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ABSTRACT

Adaptive Background Modeling with Temporal Feature Update for Dynamic Foreground

Object Removal

by

Li Yin, Master of Science

Utah State University, 2016

Major Professor: Jacob Gunther
Department: Electrical and Computer Engineering

In the study of computer vision, background modeling is a fundamental and critical

task in many conventional applications. This thesis presents an introduction to background

modeling and various computer vision techniques for estimating the background model to

achieve the goal of removing dynamic objects in a video sequence.

The process of estimating the background model with temporal changes in the absence

of foreground moving objects is called adaptive background modeling. In this thesis, three

adaptive background modeling approaches were presented for the purpose of developing

“teacher removal” algorithms. First, an adaptive background modeling algorithm based

on linear adaptive prediction is presented. Second, an adaptive background modeling al-

gorithm based on statistical dispersion is presented. Third, a novel adaptive background

modeling algorithm based on low rank and sparsity constraints is presented. The design

and implementation of these algorithms are discussed in detail, and the experimental re-

sults produced by each algorithm are presented. Lastly, the results of this research are

generalized and potential future research is discussed.

(78 pages)
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PUBLIC ABSTRACT

Adaptive Background Modeling with Temporal Feature Update for Dynamic Foreground

Object Removal

Li Yin

This thesis explores several approaches in order to develop an effective algorithm for

separating the moving objects from the background so that the background alone may be

displayed in a video sequence. In particular, this thesis seeks to develop an algorithm that

can successfully remove a moving teacher from the whiteboard, so that the writing on the

whiteboard may be fully visible to the audience.

In this thesis, some prior works related to this problem are studied to understand

the basic principles of adaptive background modeling, or removing the foreground from

a background with occasional changes in a video sequence. Three different algorithms

are developed for this purpose. The design and implementation of these algorithms are

discussed in detail, and the results are presented.

Lastly, the results of this research are generalized and potential future research is

discussed.
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CHAPTER 1

Introduction

The removal of moving objects from complex background scenes in a video sequence

is a challenging task because of the uncertainties of foreground and background dynamics.

For instance, it is common that in a given video sequence there are moving objects in the

foreground that become stationary and are added to the background. Conversely, there are

stationary objects in the background that start to move, and are added to the foreground.

This research studied various image processing and computer vision techniques to es-

timate the background with occasional changes in the absence of moving objects in the

foreground. In this research, three approaches that accomplished adaptive background

modeling were studied and implemented to separate dynamic objects in the foreground

from the adaptive background.

1.1 Adaptive Background Modeling

In the field of computer vision, moving objects within a video sequence are classified as

the foreground model, static objects within a video sequence are classified as the background

model, and the background model with minute or temporal changes is classified as the

adaptive background model. The separation of the foreground model from the background is

a critical task in many computer vision applications, such as human detection and tracking,

surveillance, traffic monitoring, and so on. A common approach to achieve such separation is

to perform background subtraction, where each frame in a video sequence is compared with

or subtracted from a background model. The resulting differences in pixels are refer to as

moving objects, or the foreground. Such comparison is highly dependent on an estimation

of the background model, and this makes background modeling particularly important.

However, conventional background modeling methods are undoubtedly affected by minute

variations in the background model, for instances, the starting and the stopping of a moving
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object, weather, and illumination changes. The study of adaptive background modeling can

be significant for solving these problems. Furthermore, adaptive background modeling can

be useful for addressing the problem discussed in the next section.

1.2 Thesis Application

Consider a scenario in a classroom where the teacher is writing on the whiteboard and

students are taking notes as the teacher writes. The teacher often needs to stand in front

of his writing while writing on a different part of the whiteboard. Meanwhile, students are

standing up, moving their heads left and right, and trying to find appropriate perspectives

to see notes that are covered by the teacher. However, it is not easy for students who

are taking online classes to get a new perspective. Would it be possible to remove the

teacher, but keep the notes? Another way of asking this question is, would it be possible to

see the notes without seeing the teacher? In this respect, the “teacher removal” algorithm

behaves in a similar manner as a smart whiteboard. However, the algorithms have potential

advantages in terms of expenses.

The research is dedicated to develop a “teacher removal” algorithm for the distance

education program at Utah State University. As a result of this research, the algorithm will

allow distance learners to read notes on whiteboards without physical interference caused

by teachers’ movements.

1.3 Thesis Outline

In Chapter 2, some prior works and the studies of existing background modeling tech-

niques are reviewed. In Chapter 3, the proposed approaches are described in details to

explain the adaptive background modeling algorithms. In particular, three different mod-

els are presented for the purpose of adaptive background modeling. In Chapter 4, the

experimental data and the performance of the different adaptive background modeling al-

gorithms are presented and discussed in details. Finally, the development of this research

is concluded, and future work is discussed in Chapter 5.
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CHAPTER 2

Prior Work

While numerous non-adaptive background modeling techniques have been investigated

in the past, most researchers have moved on to adaptive techniques because of their flex-

ibility. Specifically, adaptive background modeling techniques are able to handle different

classes of variations in practice. In this research, four different existing techniques were

studied to understand some of the basic principles of adaptive background modeling. In the

first section, different classes of adaptive background modeling techniques were categorized

and discussed. In the second section, some of the most common existing techniques, as well

as a recently developed techniques, were reviewed.

2.1 Classification of Existing Techniques

Adaptive background modeling techniques could be classified into two general cate-

gories – non-recursive techniques and recursive techniques, according to Cheung and Ka-

math [1]. A sliding window type of approach is applied to the non-recursive techniques to

achieve the goal of adaptive background modeling. In particular, the non-recursive tech-

niques use past frames that are stored in the buffers to estimate the background of these

frames on a pixel-level. The advantage of these techniques is that the future estimations

do not rely on past estimations after the buffers are updated, thus these techniques can

be robust to fast temporal changes. However, the uses of buffers can be the drawback of

these techniques if the video sequence has a high frame rate. Conversely, sliding windows

or buffers are not required for recursive background modeling techniques. Instead, the es-

timations are updated recursively for each new frame based on feedback. The errors from

previous estimations can accumulate over time or propagate throughout time, resulting in

adaptations being slow and estimations being not robust to fast temporal changes.
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Other techniques take an alternative approach to achieve adaptive background mod-

eling by applying matrix decomposition techniques. For instance, some novel adaptive

background modeling techniques transform a video sequence into a data matrix, and the

background and the foreground is decomposed by applying principal component analysis

(PCA) types of transformations. Technically, this type of technique can be classified as a

type of recursive technique, because of the use of iterative methods. The advantage of this

type of technique is the accuracy of the separation. However, one of the disadvantages is

the necessity of some complex mathematical operations.

2.2 Literature Survey

In this section, four different existing techniques were reviewed to prepare for the

development of the adaptive background modeling algorithms. In particular, one non-

recursive techniques, two recursive techniques, and a novel techniques were studied in this

research.

2.2.1 Non-recursive Techniques

Linear Predictive Filter. A linear predictive filter based technique was proposed

by Toyama et al. [2], and this technique applies an infinite impulse response (IIR) Wiener

filter on a pixel-level to estimate adaptive background model. The estimated pixel-level

background models are then segmented as a region-level background model by grouping

neighboring pixels based on the histograms of the pixels. The frames in a video sequence

are stored in a buffer for the estimations, and IIR filter coefficients are calculated for each

new frame. The needs of recalculating the histograms and the IIR filter coefficients for each

new frame results in this technique being hard to implement in real time.

2.2.2 Recursive Techniques

Kalman Filter. A Kalman filter is a recursive linear quadratic estimator which has

a wide range of applications in different areas of study in engineering. In this research,

a Kalman filter was investigated to achieve the goal of adaptive background modeling.
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A Kalman filter was applied on a pixel-level to estimate the adaptive background model

without prior measurement of the ground-truth. Many different versions of Kalman filter

based adaptive background modeling algorithm have been proposed in the past. One of the

simplest version was proposed by Scott et al. [3]. In this approach, the Kalman filter modeled

each pixel as single Gaussian, and by alternating the mean and standard deviation update

equations, the Kalman filter was able to predict and update the background model for each

pixel. The pixel-level background models are then segmented by applying morphological

close operations.

Mixture of Gaussians. Mixture of Gaussians (MOG) or Gaussian Mixture Model

(GMM) is one of the most common adaptive background modeling algorithms. A GMM is a

weighted probability density function with the parameters of weight, mean, and covariance

matrix. These parameters are often initialized and maintained from given training data

using a iterative expectation maximization (EM) algorithm [4]. However, after performing

preliminary tests with GMM, it was evident that using the iterative EM algorithm to

estimate GMM parameters could be time consuming, and difficult to implement in real-

time. Instead, parameters are updated and adapted using an online K-mean algorithm for

real-time consideration [5]. Moreover, in the preliminary tests with GMM, it failed to adapt

and capture fast temporal changes in the background. However, recent research suggests

that improved GMM is capable of capturing temporal changes in the background [6,7].

2.2.3 Other Techniques

Low Rank and Sparsity Constraints. Low rank and sparsity constraints is a novel

background subtraction method which applies matrix decomposition techniques to extract

the anomalies in a video sequence. A matrix was formed by stacking up all the tracked

points in a video sequence. This matrix was then decomposed into a background matrix

and a foreground matrix based on two sparsity constraints, with the background matrix

being low rank, and the foreground matrix being sparse. An implementation of low rank

and sparse based model was proposed by Cui et al. [8]. However, this method relies on an

existing dense point tracker to generate the trajectories of the moving objects [9,10]. In this
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research, similar techniques were studied without the implementation of the existing point

tracker. Instead, an innovative method based on similar matrix decomposition techniques

was studied and implemented [11, 12]. By applying the same fundamental idea, a matrix

was formed by stacking all the vectorized frames in a video sequence. This data matrix was

then decomposed into a background low rank matrix and a foreground sparse matrix by an

iterative method. The vectorized frames in the resulting low rank matrix and sparse matrix

were then transformed back into a video sequence.
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CHAPTER 3

Proposed Approaches

In this chapter, three adaptive background modeling approaches are presented in dif-

ferent sections. In the first section, a non-recursive approach based on adaptive linear

prediction is presented. In the second section, a simple approach based on statistical dis-

persion is presented. In the third section, an approach based on low rank and sparsity

constraints and matrix decomposition is presented. While the first two approaches share

similarities with some existing methods, the third approach is a novel technique to achieve

the goal of adaptive background modeling. The ideas behind these approaches are further

discussed in each section, as well as the algorithms and the implementation details.

Some helpful notations in this chapter:

• Row coordinate: i

• Column coordinate: j

• Color channel coordinate: k

• Discrete time or frame time: n

• Number of rows: I

• Number of columns: J

• Number of color channels: K

• Number of frames: Q

• Frames in a video sequence: F (·, ·, ·, ·)
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3.1 Adaptive Linear Prediction Based Model

Adaptive filters are widely used in many digital signal processing (DSP) applications

due to their ability of “learning” the relationship between signals. One common adaptive

filter application is adaptive linear prediction, also known as forward prediction. The pur-

pose of adaptive linear predictor is to use an adaptive filter to estimate or predict the future

values of a signal based on past values of the signal. In this section, the fundamentals of

adaptive filtering and the least mean square (LMS) adaptive algorithm [13] are explained

to introduce the usage of the adaptive linear prediction for background modeling.

3.1.1 LMS Adaptive Filter and Prediction Error

One class of adaptive filters is based on the theory of optimal filtering. The objective of

the optimal filter is to minimize the mean square error (MSE) between two input signals, a

reference signal x(n) and a desired signal d(n). The filter output y(n) is a linear combination

of the past input samples. An error signal e(n) is produced by taking the difference of the

desired signal d(n) and the output signal y(n). The adaptive algorithm adjusts the filter

coefficients iteratively to minimize the error in a mean square sense. When the power of

error signal e(n) converges to a minimal value, the input signal x(n) becomes orthogonal

to the error signal e(n) in the signal space. The convergence indicates that x(n) can be

uniquely expressed as a linear combination of y(n) plus the uncorrelated term e(n). The

general structure of an adaptive filter is shown in Figure. 3.1.

Adaptive Filter

Fig. 3.1: The general structure of an adaptive filter.
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The general structure of an adaptive filter is configured slightly different to achieve

adaptive linear prediction. The desired signal is taken as the system input d(n) = x(n),

and the adaptive filter input is a delayed version of the system input x(n − ∆). In this

configuration, the adaptive filter predicts the current sample of the system input x(n) as a

linear combination of the past q input samples [x(n−∆), x(n−∆−1), . . . , x(n−∆−q+1)],

where q is the filter length. Similar to the general structure of an adaptive filter, the outputs

of an adaptive linear predictor are the error signal e(n) and the filter output y(n). The

structure of an adaptive linear predictor is shown in Figure. 3.2.

The adaptive algorithm is at the heart of any adaptive filter application, and one of

the most common adaptive algorithm is the LMS algorithm. The LMS algorithm is an

approximation of the steepest descent method where the expectation operator of the MSE

E[e2(n)] is ignored. The LMS algorithm is derived as follows. The error signal e(n) at time

n is given by:

e(n) = d(n)− y(n) (3.1)

The output signal at time n is given by:

y(n) = wT (n)x(n) =

q−1∑
i=0

wi(n)x(n− i) (3.2)

where q is the filter length, x(n) = [x(n), x(n − 1), . . . , x(n − q + 2), x(n − q + 1)]T , and

w(n) = [w0(n), w1(n), . . . , wq−2(n), wq−1(n)]T .

Delay Adaptive Filter

Fig. 3.2: The structure of an adaptive linear predictor.
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Now, taking the partial derivative of error signal e2(n) with respect to the filter coeffi-

cients w(n).

e2(n) = (d(n)−wT (n)x(n))2 = (d(n)−
q−1∑
i=0

wi(n)x(n− i))2

∂e2(n)

∂w(n)
= −2e(n)x(n)

The filter update at time n+ 1 is given by:

w(n+ 1) = w(n)− µ∂e
2(n)

∂w(n)

Hence, the filter update at time n+ 1 becomes w(n+ 1) = w(n) + 2µe(n)x(n), or

wi(n+ 1) = wi(n) + 2µe(n)x(n− i) (3.3)

where µ is the step size, it is a constant that determines the rate of convergence.

3.1.2 Adaptive Background Modeling Algorithm

The adaptive linear prediction works well under the influence of the noise introduced

by the camera because the pixel intensity varies slightly. But the adaptive linear prediction

produces large a prediction error when random changes occur to a pixel. Based on this

observation, the prediction error could be used as a threshold to separate the changing

foreground pixels from the static background pixels.

In this approach, a video sequence is considered as an all-zero or a moving-average

(MA) model. The LMS finite impulse response (FIR) adaptive linear filters are performed

on a pixel-level throughout frames to capture significant prediction errors that are caused

by random pixel intensity changes. Furthermore, the predicted pixel intensity of a given

pixel is relatively close to the actual pixel intensity, and the prediction error is relatively

insignificant when there are no moving objects present at this pixel. However, when moving

objects pass through a given pixel, the predicted pixel intensity is different from the actual
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pixel intensity, and the prediction error is relatively large.

For example, Figure. 3.3, Figure. 3.4, and Figure. 3.5 are the adaptive linear prediction

simulation results of a particular pixel on red, green, and blue color channels. In this

simulation, the LMS FIR adaptive linear prediction used q = 30 filter coefficients, ∆ = 10

frames of delay, and a step size of µ = 0.06. The simulation pixel was taken from the video

visiontraffic.avi in MATLAB [14] vision demos at pixel location F (i, j) = F (150, 550) for

every color channel throughout all frames. In Figure. 3.3, Figure. 3.4, and Figure. 3.5, large

prediction errors at the beginning of the simulation were caused by the initializations of the

adaptive filters. Upon the convergence of the adaptive filters, the predicted pixel intensities

were very close to the actual pixel intensities, thus the prediction errors were insignificant.

However, the pixel intensities decreased sharply at frame time n = 320. This was caused

by a moving object entering this pixel location. Furthermore, the dramatic changes in pixel

intensities resulted in significant differences between actual pixel intensities and predicted

pixel intensities, thus resulting significant prediction errors.

A system based on adaptive linear prediction is equipped with buffers and finite state

machines to achieve the goal of adaptive background modeling. First, the system stores

previous pixel values at past frame time n − (q + ∆) in buffers for each pixel location.

Second, the system uses delayed pixel values to perform probabilistic predictions, and LMS

FIR filter coefficients are updated for every new frame. The system then toggles between

two states, “hold pixel” or “update pixel” based on
√
e2(n) at current frame time n. If the

prediction error at a particular pixel is greater than a threshold Thold, then the state of this

pixel becomes “hold pixel”, and the system will take the previous pixel value in the buffer as

an output. Furthermore, if the prediction error of a particular pixel is less than a threshold

Tupdate, the state of this pixel becomes “update pixel”, and the system will take the current

pixel value as an output. The thresholds Thold and Tupdate are hand-picked values based on

a wide range of tests. Thold = 15 and Tupdate = 2 worked for most tested video sequences

in this research. The overall design of the adaptive linear prediction background modeling

algorithm is given in Algorithm. 3.1.
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Fig. 3.3: The adaptive linear prediction result of a pixel in red color channel.
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Fig. 3.4: The adaptive linear prediction result of a pixel in green color channel.
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Algorithm 3.1 Adaptive Linear Prediction Background Modeling Algorithm

Input:
Video sequence F (I, J,K,Q),
Thresholds Tupdate and Thold,
Filter length q,
Frame delay ∆,
Step size µ

Output:
Background model video sequence Fbg(I, J,K,Q)

begin
Initialize LMS FIR filter coefficients W (I, J,K, q)
Initialize states S(I, J,K,Q)
for {i = 1 : I}

for {j = 1 : J}
for {k = 1 : K}

for {n = 1 : Q}
Execute LMS FIR filters with F (i, j, k, n)
Calculate prediction errors e(i, j, k, n)
Update LMS FIR filter coefficients W (i, j, k, q)

Calculate error thresholds T =
√
e2(i, j, k, n)

Update buffer Fpast(i, j, k, n) from F (i, j, k, n− (q + ∆))
if {T >= Thold and S(i, j, k, n− 1) = 0}
S(i, j, k, n) = 1
Output background model Fbg(i, j, k, n) from Fpast(i, j, k, n)

end
if {T <= Tupdate and S(i, j, k, n) = 1}
S(i, j, k, n) = 0
Output background model Fbg(i, j, k, n) from F (i, j, k, n)

end
Update states S(i, j, k, n− 1) = S(i, j, k, n)

end
end

end
end

end
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Fig. 3.5: The adaptive linear prediction result of a pixel in blue color channel.

3.1.3 Notes on Implementation

In this research, most tested video sequence only required q = 10 filter coefficients,

∆ = 20 frames of delay, and a step size of µ = 1e−6 to achieve the goal of adaptive

background modeling. Because of this advantage, the adaptive linear prediction background

modeling algorithm can be realized in real-time for future implementations. However, a

similar approach proposed by Toyama et al. [2] used infinite impulse response (IIR) Wiener

filter as the predictive technique. This technique requires more intensive computation to

solve p = 30 filter coefficients based on sample covariance for auto-regressive (AR) models

at each frame time. Such complex computation makes this technique difficult to realize in

real-time.

Before processing, the input video sequence was converted to portable pix-map (PPM)

format in the implementation of this approach. After this conversion, a PPM file stored all

the frames in a video sequence as a section of contiguous memory in the physical memory.

The purpose of using PPM format is to ensure all the frames are available for the process,

and to avoid the overheads that are caused by reading in video files during run-time. How-

ever, some long duration video sequences may occupy a tremendous amount of the physical
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memory, and this can cause problems while allocating memory for such video sequences.

Therefore, PPM format may not be suggested if a video sequence has a substantial amount

of frames.

3.2 Statistical Dispersion Based Model

In statistics, dispersion is a measurement of variability for any given statistical sample,

and it describes the tendency of a distribution to be scattered or stretched based on the

measures of dispersion. Some common measures of statistical dispersion are the range,

variance, and standard deviation. In this section, a simple implementation and a modified

implementation of statistical dispersion background modeling algorithm are presented.

3.2.1 EWMA Filter and Dispersion

In this approach, the input video sequence is filtered by exponentially weighted moving-

average (EWMA) IIR filter on a pixel-level, and the variance of filtered output is used as

the measure of statistical dispersion to distinguish the foreground changing pixels from the

background static pixels. The EWMA filter is used as a pixel-level low-pass filter to smooth

out the high frequency noise based on a weighted previous output and a weighted current

input. First, the EWMA filter smooths out the high frequency noise in the input signal

x(n), and the output y1(n) at time n is given by:

y1(n) = (1− λ)y1(n− 1) + λx(n) (3.4)

where λ is the smoothing factor, and 0 < λ < 1.

Second, the EWMA filter smooths out the high frequency noise in the squared input

signal x2(n), and the output y2(n) at time n is given by:

y2(n) = (1− λ)y2(n− 1) + λx2(n) (3.5)

where λ is the smoothing factor, and 0 < λ < 1.
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Third, the estimation of the statistical dispersion is based on the variance of input

x(n), which can be expressed as E[x2(n)]−E[x(n)]2, or the difference between two EWMA

filtered outputs y1
2(n) and y2(n). The comparison would only make sense if y1(n) and y2(n)

were in the same order, so it is necessary to square the output y1(n). Thus, the statistical

dispersion d(n) of input x(n) at time n is given by:

d(n) = y2(n)− y12(n) (3.6)

where y1
2(n) is defined as the square of sums, and y2(n) is defined as the sum of squares.

3.2.2 Adaptive Background Modeling Algorithm

The value of dispersion is insignificant when a given input pixel has small variations

over time, because the value of y1
2(n) is close to the value of y2(n). However, the dispersion

yields a large value when random changes occur to a given input pixel, because the value

of y1
2(n) is significantly different from the value of y2(n). Based on this observation, the

value of dispersion could be used as a threshold to separate the changing foreground pixels

from the static background pixels.

As an example, Figure. 3.6, Figure. 3.7, and Figure. 3.8 are the EWMA simulation

results along with the statistical dispersion simulation results of a particular pixel on red,

green, and blue color channels (in this simulation, λ = 0.1). The simulation pixel was taken

from the video visiontraffic.avi in MATLAB [14] vision demos at pixel location F (i, j) =

F (150, 550) for every color channel throughout all frames. In Figure. 3.6, Figure. 3.7, and

Figure. 3.8, the large values of dispersions at the beginning of the simulation were caused

by the initializations of the EWMA filters. Upon the convergences of the filters, filtered

outputs were identical and the values of dispersions were zeros. However, the pixel intensities

decreased sharply at frame time n = 320. This was caused by a moving object entering this

pixel location. Furthermore, the dramatic changes in pixel intensities result in significant

differences between filtered outputs, thus the values of dispersions were significant.
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Fig. 3.6: The EWMA filtered dispersion result of a pixel in red color channel.
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Fig. 3.7: The EWMA filtered dispersion result of a pixel in green color channel.
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Fig. 3.8: The EWMA filtered dispersion result of a pixel in blue color channel.

At the beginning of the process, y1(n − 1) and y2(n − 1) are both initialized to zero,

and it takes some time for the process to converge. This results in value of y1
2(n) being

significantly different from the value of y2(n), and the value of dispersion d(n) being large.

Furthermore, y1(n) and y2(n) take some time to converge after random changes occurred,

because the EWMA filter not only smoothed out the high frequency camera noise, but also

smoothed out the fast changes in pixels, this results in the output video sequence being

delayed.

In this approach, a system similar to Algorithm. 3.1 is implemented to achieve the goal

of adaptive background modeling. First, the system stores past ∆ pixel values at past frame

time n −∆ in buffers for each pixel location. Second, the system estimates the statistical

dispersion on a pixel-level based on EWMA filtered outputs y1
2(n) and y2(n). Third, the

system uses the cumulative value of statistical dispersion for each color channel as the

threshold T to control finite state machines, holding pixel values from the delay buffers, or

updating pixel values from current input pixel values. The threshold T is a hand-picked

value based on a wide range of tests, 300 6 T 6 600 worked for most tested video sequences

in this research. As a result, the adaptive background model of a given video sequence is
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generated from this system.

After some preliminary tests on the implementation of this system, it appears that some

pixels in the background models have significant variations. This results in some pixels being

held at the initialized values, and theses affected pixels show up on the background models

as black dots. Such occurrences were speculated as the drawbacks of pixel-level processing.

Based on this assumption, morphological operation was applied to assistance the current

implementation, and to improve the quality of background models.

It is obvious that the size of a moving object in a video sequence occupies more than just

a single pixel, and the pixels which make up an object tend to have adjacent spatial locations.

Based on this characteristic, the nearest neighboring pixels could be segmented as a group of

pixels by utilizing morphological operation, specifically dilation. The morphological dilation

algorithms are well established in the studies of image processing, therefore morphological

dilation algorithm is not presented in this research.

In this modified implementation, a square structural element with a height of h is used

for morphological dilation. Instead of holding or updating a single pixel, the system holds a

group of pixels when the statistical dispersion is greater than the threshold T and updates

a group of pixels when the statistical dispersion is less than the threshold T . The overall

design of the modified implementation is given in Algorithm. 3.2. After some initial tests

on the modified implementation of statistical dispersion background modeling algorithm,

the quality of the background models has been improved.

3.2.3 Notes on Implementation

Similar to the implementation of last approach, the input video sequence was also con-

verted to PPM format before processing to ensure that all the frames are available in the

physical memory during run-time. Again, this depends on the length of the input video

and the size of the physical memory on the computer, the PPM format may or may not be

suggested.
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Algorithm 3.2 Statistical Dispersion Background Modeling Algorithm

Input:
Video sequence F (M,N,K,L),
Threshold T ,
Frame delay ∆,
Smoothing factor λ,
Height of the structural element h

Output:
Background model video sequence Fbg(I, J,K,Q)

begin
Initialize dispersions d(I, J) = 0
Initialize states of dilation S(I, J) = 0
Initialize buffers FP (I, J,K,Q) = 0
Initialize EWMA IIR filters Y1(I, J,K) = 0
Initialize EWMA IIR filters Y2(I, J,K) = 0
for {i = 1 : I}

for {j = 1 : J}
Reinitialize dispersion d(i, j) = 0
for {k = 1 : K}

for {n = 1 : Q}
Execute EWMA IIR filters Y1(i, j, k) with F (i, j, k, n)
Execute EWMA IIR filters Y2(i, j, k) with F 2(i, j, k, n)
Calculate dispersion d(i, j) with Y2(i, j, k) and Y1

2(i, j, k)
Update buffers Fpast(i, j, k, n) from F (i, j, k, n−∆)
if {d(i, j) >= T}
S(i, j) = 1

end
if {d(i, j) < T}
S(i, j) = 0

end
end

end
end
if {S(i, j) = 1}

Dilate and output background Fbg(i×h, j×h, k, n) from Fpast(i×h, j×h, k, n)
end
if {S(i, j) = 0}

Dilate and output background Fbg(i×h, j×h, k, n) from F (i×h, j×h, k, n)
end

end
end
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3.3 Low Rank and Sparse Based Model

In this section, a novel approach based on low rank and sparsity constraints matrix

decomposition is considered to achieve the goal of adaptive background modeling. The

challenge of this approach is that it leads to a highly non-convex problem, and there is no

closed form solution to this type of problem. Therefore, this problem is solved by relaxing

some of the constraints, and sufficient results are obtained by applying greedy methods.

3.3.1 Low Rank and Sparsity Constraints

In this approach, the video sequence is arranged into a large data matrix M ∈ RP×Q,

and each RGB frame is vectorized into the column of data matrix M . The construction of

the data matrix M is illustrated in Figure. 3.9.

Low Rank Constraint for the Background. An important observation is that if

the scene is static, then no pixel should change over time. The data matrix M from the

video sequence results in the columns of M being identical, thus rank(M) = 1. If there are

small variations present in the columns of M due to small motions, lighting changes, and

camera noises, then M should have a low rank.

Sparsity Constraint for the Foreground. Another important observation is that

in the data matrix M from the video sequence, any foreground moving object of interest

only occupies a small fraction of the frame. Thus any foreground moving object in the data

matrix M tends to be sparse. In contrast, foreground moving objects in the data matrix

break previous low rank assumption of the background, therefore the sparse foreground

moving objects can be separated from the low rank background scene.

Based on these observations, the data matrix M can be decomposed into foreground

component, background component, and noise component. The decomposition of data

matrix M can be modeled as follows:

M = S + L+N (3.7)

where S is the sparse matrix, L is the low rank matrix, and N is the Gaussian noise matrix.
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Fig. 3.9: The construction of the data matrix from a video sequence.

By applying the low rank and sparsity constraints, the separation of the foreground

moving objects (sparse component) and the background scene (low rank component) can

be formulated as following optimization problem:

min
S,L
‖S‖0 + α·rank(L) s.t. ‖M − S − L‖F ≤ ε (3.8)

where ‖ · ‖0 is the L0 norm, and ‖ · ‖F is the Frobenius norm. The purpose of the L0

norm is to count the number of non-zero terms of S, and it will ensure that the foreground

moving objects are spatially sparse. For further consideration, the objective function of this

optimization problem can also be formulated as follows:

min
S,L
‖S‖0 + α·rank(L) + β‖M − S − L‖F

2 (3.9)

This is not a convex problem, and there exists no closed form solution to this prob-

lem. As an alternative, this non-convex problem can be reformulated into a suboptimal

optimization problem, and it can be solved iteratively by applying greedy methods. By

relaxing some of the constraints, the suboptimal optimization problem can be formulated
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as follows:

min
S,L
‖S‖0 s.t.

‖M − S − L‖F ≤ εrank(L) = 1
(3.10)

min
S,L
‖S‖0 + β‖M − S − L‖F

2 s.t. rank(L) = 1 (3.11)

The relaxed low rank constraint rank(L) = 1 implies that L = l 1ᵀ, thus the suboptimal

optimization problem can also be formulated as follows:

min
S,L
‖S‖0 + β‖M − S − L‖F

2 s.t. L = l 1ᵀ (3.12)

Furthermore, the relaxation of low rank constraint leads the problem into a simple

subproblem of minimizing the rank-1 component:

min
l
‖X − l 1ᵀ‖F

2 = tr(X − l 1ᵀ)(X − l 1ᵀ)ᵀ

= tr(XXᵀ)− tr(l 1ᵀXᵀ)− tr(X l 1ᵀ) + tr(l 1ᵀ1 lᵀ)

= ‖X‖F
2 − 2 lᵀX 1 +Q lᵀl

where X = M − S, and tr(·) is the trace.

Now, taking the partial directive respect to l , set it to zero and solve for l to minimize

the rank-1 component:

∂

∂l
(‖X‖F

2 − 2 lᵀX 1 +Q lᵀl) = 0

=⇒ −2X1 + 2Ql = 0

=⇒ l =
1

Q
X 1

An important fact of this subproblem is that l = 1
QX 1 is the column average of X, which

is also the column average of M − S, and recall that L = l 1ᵀ = 1
QX1 1ᵀ = 1

Q(M − S)1 1ᵀ.
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Eventually, the low rank constraint of previous problem is reduced, and the suboptimal

optimization problem can be formulated as follows:

min
S
‖S‖0 + β‖M − S − 1

Q
(M − S)1 1ᵀ‖

F

2 (3.13)

3.3.2 Adaptive Background Modeling Algorithm

In this approach, a simple algorithm is implemented to solve this highly non-convex

problem by applying an iterative greedy method to the reduced suboptimal optimization

problem. And the goal of adaptive background modeling is achieved by applying a time

windowing algorithm. First, the algorithm initializes S = 0, then takes the column average

of M − S. Second, the algorithm extracts foreground sparse components S, but fill in

background low rank components L. Third, the algorithm applies a greedy method to sort

out the top 3-5% of S, and then the algorithm iterates. The implementation of the low

rank and sparsity constraints background modeling algorithm is given in Algorithm. 3.3.

Algorithm 3.3 Low Rank and Sparsity Constraints Background Modeling Algorithm

Input:
Video sequence F (I, J,K,Q),
Greedy percentage Gtop,
Number of iterations α

Output:
Background video sequence FB(I, J,K,Q),
Foreground video sequence FF (I, J,K,Q)

begin
Generate data matrix MP,Q from reshaping F (I, J,K,Q)
Initialize foreground sparse matrix SP,Q = 0
for {i = 1 : α}

LP,Q = 1
Q(M − S)P,Q1 1ᵀ

end

SP,Q =

{
(M − L)P,Q, |(M − L)P,Q| > T
0, otherwise

T chosen to accept 3%≤Gtop≤5% of the largest values in SP,Q
Output FB(I, J,K,Q) from reshaping LP,Q

Output FF (I, J,K,Q) from reshaping SP,Q
end
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After some preliminary tests, the low rank and sparsity constraints background mod-

eling algorithm produced some very useful results. Furthermore, this algorithm converges

rapidly, and only 2-3 iterations are needed. However, it failed to update the temporal fea-

tures in a video sequence, because this algorithm requires all the frames in a video sequence

to separate the foreground moving objects and background scenes. Due to the needs of

updating temporal features in this research, a system employes a sliding window algorithm

and the low rank and sparsity constraints background modeling algorithm is implemented.

Instead processing all Q frames at a time, the sliding window low rank and sparsity

constraints background modeling algorithm processes W frames at a time. The data matrix

M now has dimension of P ×W , M ∈ RP×W . At the beginning, the system processes the

first W columns in the data matrix. The system then slides the window through time to

get a new frame, re-initializes the column which corresponds to the new frame in S to be

zeros, and processes the new block of data using the same algorithm. The idea of the sliding

window process is illustrated in Figure. 3.10, and the implementation of the sliding window

combined with low rank and sparsity constraints background modeling algorithm is given

in Algorithm. 3.4. The size of sliding window W is a hand-picked value based on a wide

range of tests, and it is typically greater than the frame rate FPS of a given video sequence.

A good range of the sliding window size is FPS 6W 6 2 · FPS.

3.3.3 Notes on Implementation

The proposed algorithm only requires some inexpensive mathematical operations while

some previous robust principal component analysis (RPCA) algorithms require expensive

mathematical operations to accomplish the same goal. For instance, RPCA via principal

component pursuit (RPCA-PCP) proposed by Candes et al. [11] and RPCA via proximal

gradient (RPCA-PG) proposed by Wright et al. [12] both require expensive singular value

decomposition (SVD) operations to produce singular value thresholding operators, thus this

type of approach is hard to implement in real-time. However, the proposed algorithm applies

just mean and sort operations to produce useful results, and it is very easy to implement

for real-time applications.
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Fig. 3.10: The illustration of the sliding window process.

Algorithm 3.4 Sliding Window Algorithm

Input:
Video sequence F (I, J,K,Q),
Size of sliding window W

Output:
Background video sequence FB(I, J,K,Q)
Foreground video sequence FF (I, J,K,Q)

begin
Generate the first data window MP,W from reshaping F (I, J,K,Q)
Initialize foreground sparse matrix SP,W = 0
Process the first data window MP,W with Algorithm. 3.3
Output FB(I, J,K,W ) from reshaping LP,W .
Output FF (I, J,K,W ) from reshaping SP,W .
while {has frame}

Update the last column of MP,W from reshaping F (I, J,K,Q)
Make copy of sparse matrix SP,W from previous SP,W
Re-initialize the last column of SP,W = 0
Process updated MP,W and SP,W with Algorithm. 3.3
Output FB(I, J,K,W ) from reshaping LP,W .
Output FF (I, J,K,W ) from reshaping SP,W .

end
end
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CHAPTER 4

Results and Comparisons

In this chapter, three adaptive background models are tested on six video sequences

for the subjective evaluations. The experimental data sets are described in the first section,

the qualitative results are presented and some issues with the experiments and results are

discussed in the second section.

4.1 Experimental Data

Six video sequences with different characteristics were chosen from three different data

sources for the experiments. In this section, a brief description of each scenario and the

characteristics of each video sequence are presented.

4.1.1 MATLAB Data

MATLAB toolbox vision data set [14] consists of twenty six video sequences, and two

video sequences are chosen because of how frequent these videos were used in the field of

background modeling and background subtraction. In this data set, each frame has a size

of 640× 360 with three color channels and a frame rate of 30 FPS.

• Vision Traffic: Vehicles drive past a highway surveillance camera in different lanes

with different speeds. This video sequence consists of 531 RGB frames.

• Atrium: Several people walk past an atrium in different directions, and one person

sets down a white coffee cup on a table located in the atrium. This video sequence

consists of 1410 RGB frames.

4.1.2 Xiaoli Li’s Data

Xiaoli Li’s data set [15] consists of nine video sequences, and two video sequences were

chosen because of the presence of dynamic backgrounds or illumination changes. In the first
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video, each frame has a size of 160 × 128 with three color channels. In the second video,

each frame has a size of 320× 256 with three color channels. Both video sequences have a

frame rate of 30 FPS.

• Switch Light: Several people walk through a room with a changing level of back-

ground illumination. This video sequence consists of 1546 RGB frames.

• Shopping Mall: A shopping mall with a crowded scene of people consistently ap-

pearing in each frame. This video sequence consists of 1286 RGB frames.

4.1.3 Lab Data

Lab data set consists of twelve video sequences, and two video sequences were chosen

to present the performance of current lab configuration. In this data set, each frame has a

size of 800× 600 with three color channels and a frame rate of 30 FPS.

• Backpack: A student walks through a room, and sets down a backpack. Then the

student reenters the room, picks up the backpack, and exits the scene. This video

sequence consists of 575 RGB frames.

• Lecture: A professor writes on a whiteboard, and exits the scene. Then the professor

reenters the scene, continues writing, and exits the scene again. This video sequence

consists of 1286 RGB frames.

4.2 Experimental Results

In this section, the qualitative results of six video sequences are presented for the

subjective evaluation of three adaptive background models. For the purpose of showing

moving objects progressing through each video sequence, nine frames were selected for each

figure to illustrate the results, and each selected frame is 10 frames away from the next

selected frame. For each video sequence, nine frames from the original video sequence

are provided, as well as nine frames from the same video sequence processed with each

background modeling algorithm.
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4.2.1 Vision Traffic Results

For the video “vision traffic”, background models were successfully produced by all

algorithms. There are some “ghost” artifacts in the background video produced by adaptive

linear prediction based model. This is due to the drawbacks of the pixel-level processing

and time delay of the updates. There are less “ghost” artifacts in the background video

produced by statistical dispersion based model. In the low rank and sparse based model, the

“ghost” artifacts of the moving objects are not visible in the background video. Figure 4.1

is the original frames from the video sequence, Figure 4.2 is the adaptive linear prediction

background models of the video sequence, Figure 4.3 is the statistical dispersion background

models of the video sequence, Figure 4.4 is the low rank and sparse background models of

the video sequence, and Figure 4.5 is the low rank and sparse foreground models of the

video sequence.

4.2.2 Atrium Results

For the video “atrium”, all three algorithms produced acceptable background models,

and successfully updated the appearance of the coffee cup. Similar to the results from the

last video, the “ghost” artifacts also exists in the adaptive linear prediction based model and

the statistical dispersion based model, but the “ghost” artifacts do not exist in the low rank

and sparse based model. The statistical dispersion based model failed to update a small

region of the background pixels, because there are always objects moving through the same

location in the frames. Figure 4.6 is the original frames from the video sequence, Figure 4.7

is the adaptive linear prediction background models of the video sequence, Figure 4.8 is the

statistical dispersion background models of the video sequence, Figure 4.9 is the low rank

and sparse background models of the video sequence, and Figure 4.10 is the low rank and

sparse foreground models of the video sequence.
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(a) frame 120 (b) frame 130 (c) frame 140

(d) frame 150 (e) frame 160 (f) frame 170

(g) frame 180 (h) frame 190 (i) frame 200

Fig. 4.1: Original frames from video sequence visiontraffic.avi.
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(a) frame 120 (b) frame 130 (c) frame 140

(d) frame 150 (e) frame 160 (f) frame 170

(g) frame 180 (h) frame 190 (i) frame 200

Fig. 4.2: Adaptive linear prediction background models of video sequence visiontraffic.avi.
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(a) frame 120 (b) frame 130 (c) frame 140

(d) frame 150 (e) frame 160 (f) frame 170

(g) frame 180 (h) frame 190 (i) frame 200

Fig. 4.3: Statistical dispersion background models of video sequence visiontraffic.avi.
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(a) frame 120 (b) frame 130 (c) frame 140

(d) frame 150 (e) frame 160 (f) frame 170

(g) frame 180 (h) frame 190 (i) frame 200

Fig. 4.4: Low rank and sparse background models of video sequence visiontraffic.avi.
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(a) frame 120 (b) frame 130 (c) frame 140

(d) frame 150 (e) frame 160 (f) frame 170

(g) frame 180 (h) frame 190 (i) frame 200

Fig. 4.5: Low rank and sparse foreground models of video sequence visiontraffic.avi.
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(a) frame 560 (b) frame 570 (c) frame 580

(d) frame 590 (e) frame 600 (f) frame 610

(g) frame 620 (h) frame 630 (i) frame 640

Fig. 4.6: Original frames of video sequence atrium.avi.
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(a) frame 560 (b) frame 570 (c) frame 580

(d) frame 590 (e) frame 600 (f) frame 610

(g) frame 620 (h) frame 630 (i) frame 640

Fig. 4.7: Adaptive linear prediction background models of video sequence atrium.avi.
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(a) frame 560 (b) frame 570 (c) frame 580

(d) frame 590 (e) frame 600 (f) frame 610

(g) frame 620 (h) frame 630 (i) frame 640

Fig. 4.8: Statistical dispersion background models of video sequence atrium.avi.
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(a) frame 560 (b) frame 570 (c) frame 580

(d) frame 590 (e) frame 600 (f) frame 610

(g) frame 620 (h) frame 630 (i) frame 640

Fig. 4.9: Low rank and sparse background models of video sequence atrium.avi.
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(a) frame 560 (b) frame 570 (c) frame 580

(d) frame 590 (e) frame 600 (f) frame 610

(g) frame 620 (h) frame 630 (i) frame 640

Fig. 4.10: Low rank and sparse foreground models of video sequence atrium.avi.
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4.2.3 Switch Light Results

For the video “switch light”, all three algorithms produced acceptable background mod-

els, and updated the dynamic background caused by the illumination changes. However,

for the adaptive linear prediction based model, the path of the moving object is illuminated

when the lights are switched off, thus producing dramatic “ghost” artifacts. The frame

size of this video is relatively small compared to the structural element used in the statis-

tical dispersion based model. This results in the transition from the initialization to the

desired background being rough. The low rank and sparse based model produced an ideal

dynamic background model, and the adaptations to the illumination changes are smooth

and effective. Figure 4.11 is the original frames from the video sequence, Figure 4.12 is

the adaptive linear prediction background models of the video sequence, Figure 4.13 is the

statistical dispersion background models of the video sequence, Figure 4.14 is the low rank

and sparse background models of the video sequence, and Figure 4.15 is the low rank and

sparse foreground models of the video sequence.

4.2.4 Shopping Mall Results

For the video “shopping mall”, some of the objects stop moving and become a part of

the background, and after a short amount of time these objects started to move again. This

results in those objects with uncertain motions fading in and out in all three background

models. The adaptive linear prediction based model and the low rank and sparse based

model produced acceptable results for such a complex background. However, the statistical

dispersion based model failed to model the background on the upper right corner of the

video sequence. Because an object is in constant motion at that location, the statistical

dispersion background modeling algorithm fails to update the background, and holds that

region of pixels at the initialization. Figure 4.16 is the original frames from the video

sequence, Figure 4.17 is the adaptive linear prediction background models of the video

sequence, Figure 4.18 is the statistical dispersion background models of the video sequence,

Figure 4.19 is the low rank and sparse background models of the video sequence, and

Figure 4.20 is the low rank and sparse foreground models of the video sequence.
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(a) frame 360 (b) frame 370 (c) frame 380

(d) frame 390 (e) frame 400 (f) frame 410

(g) frame 420 (h) frame 430 (i) frame 440

Fig. 4.11: Original frames of video sequence switchlight.avi.
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(a) frame 360 (b) frame 370 (c) frame 380

(d) frame 390 (e) frame 400 (f) frame 410

(g) frame 420 (h) frame 430 (i) frame 440

Fig. 4.12: Adaptive linear prediction background models of video sequence switchlight.avi.
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(a) frame 360 (b) frame 370 (c) frame 380

(d) frame 390 (e) frame 400 (f) frame 410

(g) frame 420 (h) frame 430 (i) frame 440

Fig. 4.13: Statistical dispersion background models of video sequence switchlight.avi.
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(a) frame 360 (b) frame 370 (c) frame 380

(d) frame 390 (e) frame 400 (f) frame 410

(g) frame 420 (h) frame 430 (i) frame 440

Fig. 4.14: Low rank and sparse background models of video sequence switchlight.avi.
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(a) frame 360 (b) frame 370 (c) frame 380

(d) frame 390 (e) frame 400 (f) frame 410

(g) frame 420 (h) frame 430 (i) frame 440

Fig. 4.15: Low rank and sparse foreground models of video sequence switchlight.avi.
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(a) frame 920 (b) frame 930 (c) frame 940

(d) frame 950 (e) frame 960 (f) frame 970

(g) frame 980 (h) frame 990 (i) frame 1000

Fig. 4.16: Original frames of video sequence shoppingmall.avi.
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(a) frame 920 (b) frame 930 (c) frame 940

(d) frame 950 (e) frame 960 (f) frame 970

(g) frame 980 (h) frame 990 (i) frame 1000

Fig. 4.17: Adaptive linear prediction background models of video sequence shoppingmall.avi.
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(a) frame 920 (b) frame 930 (c) frame 940

(d) frame 950 (e) frame 960 (f) frame 970

(g) frame 980 (h) frame 990 (i) frame 1000

Fig. 4.18: Statistical dispersion background models of video sequence shoppingmall.avi.
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(a) frame 920 (b) frame 930 (c) frame 940

(d) frame 950 (e) frame 960 (f) frame 970

(g) frame 980 (h) frame 990 (i) frame 1000

Fig. 4.19: Low rank and sparse background models of video sequence shoppingmall.avi.
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(a) frame 920 (b) frame 930 (c) frame 940

(d) frame 950 (e) frame 960 (f) frame 970

(g) frame 980 (h) frame 990 (i) frame 1000

Fig. 4.20: Low rank and sparse foreground models of video sequence shoppingmall.avi.
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4.2.5 Backpack Results

For the video “backpack”, all three algorithms successfully produced background mod-

els, and effectively updated the appearance of the backpack. Because the pixels in the

background are brighter than previous video sequences, the adaptive linear prediction based

model has less “ghost” artifacts compared to previous results, but the backpack does not

appear completely due to drawbacks of the pixel-level processing. However, the statistical

dispersion based model updated the backpack clearly and completely, and the “ghost” ar-

tifacts are nearly absent. The low rank and sparse based model is more sensitive to the

temporal motion of the moving objects. This results in the moving objects appearing as

part of the background more frequently. Figure 4.21 is the original frames from the video

sequence, Figure 4.22 is the adaptive linear prediction background models of the video se-

quence, Figure 4.23 is the statistical dispersion background models of the video sequence,

Figure 4.24 is the low rank and sparse background models of the video sequence, and Fig-

ure 4.25 is the low rank and sparse foreground models of the video sequence.

4.2.6 Lecture Results

For the video “lecture”, the adaptive linear prediction based model failed to produce a

satisfactory background model, and failed to update the notes on the white board, because

the notes on the whiteboard are very precise on a pixel-level. A desirable background model

was obtained by the statistical dispersion based model, and it effectively updated the notes

on the whiteboard. However, the moving object and the whiteboard in the background

have a nearly indistinguishable color. This results in some visible “ghost” artifacts being

present throughout the background video sequence, but notes on the whiteboard are not

obscured. For the low rank and sparse based model, in order to separate the moving

object from the background, the size of the moving object should be relatively smaller

than the size of the background. This video senescence does not satisfy this condition, thus

making separation difficult. However, low rank and sparse based model still produces useful

results, because the note on the whiteboard are still visible and distinguishable from the

moving object. Figure 4.26 is the original frames from the video sequence, Figure 4.27 is
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(a) frame 150 (b) frame 160 (c) frame 170

(d) frame 180 (e) frame 190 (f) frame 200

(g) frame 210 (h) frame 220 (i) frame 230

Fig. 4.21: Original frames of video sequence backpack.avi.
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(a) frame 180 (b) frame 190 (c) frame 200

(d) frame 210 (e) frame 220 (f) frame 230

(g) frame 240 (h) frame 250 (i) frame 260

Fig. 4.22: Adaptive linear prediction background models of video sequence backpack.avi.
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(a) frame 180 (b) frame 190 (c) frame 200

(d) frame 210 (e) frame 220 (f) frame 230

(g) frame 240 (h) frame 250 (i) frame 260

Fig. 4.23: Statistical dispersion background models of video sequence backpack.avi.



55

(a) frame 180 (b) frame 190 (c) frame 200

(d) frame 210 (e) frame 220 (f) frame 230

(g) frame 240 (h) frame 250 (i) frame 260

Fig. 4.24: Low rank and sparse background models of video sequence backpack.avi.
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(a) frame 180 (b) frame 190 (c) frame 200

(d) frame 210 (e) frame 220 (f) frame 230

(g) frame 240 (h) frame 250 (i) frame 260

Fig. 4.25: Low rank and sparse foreground models of video sequence backpack.avi.
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the adaptive linear prediction background models of the video sequence, Figure 4.28 is the

statistical dispersion background models of the video sequence, Figure 4.29 is the low rank

and sparse background models of the video sequence, and Figure 4.30 is the low rank and

sparse foreground models of the video sequence.
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(a) frame 620 (b) frame 630 (c) frame 640

(d) frame 650 (e) frame 660 (f) frame 670

(g) frame 680 (h) frame 690 (i) frame 700

Fig. 4.26: Original frames of video sequence lecture.avi.
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(a) frame 620 (b) frame 630 (c) frame 640

(d) frame 650 (e) frame 660 (f) frame 670

(g) frame 680 (h) frame 690 (i) frame 700

Fig. 4.27: Adaptive linear prediction background models of video sequence lecture.avi.
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(a) frame 620 (b) frame 630 (c) frame 640

(d) frame 650 (e) frame 660 (f) frame 670

(g) frame 680 (h) frame 690 (i) frame 700

Fig. 4.28: Statistical dispersion background models of video sequence lecture.avi.
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(a) frame 620 (b) frame 630 (c) frame 640

(d) frame 650 (e) frame 660 (f) frame 670

(g) frame 680 (h) frame 690 (i) frame 700

Fig. 4.29: Low rank and sparse background models of video sequence lecture.avi.
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(a) frame 620 (b) frame 630 (c) frame 640

(d) frame 650 (e) frame 660 (f) frame 670

(g) frame 680 (h) frame 690 (i) frame 700

Fig. 4.30: Low rank and sparse foreground models of video sequence lecture.avi.
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CHAPTER 5

Conclusion and Future Work

The goal of this research was to achieve adaptive background modeling with temporal

feature updates in the form of developing “teacher removal” algorithms. Three algorithms

were developed for this purpose. The first, adaptive linear prediction background model-

ing algorithm, was not effective for removing the teacher and keeping the writing on the

whiteboard visible. Two factors added to the failure of this algorithm to model the adap-

tive background effectively and update temporal features. First, this algorithm relies on an

initial estimation of a background without moving objects present, which was not present

in the “lecture” video. Second, pixel-level processing utilized in the algorithm caused sys-

tem instability, resulting in the video sequence never converging properly. However, this

algorithm performed well with other forms of adaptive background modeling. It performed

well when tested on the videos“vision traffic” and “atrium” because a static background

was present at initialization.

The second, statistic dispersion background modeling algorithm, was the effective at

removing the teacher, but parts of the writing were still obscured. Additionally, this algo-

rithm assigns a stopped object to the background the fastest and removes a moving object

from the background the fastest. However, a fair amount of ghosting was present, as well

as the delay of the removal of black regions caused by initialization. If there is constant

motion in a certain region, this region will be stuck at the initialization and never update.

This algorithm worked well for all of the test videos besides “atrium” and “shopping mall”

for the above mentioned reason – that is, constant motion in a specific region of the video

sequences.

The third, low rank and sparse background modeling algorithm, was somewhat effective

at removing the teacher but was most effective at allowing the writing on the whiteboard to

be visible. The teacher was still highly visible, although transparent, because this algorithm
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requires that the moving object be relatively smaller than the background. Despite this,

the writing remained unobstructed and legible throughout the entirety of the video, and

thus most closely achieved the initial goal. This algorithm also worked the best throughout

all of the other test videos.

Because all three algorithms only require simple mathematical operations, the code can

be implemented and optimized on a field-programmable gate array (FPGA) or a graphics

processing unit (GPU) to be applied in real-time. The algorithm can also be improved by

allowing hand-picked thresholds to be automated for adaption of the uncertain environ-

ments.
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