTPGTVTGPEG
EPVKFIVPNGAFSTPGSIPGPDGKPIHVEPAGPGTTPGARTGPDGNIVKIYLPSTPSTP
PPPLATTPADVMGSDGQPILIYPAGPGTTPGTVTGPDGKPTKFIVPLGAFTTPGSIPGP
DGTPIPVEPAGPGTTPGVETDSDGNVNKIILPTTPKRPSHPSPMPLTTTPIPSDGSKPI
QIVPAGPGTTPGTVTGSDGKPTKFIVPQGAFITPGTIPGPDGNPVPVEPEGPGNSPGVQ
TGPNGNIIKIVIPTTTPLPPPPGPLDPASEPIAPFGPGNVPNSPKSPGNYPGYSFQFPG
YPDAPGSIGPLGYLDFSQLPSSMSPEMEGNIGFLPDFSSEIGGPFPGFPPGPDNSGPGG
FLNVHSLPDFVNPGYGFPGSPQAPLGFLNFSLLPDDYNPGFPGQLVFPGYPGSPGSSGQ
FPGGFLSLDELPEDVRNMLNNTFSLPELLHSLQPLFPGRSINSGVIPKDNLQNIPGFSG
TYDNLRLSNIGDNNNPTGGVFYLPEMVRLISYLPVGSFPNGPGTINQNGGFGHPFNFPG
LNGAPGYICDYLDNIDVTGGSSDDLGGEIRGNDNGPSGDVADAAPGSDVGAPAPTGNTA
APSGQSMSSSKLQPPENQGMPESDCDDDVFSTFMKARSALMDVSSSTGVNPISQLTQDI
ISGINPSEDSVDYNKFFNKLSSLLSQVRSGSSDKPNKELLSILMEGLVAALEALNAAKI
SGFRDDYYVPSDVPVYTSFLSEILY* 
 
M indicates Omer’s putative start codon. 
KE the position in the sequence where Omer has a multi-repeat insert compared to our 
sequence. 
AGPGT is a peptide Omer found on his MS analysis. 
 
gDNA_Asg2     ------------------------------------------------------------ 
Omer Asg2     ------------------------------------------------------------ 
Asg2 cDNA     ETGPDGKPSKLVVPTTPKRPRGPGGSPLGPGTQFQTPGTTPTPVPGPDGKPLQIVPAGPG 
 
gDNA_Asg2     ------------------------------------------------------------ 
Omer Asg2     ------------------------------------------------------------ 
Asg2 cDNA     TTPGTVTGPDGKPSKFVVPDGAFTTPGSIPGPDGKPLPVEPAGPGTTPGLQTGPDGKPSK 
 
gDNA_Asg2     ------------------------------------------------------------ 
Omer Asg2     ------------------------------------------------------------ 
Asg2 cDNA     LVVPTTTKGPGSGVPPGLLFPTPATTPTPVPGPRGEPVQIMAAGPGTTPGTVTGPEGEPV 
 
gDNA_Asg2     ------------------------------------------------------------ 
Omer Asg2     ------------------------------------------------------------ 
Asg2 cDNA     KFIVPNGAFSTPGSIPGPDGKPIHVEPAGPGTTPGARTGPDGNIVKIYLPSTPSTPPPPL 
 
gDNA_Asg2     ------------------------------------------------------------ 
Omer Asg2     ------------------------------------------------------------ 
Asg2 cDNA     ATTPADVMGSDGQPILIYPAGPGTTPGTVTGPDGKPTKFIVPLGAFTTPGSIPGPDGTPI 
 
gDNA_Asg2     --------------------------------------MPLTTTPIPSDGSKPIFQIVPA 
Omer Asg2     --------------------------------------MPLTTTPIPSDGSKPIFQIVPA 
Asg2 cDNA     PVEPAGPGTTPGVETDSDGNVNKIILPTTPKRPSHPSPMPLTTTPIPSDGSKPI-QIVPA 
                                                    **************** ***** 
 
gDNA_Asg2     GPGTTPGTVTGSDGKPTKFIVPQGAFITPGTIPGPDGNPVPVEPEGPGNSPGVQTGPNGN 
Omer Asg2     GPGTTPGTVTGSDGKPTKFIVPQGAFITPGTIPGPDGNPVPVEPEGPGNSPGVQTGPNGN 
Asg2 cDNA     GPGTTPGTVTGSDGKPTKFIVPQGAFITPGTIPGPDGNPVPVEPEGPGNSPGVQTGPNGN 
              ************************************************************ 
 
gDNA_Asg2     IIKIVIPTTTPLPPPPGPLDPASEPIAPFGPGNVPNSPKSPGNYPGYSFQFPGYPDAPGS 
Omer Asg2     IIKIVIPTTTPLPPPPGPLDPASEPIAPFGPGNVPNSPKSPGNYPGYSFQFPGYPDAPGS 
Asg2 cDNA     IIKIVIPTTTPLPPPPGPLDPASEPIAPFGPGNVPNSPKSPGNYPGYSFQFPGYPDAPGS 
              ************************************************************ 
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gDNA_Asg2     IGPLGYLDFSQLPSSMSPEMEGNIGFLPDFSSEIGGPFPGFPPGPDNSGPGGFLNVHSLP 
Omer Asg2     IGPLGYLDFSQLPSSMSPEMEGNIGFLPDFSSEIGGPFPGFPPGPDNSGPGGFLNVHSLP 
Asg2 cDNA     IGPLGYLDFSQLPSSMSPEMEGNIGFLPDFSSEIGGPFPGFPPGPDNSGPGGFLNVHSLP 
              ************************************************************ 
 
gDNA_Asg2     DFVNPGYGFPGSPQAPLGFLNFSLLPDDYNPGFPGQLVFPGYPGSPGSSGQFPGGFLSLD 
Omer Asg2     DFVNPGYGFPGSPQAPLGFLNFSLLPDDYNPGFPGQLVFPGYPGSPGSSGQFPGGFLSLD 
Asg2 cDNA     DFVNPGYGFPGSPQAPLGFLNFSLLPDDYNPGFPGQLVFPGYPGSPGSSGQFPGGFLSLD 
              ************************************************************ 
 
gDNA_Asg2     ELPEDVRNMLNNTFSLPELLHSLQPLFPGRSINSGVIPKDNLQNIPGFSGTYDNLRLSNI 
Omer Asg2     ELPEDVRNMLNNTFSLPELLHSLQPLFPGRSINSGVIPKDNLQNIPGFSGTYDNLRLSNI 
Asg2 cDNA     ELPEDVRNMLNNTFSLPELLHSLQPLFPGRSINSGVIPKDNLQNIPGFSGTYDNLRLSNI 
              ************************************************************ 
 
gDNA_Asg2     GDNNNPTGGVFYLPEMVRLISYLPVGSFPNGPGTINQNGGFGHPFNFPGLNGAPGYICDY 
Omer Asg2     GDNNNPTGGVFYLPEMVRLISYLPVGSFPNGPGTINQNGGFGHPFNFPGLNGAPGYICDY 
Asg2 cDNA     GDNNNPTGGVFYLPEMVRLISYLPVGSFPNGPGTINQNGGFGHPFNFPGLNGAPGYICDY 
              ************************************************************ 
 
gDNA_Asg2     LDNIDVTGGSSDDLGGEIRGNDNGPSGDVADAAPGSDVGAPAPTGNTAAPSGQSMSSSKL 
Omer Asg2     LDNIDVTGGSSDDLGGEIRGNDNGPSGDVADAAPGSDVGAPAPTGNTAAPSGQSMSSSKL 
Asg2 cDNA     LDNIDVTGGSSDDLGGEIRGNDNGPSGDVADAAPGSDVGAPAPTGNTAAPSGQSMSSSKL 
              ************************************************************ 
 
gDNA_Asg2     QPPENQGMPESDCDDDVFSTFMKARSALMDVSSSTGVNPISQLTQDIISGINPSEDSVDY 
Omer Asg2     QPPENQGMPESDCDDDVFSTFMKARSALMDVSSSTGVNPISQLTQDIISGINPSEDSVDY 
Asg2 cDNA     QPPENQGMPESDCDDDVFSTFMKARSALMDVSSSTGVNPISQLTQDIISGINPSEDSVDY 
              ************************************************************ 
 
gDNA_Asg2     NKFFNKLSSLLSQVRSGSSDKPNK------------------------------------ 
Omer Asg2     NKFFNKLSSLLSQVRSGSSDKPNKELLSILMEGLVVSGLGVSGSSVSGLGVSGSSVSGLG 
Asg2 cDNA     NKFFNKLSSLLSQVRSGSSDKPNK------------------------------------ 
              ************************                                     
 
gDNA_Asg2     ------------------------------------------------------------ 
Omer Asg2     VSGSSVSGLGVSGSSVSGLGVSGSSVSGLGVSGSSVSGLGVSGLGVSGSSVSGLGVSGSS 
Asg2 cDNA     ------------------------------------------------------------ 
 
gDNA_Asg2     ---------------------------------------------ELLSILMEGLVAALE 
Omer Asg2     VSGLGVSGSSVSGLGVSGSSVSGLGVSGSSVSGLGVSGSSDKPNKELLSILMEGLVAALE 
Asg2 cDNA     ---------------------------------------------ELLSILMEGLVAALE 
                                                           *************** 
 
gDNA_Asg2     ALNAAKISGFRDDYYVPSDVPVYTSFLSEILY 
Omer Asg2     ALNAAKISGFRDDYYVPSDVPVYTSFLSEILY 
Asg2 cDNA     ALNAAKISGFRDDYYVPSDVPVYTSFLSEILY 
              ******************************** 
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5’ RACE Design 
 
Primer SP1 
5’tatatcactgcaaatgcttgtttgc3’ (Primer=reverse compliment of sequence data) 
5’GCAAACAAGCATTTGCAGTGATATA3’ (Coding strand sequence data)	
Tm 54.7� 
GC content 36% 
 
Primer SP2 
5’cttgtttgcttcaataaagtatctcgg3’(Primer=reverse compliment of sequence 
data) 
5’CCGAGATACTTTATTGAAGCAAACAAG3’ (Coding strand sequence data)	
Tm 54.6� 
GC content 37% 
 
Primer SP3 
5’ggaatccactgatctttgcggcg3’  (Primer=reverse compliment of sequence data) 
5’CGCCGCAAAGATCAGTGGATTCC3’ (Coding strand sequence data) 
Tm 60.6� 
GC content 59% 
 
Coding strand from Choresh et al.  
 
5’TTGAAACCGGACCCGATGGAAAACCAAGTAAGCTCGTCGTTCCCACCACACCGAAAA
GGCCACGAGGACCAGGAGGAAGTCCTTTAGGTCCAGGAACGCAATTCCAAACTCCAGGA
ACAACTCCAACTCCCGTTCCCGGACCAGATGGTAAACCATTGCAAATTGTTCCCGCTGG
TCCAGGTACCACCCCCGGAACAGTGACCGGCCCAGACGGCAAACCAAGTAAATTCGTCG
TTCCCGACGGAGCATTCACGACACCAGGCTCAATCCCCGGTCCAGACGGAAAACCGCTC
CCAGTTGAACCAGCTGGTCCAGGCACCACTCCGGGACTCCAAACCGGACCCGATGGCAA
ACCAAGTAAACTCGTTGTTCCTACGACAACGAAGGGTCCAGGATCTGGTGTTCCTCCTG
GATTACTTTTCCCTACTCCAGCAACTACACCAACTCCAGTTCCCGGTCCTCGTGGAGAA
CCTGTTCAGATTATGGCAGCAGGTCCTGGTACTACTCCTGGTACTGTGACAGGTCCTGA
GGGTGAACCAGTTAAATTTATCGTTCCAAATGGGGCATTCTCAACTCCAGGTTCAATTC
CAGGCCCTGATGGAAAACCAATTCACGTCGAACCAGCTGGTCCTGGAACTACTCCGGGA
GCAAGGACTGGACCTGATGGAAATATAGTTAAAATATACTTGCCTTCTACTCCCAGTAC
CCCTCCTCCTCCTTTGGCAACCACTCCTGCTGATGTAATGGGATCTGATGGGCAACCAA
TTCTTATTTATCCTGCTGGTCCAGGAACTACTCCAGGAACAGTTACTGGTCCCGATGGG
AAGCCTACAAAGTTTATTGTTCCTTTGGGAGCCTTTACCACTCCTGGTTCTATACCAGG
TCCTGATGGAACACCAATACCTGTAGAACCAGCTGGTCCTGGAACAACTCCGGGTGTTG
AAACAGATTCTGATGGAAACGTGAATAAGATTATTTTACCCACTACTCCAAAAAGACCA
TCTCATCCTTCTCCGATGCCGCTTACAACTACTCCAATACCTAGTGATGGATCTAAACC
TATTCAAATTGTTCCGGCTGGTCCTGGAACAACTCCAGGTACAGTCACTGGTTCTGATG
GAAAACCGACAAAATTTATTGTTCCGCAGGGAGCTTTTATAACCCCTGGTACAATTCCA
GGTCCTGACGGAAATCCTGTACCAGTTGAACCAGAAGGACCAGGAAATAGTCCCGGTGT
TCAGACTGGACCTAACGGCAATATTATTAAAATTGTAATTCCCACAACTACTCCTCTTC
CACCACCCCCAGGACCTTTGGACCCTGCCAGTGAGCCTATTGCACCTTTTGGACCTGGT
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AATGTACCTAATTCTCCTAAATCTCCCGGCAATTATCCCGGATATTCTTTCCAATTCCC
GGGTTACCCTGATGCTCCAGGTTCCATAGGCCCTCTGGGATATTTAGATTTCAGCCAAT
TGCCTAGTAGTATGTCCCCTGAAATGGAAGGCAATATTGGTTTCCTTCCGGATTTCAGT
TCTGAAATCGGAGGTCCATTCCCTGGTTTTCCACCAGGTCCAGATAACTCAGGTCCAGG
GGGATTTTTAAATGTTCATTCTCTCCCTGATTTTGTGAATCCAGGATATGGATTCCCTG
GTTCTCCTCAAGCCCCATTGGGTTTCCTAAACTTTAGTCTTTTACCGGACGATTACAAT
CCAGGATTCCCTGGTCAGTTGGTTTTCCCTGGTTATCCCGGCTCTCCAGGAAGTAGTGG
CCAATTTCCCGGAGGATTCTTGAGTCTCGATGAATTACCGGAAGATGTTAGGAATATGT
TGAACAACACTTTCAGTTTACCCGAATTATTGCATTCTCTACAGCCTCTCTTCCCTGGA
AGATCAATCAATTCTGGTGTCATTCCAAAAGACAATTTACAAAATATTCCAGGATTTAG
CGGTACTTACGATAATCTAAGACTTTCAAACATTGGAGATAACAATAACCCTACCGGAG
GTGTGTTCTACCTTCCTGAAATGGTACGACTCATTAGTTATCTTCCTGTAGGATCATTC
CCTAATGGCCCTGGAACAATCAATCAGAACGGTGGATTCGGCCATCCATTTAATTTCCC
AGGATTAAATGGCGCCCCGGGATACATTTGCGACTATCTGGATAACATCGATGTAACAG
GTGGAAGCTCAGATGACTTGGGAGGAGAAATCAGAGGAAATGACAATGGTCCATCGGGT
GACGTAGCGGATGCGGCTCCTGGAAGTGATGTAGGTGCTCCAGCTCCTACAGGAAATAC
AGCAGCTCCATCAGGGCAGAGCATGAGTTCTTCGAAACTTCAACCACCTGAAAACCAAG
GTATGCCCGAATCTGACTGCGATGATGATGTGTTTTCCACCTTCATGAAAGCAAGATCT
GCCCTTATGGATGTATCTTCTAGTACAGGAGTCAATCCAATTAGCCAGCTAACTCAAGA
CATCATCTCTGGAATCAATCCATCTGAAGACAGTGTTGATTACAATAAATTTTTTAATA
AACTTTCATCTCTACTTTCCCAAGTACGCTCGGGTTCTTCTGATAAACCTAATAAAGAA
CTATTATCAATCTTAATGGAAGGTTTAGTGGCCGCATTGGAAGCTCTAAACGCCGCAAA
GATCAGTGGATTCCGAGACGACTATTATGTACCTAGCGATGTACCAGTGTATACGTCAT
TCCTTTCCGAGATACTTTATTGAAGCAAACAAGCATTTGCAGTGATATAAAAATTTTTT
TCTAATGAATAACATTTTATATACATGTAAGAAACACATATATAATAGTAAAATTTTGT
GCGAACAATTCAAACTTTGTGTGATACTAAAGACTTCATAATAAAATATTTGTCGTTGT
AAAAAAACCTCGTGCC3’ 
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