
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2016

Definition and Construction of Entropy Satisfying Multiresolution Definition and Construction of Entropy Satisfying Multiresolution

Analysis (MRA) Analysis (MRA)

Ju Y. Yi
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Yi, Ju Y., "Definition and Construction of Entropy Satisfying Multiresolution Analysis (MRA)" (2016). All
Graduate Theses and Dissertations. 5057.
https://digitalcommons.usu.edu/etd/5057

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fetd%2F5057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5057?utm_source=digitalcommons.usu.edu%2Fetd%2F5057&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

DEFINITION AND CONSTRUCTION OF ENTROPY SATISFYING

MULTIRESOLUTION ANALYSIS (MRA)

by

Ju Y. Yi

A dissertation submitted in partial fulfillment

of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mathematical Sciences

Approved:

Joseph Koebbe Luis Gordillo

Major Professor Committee Member

Nghiem Nguyen Zhaohu Nie

Committee Member Committee Member

Todd Moon Mark McLellan

Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY

Logan, Utah

2016

ii

Copyright c© Ju Y. Yi 2016

All Rights Reserved

iii

ABSTRACT

DEFINITION AND CONSTRUCTION OF ENTROPY SATISFYING

MULTIRESOLUTION ANALYSIS(MRA)

by

Ju Y. Yi, Doctorate of Philosophy

Utah State University, 2016

Major Professor: Dr. Joseph Koebbe
Department: Mathematics and Statistics

This paper considers some numerical schemes for the approximate solution of con-

servation laws and various wavelet methods are reviewed. This is followed by the con-

struction of wavelet spaces based on a polynomial framework for the approximate solu-

tion of conservation laws. Construction of a representation of the approximate solution

in terms of an entropy satisfying Multiresolution Analysis (MRA) is defined. Finally, a

proof of convergence of the approximate solution of conservation laws using the charac-

terization provided by the basis functions in the MRA will be given.

(110 pages)

iv

PUBLIC ABSTRACT

DEFINITION AND CONSTRUCTION OF ENTROPY SATISFYING

MULTIRESOLUTION ANALYSIS(MRA)

by

Ju Y. Yi, Doctorate of Philosophy

Utah State University, 2016

Major Professor: Dr. Joseph Koebbe
Department: Mathematics and Statistics

This paper considers some numerical schemes for the approximate solution of con-

servation laws and various wavelet methods are reviewed. This is followed by the con-

struction of wavelet spaces based on a polynomial framework for the approximate solu-

tion of conservation laws. Construction of a representation of the approximate solution

in terms of an entropy satisfying Multiresolution Analysis (MRA) is defined. Finally, a

proof of convergence of the approximate solution will be given.

(110 pages)

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my major professor, Dr. Joseph

Koebbe, for the continuous support of my Ph.D study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Ph.D study. Besides my advisor, I would like to thank the

rest of my thesis committee members, Drs. Luis Gordillo, Nighiem Nguyen, Zhaohu Nie,

and Todd Moon, for their support and assistance while I pursued studies and research

at Utah State University.

I would like to thank my family: my parents Gwi Yi and Tae Yi, my sisters Hyun

Yi, Joice Yi, and brother Harris Yi, for their love and support from the beginning of my

research to this final document. I could not have done it without all of you.

Ju Y. Yi

vi

TABLE OF CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

2 REVIEW OF NUMERICAL METHODS FOR THE APPROXIMATE SOLU-
TION OF SCALAR HYPERBOLIC CONSERVATION LAWS 4

2.1 Scalar Conservation Laws: Definition and Examples 4

2.1.1 Linear Conservation Laws: f(u) = au, a 6= 0 5

2.1.2 An Example of a Nonlinear Conservation Law: Burgers’ Equation 5

2.1.3 Weak Solutions and Entropy Conditions 5

2.2 Numerical Methods for Approximately Solving Scalar Conservation Laws 7

2.2.1 Some Definitions for Numerical Methods 8

2.2.2 Examples of Classical Methods . 11

2.2.3 Examples of Modern Methods . 12

2.2.3.1 Total Variation Diminishing (TVD) Scheme 12

2.2.3.2 Monotone Upstream Conservative Limited Scheme 16

2.2.3.3 Essentially Non-Oscillatory (ENO) scheme 17

vii

2.3 Example Results from Numerical Methods 18

2.3.1 Numerical Examples: Linear Scalar Conservation Laws 18

2.3.2 Numerical Examples: Nonlinear Conservation Laws 18

3 POLYNOMIAL FRAMEWORK FOR CONSTRUCTING APPROXIMATE SO-
LUTION METHODS . 24

3.1 Definition and Notation . 24

3.2 Description of a Polynomial Framework for Approximate Solution of Con-
servation Laws . 26

3.2.1 Definition of Grid-line Values: Un
j± 1

2

. 26

3.2.2 Examples Using the Polynomial Definition for Un
j± 1

2

. 27

3.2.2.1 Linear Conservation Law Examples 27

3.2.2.2 Nonlinear Conservation Law Examples 29

4 SHAPE FUNCTION CONSTRUCTION FOR MULTIRESOLUTION ANALY-
SIS (MRA) . 31

4.1 History of Wavelets and Multiresolution Analysis 31

4.1.1 Prior to 1930 . 31

4.1.2 1930 through 1940 . 32

4.1.3 1940 through 1980 . 33

4.1.4 1980 to the Present Day . 33

4.2 The Lifting Scheme . 34

4.2.1 Construction of the Haar Multiresolution Analysis via Lifting . . . 34

4.2.2 Construction of Linear Interpolating Wavelets 36

4.3 Multiresolution Analysis (MRA): Definitions and Notation 36

4.4 Polynomial Framework Lifting Approach 39

4.4.1 Upwind Scheme . 40

4.4.2 Lax-Wendroff Scheme . 41

4.4.3 Beam-Warming Scheme . 44

4.4.4 TVD Scheme . 44

viii

4.4.5 Lax-Friedrichs Scheme . 48

5 CONSTRUCTION OF WAVELETS BASES CONDITIONED ON HYPERBOLIC
CONSERVATION LAWS . 52

5.1 Upwind Scheme Example . 54

5.2 Lax-Wendroff Scheme Example . 55

5.3 Beam-Warming Scheme Example . 56

5.4 TVD Scheme Example . 57

5.5 Lax-Friedrichs Scheme . 58

5.6 How to use the MRA in Applications . 59

6 CONSTRUCTION OF APPROXIMATE SOLUTIONS OF CONSERVATION
LAWS VIA A FINITE VOLUME APPROACH 60

6.1 Building a Representation of Solution . 60

6.2 An Example: Finite Volume Approach and Simpson’s Rule 61

6.2.1 Linear Conservation Law Case . 63

6.2.2 Nonlinear Conservation Law . 65

7 CONVERGENCE OF THE APPROXIMATE SOLUTIONS TO A UNIQUE
WEAK SOLUTION OF THE CONSERVATION LAW 67

7.1 Uniform Bound on the Approximate Solution 69

7.2 A Discrete Entropy Condition on the Approximate Solution 71

7.3 Stability of the Approximate Solution . 77

7.3.1 A Total Variation Bound . 77

7.3.2 Convergence to a Weak Solution 80

7.4 Uniqueness . 83

8 CONCLUSION AND FUTURE WORK . 84

BIBLIOGRAPHY . 85

APPENDICES . 87

ix

Appendix A.
Matlab Code . 88

CURRICULUM VITAE . 97

x

LIST OF FIGURES

Figure Page

2.1 A representation of the mesh in space-time 8

2.2 Mathematical and numerical domains of dependence 10

2.3 TVD region . 15

2.4 Second order TVD region . 15

2.5 Superbee limiter . 15

2.6 Van Leer Limiter . 15

2.7 MUSCL scheme type left and right state linear extrapolation 16

2.8 Example of ENO and Slope . 17

2.9 Numerical and exact solution to (2.10) with ∆x = 0.01 19

2.10 Numerical and exact solution to (2.10) with ∆x = 0.002 20

2.11 Numerical and exact solution to (2.10) with ∆x = 0.01 and ∆x = 0.002
for TVD scheme . 21

2.12 Numerical and exact solution to (2.11) with ∆x = 0.01 22

2.13 Numerical and exact solution to (2.11) with ∆x = 0.002 23

4.1 Haar basis function . 32

4.2 Lifting scheme forward wavelet transform 35

4.3 Example of Haar (Lifting) . 35

4.4 Haar lifting ordering . 36

4.5 The relationship between scaling and wavelet function spaces [20] 39

4.6 Upwind scheme with lifting framework . 42

4.7 Lax-Wendroff scheme with lifting framework 43

xi

4.8 Beam-Warming scheme with lifting framework 45

4.9 TVD scheme with lifting framework, CFL=0.1 47

4.10 TVD scheme with lifting framework, CFL=0.5 48

4.11 TVD scheme with lifting framework, CFL=0.9 49

4.12 Lax-Friedrichs scheme with lifting framework 51

5.1 Build the wavelet function from shape function 53

5.2 The wavelet function for the Upwind scheme, CFL=0.5 54

5.3 The wavelet function for the Lax-Wendroff scheme, CFL=0.5 55

5.4 The wavelet for the Beam-Warming scheme, CFL=0.5 56

5.5 The wavelet function for the TVD scheme, CFL=0.5 57

5.6 The wavelet function for the Lax-Friedrichs, CFL=0.5 58

6.1 Relationship of the shape function and the wavelet function for conserva-
tion law . 61

6.2 Finite Volume Method . 63

6.3 Use of Simpson’s Rule to compute numerical fluxes in the Finite Volume
Method . 66

1

CHAPTER 1

INTRODUCTION

The equation,

ut + f(u)x = 0 −∞ < x <∞, t > 0 (1.1)

is called a conservation law. Conservation laws are partial differential equations that

describe the time evolution of some quantity conserved in time. Conservation laws have

been a concern of mathematicians, scientists, and engineers for a long time because it is

not possible to write down the exact solutions of equation (1.1) for all t > 0.

In this paper, we will build wavelets conditioned on differential operators of the

form (1.1) and construct an approximate solution for the conservation law using wavelets

based on a polynomial framework. Then we will prove the convergence of our approx-

imate solution to a unique weak solution of the conservation law. Our approximate

solution is of the form

u(x, tn) = un(x) = αn0ϕ0(x) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(x) (1.2)

αn0 = 〈un(x), ϕ0(x)〉

βnl,k = 〈un(x), ψl,k(x)〉

where ϕ0(x) is a shape function and ψl,k(x) is an associated wavelet function.

This work treats conservation laws of the form (1.1), the development of an en-

tropy condition that can be used on the conservation law and our representation of the

approximate solution (1.2). From the construction, a definition is given for an entropy

satisfying multiresolution analysis or MRA. In Smoller [15] existence and uniqueness of

2

a weak solution for (1.1) using the Lax-Friedrichs method was presented. In contrast,

we will develop an example of an approximate solution using the finite volume method

(FVM) and Simpson’s rule. Our goal in this paper is to prove that our approximate

solution converges if it satisfies the entropy condition. The rest of the paper is organized

as follows

In Chapter 2, we will start with a brief literature review of numerical methods

for conservation laws, which provides useful concepts for weak solutions of conservation

laws. Also we will test some numerical methods (classical methods and modern meth-

ods) for the approximate solution of a scalar conservation law in linear and nonlinear

cases.

In Chapter 3, we will review a polynomial framework for construction of approxi-

mate solutions scalar conservation laws based on [4,5]. We will define grid-line values

Un
j+ 1

2

≈ u(xj+ 1
2
, tn) = u(xj +

∆x

2
, tn),

used in the determination of numerical fluxes and explain some examples of the use of

the polynomial definition of Un
j± 1

2

in linear and nonlinear cases for conservation laws.

In Chapter 4, we will present a brief review of the history of wavelets and describe

the lifting scheme. Also we will review and define the multiresolution analysis (MRA).

Then we will build shape functions based on a polynomial framework lifting approach-

ing for specific numerical methods; Upwind, Lax-Wendroff, Beam-Warming, TVD and

Lax-Friedrichs schemes.

In Chapter 5, we will construct wavelet functions from numerical methods for con-

servation laws. We will use Upwind, Lax-Wendroff, Beam-Warming, TVD and Lax-

Friedrichs schemes as examples.

In Chapter 6, we will construct an approximate solution representation of the form

in (1.2) for conservation laws. As an example of a representative solution, (1.2), we will

3

compute U(x,∆t) using a finite volume method [10] and also compute the numerical

flux values Fn
j± 1

2

via Simpson’s rule for linear and nonlinear conservation laws.

In Chapter 7, we will show that our approximate method converges to a unique

weak solution. This is the main goal of the work in this paper. Note that the analysis

follows the work of Oleinik,[13], as presented in Smoller, [15].

Chapter 8 contains conclusions and a discussion of future work.

4

CHAPTER 2

REVIEW OF NUMERICAL METHODS FOR THE APPROXIMATE SOLUTION

OF SCALAR HYPERBOLIC CONSERVATION LAWS

In this chapter, we will present definitions and examples of conservation laws. For

completeness definitions related to weak solutions and entropy conditions are presented.

Next, we will review and test various numerical methods for approximate solution of

conservation laws.

2.1 Scalar Conservation Laws: Definition and Examples

A conservation law is a time dependent system of the form

ut + f(u)x = 0 −∞ < x <∞, t > 0 (2.1)

with initial data

u(x, 0) = u0(x) −∞ < x <∞ (2.2)

where the subscripts indicate differentiation with respect to the time variable, t, and the

spatial variable, x. The function f(u) is called a flux function and it is assumed u0(x) is

in L∞(−∞,∞). (2.1) and (2.2) are an example of a hyperbolic partial differential equa-

tion. Hyperbolic equations appear commonly in the physical world. The propagation of

acoustic waves and electromagnetic waves obey hyperbolic equations. Hyperbolic equa-

tions with compactly-supported initial data yield compactly-supported solutions for all

time. For the work in this paper we consider two categories of hyperbolic equations in

one-spatial dimension, linear and nonlinear conservation laws, as defined below.

5

2.1.1 Linear Conservation Laws: f(u) = au, a 6= 0

We first consider the linear scalar advection equation:

ut + aux = 0,

u(x, 0) = u0(x)
(2.3)

It is assumed that a 6= 0 is a constant. The analytic solution of (2.3) is u(x, t) =

u0(x− at). This solution can be obtained by an application of the method of character-

istics [11].

2.1.2 An Example of a Nonlinear Conservation Law: Burgers’ Equation

In this case, we consider a flux function which is nonlinear in the unknown function

u. For example, if f(u) = 1
2u

2, then

ut + uux = 0 (2.4)

This is a famous example of a nonlinear conservation law. The solution of (2.4) is

u(x, t) = u(ξ, 0) where x = ξ + u(ξ, 0)t. This solution is not necessarily unique [11].

Equation (2.4) can be written in conservation form as follows,

ut +

(
u2

2

)
x

= 0. (2.5)

We call (2.5) the inviscid Burgers’ equation [2].

2.1.3 Weak Solutions and Entropy Conditions

Physical models usually involve some dissipation that may be neglected in an ide-

alized approximation. For example,

∂u

∂t
+ a

∂u

∂x
= ε

∂2u

∂x2

includes a dissipation term on the right hand side. In an idealized model where we

assume 0 < ε << 1, it may be advantageous to neglect the dissipation term and the

result is the model defined in (2.3).

6

Definition 2.1. Weak solution [11]

A weak solution for (2.1) can be obtained by multiplying ut + f(u)x = 0 by φ(x, t) ∈

C1
0 (R× R+). Then, integrating in x and t, to obtain

∫ ∞
0

∫ ∞
−∞

φ[ut + f(u)x] dx dt = 0

Using integration by parts, we obtain

∫ ∞
0

∫ ∞
−∞

[φtu+ φxf(u)] dx dt+

∫ ∞
−∞

φ(x, 0)u(x, 0) dx = 0. (2.6)

Stated another way, we want to find u(x, t) such that (2.6) is satisfied for all φ(x, t) ∈

C1
0 (R× R+). If such a solution exists, u(x, t) is called a weak solution of (2.1).

Weak solutions of conservation laws are not unique in general. We can use a van-

ishing viscosity solution or an entropy condition to obtain uniqueness in some cases. It

is well-known that if f is strictly convex, then there exists a unique weak solution u(x, t)

of (2.1) satisfying a physical entropy condition [2]. The vanishing viscosity solution

involves taking the limit as ε goes to zero in the equation

ut + aux = εuxx

with 0 < ε << 1 as discussed above.

Let us introduce some examples of entropy conditions.(see [11]):

Consider

ut + f(u)x = 0

on t > 0, −∞ < x <∞ with piecewise constant initial data

u(x, 0) =

 uL : x < 0

uR : x > 0

7

(i) (Entropy condition 1 and Scalar case):

For ut + f(u)x = 0, a discontinuity propagating with shock speed,

s =
f(uL)− f(uR)

uL − uR
=

[f]

[u]

satisfies an entropy condition if

f ′(uL) > s > f ′(uR) (2.7)

We note that f ′(u) is the characteristic speed (ut+f(u)x = ut+f ′(u)ux = 0) [11].

(ii) (Entropy condition 2 and Non-convex scalar case):

u(x, t) is the entropy solution condition if all discontinuities obey

f(u)− f(uL)

u− uL
≥ s ≥ f(u)− f(uR)

u− uR
(2.8)

for all uL ≥ u ≥ uR. This condition is due to Oleinik [13].

(iii) (Entropy condition 3 and Rarefaction case):

u(x, t) is an entropy solution of (2.1) if there exists E > 0 such that for all a >

0, t > 0, x ∈ R
u(x+ a, t)− u(x, t)

a
<
E

t
(2.9)

Oleinik’s original proof that an entropy solution to (2.1) satisfying (2.8) always exists

proceeds by defining a discrete approximation and then taking limits as the resolution of

the finite difference increases. This is the condition used in Theorem 16.1 (see [15]). For

the discrete approximation, the Lax-Friedrichs approximations used in Oleinik’s proof

(see [15]).

2.2 Numerical Methods for Approximately Solving Scalar Conservation

Laws

In this section, examples of numerical methods for the approximate solution of (2.1)

and (2.2) are presented.

8

2.2.1 Some Definitions for Numerical Methods

We discretize the upper half of the x− t plane by choosing a uniform spatial mesh

size ∆x = xj+1 − xj and a constant time step ∆t = tn+1 − tn, and define the discrete

mesh points (xj , tn) by

xj = j∆x, j = · · · ,−1, 0, 1, 2, · · ·

tn = n∆t, n = 0, 1, 2, · · ·

Figure 2.1 shows a representation of the discrete mesh defined above.

The finite difference methods we will develop produce approximations Unj ∈ Rm

to the solution u(xj , tn) at the discrete mesh points. The point-wise values of the true

solution will be denoted by Unj ≈ u(xj , tn). Using the point-wise approximation, Unj , we

can define errors in the approximation to compute methods. In addition, the concept of

convergence to a unique solution can be defined.

∆x
∆t

xj−1 xj xj+1

tn

tn+1

Unj

Figure 2.1: A representation of the mesh in space-time

The following presents some standard definitions used in the analysis of methods

for approximation of the solutions of differential equations. These are included for

completeness and for defining notation used in this work.

9

Definition 2.2. The Local Error and Convergence [11]

1. Local Error: The local error is the difference between the computed and true

solutions

Enj = Unj︸︷︷︸
computed solution

− unj︸︷︷︸
true solution

2. Convergence: The approximate solution converges to the true solution if

∥∥Enj ∥∥1
→ 0

as ∆x,∆t→ 0 where ‖Ek(·, t)‖1 =
∫∞
−∞ |Ek(x, t)| dt

For linear differential equations, convergence of a method will produce a consistent

approximation that is stable. The following gives an intuitive definition for consistency

and stability.

Definition 2.3. Consistency and Stability [2],[3]

1. Consistency: A numerical scheme is consistent if its discrete operator with fi-

nite differences converges to the continuous operator associated with the PDE as

∆x,∆t→ 0.

2. Stability: The errors from any source will not grow without bound in time. That

is, small perturbations due to round off and truncation errors are bounded.

Combining consistency with stability allows the statement and proof of the well

known Lax Equivalence Theorem. The theorem is stated without proof (see [12]).

Theorem 2.4. Lax Equivalence Theorem [12]

For any discrete approximation the following is true.

10

Consistency + Stability ⇔ Convergence

As a result of the intuitive statement of the Lax Equivalence Theorem, we see that

convergence is obtained when a numerical method produces a consistent and stable ap-

proximation. For the problems considered in this work, stability of the method results

in the following condition.

Theorem 2.5. The Courant-Friedrichs-Lewy (CFL) condition [6]

For each x, t the mathematical domain of dependence must be contained in the numerical

domain of dependence (see Figure 2.2):

X(x, t) ⊆ X0(x, t)

(x, t)

X(x, t)

(x, t)

X0(x, t)

∆t

∆x

Figure 2.2: Mathematical and numerical domains of dependence

For example, for the linear advection equation (2.1), the discrete approximation

Un+1
j = Unj −

a∆t

∆x

(
Unj − Unj−1

)
with a > 0, results in the CFL condition for the numerical method (referred to as the

Upwind approximation) is

0 ≤ a∆t

∆x
≤ 1.

The Upwind method is one of the classical methods described in the next section.

11

2.2.2 Examples of Classical Methods

A general form for numerical methods for the approximate solution of conservation

laws is given by

Un+1
j = Unj −

∆t

∆x
(F (Unj , U

n
j+1)︸ ︷︷ ︸

f(Un

j+ 1
2

)

−F (Unj−1, U
n
j)︸ ︷︷ ︸

f(Un

j− 1
2

)

)

Most approximate numerical methods for hyperbolic equations can be written in this

form. From LeVeque ([11]), we list some classical/standard finite difference schemes for

the scalar advection equation:

• Backward Euler:

Un+1
j = Unj −

∆t

2∆x
a(Unj+1 − Unj−1)

• Upwind:

Un+1
j = Unj −

∆t

∆x
a(Unj − Unj−1)

• Downwind:

Un+1
j = Unj −

∆t

∆x
a(Unj+1 − Unj)

• Lax-Friedrichs:

Un+1
j =

1

2
(Unj+1 + Unj−1)− ∆t

2∆x
a(Unj+1 − Unj−1)

• Leapfrog:

Un+1
j = Un−1

j − ∆t

2∆x
a(Unj+1 − Unj−1)

• Lax-Wendroff:

Un+1
j = Unj −

∆t

2∆x
a(Unj+1 − Unj−1) +

(∆t)2

2(∆x)2
a2(Unj+1 − 2Unj + Unj−1)

• Beam-Warming:

Un+1
j = Unj −

∆t

2∆x
a(3Unj − 4Unj−1 + Unj−2) +

(∆t)2

2(∆x)2
a2(Unj − 2Unj−1 + Unj−2)

12

Note that these methods provide only a small subset of methods proposed over the past

several decades.

2.2.3 Examples of Modern Methods

Modern schemes for hyperbolic conservation laws can be classified into following

two categories [14]:

• Flux-Splitting Methods (characterized by algebraic construction): The basic

idea is to add a switch such that the scheme becomes first order near discontinuities

and maintains high order accuracy in smooth regions. Examples include the Ar-

tificial Viscosity Method, Flux-Correction Transport (FCT), and Total Variation

Diminishing (TVD) method.

• High-Order Godunov methods (characterized by geometrical construction):

The basic idea of slope-limiter methods is to generalize Godunov’s method by

replacing the piecewise constant representation of the solution by a more accu-

rate representation. Examples include Monotone Upstream Conservative Limited

(MUSCL) schemes, the Piecewise Parabolic Method (PPM), and Essentially Non

Oscillatory (ENO) schemes.

For the first category, we will only describe TVD schemes and we will describe the

MUSCL and ENO schemes for the second type of modern method.

2.2.3.1 Total Variation Diminishing (TVD) Scheme

Consider the linear advection equation where f(u) = au, a > 0. The numerical flux

for a TVD scheme is

F (Unj , U
n
j+1) = f(unj+1/2) = aUj + Cj+ 1

2

(
1

2
a(1− a∆t

∆x
)(Uj+1 − Uj)

)

where Cj+ 1
2

:= C(θj+ 1
2
) is called a flux-limiter and depends on

θj+ 1
2

:=
Uj − Uj−1

Uj+1 − Uj
.

13

It has been proven,[16], that a scheme is TVD if 0 ≤ C(θ)
θ ≤ 2 and 0 ≤ C(θ) ≤ 2. As

C(θ) changes, a continuous family of methods can be defined. The following lists some

examples:

• C(θ) = 1 gives the Lax-Wendroff scheme.

• C(θ) = θ gives the Beam-Warming scheme.

• Van Leer Limiter: C(θ) = θ+|θ|
1+|θ|

• Monotone central limiter: C(θ) = max[0,min(2θ, (1+θ)
2 , 2)].

• Superbee limiter: C(θ) = max(0,min(1, 2θ),min(θ, 2))

Specifically the conditions necessary for a method to be TVD can be stated as follows.

Definition 2.6. A numerical method is said to be total variation diminishing (TVD)

[11], if

TV (Un+1) ≤ TV (Un).

The following gives a definition of the total variation

Definition 2.7. Denote the total variation (TV),

TV (v) = sup

N∑
j=1

|v(xj)− v(xj−1|)

where the supremum is taken over all subdivisions of the real line −∞ = x0 < x1 <

· · · < xN =∞.

Another concept of importance is contained in the following definition

Definition 2.8. A scheme is said to be monotone if for two initial conditions u0
j , v

0
j

with u0
j ≥ v0

j , then

unj ≥ vnj , for all n .

A monotone scheme for a scalar conservation law can be shown to converge to a

unique entropy satisfying solution.

14

Definition 2.9. A scheme is said to be monotonicity preserving if un is a monotone

mesh function, then un+1 is a monotonicity preserving schemes.

To relate TVD methods to other modern methods, Harten [9] has shown the fol-

lowing:

Monotone scheme ⇒ TVD scheme ⇒ Monotonicity preserving scheme

Figures 2.3 to 2.6 show various regions [16] related to TVD schemes.

• Figure 2.3: The shaded region shows where function values must lie for the method

to be TVD. Second order linear methods have function C(θ) that leave this region.

• Figure 2.4: The shaded region is the Sweby region for second order TVD methods

do not satisfy the constraints specified by the region in Figure 2.3.

• Figure 2.5: When the Superbee limiter is applied the result minimizes the effect

of the limiter and maximizing steepening of shocks while maintaining the TVD

constraints. The implication is C(θ) lies along the upper boundary of the TVD

regions.

• Figure 2.6: Van Leer Limiter C(θ) = θ+|θ|
1+|θ| defines a smooth variation.

15

C(θ) ≡ θ

C(θ) ≡ 1

0 1 2 3
θ

1

2

C(θ)

Figure 2.3: TVD region

Beam-Warning

Lax-Wendroff

0 1 2 3
θ

1

2

C(θ)

Figure 2.4: Second order TVD region

0 1 2 3
θ

1

2

C(θ)

C(θ)

Figure 2.5: Superbee limiter

0 1 2 3
θ

1

2

C(θ)

C(θ)

Figure 2.6: Van Leer Limiter

16

2.2.3.2 Monotone Upstream Conservative Limited Scheme

Finite volume methods can provide highly accurate numerical solutions for given

systems, even in cases where the solution exhibits shocks, discontinuities, or large gradi-

ents. MUSCL [11] based numerical schemes extend the idea of using a linear piecewise

approximation to each cell by using slope limited left and right extrapolated states. Fig-

ure 2.7 illustrates this idea.

x

U

j-1 j j+1 j+2

UL
j− 1

2

UR
j− 1

2

UL
j+ 1

2

UR
j+ 1

2

Figure 2.7: MUSCL scheme type left and right state linear extrapolation

The numerical flux for the MUSCL scheme [11] involves a nonlinear combination

of first and second order approximations to the continuous flux function. The following

steps can be used to compute values in the MUSCL scheme.

1. Un
j+ 1

2

= Uj+ 1
2

(
UL
j+ 1

2

, UR
j+ 1

2

)
, Un

j− 1
2

= Uj− 1
2

(
UL
j− 1

2

, UR
j− 1

2

)
2. UL

j+ 1
2

= Uj + 0.5 C(θj)(Uj+1 − Uj), UR
j+ 1

2

= Uj+1 − 0.5 C(θj+1)(Uj+2 − Uj+1)

3. UL
j− 1

2

= Uj−1 + 0.5 C(θj−1)(Uj − Uj−1), UR
j− 1

2

= Uj − 0.5 C(θj)(Uj+1 − Uj)

4. θj =
Uj−Uj−1

Uj+1−Uj

The function C(θj) is a limiter function that limits the slope of the piecewise approxi-

mations to ensure the solution is TVD, thereby avoiding the spurious oscillations that

17

would otherwise occur around discontinuities or shocks.

2.2.3.3 Essentially Non-Oscillatory (ENO) scheme

This type of scheme [14] goes back to the idea of the MUSCL schemes. The following

reconstruction steps can be used in this case. The steps are based on the basic idea

illustrated in Figure 2.7 and Figure 2.8.

1. Construct left and right slopes by connecting the average values in adjacent cells.

2. Select the downstream flux by using the smaller slope.

j-1

fj−1

j

fj

j+1

fj+1

fj− 1
2

fj+ 1
2

Figure 2.8: Example of ENO and Slope

This is an example of the steps needed to compute the second order ENO scheme

for the linear advection equation ∂f
∂t + a∂f∂x = 0.

1.

fn+1
j = fnj −

∆t

∆x
a(fn

j+ 1
2

− fn
j− 1

2

)

2.

∆f+
j = fj+1 − fj , ∆f−j = fj − fj−1

3.

fj+ 1
2

=

 fj + 1
2amin

(
∆f+

j ,∆f
−
j

)
, if 1

2 (Uj + Uj+1) > 0

fj − 1
2amin

(
∆f+

j+1,∆f
−
j+1

)
, if 1

2 (Uj + Uj+1) < 0

4.

amin(a, b) =

 a , |a| < |b|

b , |b| ≤ |a|

18

2.3 Example Results from Numerical Methods

In this section, results for a single problem are modeled to illustrate the behavior

from various methods described in Section 2.2. The results are organized by the types

and categories of problems described in Section 2.2.

2.3.1 Numerical Examples: Linear Scalar Conservation Laws

We consider the Riemann problem for the scalar advection equation

ut + aux = 0, −∞ < x <∞, t ≥ 0, (2.10)

with initial condition,

u0(x) =


1 if x < 0,

0 if x > 0.

(2.11)

Figures 2.9, 2.10, and 2.11 show numerical and exact solutions to the problem defined

by (2.10) and (2.11) computed with various methods. In all cases a = 1 and the results

are plotted at time t = 0.5. We can see that the first order methods (Upwind and

Lax-Friedrichs) give very smeared out solutions, and the second order methods (Lax-

Wendroff and Beam-Warming) exhibit spurious oscillations. The best method for the

scalar advection equation is a TVD scheme.

In Figure 2.9, ∆x = 0.01 while a finer grid with ∆x = 0.002 is used in Figure 2.10

for the Upwind, Lax-Friedrichs, Lax-Wendroff, and Beam-Warming schemes. Also, in

Figure 2.11, ∆x = 0.01 and ∆x = 0.002 for the TVD scheme.

2.3.2 Numerical Examples: Nonlinear Conservation Laws

The simplest nonlinear example of a conservation law is the inviscid Burgers’ equa-

tion with f(u) = 1
2u

2. That is,

ut +

(
1

2
u2

)
x

= 0.

The inviscid Burgers’ equation is an example of nonlinear conservation law. Any con-

servation law that involves a nonlinear flux function f(u), will produce a nonlinear

conservation law.

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
upwind scheme

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Lax−Friedrichs scheme

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Lax−Wendroff scheme

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Beam−Warming scheme

x

u

Figure 2.9: Numerical and exact solution to (2.10) with ∆x = 0.01

From [2] and [21], we list some finite difference schemes for Burger’s equation:

• Upwind:

Un+1
j = Unj −

∆t

∆x
(f(Unj)− f(Unj−1)).

For Burgers’ equation we have

Un+1
j = Unj −

∆t

∆x

[
1

2
(Unj)2 − 1

2
(Unj−1)2

]

• Lax-Friedrichs:

Un+1
j =

1

2
(Unj+1 + Unj−1)− ∆t

2∆x
(f(Unj+1)− f(Unj−1)),

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
upwind scheme

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Lax−Friedrichs scheme

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Lax−Wendroff scheme

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
Beam−Warming scheme

x

u

Figure 2.10: Numerical and exact solution to (2.10) with ∆x = 0.002

For Burgers’ equation we have

Un+1
j =

1

2
(Unj+1 + Unj−1)− ∆t

2∆x

[
1

2
(Unj+1)2 − 1

2
(Unj−1)2

]
.

• Lax-Wendroff:

Un+1
j = Unj+1 −

∆t

2∆x
(f(Unj+1)− f(Unj−1))

+
(∆t)2

2(∆x)2

[
Aj+ 1

2
(f(Unj+1)− f(Unj))−Aj− 1

2
(f(Unj)− f(Unj−1))

]

21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
TVD scheme

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
TVD scheme

x

u

Figure 2.11: Numerical and exact solution to (2.10) with ∆x = 0.01 and
∆x = 0.002 for TVD scheme

where Aj± 1
2

is evaluated at 1
2(Unj +Unj±1). For Burgers’ equation we have f ′(u) = u

so

Un+1
j =Unj+1 −

∆t

2∆x
(
1

2
(Unj+1)2 − 1

2
(Unj−1)2)

+
(∆t)2

2(∆x)2
[(

1

2
(Unj + Unj+1))(

1

2
(Unj+1)2 − 1

2
(Unj)2)

− (
1

2
(Unj + Unj−1))(

1

2
(Unj)2 − 1

2
(Unj−1)2)]

• Beam-Warming:

Un+1
j = Unj+1 −

∆t

2∆x
(3f(Unj)− 4f(Unj−1) + f(Unj−2))

+
(∆t)2

2(∆x)2

[
Aj+ 1

2
(f(Unj)− f(Unj−1))−Aj− 1

2
(f(Unj−1)− f(Unj−2))

]
where Aj± 1

2
is evaluated at 1

2(Unj +unj±1). For Burgers’ equation we have f ′(u) = u

so

Un+1
j = Unj+1 −

∆t

2∆x
(
1

2
3(Unj)2 − 1

2
4(Unj−1)2 +

1

2
(Unj−2)2)

+
(∆t)2

2(∆x)2
[(

1

2
(Unj + Unj−1))(

1

2
(Unj)2 − 1

2
(Unj−1)2)

− (
1

2
(Unj−2 + Unj−1))(

1

2
(Unj−1)2 − 1

2
(Unj−2)2)]

22

For the examples in this section, consider Burgers’ equation:

ut +

(
1

2
u2

)
x

= 0, (2.12)

with initial condition,

u0(x) =


1 if x < 0,

0 if x > 0.

(2.13)

Figures 2.12 and 2.13, show numerical approximations and exact solutions to Burgers’

equation (2.12) and (2.13) computed using same ∆x values of advection equation case.

Figure 2.12 and 2.13 used ∆x = 0.01 and ∆x = 0.002. We see the same type of

results when the first order methods an applied (Upwind and Lax-Friedrichs). These

methods produce smeared solutions. The second order methods (Lax-Wendroff and

Beam-Warming) produce spurious oscillation in the solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Upwind−conservative

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Lax−Friedrichs Scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Lax−Wendroff Scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Beam−Warming Scheme

Figure 2.12: Numerical and exact solution to (2.11) with ∆x = 0.01

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Upwind−conservative

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Lax−Friedrichs Scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Lax−Wendroff scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

x

u

Beam−Warming scheme

Figure 2.13: Numerical and exact solution to (2.11) with ∆x = 0.002

24

CHAPTER 3

POLYNOMIAL FRAMEWORK FOR CONSTRUCTING APPROXIMATE

SOLUTION METHODS

This chapter covers yet another representation of numerical methods for conserva-

tion laws. In this chapter, we will consider a polynomial framework based on [4],[5]. We

start with some definitions and examples using the polynomial framework of Un
j± 1

2

.

3.1 Definition and Notation

Definition 3.1. From [14], a scheme for approximately solving conservation laws is

called conservative if and only if it can be written as

Un+1
j = Unj −

∆t

∆x
(f(Un

j+ 1
2

)︸ ︷︷ ︸
Fn

j+ 1
2

− f(Un
j− 1

2

)︸ ︷︷ ︸
Fn

j− 1
2

), (3.1)

where f is

1. Lipschitz continuous, and

2. f(u, · · · , u) = f(u) (consistency)

Note. A function f from S ⊂ Rn → Rm is Lipschitz continuous at x ∈ S if there is a

constant C such that

‖f(y)− f(x)‖ ≤ C ‖y − x‖

for all y ∈ S sufficiently near x [2].

From [12] and [14], examples of conservative methods of the form (3.1) for approx-

imately solving conservation laws include the following.

25

• Godunov scheme:

Fn
j+ 1

2

=


min

Uj≤U≤Uj+1

f(U) Uj < Uj+1

max
Uj≤U≤Uj+1

f(U) Uj ≥ Uj+1

• Lax-Friedrichs scheme:

Fn
j+ 1

2

=
1

2
[f(Uj) + f(Uj+1)− α(Uj+1 − Uj)]

where α = max
U

∣∣f ′(U)
∣∣

• Roe scheme:

Fn
j+ 1

2

=

 f(Unj) aj+ 1
2
≥ 0

f(Unj+1) aj+ 1
2
< 0

where aj+ 1
2

=
f(Uj+1)−f(Uj)

Uj+1−Uj

• Engquist-Osher scheme:

Fn
j+ 1

2

= f+(Uj) + f−(Uj+1)

where

f+(U) =

∫ U

0
max(f ′(U), 0) dU + f(0),

f−(U) =

∫ U

0
min(f ′(U), 0) dU

• Lax-Wendroff scheme:

Fn
j+ 1

2

=
1

2

[
f(Uj) + f(Uj+1)− ∆t

∆x
f ′(Uj+ 1

2
) (f(Uj+1)− f(Uj))

]

• MacCormark scheme:

U
n+ 1

2
j = Unj −

∆t

∆x

(
f(Unj)− f(Unj−1)

)
Un+1
j =

1

2

[
Unj + U

n+ 1
2

j +
∆t

∆x

[
f(U

n+ 1
2

j+1)− f(U
n+ 1

2
j)

]]

f(Un
j+ 1

2

) =
1

2

[
f(Unj) + f(Unj −

∆t

∆x

(
f(Unj)− f(Unj−1))

)]

26

Note that many schemes (e.g., Upwind scheme) are also conservative.

3.2 Description of a Polynomial Framework for Approximate Solution of

Conservation Laws

In this section we focus on a representation of the numerical flux, Fn
j+ 1

2

= f(Un
j+ 1

2

)

given by

Un
j+ 1

2

≈ u(xj+ 1
2
, tn) = u(xj +

∆x

2
, tn).

By choosing a single representation between the two values Unj and Unj+1, the numerical

scheme will always be conservation if we use

Fn
j± 1

2

= f(Un
j± 1

2

).

The framework in the next section assumes the representation is in terms of a local

polynomial function.

3.2.1 Definition of Grid-line Values: Un
j± 1

2

Using the ideas in [4],[5] to define Un
j± 1

2

,

Un
j± 1

2

= mn
j± 1

2

(αn
j± 1

2

) =

l∑
i=0

an
i,j± 1

2

(αn
j± 1

2

)i,

where mj± 1
2

is a function chosen to represent the unknown u between neighboring nodes.

Also, αn
j± 1

2

is chosen as a point which is some distance upwind from the grid line xj± 1
2
.

This idea is illustrated in Figure 2.1. Thus the grid line values Un
j± 1

2

are in fact approx-

imations of the unknown at the grid lines xj± 1
2

for the next time level, tn+1. We use an

evaluation point αj± 1
2

of the form

αn
j± 1

2

= γ1 + γ2λf
′(un

i,j± 1
2

)

where λ = ∆t
∆x and the parameters γ1, γ2 are given. The coefficients, ai,j± 1

2
, can be cho-

sen so that the resulting numerical scheme satisfies given accuracy, stability, consistency,

symmetry, and other conditions (e.g., TVD conditions), see [4],[5].

27

3.2.2 Examples Using the Polynomial Definition for Un
j± 1

2

3.2.2.1 Linear Conservation Law Examples

For the linear advection case, we can use a linear polynomial to represent the

solution between nodes [4],

Un
j+ 1

2

= mn
j+ 1

2

(αn
j+ 1

2

) = Unj+1 + (Unj − Unj+1)αn
j+ 1

2

Un
j− 1

2

= mn
j− 1

2

(αn
j− 1

2

) = Unj + (Unj−1 − Unj)αn
j− 1

2

This defines a continuous family of numerical approximation of the solution at the grid

lines in the mesh. The following list of methods shows the relationship between the

linear polynomial representation and some well known methods.

• When αn
j± 1

2

= 0:

Un
j+ 1

2

= Unj+1

Un
j− 1

2

= Unj

This choice generates a downwind scheme.

Un+1
j = Unj −

∆t

∆x
a(Unj+1 − Unj)

This method is clearly not stable and is of no real use.

• When αn
j± 1

2

= 1:

Un
j+ 1

2

= Unj

Un
j− 1

2

= Unj−1

This choice generates an upwind scheme.

Un+1
j = Unj −

∆t

∆x
a(Unj − Unj−1)

28

• When αn
j± 1

2

= 1
2 + 1

2a
∆t
∆x ,

Un
j+ 1

2

= mn
j+ 1

2

(αn
j+ 1

2

)

= Unj+1 + (Unj − Unj+1)(
1

2
+

1

2
a

∆t

∆x
)

=
1

2
(Unj+1 + Unj) +

∆t

2∆x
a(Unj − Unj+1),

Un
j− 1

2

= mn
j− 1

2

(αn
j− 1

2

)

= Unj + (Unj−1 − Unj)(
1

2
+

1

2
a

∆t

∆x
)

=
1

2
(Unj + Unj−1) +

∆t

2∆x
a(Unj−1 − Unj).

This generates the Lax-Wendroff scheme.

Un+1
j = Unj − a

∆t

∆x

[
1

2
(Unj+1 − Unj−1)− ∆t

2∆x
a(Unj+1 − 2Unj + Unj−1)

]

• When αn
j± 1

2

= 1
2 −

1
2a

∆t
∆x ,

Un
j+ 1

2

= mn
j+ 1

2

(αn
j+ 1

2

)

= Unj − (Unj−1 − Unj)(
1

2
− 1

2
a

∆t

∆x
)

=
1

2
(3Unj − 4Unj−1) +

∆t

2∆x
a(Unj−1 − Unj),

Un
j− 1

2

= mn
j− 1

2

(αn
j− 1

2

)

= Unj−1 − (Unj−2 − Unj−1)(
1

2
− 1

2
a

∆t

∆x
)

=
1

2
(3Unj−1 + Unj−2) +

∆t

2∆x
a(Unj−2 − Unj−1).

This generates the Beam-Warming scheme.

Un+1
j = Unj − a

∆t

∆x

[
1

2
(3Unj − 4Unj−1 + Unj−2)− ∆t

2∆x
a(Unj − 2Unj−1 + Unj−2)

]

From these examples, it is clear there is a one to one correspondence between well known

methods and specific choices of parameters in this polynomial based method.

29

3.2.2.2 Nonlinear Conservation Law Examples

If f is nonlinear with f ′ > 0 , then by the results in section 3.2.1,

Un
j± 1

2

= mn
j± 1

2

(αn
j± 1

2

) =
l∑

i=0

an
i,j± 1

2

(αn
j± 1

2

)i,

where we choose to represent the evaluation point

αn
j± 1

2

= γ1 + γ2
∆t

∆x
f ′(Un

j± 1
2

).

So,

Un
j± 1

2

= mn
j± 1

2

(αn
j± 1

2

) =

l∑
i=0

ai,j± 1
2
(γ1 + γ2

∆t

∆x
f ′(Un

j± 1
2

))i. (3.2)

The results is an implicit relationship for Un
j± 1

2

. This relationship is a nonlinear rela-

tionship which requires a solution or an approximate solution. In general, an algebraic

solution will not be available. So, it will be necessary to approximate the solution of the

nonlinear equation. Newton’s method provides one way to approximate the solution of

the nonlinear equation for Un
j± 1

2

. To that end, what follows describes an implementation

of Newton’s method for the specific problem of approximating Un
j± 1

2

. We define

G(Un
j± 1

2

) = Un
j± 1

2

−
l∑

i=0

ai,j± 1
2
(γ1 + γ2

∆t

∆x
f ′(Un

j± 1
2

))i.

If G(Un
j± 1

2

) = 0, then (3.2) is satisfied.

Let v = Un
j± 1

2

, then

G(v) = v −
l∑

i=0

ai,j± 1
2
(γ1 + γ2

∆t

∆x
f ′(v))i.

Applying Newton’s method generates the following iteration formula.

vk+1 = vk −
vk −

l∑
i=0

ai,j± 1
2
(γ1 + γ2

∆t

∆x
f ′(v))i

1−
l∑

i=0

ai,j± 1
2
(γ1 + γ2

∆t

∆x
f ′′(v))i

30

Namely,

(
Un
j+ 1

2

)
k+1

=
(
Un
j+ 1

2

)
k
−

(
Un
j+ 1

2

)
k
−

l∑
i=0

ai,j+ 1
2
(γ1 + γ2

∆t

∆x
f ′(
(
Un
j+ 1

2

)
k
))i

1−
l∑

i=0

ai,j+ 1
2
(γ1 + γ2

∆t

∆x
f ′′(
(
Un
j+ 1

2

)
k
))i

.

For example, in the case of the Lax-Wendroff method for nonlinear problems,

Un
j+ 1

2

= Unj+1 + (Unj − Unj+1)(
1

2
+

1

2

∆t

∆x
f ′(Un

j+ 1
2

))

From above, we can define,

G(v) = v − Unj+1 + (Unj − Unj+1)(
1

2
+

1

2

∆t

∆x
f ′(v)),

G′(v) = 1− Unj+1 + (Unj − Unj+1)(
1

2

∆t

∆x
f ′′(v)).

Thus if bounds are known on the function f ′′ a range of ∆t
∆x can be chosen so that

the denominator is never zero. Therefore, we can easily solve problems for nonlinear

conservation laws. Note that we have assumed f ′′ is convex or f ′′ > 0 for all U ∈ R.

31

CHAPTER 4

SHAPE FUNCTION CONSTRUCTION FOR MULTIRESOLUTION ANALYSIS

(MRA)

We now explain a relationship between the construction of a Multiresolution Anal-

ysis (MRA) and the polynomial framework from the previous chapter. In this section, a

historical perspective about wavelets is given. Also, we will develop an algorithm for use

in the construction of MRA shape functions using the polynomial framework approach

for conservation laws.

4.1 History of Wavelets and Multiresolution Analysis

A wavelet is a mathematical function useful in digital signal processing, image

compression and many other applications. The use of wavelets for these purposes is a

recent development, although the theory is not new.

4.1.1 Prior to 1930

The principles are similar to those of Fourier analysis, which was first developed

in the early part of the 19th century [1]. Joseph Fourier introduced Fourier analysis in

1805. His work is based on the fact that certain classes of functions can be represented

as infinite sums of sine and cosine functions. Simply stated any 2π periodic function

f(x) can be represented by

f(x) = a0 +
∞∑
k=1

(ak cos(kx) + bk sin(kx))

where the coefficients are defined using orthogonality of trigonometric functions and the

formulas for the coefficients are given by

a0 = 1
2π

∫ 2π
0 f(x) dx

ak = 1
π

∫ 2π
0 f(x) cos(kx) dx

bk =
∫ 2π

0 f(x) sin(kx) dx

32

Alfred Haar(1909) found another set of basis functions to analyze signals. One property

of the Haar wavelet is that it has compact support, which means that it vanishes outside

a finite interval. In comparison the trigonometric basis functions in the Fourier series

have nonzero support defined on the entire real line. Haar wavelets are not continuously

differentiable which somewhat limits their application. In contrast the trigonometric

functions are analytic. Figure 4.1 shows (a) a scaling or shape function and (b) a detail

1

1
t

(a)

1

1
t

(b)

Figure 4.1: Haar basis function

function used as part of a basis for the Haar representation of a function. The definitions

for these functions are

(a)

ϕ(t) =


1 t ∈ [0, 1),

0 t /∈ [0, 1).

(b)

ψ(t) =


1 t ∈ [0, 1/2),

−1 t ∈ [1/2, 1),

0 t /∈ [0, 1).

4.1.2 1930 through 1940

In the 1930s, several groups working independently researched the representation

of functions using scale-varying basis functions. Paul Levy found Haar basis functions

superior to the Fourier basis function for studying small complicated details in Brownian

33

motion. He discovered that the scale-varying basis functions created by Haar formed a

better basis than the Fourier basis functions.

Remark 4.1. Scale-varying basis functions [20]

A basis function varies in scale by chopping up the same function or data space us-

ing different scale sizes. For example, if we have a signal over the domain from 0 to

1, we can divide the signal with two step functions that range from 0 to 1/2 and 1/2

to 1. Then we can divide the original signal again using four step functions from 0 to

1/4, 1/4 to 1/2, 1/2 to 3/4, and 3/4 to 1. This can be repeated through all dyadic scales.

4.1.3 1940 through 1980

In 1946, Dennis Gabor introduced a time-localization or ”window function” to

extract local information of the Fourier transform of the signal. He suggested a signal

with time and frequency as coordinates. The method is a short time Fourier transform

(STFT).

F (ω, τ) =

∫ ∞
−∞

f(t)g(t− τ)ejωt dt,

g(t) is called a window function. Between 1960 and 1980, the mathematicians Guido

Weiss and Ronald R. Coifman studied the simplest elements of a function space, called

atoms, with the goal of finding the atoms for a common function and finding the ”assem-

bly rules” that allow the reconstruction of all the elements of the function space using

these atoms.

4.1.4 1980 to the Present Day

In 1984, Morlet and Grossman developed a continuous wavelet transform. Meyer

(1985) discovered the first smooth orthogonal wavelet basis functions with better time

and frequency localization. In 1986, Mallat collaborated with Meyer to develop mutires-

olution analysis theory (MRA), discrete wavelet transform (DWT), wavelet construc-

tion techniques. In the most recent stage of developing wavelets, Ingrid Daubechies

found compact and orthogonal wavelets. Daubechies wavelets are a family of orthogonal

wavelets that define a discrete wavelet transform, characterized by a maximal number

of vanishing moments for some given support. In 1994, Swelden developed the lifting

scheme for the construction of wavelet shape functions. In the next section, we consider

the lifting scheme.

34

4.2 The Lifting Scheme

Swelden ([17],[18] and [19]) developed a general framework for the construction of

fast wavelet transforms of signals referred to as lifting. The algorithm has two advan-

tages; first, it doesn’t require the machinery of Fourier analysis as a prerequisite and it

can easily be generalized to complex geometric situations which typically occur in com-

puter graphics and other real world problems. The lifting scheme has three operations:

1. Spliting: The signal is split into even and odd indexed samples.

({Uk,2j} , {Uk,2j+1}) := S({Uk,j})

where S is the splitting operator. This step identifies the odd and even indexed

samples in the signal.

2. Prediction: In this operation the odd samples are predicted using the even samples.

dk−1,j = Uk,2j+1 − P ({Uk,2j})

This step replaces the odd samples with the detail given by the difference between

the sample values and the predicted value.

3. Update: In this operation the even samples, Uk,2j , are updated using the details

computed in the previous step. (e.g., overall signal average)

Uk−1,j = Uk,2j +Q({dk−1,j})

This step replaces the even indexed samples with an average value.

k indicates the refinement level of the signal and j indicates the jth sample at the kth

level. A simple lifting scheme forward transform is diagrammed in Figure 4.2.

4.2.1 Construction of the Haar Multiresolution Analysis via Lifting

In the lifting scheme version of the Haar transform (see [17],[18]), the prediction

step predicts that the odd element will be equal to the even element. The difference

between the predicted value and the actual value of the odd element replaces the odd

35

sj

sj−1
smooth

dj−1
detail

Split

-

Predict Update

+
even value

odd value

Figure 4.2: Lifting scheme forward wavelet transform

element

U∗2j+1 = U2j+1 − U2j .

In the lifting scheme version of the Haar transform, the update step replaces an even

element with the average of even/odd pair. The original odd element has been replaced

by the difference between this element and its even predecessor.

U∗2j+1 = U2j+1 − U2j ⇒ U∗2j+1 + U2j = U2j+1

U2j =
U2j + U2j+1

2
= U2j + U2j+1/2.

In Figure 4.3 and 4.4, we can see Haar transform in-place. The Haar transform will

replace the values (s2,0 = 9, s2,1 = 7, s2,2 = 3, s2,3 = 5) by average (s1,0 = 9+7
2 = 8,

s1,1 = 3+5
2 = 4) and difference(d1,0 = 7 − 9 = −2, d1,1 = 5 − 3 = 2), then once

again, replace the new average values by average (s0,0 = 8+4
2 = 6) and difference

(d0,0 = 4− 8 = −4).

[9 7 3 5]

ss = a+b
2 d d = b− a

[8 4] [-2 2]

s d

[6] [-4]

Figure 4.3: Example of Haar (Lifting)

36

s0,0 d1,0 d0,0 d1,1 [6 -2 -4 2]

s1,0 d1,0 s1,1 d1,1 [8 -2 4 2]

s2,0 s2,1 s2,2 s2,3 [9 7 3 5]

Figure 4.4: Haar lifting ordering

4.2.2 Construction of Linear Interpolating Wavelets

Another example of a simple transform can be computed using a linear prediction

step (see [18],[19]). The difference between the predicted value and the actual value of

the odd element replaces the odd element with

U2j+1 = U2j+1 −
1

2
(U2j + U2j+2).

The linear interpolation update step replaces the even elements with an average of the

data being processed. The update involves a combination of the two neighboring detail

values computed in the previous step and stored in U2j+1 and U2j−1

U2j = U2j +
1

4
(U2j+1 + U2j−1).

This example is included due to its use in the development of Multiresolution analy-

sis using numerical methods for hyperbolic partial differential equations. In fact, this

transform is related to the central difference method for conservation laws.

4.3 Multiresolution Analysis (MRA): Definitions and Notation

Multiresolution analysis (MRA) was formulated based on the study of orthonormal,

compactly supported wavelet bases. The following definition will be used in this work.

Definition 4.2. Let Vj , j = · · · ,−2,−1, 0, 1, 2, · · · be a sequence of subspaces of func-

tions in L2(R). The collection of spaces {Vj , j ∈ Z} is called a multiresolution analysis

37

with scaling function ϕ if the following conditions hold. (see [1])

1. For all j ∈ Z, Vj ⊆ Vj+1

2.
⋃
j∈Z Vj = L2(R). That is, the set

⋃
j∈Z Vj is dense in L2(R).

3.
⋂
j∈Z Vj = {0}

4. The function f(x) belongs to Vj if and only if the function f(2−jx) belongs to V0.

5. The function ϕ belongs to V0 and the set {ϕ(x− k), k ∈ Z} is an orthonormal basis

for V0.

Remark 4.3. The following well known results are stated for completeness and without

proof.

• The Vj ’s are called approximation spaces.

• Every f ∈ L2 can be approximated as closely as one likes by a function in a Vj ,

provided that j is large enough.

• f ∈
⋃
j∈Z Vj if and only if for every ε > 0 one can find j such that there is an

fj ∈ Vj for which ‖f − fj‖ < ε

• We say that a sequence fn of functions in L2([0, 1)) converges to a function f(x) ∈

L2([0, 1)), if

lim
n→∞

‖fn − f‖ = 0.

With this definition of a MRA, we need some definitions and notation for the scal-

ing and translation concepts within any MRA.

Definition 4.4. A set of basis functions can be defined by translating and stretching

(or compressing) a function ϕ(x), called the scaling function. This is done through the

definition of a doubly indexed set of functions defined by

ϕj,k = 2j/2ϕ(2jx− k)

for all integers j, k.

38

A simple example is provided by the function

ϕ(x) =


1 0 ≤ x < 1

0 elsewhere

This is called the Haar scaling function. Using the definitions above ϕ(x) will general

the Haar basis.

Definition 4.5. MRA Equation [1]

The set of scaling functions at any level j can be used to express functions that form

the linear space Vj . This means

f(x) =
∑

αkϕj,k(x)

The representation of a function in Vj by an expansion in Vj+1 is given by

ϕj,k(x) =
∑
n

αnϕj+1,n(x)

for any f ∈ Vj . Substituting the definition

ϕj,n = 2j/2ϕ(2jx− n)

and replacing the coefficients with the notation hϕ(n) = αn.

ϕj,k(x) =
∑
n

hϕ(n)2(j+1)/2ϕ(2j+1x− n)

By setting (j, k) = (0, 0) ϕ(x) = ϕ0,0(x) and

ϕ(x) =
∑
n

hϕ(n)
√

2ϕ(2x− n)

This recursive equation is called the MRA equation.

In general, Vj+1 = Vj⊕Wj . The functions in Wj can be expanded in terms of a set

of wavelets {ψj,k} and the wavelets must be orthogonal to the scaling functions {ϕj,k}.

Any function can be represented by a sequence of approximations which contain more

39

W1

ψ1,j

W0

ψ0,j

V0
ϕ0,j

V1 = V0 ⊕W0V2 = V1 ⊕W1 = V0 ⊕W0 ⊕W1

Figure 4.5: The relationship between scaling and wavelet function spaces [20]

and more detail (See Figure 4.5).

L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ · · ·

Remark 4.6. The function ϕ ∈ V is sometimes called the father wavelet for the MRA

and the function ψ ∈W is sometimes called the mother wavelet for the MRA.

4.4 Polynomial Framework Lifting Approach

We can develop an algorithm for creating wavelets and associated MRAs using a

combination of lifting with conservative numerical schemes for conservation laws. Given

a discrete point source, δ(j), defined by

δ(j) =


1, if j = 0

0, if j 6= 0

we can compute values at the half-integers or midpoints between integers using interpola-

tion formulas or using grid-line values predicted by a numerical method for conservation

laws. The steps to do this are to assume

1. U0
j = δ(j), j = · · · ,−2,−1, 0, 1, 2, · · ·

2. Uj+1/2 =

l∑
i=0

ai,j+1/2α
i
j+1/2, j = · · · ,−2,−1, 0, 1, 2, · · ·

40

Any numerical scheme that can be written in the polynomial framework for conservation

laws can be used along with lifting to generate a future wavelet and thus an associated

MRA.

4.4.1 Upwind Scheme

As an example a MRA can be created using the upwind scheme to compute the

values at the half integers in the lifting algorithm. From the section 3.2.2,

Un
j+ 1

2

= mn
j+ 1

2

(αn
j+ 1

2

) = Unj+1 + (Unj − Unj+1)αn
j+ 1

2

Un
j− 1

2

= mn
j− 1

2

(αn
j− 1

2

) = Unj + (Unj−1 − Unj)αn
j− 1

2

,

and we know that for upwinding, αn
j± 1

2

= 1. Then we have

Un
j+ 1

2

= Unj ,

Un
j− 1

2

= Unj−1

where we have assumed f ′(U) > 0.

Recall that the general form of αn
j± 1

2

is

αn
j± 1

2

= γ1 + γ2
∆t

∆x
f ′(Un

j± 1
2

).

For upwinding we fix αn
j± 1

2

= 1 and if we assume f ′ > 0 then the steps of the lifting

result in the following.

Uj =


1, if j = 0

0, if j 6= 0

The midpoints using the grid-line values predicted by upwind method are

U− 1
2

= U−1 = 0,

U 1
2

= U0 = 1.

41

In the same way, we can find

U− 1
4

= 0,

U 1
4

= 1.

Figure 4.6, shows the resulting upwind shape function with only the discrete points

from the lifting plotted. There are 17,129, 4097 points plotted. From top to bottom the

graphs in Figure 4.6 use 17,129, and 4097 points. This is done using n = 4, n = 7, and

n = 12 recursive steps in the algorithm.

4.4.2 Lax-Wendroff Scheme

Another example of a MRA can be defined using the Lax-Wendroff method. To

compute the values at the half integers in the lifting algorithm we can use the polynomial

framework. From Section 3.2.2, the Lax-Wendroff scheme has αn
j+ 1

2

= 1
2 + 1

2a
∆t
∆x . Then

Un
j+ 1

2

= Unj+1 + (Unj − Unj+1)αn
j+ 1

2

= Unj+1 + (Unj − Unj+1)(
1

2
+

1

2
a

∆t

∆x
)

=
1

2
(Unj+1 + Unj) +

∆t

2∆x
a(Unj − Unj+1),

Un
j− 1

2

=
1

2
(Unj + Unj−1) +

∆t

2∆x
a(Unj−1 − Unj).

Therefore,

Un
j+ 1

2

=
1

2
(Unj+1 + Unj)︸ ︷︷ ︸

average of two values

+
∆t

2∆x
a (Unj − Unj+1)︸ ︷︷ ︸

difference of two values

.

Un
j− 1

2

=
1

2
(Unj + Unj−1)︸ ︷︷ ︸

average of two values

+
∆t

2∆x
a (Unj−1 − Unj)︸ ︷︷ ︸

difference of two values

.

We know that the Courant-Fridrichs-Lewy (CFL) condition is 0 < a∆t
∆x < 1, so the

midpoints using the grid-line values predicted by Lax-Wendroff method are

U− 1
2

=
1

2
+

∆t

2∆x
a(−1) <

1

2

U 1
2

=
1

2
+

∆t

2∆x
a(1) >

1

2

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (upwind)−17points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (upwind)−129 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (upwind)−4097 points

Figure 4.6: Upwind scheme with lifting framework

Figure 4.7, shows the result of applying the lifting algorithm to the Lax-Wendroff

shape function. From top to bottom the graphs in Figure 4.7 use 17,129, and 4097

43

points. This is done using n = 4, n = 7, and n = 12 recursive steps in the algorithm.

We use the CFL ∆t
∆xa = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (Lax−Wendroff) −17 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (Lax−Wendroff)−129 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (Lax−Wendroff)−4097 points

Figure 4.7: Lax-Wendroff scheme with lifting framework

44

4.4.3 Beam-Warming Scheme

Another example of a MRA can be defined using the Beam-Warming method. To

compute the values at the half integers in the lifting algorithm. We can use (See Section

3.2.2) αn
j+ 1

2

= 1
2 −

1
2a

∆t
∆x . Then

Un
j+ 1

2

= Unj+1 + (Unj − Unj+1)αn
j+ 1

2

= Unj+1 + (Unj − Unj+1)(
1

2
− 1

2
a

∆t

∆x
)

=
1

2
(Unj+1 + Unj)− ∆t

2∆x
a(Unj − Unj+1),

Un
j− 1

2

=
1

2
(Unj + Unj−1)− ∆t

2∆x
a(Unj−1 − Unj).

Therefore,

Un
j+ 1

2

=
1

2
(Unj+1 + Unj)︸ ︷︷ ︸

average of two values

− ∆t

2∆x
a (Unj − Unj+1)︸ ︷︷ ︸

difference of two values

,

Un
j− 1

2

=
1

2
(Unj + Unj−1)︸ ︷︷ ︸

average of two values

− ∆t

2∆x
a (Unj−1 − Unj)︸ ︷︷ ︸

difference of two values

.

The midpoints using the grid-line values predicted by Beam-Warming method are

U− 1
2

=
1

2
+

∆t

2∆x
a(1) >

1

2

U 1
2

=
1

2
+

∆t

2∆x
a(−1) <

1

2

Figure 4.8, shows the result of applying the lifting algorithm to the Beam-Warming

shape function. From top to bottom the graphs in Figure 4.8 use 17,129, and 4097 points.

This is done using n = 4, n = 7, and n = 12 recursive steps in the algorithm. We use

the CFL ∆t
∆xa = 0.5.

4.4.4 TVD Scheme

In Section 2.2.3.1, the numerical flux for a TVD scheme was given by

f(un
j+ 1

2

) = aUj + Cj+ 1
2

(
1
2a(1− a∆t

∆x)(Uj+1 − Uj)
)

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (Beam−Warming)−17points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (Beam−Warming)−129 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function (Beam−Warming)−4097 points

Figure 4.8: Beam-Warming scheme with lifting framework

where Cj+ 1
2

:= C(θj+ 1
2
) is a flux-limiter that depends on θj+ 1

2
:=

Uj−1−Uj

Uj−Uj+1
. Below we

will consider one example of a flux limited TVD scheme called the Super-Bee limiter.

In the linear advection problem the flux-limited methods by presented in Sweby [16], we

46

choose (see [4])

αn
j+ 1

2

=
1

2
(1 + aλ) +

1

2
(1− aλ)(1− Cn

j+ 1
2

)

where λ = ∆t
∆x and Cn

j+ 1
2

is a flux limiter as defined in Sweby [16].

We can compute the sign of the ratio of (Uj−1 − Uj) and (Uj − Uj+1). If the sign

is a negative number, then Cj+ 1
2

should be zero. If the sign is a positive number and

(Uj −Uj+1) = 0, then Cj+ 1
2

should be 2. By a ”Super-Bee” flux limiter [16], the rest of

the cases are

C(θn
j+ 1

2

) =



0, if θj+ 1
2
≤ 0

2θj+ 1
2
, if 0 < θj+ 1

2
< 1

2

1, if 1
2 ≤ θj+ 1

2
< 1

θj+ 1
2
, if 1 ≤ θj+ 1

2
< 2

2, if θj+ 1
2
≥ 2

If C(θn
j+ 1

2

) = 0, then

αn
j+ 1

2

=
1

2
(1 + aλ) +

1

2
(1− aλ)(1− 0) =

1

2
(1 + aλ) +

1

2
(1− aλ) = 1,

so

Unj+1/2 = Unj+1 + (Unj − Unj+1)αnj+1/2 = Unj+1 + (Unj − Unj+1) = Unj ,

Unj−1/2 = Unj + (Unj−1 − Unj)αnj−1/2 = Unj + (Unj−1 − Unj) = Unj−1.

Note that this gives the upwind value if C(θn
j+ 1

2

) = 1, then

αn
j+ 1

2

=
1

2
(1 + aλ) +

1

2
(1− aλ)(1− 1) =

1

2
(1 + aλ).

This is the same as the value returned by the Lax-Wendroff if C(θn
j+ 1

2

) = 2, then

αn
j+ 1

2

=
1

2
(1 + aλ) +

1

2
(1− aλ)(1− 2) =

1

2
(1 + aλ)− 1

2
(1− aλ) = aλ

47

Figure 4.9, 4.10, and 4.11 show the result of applying the lifting algorithm to define

the TVD shape function. From top to bottom the graphs in Figure 4.9, 4.10, and 4.11

use 17,129, and 4097 points. This is done using n = 4, n = 7, and n = 12 recursive steps

in the algorithm. Figures 4.9, 4.10, and 4.11 show shape function where we use different

values for ∆t
∆xa = 0.1, 0.5, 0.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.1 (17 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.1 (129 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.1 (4097 points)

Figure 4.9: TVD scheme with lifting framework, CFL=0.1

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.5 (17 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.5 (129 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.5 (4097 points)

Figure 4.10: TVD scheme with lifting framework, CFL=0.5

4.4.5 Lax-Friedrichs Scheme

The general numerical flux for the Lax-Friedrichs scheme takes the form

Un+1
j =

1

2

(
Unj−1 + Unj+1

)
− ∆t

2∆x

(
f(Unj+1)− f(Unj−1)

)
.

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.9 (17 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.9 (129 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
shape function of TVD, CFL=0.9 (4097 points)

Figure 4.11: TVD scheme with lifting framework, CFL=0.9

This method can be written in a conservation form (3.1) by taking

f(Un
j+ 1

2

) =
∆x

2∆t

(
Unj+1 − Unj

)
+

1

2

(
f(Unj) + f(Unj+1)

)
.

50

If the flux function is linear and f(u) = au, then

Un
j+ 1

2

=
1

2

(
f(Unj) + f(Unj+1)

)
+

∆x

2a∆t

(
Unj+1 − Unj

)
=

1

2

∆x

a∆t

(
a∆t

∆x
(Unj+1 + Unj) + (Unj+1 − Unj)

)
=

∆x

a∆t

(
1

2

(
1 +

a∆t

∆x

)
Unj+1 +

1

2

(
1− a∆t

∆x

)
Unj

)

So,

Un
j+ 1

2

= Unj+1 +

(
1

2
+

∆x

2a∆t

)
(Unj − Unj+1)

Un
j− 1

2

= Unj +

(
1

2
+

∆x

2a∆t

)
(Unj−1 − Unj)

Figure 4.12, shows the result of applying the lifting algorithm to the Lax-Friedrichs

shape function. From top to bottom the graphs in Figure 4.12 use 17,129, and 4097

points. This is done using n = 4, n = 7, and n = 12 recursive steps in the algorithm.

Remark 4.7. This example has been included due to the use of the Lax-Friedrichs method

in the proof of existence and uniqueness given by Oleinik [13].

51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
shape function: Lax− Friedrichs (17points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
shape function: Lax friedrichs (129 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
shape function:Lax−Friedrichs (4097 points)

Figure 4.12: Lax-Friedrichs scheme with lifting framework

52

CHAPTER 5

CONSTRUCTION OF WAVELETS BASES CONDITIONED ON HYPERBOLIC

CONSERVATION LAWS

In Section 4.4, we generated shape functions conditioned on various approximation

schemes conservation law via the lifting algorithm of Sweldens. Now we build the wavelet

functions from the shape functions. Through Figure 5.1, we learn how to construct the

wavelet shape function based on the central difference method.

First, we set our shape function (see Figure 5.1 (a)) in the interval [0, 1] . Then we

compress two shape functions (see Figure 5.1 (b)) in the same interval [0, 1]. Finally,

the functions shown in Figure 5.1 (b) are subtracted from the function shown in Figure

5.1 (a). The result is shown in Figure 5.1(c). The function graphed in Figure 5.1 (c) is

our wavelet function.

If the wavelet function is f(x), then

∫ 1

0
f(x) dx = 0.

Note that the shape function in Figure 5.1 (a) is supported on the unit interval

[0, 1]. Figure 5.1 (b) shows two scaled shape functions, one supported on the interval

[0, 1
2] and the other supported on [1

2 , 1]. Finally, the function graphed in Figure 5.1 (c)

is supported on the unit interval [0, 1].

53

(a)

1
2

10

shape function (central difference)

(b)

1
4

1
2

3
4

10

compress shape function

(c)

1
4

1
2

3
4

10

(a)-(b)= (c), wavelet function
∫ 1

0 wavelet dx = 0

Figure 5.1: Build the wavelet function from shape function

54

5.1 Upwind Scheme Example

Figure 5.2 shows how the wavelets associated with the Upwind scheme are created.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function (upwind)−17points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function−Upwind (129 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function−Upwind (4097 points)

Figure 5.2: The wavelet function for the Upwind scheme, CFL=0.5

55

5.2 Lax-Wendroff Scheme Example

Figure 5.3 shows the construction of wavelets based on the Lax-Wendroff method

for approximate solution of scalar conservation laws.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function (Lax−Wendroff) −17 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function (Lax−Wendroff)−129 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function (Lax−Wendroff)−4097 points

Figure 5.3: The wavelet function for the Lax-Wendroff scheme, CFL=0.5

56

5.3 Beam-Warming Scheme Example

Figure 5.4 shows the construction of wavelets based on the Beam-Warming method

for approximate solution of scalar conservation laws.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function (Beam−Warming)−17points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function (Beam−Warming)−129 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
wavelet function (Beam−Warming)−4097 points

Figure 5.4: The wavelet for the Beam-Warming scheme, CFL=0.5

57

5.4 TVD Scheme Example

Figure 5.5 shows the construction of wavelets based on the TVD method for ap-

proximate solution of scalar conservation laws.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
wavelet function of TVD, CFL=0.5 (17 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
wavelet function of TVD, CFL=0.5 (129 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
wavelet function of TVD, CFL=0.5 (4097 points)

Figure 5.5: The wavelet function for the TVD scheme, CFL=0.5

58

5.5 Lax-Friedrichs Scheme

Figure 5.6 shows the construction of wavelets based on the Lax-Friedrichs method

for approximate solution of scalar conservation laws.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
wavelet function: Lax− Friedrichs (17 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
wavelet function: Lax friedrichs (129 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
wavelet function: Lax−Friedrichs (4097 points)

Figure 5.6: The wavelet function for the Lax-Friedrichs, CFL=0.5

59

5.6 How to use the MRA in Applications

Once the shape and wavelet functions are known, how can they be of use in appli-

cations. In the next chapter, we will introduce numerical methods for conservation laws

based on the representations provided by the MRAs built in this and previous chapters.

60

CHAPTER 6

CONSTRUCTION OF APPROXIMATE SOLUTIONS OF CONSERVATION LAWS

VIA A FINITE VOLUME APPROACH

In this chapter, we will build an approximate solution method for conservation laws

from the work in previous chapters. Also, we will give an example of our approximation

method for conservation laws. The example will use the finite volume method (FVM)

approach along with a high order quadrature rule-Simpson’s Rule.

6.1 Building a Representation of Solution

In previous chapters, we created shape functions and wavelet functions condition

on numerical methods for conservation laws. In the next step, we build an approximate

solution of conservation laws.

Suppose we are given 2m samples (un = {u0, u1, u2, · · · , uN−1}︸ ︷︷ ︸
2m

, N = 2m) that

represent the solution of a conservation law at some time tn. That is,

u(x, tn) = un(x) = αn0ϕ0(x) +
m∑
l=0

N−1∑
k=0

βnl,kψl,k(x) (6.1)

αn0 = 〈un(x), ϕ0(x)〉 (6.2)

βnl,k = 〈un(x), ψl,k(x)〉 (6.3)

where ϕ0(x) is the shape function and ψl,k(x) is the wavelet function. Note that the

shape and wavelet functions are defined at discrete points. This means the inner prod-

ucts in (6.2) and (6.3) are discrete sums.

61

As shown in Figure 6.1 we can construct basis functions in our MRA for the rep-

resentation given in Equations (6.1), (6.2), and (6.3) via lifting. Figure 6.1 shows one

example of the process.

(a)

ϕ0,0

1
2

10

ϕ1,0 ϕ1,1

1
4

1
2

3
4

10

⇓

ψ0,0

1
4

1
2

3
4

10

∫ 1
0 ψ0,0(x) dx = 0

(b)

ϕ1,0 ϕ1,1

1
4

1
2

3
4

10

ϕ2,0 ϕ2,1 ϕ2,2 ϕ2,3

1
4

1
2

3
4

10

⇓

ψ1,1ψ1,0

1
4

1
2

3
4

10

∫ 1
0 ψ1,0(x) + ψ1,1 dx = 0

Figure 6.1: Relationship of the shape function and the wavelet function for
conservation law

6.2 An Example: Finite Volume Approach and Simpson’s Rule

First, we compute our approximate solution u(x, tn). When n = 0,

u0(x) = α0
0ϕ0(x) +

m∑
l=0

2m−1∑
k=0

β0
l,kψl,k(x),

62

α0
0 =

〈
u0(x), ϕ0(x)

〉
β0
l,k =

〈
u0(x), ψl,k(x)

〉
When n = 1, 2, · · · , we use th finite volume method (FVM)[10]. The finite volume

method is commonly used to discretize conservation laws. The following steps provide

a very brief review of this technique. Starting with the conservation law

ut + f(u)x = 0,

we integrate over a finite volume in the x-t plane. Given the rectangle defined by

[tn, tn+1]× [xj− 1
2
, xj+ 1

2
], we integrate as follows

∫ tn+1

tn

∫ x
j+ 1

2

x
j− 1

2

(ut + f(u)x) dx dt = 0

This can be rewritten as

∫ x
j+ 1

2

x
j− 1

2

(u(x, tn+1)− u(x, tn)) dx+

∫ tn+1

tn

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
)
dt = 0

Let

Unj =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

u(x, tn) dx.

So, (
Un+1
j − Unj

)
·∆x+

∫ tn+1

tn

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
)
dt = 0.

Next, let

Fn
j± 1

2

=
1

∆t

∫ tn+1

tn

f(u(xj± 1
2
, t)) dt.

The end result is the following

(
Un+1
j − Unj

)
·∆x+

(
Fn
j+ 1

2

− Fn
j− 1

2

)
·∆t = 0

or

Un+1
j = Unj −

∆t

∆x

(
Fn
j+ 1

2

− Fn
j− 1

2

)
.

Remark 6.1. This form has been used throughout this work. The computations to get

to this point in the FVM approach are illustrated in Figure 6.2.

63

tn

tn+1

∆x

∆t

∫ tn+1

tn
f(u(xj− 1

2
, t)) dt

∫ tn+1

tn
f(u(xj+ 1

2
, t)) dt

xj−1 xj− 1
2

xj xj+ 1
2

xj+1

Figure 6.2: Finite Volume Method

Next, we have to compute approximations for Fn
j± 1

2

= 1
∆t

∫ tn+1

tn
f(u(xj± 1

2
, t)) dt.

This integral can be approximated by a quadrature method. The quadrature method

provides a numerical approximation of the value of a definite integral
∫ b
a f(x) dx. In

this example, we use Simpson’s rule. It is one quadrature method of many that could

be used. Simpson’s rule is

∫ b

a
f(x) dx ≈ h

3

[
f(a) + 4f(

a+ b

2
) + f(b)

]
,

where h = b−a
2 . Now we need to determine values for f(a), f((

a + b2) and f(b) within

the context of the MRAs being used.

6.2.1 Linear Conservation Law Case

If f(u) = au, then an approximation of Simpson’s rule results in the following,

Fn
j± 1

2

=
1

∆t

∫ tn+1

tn

f(u(xj± 1
2
, τ)) dτ

≈ 1

∆t

(
∆t

6
a
[
u(xj± 1

2
, tn) + 4u(xj± 1

2
, tn+ 1

2
) + u(xj± 1

2
, tn+1)

])
=

1

6
a(Un

j± 1
2

+ 4U
n+ 1

2

j± 1
2

+ Un+1
j± 1

2

)

where Un
j± 1

2

= u(xj± 1
2
, tn), U

n+ 1
2

j± 1
2

= u(xj± 1
2
, tn+ 1

2
), and Un+1

j± 1
2

= u(xj± 1
2
, tn+1). By an

application of the method of characteristics, we can compute Un
j± 1

2

,U
n+ 1

2

j± 1
2

and Un+1
j± 1

2

for

64

our approximate solution, as follows

U
n+ 1

2

j± 1
2

= u(xj± 1
2
, tn+ 1

2
)

= u(xj± 1
2
− a(tn+ 1

2
− tn), tn)

= u(xj± 1
2
− a∆t

2
, tn)

= αn0ϕ0(xj± 1
2
− a∆t

2
) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
− a∆t

2
),

Un+1
j± 1

2

= u(xj± 1
2
, tn+1)

= u(xj± 1
2
− a(tn+1 − tn), tn)

= u(xj± 1
2
− a∆t, tn)

= αn0ϕ0(xj± 1
2
− a∆t) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
− a∆t),

and

Un
j± 1

2

= u(xj± 1
2
, tn)

= u(xj± 1
2
− a(tn − tn), tn)

= u(xj± 1
2
, tn)

= αn0ϕ0(xj± 1
2
) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
).

So,

Fn
j± 1

2

≈ 1

6
a(αn0

[
ϕ0(xj± 1

2
) + 4ϕ0(xj± 1

2
− a∆t

2
) + ϕ0(xj± 1

2
− a∆t)

]
+

m∑
l=0

2m−1∑
k=0

βnl,k

[
ψl,k(xj± 1

2
) + 4ψl,k(xj± 1

2
− a∆t

2
) + ψl,k(xj± 1

2
− a∆t)

]
)

Therefore, our numerical approximations for linear conservation laws are,

Un+1
j = Unj −

∆t

∆x
[Fn
j+ 1

2

− Fn
j− 1

2

]

= Unj −
a∆t

6∆x
((Un

j+ 1
2

− Un
j− 1

2

) + 4(U
n+ 1

2

j+ 1
2

− Un+ 1
2

j− 1
2

) + (Un+1
j+ 1

2

− Un+1
j+ 1

2

))

65

with the following definitions,

Unj = αn0ϕ0(xj) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj),

U
n+ 1

2

j+ 1
2

= αn0ϕ0(xj+ 1
2
− a∆t

2) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj+ 1
2
− a∆t

2
),

U
n+ 1

2

j− 1
2

= αn0ϕ0(xj− 1
2
− a∆t

2) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj− 1
2
− a∆t

2
),

Un+1
j+ 1

2

= αn0ϕ0(xj+ 1
2
− a∆t) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj+ 1
2
− a∆t),

Un+1
j− 1

2

= αn0ϕ0(xj− 1
2
− a∆t) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj− 1
2
− a∆t),

Un
j+ 1

2

= αn0ϕ0(xj+ 1
2
) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj+ 1
2
),

Un
j− 1

2

= αn0ϕ0(xj− 1
2
) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj− 1
2
).

6.2.2 Nonlinear Conservation Law

If f(u) is nonlinear, the analogous formula is the following,

Fn
j± 1

2

=
1

∆t

∫ tn+1

tn

f(u(xj± 1
2
, τ)) dτ

≈ 1

∆t

(
∆t

6

[
f(u(xj± 1

2
, tn)) + 4f(u(xj± 1

2
, tn+ 1

2
)) + f(u(xj± 1

2
, tn+1))

])

Therefore, our numerical approximations for nonlinear conservation laws are,

Un+1
j = Unj −

∆t

∆x
[Fn
j+ 1

2

− Fn
j− 1

2

]

= Unj −
∆t

6∆x
(f(Un

j+ 1
2

)− f(Un
j− 1

2

) + 4(f(U
n+ 1

2

j+ 1
2

)− f(U
n+ 1

2

j− 1
2

)) + f(Un+1
j+ 1

2

)− f(Un+1
j+ 1

2

))

with the following definitions, Unj = αn0ϕ0(xj) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj),

U
n+ 1

2

j± 1
2

= αn0ϕ0(xj± 1
2
− f ′(u(xj± 1

2
))∆t

2) +
m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
− f ′(u(xj± 1

2
))

∆t

2
),

Un+1
j± 1

2

= αn0ϕ0(xj± 1
2
− f ′(u(xj± 1

2
))∆t) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
− f ′(u(xj± 1

2
))∆t),

Un
j± 1

2

= αn0ϕ0(xj± 1
2
) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
).

66

Figure 6.3 illustrates the relationship between the application of the method of

characteristics, Simpson’s rule, and the finite volume method (FVM).

tn

tn+ 1
2

tn+1

a∆t
2

or f ′(un
j+ 1

2
) ∆t

2
a∆t or f ′(un

j− 1
2
)∆t

xj− 1
2

xj− 1
2
− a∆t

xj+ 1
2

Figure 6.3: Use of Simpson’s Rule to compute numerical fluxes in the Finite
Volume Method

67

CHAPTER 7

CONVERGENCE OF THE APPROXIMATE SOLUTIONS TO A UNIQUE WEAK

SOLUTION OF THE CONSERVATION LAW

In this chapter, we will prove convergence of our approximate solution method for

conservation laws. Convergence of our approximation scheme will requires the resulting

finite difference scheme satisfies an entropy condition (Smoller’s book [15]).

As an example of how this can be achieved, we consider the following finite difference

discretization of the equation

Un+1
j = Unj − ∆t

∆x

[
Fn
j+ 1

2

− Fn
j− 1

2

]
,

with the following definitions,

Fn
j+ 1

2

= 1
6

(
f(Un

j+ 1
2

) + 4f(U
n+ 1

2

j+ 1
2

) + f(Un+1
j+ 1

2

)

)
,

Fn
j− 1

2

= 1
6

(
f(Un

j− 1
2

) + 4f(U
n+ 1

2

j− 1
2

) + f(Un+1
j− 1

2

)

)
,

Unj = αn0ϕ0(xj) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj),

U
n+ 1

2

j± 1
2

= αn0ϕ0(xj± 1
2
− f ′(u(xj± 1

2
))∆t

2) +
m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
− f ′(u(xj± 1

2
))

∆t

2
),

Un+1
j± 1

2

= αn0ϕ0(xj± 1
2
− f ′(u(xj± 1

2
))∆t) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
− f ′(u(xj± 1

2
))∆t),

Un
j± 1

2

= αn0ϕ0(xj± 1
2
) +

m∑
l=0

2m−1∑
k=0

βnl,kψl,k(xj± 1
2
),

and with the initial data

u0(x) = α0
0ϕ0(x) +

m∑
l=0

2m−1∑
k=0

β0
l,kψl,k(x),

α0
0 =

〈
u0(x), ϕ0(x)

〉

68

β0
l,k =

〈
u0(x), ψl,k(x)

〉
.

and we show that

1. Our approximate solution satisfies (a),(b), and (c) of Theorem 16.1 [15]. That is,

let u0 ∈ L∞(R) and let f ∈ C2(R) with f ′′ > 0 on
{
u : |u| ≤

∥∥u0
∥∥
∞
}
. Then there

exists a weak solution u with the following properties:

(a) |u(x, t)| ≤
∥∥u0
∥∥
∞ ≡M, (x, t) ∈ R× R+.

(b) There is a constant E > 0 , depending only onM , µ = min
{
f ′′(u) : |u| ≤

∥∥u0
∥∥
∞
}

and A = max
{
f ′(u) : |u| ≤

∥∥u0
∥∥
∞
}

, such that for every a > 0, t > 0, and

x ∈ R,
u(x+ a, t)− u(x, t)

a
<
E

t

(c) u is stable and depends continuously on u0 in the following sense: If u0, v0 ∈

L∞(R) ∩ L1(R) with
∥∥v0
∥∥
∞ ≤

∥∥u0
∥∥
∞ and v is the corresponding solution

constructed from the process in the proof, then for every x1, x2 ∈ R, with

x1 < x2, and every t > 0,

∫ x2

x1

|u(x, t)− v(x, t)| dx ≤
∫ x2+At

x1−At

∣∣u0(x)− v0(x)
∣∣ dx

2. As ∆t,∆x ↘ 0, the solution converges to a weak solution satisfying (a),(b), and

(c). The convergence is a weak version of unj −→ u(j∆x, n∆t)-convergence to an

entropy solution.

We will use the notation

M =
∥∥u0
∥∥
L∞

,

µ = min
{
f ′′(u) : |u| ≤

∥∥u0
∥∥
∞
}

and

A = max
{
f ′(u) : |u| ≤

∥∥u0
∥∥
∞
}
.

in the rest of this section and in the proofs that follow. We will also use the Lax-

Friedrichs MRA as constructed in our work.

69

7.1 Uniform Bound on the Approximate Solution

Lemma 7.1. We show that if
∣∣∣U0

j

∣∣∣ ≤M , then

∣∣Unj ∣∣ ≤M for all j ∈ R, n ∈ R+.

Proof. We write our difference approximation as following,

Un+1
j = Unj −

∆t

∆x
[Fn
j+ 1

2

− Fn
j− 1

2

]

with

Fn
j+ 1

2

=
1

6
(f(Un

j+ 1
2

) + 4f(U
n+ 1

2

j+ 1
2

) + f(Un+1
j+ 1

2

))

Fn
j− 1

2

=
1

6
(f(Un

j− 1
2

) + 4f(U
n+ 1

2

j− 1
2

) + f(Un+1
j− 1

2

)).

So that,

Un+1
j = Unj

− ∆t

6∆x

(
f(Un

j+ 1
2

)− f(Un
j− 1

2

) + 4

(
f(U

n+ 1
2

j+ 1
2

)− f(U
n+ 1

2

j− 1
2

)

)
+ f(Un+1

j+ 1
2

)− f(Un+1
j+ 1

2

)

)
=

1

6

(
Unj −

∆t

∆x

[
f(Un

j+ 1
2

)− f(Un
j− 1

2

)
])

+
4

6

(
Unj −

∆t

∆x

[
f(U

n+ 1
2

j+ 1
2

)− f(U
n+ 1

2

j− 1
2

)

])
+

1

6

(
Unj −

∆t

∆x

[
f(Un+1

j+ 1
2

)− f(Un+1
j+ 1

2

)

])

By the mean value theorem,

Un+1
j =

1

6

(
Unj −

∆t

∆x
f ′(θ1)(Un

j+ 1
2

− Un
j− 1

2

)

)
+

4

6

(
Unj −

∆t

∆x
f ′(θ2)(U

n+ 1
2

j+ 1
2

− Un+ 1
2

j− 1
2

)

)
+

1

6

(
Unj −

∆t

∆x
f ′(θ3)(Un+1

j+ 1
2

− Un+1
j− 1

2

)

)
(7.1)

(7.2)

where θ1 ∈
[
Un
j− 1

2

, Un
j+ 1

2

]
, θ2 ∈

[
U
n+ 1

2

j− 1
2

, U
n+ 1

2

j+ 1
2

]
, and θ3 ∈

[
Un+1
j− 1

2

, Un+1
j+ 1

2

]
.

Next, we use the polynomial framework definition (see section 3.2.2).

Un
j+ 1

2

= mn
j+ 1

2

(αn
j+ 1

2

) = Unj+1 + (Unj − Unj+1)αn
j+ 1

2

,

70

Un
j− 1

2

= mn
j− 1

2

(αn
j− 1

2

) = Unj + (Unj−1 − Unj)αn
j− 1

2

.

Also, we choose αn
j± 1

2

from the Lax-Friedrichs MRA as constructed in Section 4.4.5,

Un
j+ 1

2

= Unj+1 +

(
1

2
+

1

2

∆x

a+∆t

)
(Unj − Unj+1),

Un
j− 1

2

= Unj +

(
1

2
+

1

2

∆x

a−∆t

)
(Unj−1 − Unj),

with a+ = f ′(Un
j+ 1

2

) and a− = f ′(Un
j− 1

2

).

When we use these definitions we get a form that approximates the Lax-Friedrichs

scheme used by Oleinik (see [13]). That is,

Unj −
∆t

∆x
f ′(θ1)(Un

j+ 1
2

− Un
j− 1

2

) ≈ 1

2

(
Unj+1 + Unj−1

)
− ∆t

2∆x

(
f(Unj+1)− f(Unj−1)

)
=

1

2

(
Unj+1 + Unj−1

)
− ∆t

2∆x

(
f ′(θ4)(Unj+1 − Unj−1)

)
=

(
1

2
− ∆t

2∆x
f ′(θ4)

)
Unj+1 +

(
1

2
+

∆t

2∆x
f ′(θ4)

)
Unj−1.

If we assume
1

2
+

∆t

2∆x
f ′(θ) ≥ 0,

1

2
− ∆t

2∆x
f ′(θ) ≥ 0,

then by a simple induction the first term in (7.1) will give

∣∣∣∣16
((

1

2
− ∆t

2∆x
f ′(θ4)

)
Unj+1 +

(
1

2
+

∆t

2∆x
f ′(θ4)

)
Unj−1

)∣∣∣∣
≤ 1

6

([
1

2
− ∆t

2∆x
f ′(θ4)

]
M +

[
1

2
+

∆t

2∆x
f ′(θ4)

]
M

)
=

1

6
M.

Now we do the same for the other two terms in Simpson’s rule. Therefore, we have

∣∣∣Un+1
j

∣∣∣ ≤ 1

6

([
1

2
− ∆t

2∆x
f ′(θ4)

]
M +

[
1

2
+

∆t

2∆x
f ′(θ4)

]
M

)
+

4

6

([
1

2
− ∆x

2∆t
f ′(θ5)

]
M +

[
1

2
+

∆x

2∆t
f ′(θ5)

]
M

)
+

1

6

([
1

2
− ∆x

2∆t
f ′(θ6)

]
M +

[
1

2
+

∆x

2∆t
f ′(θ6)

]
M

)
≤ 1

6
M +

4

6
M +

1

6
M

= M.

71

This implies ∣∣∣Un+1
j

∣∣∣ ≤M
whenever ∣∣Unj ∣∣ ≤M
and the result we need.

7.2 A Discrete Entropy Condition on the Approximate Solution

The next result we need to prove is the following.

Lemma 7.2. If C = min
(µ

2 ,
A

4M

)
, then

Unj − Unj−2

2∆x
≤ E

n∆t

where E = 9
C .

Proof. We define the following difference

znj =
Unj − Unj−2

2∆x
.

Then our difference scheme implies

zn+1
j − znj

∆t
+

1

36(∆x)2
[f(Un

j+ 1
2

)− 2f(Un
j− 1

2

) + f(Un
j− 3

2

)

+ 4(f(U
n+ 1

2

j+ 1
2

)− 2f(U
n+ 1

2

j− 1
2

)

+ f(U
n+ 1

2

j− 3
2

)) + f(Un+1
j+ 1

2

)

− 2f(Un+1
j+ 1

2

) + f(Un+1
j+ 3

2

)] = 0.

72

Substituting the definition above into our finite difference scheme results in

zn+1
j = znj −

∆t

36(∆x)2
[f(Un

j+ 1
2

)− 2f(Un
j− 1

2

) + f(Un
j− 3

2

)

+ 4(f(U
n+ 1

2

j+ 1
2

)− 2f(U
n+ 1

2

j− 1
2

) + f(U
n+ 1

2

j− 3
2

))

+ f(Un+1
j+ 1

2

)− 2f(Un+1
j+ 1

2

) + f(Un+1
j+ 3

2

)]

=
zn
j+ 1

2

+ zn
j− 1

2

2
− ∆t

36(∆x)2
[f(Un

j+ 1
2

)

− 2f(Un
j− 1

2

) + f(Un
j− 3

2

) + 4(f(U
n+ 1

2

j+ 1
2

)

− 2f(U
n+ 1

2

j− 1
2

) + f(U
n+ 1

2

j− 3
2

)) + f(Un+1
j+ 1

2

)

− 2f(Un+1
j+ 1

2

) + f(Un+1
j+ 3

2

)]

=
1

2

(
zn
j+ 1

2

+ zn
j− 1

2

)
− ∆t

36(∆x)2
[
(
f(Un

j+ 1
2

)− f(Un
j− 1

2

)
)

+
(
f(Un

j− 3
2

)− f(Un
j− 1

2

)
)

+ 4

(
f(U

n+ 1
2

j+ 1
2

)− f(U
n+ 1

2

j− 1
2

)

)
+ 4

(
f(U

n+ 1
2

j− 3
2

))

− f(U
n+ 1

2

j− 1
2

) +

(
f(Un+1

j+ 1
2

)− f(Un+1
j+ 1

2

)

)
+

(
f(Un+1

j+ 3
2

)− f(Un+1
j+ 1

2

)

)
]

Using Taylor expansions result in

f(Un
j+ 1

2

) = f(Un
j− 1

2

) + f ′(Un
j− 1

2

)
(
Un
j+ 1

2

− Un
j− 1

2

)
+
f ′′(ξ)

2!

(
Un
j+ 1

2

− Un
j− 1

2

)2

and

f(Un
j+ 1

2

)− f(Un
j− 1

2

) = f ′(Un
j− 1

2

)
(
Un
j+ 1

2

− Un
j− 1

2

)
+
f ′′(θ1)

2!

(
Un
j+ 1

2

− Un
j− 1

2

)2

where θ1 is between Un
j+ 1

2

and Un
j− 1

2

.

Also,

f(Un
j− 3

2

) = f(Un
j− 3

2

) + f ′(Un
j− 1

2

)
(
Un
j− 3

2

− Un
j− 1

2

)
+
f ′′(ξ)

2!

(
Un
j− 3

2

− Un
j− 1

2

)2

and

f(Un
j− 3

2

)− f(Un
j− 1

2

) = f ′(Un
j− 1

2

)
(
Un
j− 3

2

− Un
j− 1

2

)
+
f ′′(θ2)

2!

(
Un
j− 3

2

− Un
j− 1

2

)2

73

where θ2 is between Un
j− 1

2

and Un
j− 3

2

.

Therefore,

zn+1
j =

1

2

(
zn
j+ 1

2

+ zn
j− 1

2

)
− ∆t

36(∆x)2
[f ′(Un

j− 1
2

)
(
Un
j+ 1

2

− Un
j− 1

2

)
(7.3)

+
f ′′(θ1)

2!

(
Un
j+ 1

2

− Un
j− 1

2

)2

+ f ′(Un
j− 1

2

)
(
Un
j− 3

2

− Un
j− 1

2

)
+
f ′′(θ2)

2!

(
Un
j− 3

2

− Un
j− 1

2

)2

+ 4

(
f ′(U

n+ 1
2

j− 1
2

)

(
U
n+ 1

2

j+ 1
2

− Un+ 1
2

j− 1
2

)
+
f ′′(θ3)

2!

(
U
n+ 1

2

j+ 1
2

− Un+ 1
2

j− 1
2

)2
)

+ 4

(
f ′(U

n+ 1
2

j− 1
2

)

(
U
n+ 1

2

j− 3
2

− Un+ 1
2

j− 1
2

)
+
f ′′(θ4)

2!

(
U
n+ 1

2

j− 3
2

− Un+ 1
2

j− 1
2

)2
)

+ f ′(Un+1
j− 1

2

)

(
Un+1
j+ 1

2

− Un+1
j− 1

2

)
+
f ′′(θ5)

2!

(
Un+1
j+ 1

2

− Un+1
j− 1

2

)2

+ f ′(Un+1
j− 1

2

)

(
Un+1
j− 3

2

− Un+1
j− 1

2

)
+
f ′′(θ6)

2!

(
Un+1
j− 3

2

− Un+1
j− 1

2

)2

] (7.4)

where

θ1 ∈ [Un
j− 1

2

, Un
j+ 1

2

], θ2 ∈ [Un
j− 3

2

, Un
j− 1

2

], θ3 ∈ [U
n+ 1

2

j− 1
2

, U
n+ 1

2

j+ 1
2

],

θ4 ∈ [U
n+ 1

2

j− 3
2

, U
n+ 1

2

j− 1
2

], θ5 ∈ [Un+1
j− 1

2

, Un+1
j+ 1

2

], θ6 ∈ [Un+1
j− 3

2

, Un+1
j− 1

2

].

We use

znj =
Unj − Unj−2

2∆x
,

so

zn
j+ 1

2

=
Un
j+ 1

2

− Un
j− 1

2

2∆x
=⇒ 2∆xzn

j+ 1
2

= Un
j+ 1

2

− Un
j− 1

2

and

zn
j− 1

2

=
Un
j− 1

2

− Un
j− 3

2

2∆x
=⇒ 2∆xzn

j− 1
2

= Un
j− 1

2

− Un
j− 3

2

.

Substituting the double line differences above into (7.2) gives the following expression.

74

zn+1
j =

1

2

(
zn
j+ 1

2

+ zn
j− 1

2

)
− ∆t

36(∆x)2
[f ′(Un

j− 1
2

)2∆xzn
j+ 1

2

− f ′(Un
j− 1

2

)2∆xzn
j− 1

2

+
f ′′(θ1)

2!
(2∆xzn

j+ 1
2

)2 +
f ′′(θ2)

2!
(2∆xzn

j− 1
2

)2

+ 4(f ′(U
n+ 1

2

j− 1
2

)(2∆xz
n+ 1

2

j+ 1
2

)− f ′(Un+ 1
2

j− 1
2

)(2∆xz
n+ 1

2

j− 1
2

) +
f ′′(θ3)

2!
(2∆xz

n+ 1
2

j+ 1
2

)2

+
f ′′(θ4)

2!
(2∆xz

n+ 1
2

j− 1
2

)2) + f ′(Un+1
j− 1

2

)(2∆xzn+1
j+ 1

2

)− f ′(Un+1
j− 1

2

)(2∆xzn+1
j− 1

2

)

+
f ′′(θ5)

2!
(2∆xzn+1

j+ 1
2

)2 +
f ′′(θ6)

2!
(2∆xzn+1

j− 1
2

)2]

=

(
1

2
− ∆t

18∆x
f ′(Un

j− 1
2

)

)
zn
j+ 1

2

+

(
1

2
+

∆t

18∆x
f ′(Un

j− 1
2

)

)
zn
j− 1

2

− ∆t

18

(
f ′′(θ1)(zn

j+ 1
2

)2 + f ′′(θ2)(zn
j− 1

2

)2
)

− 2∆t

9∆x

(
f ′(U

n+ 1
2

j− 1
2

)z
n+ 1

2

j+ 1
2

− f ′(Un+ 1
2

j− 1
2

)z
n+ 1

2

j− 1
2

)
− 2∆t

9

(
f ′′(θ3)(z

n+ 1
2

j+ 1
2

)2 + f ′′(θ4)(z
n+ 1

2

j− 1
2

)2

)
− ∆t

18∆x

(
f ′(Un+1

j− 1
2

)zn+1
j+ 1

2

− f ′(Un+1
j− 1

2

)zn+1
j− 1

2

)
− ∆t

18

(
f ′′(θ5)(zn+1

j+ 1
2

)2 + f ′′(θ6)(zn+1
j− 1

2

)2

)

We define z̃nj = max
{∣∣∣zn

j+ 1
2

∣∣∣ , ∣∣∣zn
j− 1

2

∣∣∣ , 0}. If z̃nj = 0, then znj ≤ z̃nj−1 = 0 ≤ E
n∆t .

We can assume z̃nj 6= 0, and we suppose z̃nj = zj+ 1
2

or z̃nj = zj− 1
2
.

Then, we have

zn+1
j ≤

(
1

2
− ∆t

18∆x
f ′(Un

j− 1
2

)

)
zn
j+ 1

2

+

(
1

2
+

∆t

18∆x
f ′(Un

j− 1
2

)

)
zn
j− 1

2

− 2∆t

9∆x

(
f ′(U

n+ 1
2

j− 1
2

)z
n+ 1

2

j+ 1
2

− f ′(Un+ 1
2

j− 1
2

)z
n+ 1

2

j− 1
2

)
− ∆t

18∆x

(
f ′(Un+1

j− 1
2

)zn+1
j+ 1

2

− f ′(Un+1
j− 1

2

)zn+1
j− 1

2

)
− ∆t

9
C
(

(zn
j+ 1

2

)2 + (zn
j− 1

2

)2
)
− 4∆t

9
C

(
(z
n+ 1

2

j+ 1
2

)2 + (z
n+ 1

2

j− 1
2

)2

)
− ∆t

9
C

(
(zn+1
j+ 1

2

)2 + (zn+1
j− 1

2

)2

)
≤
(

1

2
− ∆t

18∆x
f ′(Un

j− 1
2

)

)
z̃nj +

(
1

2
+

∆t

18∆x
f ′(Un

j− 1
2

)

)
z̃nj

− 2∆t

9∆x

(
f ′(U

n+ 1
2

j− 1
2

)z̃
n+ 1

2
j − f ′(Un+ 1

2

j− 1
2

)z̃
n+ 1

2
j

)
− ∆t

18∆x

(
f ′(Un+1

j− 1
2

)z̃n+1
j − f ′(Un+1

j− 1
2

)z̃n+1
j

)
− ∆t

9
C
(
(znj)2

)
− 4∆t

9
C

(
(z
n+ 1

2
j)2

)
− ∆t

9
C
(

(zn+1
j)2

)
=

1

2
z̃nj +

1

2
z̃nj −

∆t

9
C
(
(znj)2

)
− 4∆t

9
C

(
(z
n+ 1

2
j)2

)
− ∆t

9
C
(

(zn+1
j)2

)

75

∴ zn+1
j ≤ z̃nj −

∆t

3
C
(
(z̃nj)2

)
− 4∆t

3
C

(
(z̃
n+ 1

2
j)2

)
− ∆t

3
C
(

(z̃n+1
j)2

)
.

We know that
∣∣∣Unj ∣∣∣ ≤M from the result in Section 7.1. So,

znj =
Unj − Unj−2

2∆x
=⇒ znj ≤

2M

2∆x
=

M

∆x
.

Also, we have assumed

A∆t

∆x
≤ 1 =⇒ A∆t ≤ ∆x =⇒ 1

A∆t
≥ 1

∆x
,

and the fact that

C ≤ A

4M
=⇒ 4CM ≤ A =⇒ 1

4CM
≥ 1

A
.

Thus we have

znj ≤
∣∣znj ∣∣ ≤ M

∆x
≤ M

A∆t
≤ M

∆t

1

4CM
=

1

4C∆t
.

This implies

znj ≤
1

4C∆t
.

Let

Mn = max
{
z̃nj
}
.

Then, Mn ≥ 0. Also, let φ(y) = y − C∆t(y)2.

Then, φ′(y) = 1− 2C∆ty > 0 =⇒ φ is a increasing function if 1
2C∆t > y.

Therefore,

znj ≤
1

4C∆t
<

1

2C∆t
,

so that φ(z̃nj) ≤ φ(Mn), and this gives

zn+1
j ≤ z̃nj −

∆t

9
C
(
(z̃nj)2

)
− 4∆t

9
C

(
(z̃
n+ 1

2
j)2

)
− ∆t

9
C
(

(z̃n+1
j)2

)
≤ z̃nj −

∆t

9
C
(
(z̃nj)2

)
≤Mn − ∆t

9
C(Mn)2.

As in Oleinik’s proof we arrive at

zn+1
j ≤Mn − ∆t

9
C(Mn)2,

76

and this implies

Mn+1 ≤Mn − ∆t

9
C(Mn)2.

We shall show that this necessarily implies

Mn ≤ 1
nC∆t

9 + 1
M0

. (7.5)

Assuming (7.3), we have

znj ≤Mn ≤ 1
nC∆t

9 + 1
M0

≤ 9

Cn∆t
=

E

n∆t
,

and this gives
Unj − Unj−2

2∆x
≤ E

n∆t
.

We have to prove

Mn ≤ 1
nC∆t

9 + 1
M0

.

We proceed by induction. The case n = 0 is trivial. So we show that the result holds

when n is replaced by n+ 1. From

Mn ≤ 1
nC∆t

9 + 1
M0

,

1

Mn
≥ nC∆t

9
+

1

M0
.

So

1− C∆tMn

9
≥ 1− Cn∆tMn

9
≥ 1

M0
≥ 0

and

1−
(
C∆tMn

9

)2

≥ 0.

This gives the inequality

(
1− C∆tMn

9

)
︸ ︷︷ ︸

≥0

(
1 +

C∆tMn

9

)
︸ ︷︷ ︸

≥0

≥ 0.

From Mn+1 ≤Mn − ∆t
9 C(Mn)2, we have

Mn+1 ≤Mn

(
1− ∆t

9
CMn

)
,

77

and
Mn+1

1− ∆t
9 CM

n
≤Mn ≤ Mn

1−
(

∆t
9 CM

n
)2 .

From
Mn+1

1− ∆t
9 CM

n
≤ Mn

1−
(

∆t
9 CM

n
)2 ,

we can write

Mn+1 ≤ Mn

1 + C∆t
9 Mn

=
1

1
Mn + C∆t

9

≤ 1
Cn∆t

9 + 1
M0 + C∆t

9

=
1

C∆t
9 (n+ 1) + 1

M0

.

Therefore,

Mn ≤ 1
nC∆t

9 + 1
M0

,

and

znj ≤Mn ≤ 1
nC∆t

9 + 1
M0

≤ 9

Cn∆t
=

E

n∆t
.

Thus

Mn ≤ 1
nC∆t

9 + 1
M0

holds for all n. This proves the result.

7.3 Stability of the Approximate Solution

7.3.1 A Total Variation Bound

Following along the proof in Smoller [15], the next result shows that the variation of

the difference method including Simpson’s rule quadrature is locally bounded whenever

n∆t ≥ 0. The result we need is

Lemma 7.3. Let
{
Unj

}
and

{
V n
j

}
be solutions corresponding to the initial values

{
U0
j

}
and

{
V 0
j

}
, respectively, with sup

∣∣∣U0
j

∣∣∣ ≤ M and sup
∣∣∣V 0
j

∣∣∣ ≤ M . Then for n > 0 we

have ∑
|j|≤J

∣∣Unj − V n
j

∣∣∆x ≤ ∑
|j|≤J+n

∣∣U0
j − V 0

j

∣∣∆x.

78

Proof. Let Wn
j = Unj − V n

j , then we have

Wn+1
j = Un+1

j − V n+1
j

= Unj −
∆t

6∆x
(f(Un

j+ 1
2

)− f(Un
j− 1

2

) + 4(f(U
n+ 1

2

j+ 1
2

)

− f(U
n+ 1

2

j− 1
2

)) + f(Un+1
j+ 1

2

)− f(Un+1
j+ 1

2

))

− V n
j +

∆t

6∆x
(f(V n

j+ 1
2

)− f(V n
j− 1

2

) + 4(f(V
n+ 1

2

j+ 1
2

)

− f(V
n+ 1

2

j− 1
2

)) + f(V n+1
j+ 1

2

)− f(V n+1
j+ 1

2

))

=
(
Unj − V n

j

)
− ∆t

6∆x

(
f(Un

j+ 1
2

)− f(V n
j+ 1

2

)
)

+
∆t

6∆x

(
f(Un

j− 1
2

)− f(V n
j− 1

2

)
)

− 4∆t

6∆x

(
f(U

n+ 1
2

j+ 1
2

)− f(V
n+ 1

2

j+ 1
2

)

)
+

4∆t

6∆x

(
f(U

n+ 1
2

j− 1
2

)− f(V
n+ 1

2

j− 1
2

)

)
− ∆t

6∆x

(
f(Un+1

j+ 1
2

)− f(V n+1
j+ 1

2

)

)
+

∆t

6∆x

(
f(Un+1

j− 1
2

)− f(V n+1
j− 1

2

)

)
=

1

6

[(
Unj − V n

j

)
− ∆t

∆x

((
f(Un

j+ 1
2

)− f(V n
j+ 1

2

)
)
−
(
f(Un

j− 1
2

)− f(V n
j− 1

2

)
))]

+
4

6

[(
Unj − V n

j

)
− ∆t

∆x

((
f(U

n+ 1
2

j+ 1
2

)− f(V
n+ 1

2

j+ 1
2

)

)
−
(
f(U

n+ 1
2

j− 1
2

)− f(V
n+ 1

2

j− 1
2

)

))]
+

1

6

[(
Unj − V n

j

)
− ∆t

∆x

((
f(Un+1

j+ 1
2

)− f(V n+1
j+ 1

2

)

)
−
(
f(Un+1

j− 1
2

)− f(V n+1
j− 1

2

)

))]
=

1

6

[(
Unj − V n

j

)
− ∆t

∆x
f ′(θ1)

(
(Un

j+ 1
2

− V n
j+ 1

2

)− (Un
j− 1

2

− V n
j− 1

2

)
)]

+
4

6

[(
Unj − V n

j

)
− ∆t

∆x
f ′(θ2)

(
(U

n+ 1
2

j+ 1
2

− V n+ 1
2

j+ 1
2

)− (U
n+ 1

2

j− 1
2

− V n+ 1
2

j− 1
2

)

)]
+

1

6

[(
Unj − V n

j

)
− ∆t

∆x
f ′(θ3)

(
(Un+1

j+ 1
2

− V n+1
j+ 1

2

)− (Un+1
j− 1

2

− V n+1
j− 1

2

)

)]

This result is obtained by the same approach as Section 7.1.

• We use the polynomial framework definition (see Section 3.2.2),

Un
j+ 1

2

= mn
j+ 1

2

(αn
j+ 1

2

) = Unj+1 + (Unj − Unj+1)αn
j+ 1

2

,

and

Un
j− 1

2

= mn
j− 1

2

(αn
j− 1

2

) = Unj + (Unj−1 − Unj)αn
j− 1

2

.

• We choose αn
j± 1

2

for Lax-Friedrichs method (see Section 4.4.5),

Un
j+ 1

2

= Unj+1 +

(
1

2
+

1

2

∆x

a+∆t

)
(Unj − Unj+1),

79

and

Un
j− 1

2

= Unj +

(
1

2
+

1

2

∆x

a−∆t

)
(Unj−1 − Unj),

with

a+ = f ′(Un
j+ 1

2

)

and a− = f ′(Un
j− 1

2

).

• When we use these forms we get a form that approximates Lax-Friedrichs.

That is,

(
Unj − V n

j

)
− ∆t

∆xf
′(θ1)

(
(Un

j+ 1
2

− V n
j+ 1

2

)− (Un
j− 1

2

− V n
j− 1

2

)
)

≈ 1
2((Unj+1 − V n

j+1) + (Unj−1 − V n
j−1))

− ∆t
2∆x

(
(f(Unj+1)− f(V n

j+1))− (f(Unj−1)− f(V n
j−1))

)
= (1

2 −
∆t

2∆xf
′(θ4))(Unj+1 − V n

j+1)

+(1
2 + ∆t

2∆xf
′(θ4))(Unj−1 − V n

j−1)

= (1
2 −

∆t
2∆xf

′(θ4))Wn
j+1 + (1

2 + ∆t
2∆xf

′(θ4))Wn
j−1

Therefore,

Wn+1
j =

1

6

[
(
1

2
− ∆t

2∆x
f ′(θ4))Wn

j+1 + (
1

2
+

∆t

2∆x
f ′(θ4))Wn

j−1

]
+

4

6

[
(
1

2
− ∆t

2∆x
f ′(θ5))W

n+ 1
2

j+1 + (
1

2
+

∆t

2∆x
f ′(θ5))W

n+ 1
2

j−1

]
+

1

6

[
(
1

2
− ∆t

2∆x
f ′(θ6))Wn+1

j+1 + (
1

2
+

∆t

2∆x
f ′(θ6))Wn+1

j−1

]

Since the stability condition A∆t
∆x ≤ 1 is assumed true, the coefficients of Wn

j±1,W
n+ 1

2
j±1 ,

and Wn+1
j±1 are non-negative; using this we have

80

∑
|j|≤J

∣∣∣Wn+1
j

∣∣∣ ≤ ∑
|j|≤J

1

6

[
(
1

2
− ∆t

2∆x
f ′(θ4))

∣∣Wn
j+1

∣∣+ (
1

2
+

∆t

2∆x
f ′(θ4))

∣∣Wn
j−1

∣∣]

+
∑
|j|≤J

4

6

[
(
1

2
− ∆t

2∆x
f ′(θ5))

∣∣∣∣Wn+ 1
2

j+1

∣∣∣∣+ (
1

2
+

∆t

2∆x
f ′(θ5))

∣∣∣∣Wn+ 1
2

j−1

∣∣∣∣]

+
∑
|j|≤J

1

6

[
(
1

2
− ∆t

2∆x
f ′(θ6))

∣∣∣Wn+1
j+1

∣∣∣+ (
1

2
+

∆t

2∆x
f ′(θ6))

∣∣∣Wn+1
j−1

∣∣∣]

≤
∑

|m|≤J+1

1

6

[
(
1

2
− ∆t

2∆x
f ′(θ4)) |Wn

m|+ (
1

2
+

∆t

2∆x
f ′(θ4)) |Wn

m|
]

+
∑

|m|≤J+1

4

6

[
(
1

2
− ∆t

2∆x
f ′(θ5))

∣∣∣∣Wn+ 1
2

m

∣∣∣∣+ (
1

2
+

∆t

2∆x
f ′(θ5))

∣∣∣∣Wn+ 1
2

m

∣∣∣∣]

+
∑

|m|≤J+1

1

6

[
(
1

2
− ∆t

2∆x
f ′(θ6))

∣∣Wn+1
m

∣∣+ (
1

2
+

∆t

2∆x
f ′(θ6))

∣∣Wn+1
m

∣∣]
≤

∑
|m|≤J+1

1

6
|Wn

m|+
∑

|m|≤J+1

4

6
|Wn

m|+
∑

|m|≤J+1

1

6
|Wn

m|

=
∑

|m|≤J+1

|Wn
m| .

Therefore, ∑
|j|≤J

∣∣∣Wn+1
j

∣∣∣ ≤ ∑
|m|≤J+1

|Wn
m| ,

∑
|j|≤J

∣∣Wn
j

∣∣ ≤ ∑
|m|≤J+1

∣∣Wn−1
m

∣∣ ,
∑
|j|≤J

∣∣Wn
j

∣∣∆x ≤ ∑
|j|≤J+n

∣∣W 0
j

∣∣∆x,
and ∑

|j|≤J

∣∣Unj − V n
j

∣∣∆x ≤ ∑
|j|≤J+n

∣∣U0
j − V 0

j

∣∣∆x.
It follows from this by a sample induction argument, that the stability holds. See [15].

7.3.2 Convergence to a Weak Solution

We show the convergence of our difference approximation. We know that

1. Unj is uniformly bounded. (Section 7.1),

2. our approximate solution satisfies the entropy condition. (Section 7.2), and

3. our approximate solution is stable. (Section 7.3.1)

81

From this, we must show that our approximate solution is a weak solution.

Let ∆xi → 0 as i→∞, and suppose that for φ ∈ C3
0

lim
i→∞

∫ ∞
−∞

[Ui(x, 0)− u0(x)]φ(x, 0) dx = 0.

Then u is satisfies

∫ ∫
t>0

(uφt + f(u)φx) dx dt+

∫
t=0

u0φ dx = 0

as described in Section 2.3.1.

Proof, Our approximate solution can be written in the form

Un+1
j − Unj

∆t
+

1

6∆x

[
f(Un

j+ 1
2

)− f(Un
j− 1

2

)
]

+
4

6∆x

[
f(U

n+ 1
2

j+ 1
2

)− f(U
n+ 1

2

j− 1
2

)

]
+

1

6∆x

[
f(Un+1

j+ 1
2

)− f(Un+1
j+ 1

2

)

]
= 0.

First, we multiply φnj , then we have

φn+1
j Un+1

j − φnjUnj
∆t︸ ︷︷ ︸
1©

−Un+1
j

φn+1
j − φnj

∆t
+

1

6∆x

[
φn
j+ 1

2

f(Un
j+ 1

2

)− φn
j− 1

2

f(Un
j− 1

2

)
]

︸ ︷︷ ︸
2©

− f(Un
j+ 1

2

)

(
φn
j+ 1

2

− φnj
6∆x

)
− f(Un

j− 1
2

)

(
φnj − φnj− 1

2

6∆x

)

+
4

6∆x

[
φ
n+ 1

2

j+ 1
2

f(U
n+ 1

2

j+ 1
2

)− φn+ 1
2

j− 1
2

f(U
n+ 1

2

j− 1
2

)

]
︸ ︷︷ ︸

3©

−f(U
n+ 1

2

j+ 1
2

)

4(φ
n+ 1

2

j+ 1
2

− φnj)

6∆x



− f(U
n+ 1

2

j− 1
2

)

4(φnj − φ
n+ 1

2

j− 1
2

)

6∆x

+
1

6∆x

[
φn+1
j+ 1

2

f(Un+1
j+ 1

2

)− φn+1
j− 1

2

f(Un+1
j− 1

2

)

]
︸ ︷︷ ︸

4©

− f(Un+1
j+ 1

2

)

φn+1
j+ 1

2

− φnj
6∆x

− f(Un+1
j− 1

2

)

φnj − φn+1
j− 1

2

6∆x

 = 0.

Since φ has compact support, we may assume that φnj = 0 if n ≥ T
∆t . We multiply by

∆t∆x and sum over all j ∈ R and n ∈ R+. 1©, 2©, 3©, and 4© are ”telescoping” and they

82

cancel, except for the first term with n = 0. So we have

−∆x
∑
j

U0
j φ

0
j + ∆t∆x(−

∑
j,n

Un+1
j

φn+1
j − φnj

∆t
−
∑
j,n

f(Un
j+ 1

2

)

(
φn
j+ 1

2

− φnj
6∆x

)

−
∑
j,n

f(Un
j− 1

2

)

(
φnj − φnj− 1

2

6∆x

)
−
∑
j,n

f(U
n+ 1

2

j+ 1
2

)

4(φ
n+ 1

2

j+ 1
2

− φnj)

6∆x


−
∑
j,n

f(U
n+ 1

2

j− 1
2

)

4(φnj − φ
n+ 1

2

j− 1
2

)

6∆x

−∑
j,n

f(Un+1
j+ 1

2

)

φn+1
j+ 1

2

− φnj
6∆x


−
∑
j,n

f(Un+1
j− 1

2

)

φnj − φn+1
j− 1

2

6∆x

) = 0

Since U∆t,∆x is a piecewise constant, φ is smooth and the integrals are limits of step

functions, we have

−
∫
t=0

U∆t,∆xφ+ δ1 −
∫ ∫

t≥0
U∆t,∆xφt + δ2 −

1

6

∫ ∫
t≥0

f(U∆t,∆x)φx + δ3

− 1

6

∫ ∫
t≥0

f(U∆t,∆x)φx + δ4 −
1

6

∫ ∫
t≥0

f(U∆t,∆x)φx + δ5 −
1

6

∫ ∫
t≥0

f(U∆t,∆x)φx

+ δ6 −
1

6

∫ ∫
t≥0

f(U∆t,∆x)φx + δ7 −
1

6

∫ ∫
t≥0

f(U∆t,∆x)φx + δ8 = 0,

where δi −→ 0, as ∆t,∆x −→ 0. We replace U∆t,∆x by Ui. Then

∫ ∫
t≥0

Uiφt + f(Ui)φx +

∫
t=0

Uiφ = δ(∆xi,∆ti),

where δ(∆xi,∆ti) −→ 0 as i −→∞. We know that Ui −→ u as i −→∞:

∫ ∫
t≥0

Uiφt + f(Ui)φx =⇒
∫ ∫

t≥0
uφt + f(u)φx.

By the choice of the initial values:

∫
t=0

Uiφ =⇒
∫
t=0

u0φ

Therefore, ∫ ∫
t≥0

uφt + f(u)φx +

∫
t=0

u0φ = 0.

83

This proves our solution of the numerical approximation is a weak solution to the

conservation law. So, as ∆t,∆x converge to zero while satisfying the CFL condition our

solution converge to a weak solution satisfying (a),(b), and (c).

7.4 Uniqueness

Diperna [7,8] has, it is shown that an entropy condition and bounds on the total

variation are sufficient to guarantee that the numerical approximation converges to a

unique limit function, u. Also, the paper gives us the function is the desired solution of

our conservation law and guarantees the uniqueness of u. This completes the proof that

our approximate solution method converges to a unique weak solution of the conservation

laws.

84

CHAPTER 8

CONCLUSION AND FUTURE WORK

This chapter summarizes to work done in this dissertation. We have

1. a frame work for the development of Multiresolution Analysis (MRA) conditioned

on numerical methods used to approximate the solution of conservation laws,

2. a way to construct the shape function and wavelet bases for an MRA via a poly-

nomial framework and lifting schemes of Sweldens [17],

3. an example of how these pieces fit together in a finite volume method approach

using a Simpson’s rule approximation for computing numerical fluxes in the ap-

proximate solution of conservation laws,

4. the development of entropy conditions that can be used to condition the associated

MRA with the entropy condition, which results in the definition of an entropy

satisfying MRA, and

5. a way to prove the convergence of numerical schemes for conservation laws based

on combing the steps in this work.

Note that the method presented in this dissertation combing a finite volume method

approach with Simpson’s rule for computing numerical fluxes is one example that can

be created and analyzed using the work in this dissertation.

In the future it is hoped that the techniques developed in this dissertation can be

used to classify any Multiresolution Analysis (MRA) conditioned on numerical fluxes for

conservation laws. In turn it is hoped that an a-priori condition can be obtained that

will guarantee the convergence of a given numerical method applied to conservation laws

to a unique entropy satisfying solution to the original partial differential equation.

85

BIBLIOGRAPHY

[1] Albert Bogess and F.J Narcowch , A first course in wavelets with Fourier Analysis
Hoboken, NJ: John Wiley & Sons, Inc., 2009

[2] Alberto Bressan, Numerical methods for conservation laws and related equation,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.2558&rep=rep1
&type=pdf

[3] I-Liang Chern, Finite difference methods for solving differential equations,
http://scicomp.math.ntu.edu.tw/wiki/images/6/62/FD.pdf

[4] C.S. Coray and J.V. Koebbe, Accuracy optimized methods for constrained nu-
merical solutions of hyperbolic conservation laws, J. Comp. Phys, 109:115-132,
Nov.1993.

[5] C.S. Coray and J.V. Koebbe, High order accuracy optimized methods for con-
strained numerical solutions of hyperbolic conservation laws, SIAM J. Sci. Com-
put, Vol 15:846-865, July.1994.

[6] R.Courant, K.O.Friedrichs, and H.Lewy, On the partial difference equations of
mathematical physics, Math. Ann.,100(1928), pp.32-74.

[7] R. Diperna, Convergence of approximate solutions to conservation laws, Arch.
Rat. Mech. Anay. ,V82:27-70, 1983.

[8] R. Diperna, Measure-valued solutions to conservation laws, Arch. Rat. Mech.
Anay. ,V88:223-270, 1985.

[9] A.Harten, High resolution schemes for hyperbolic conservation laws, J. Comp.
Phys.,V49:357-393, 1983.

[10] R.J LeVeque, Finite volume methods for Hyperbolic problems, Cambridge, UK:
Cambridge University Press, 2004.

[11] R. J LeVeque, Numerical methods for Conservation laws, Lecture Notes in math-
ematics, ETH Zurich, Birkhauser, 1992.

[12] Siddhartha Mishra, Numerical methods for conservation laws and related equation,
https://www.math.ethz.ch/education/bachelor/lectures/fs2013/math/nhdgl/
numcl notes HOMEPAGE.pdf

[13] O. Oleinik, Discontinuous solutions of nonlinear differential equation, Amer.
Math. Soc. Transl. ,Ser.2,26: 95-172, 1957.

[14] Chi-Wang Shu, Numerical methods for hyperbolic conservation laws (AM 257),
http://mathema.tician.de/dl/academic/notes/257/257.pdf

[15] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1993.

[16] P.K. Sweby High resolution schemes using flux limiters for hyperbolic conservation
laws, SIAM J. on Numerical Anay. ,V21: No.5. pp 995-1011, Oct. 1984.

[17] W. Sweldens and Peter Schroder, Building your own wavelets at home.

86

[18] W. Sweldens, The lifting scheme: A construction of second generation wavelets,
Technical Report 1995:6, Industrial Mathematics Initiative, Department of Math-
ematics, University of South Carolina, 1995.

[19] W. Sweldens, The lifting scheme: A custom-design construction of biothogonal
wavelets, Appl. Comput. Harmon. Anay, 3(2):186-200, 1995.

[20] David F. Walnut, An introduction to wavelet analysis, New York, NY: Birkhauser
Boston, 2002

[21] Hyperbolic equations: Scalar one-dimensional conservation laws-lecture 11
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-920j-numerical-
methods-for-partial-differential-equations-sma-5212-spring-2003/lecture-
notes/lec11 notes.pdf

87

APPENDICES

88

Appendix A.

Matlab Code

%%%
%%%%%1D advection equation: du/dt+a du/dx=0%%%%%%
%%%
%%%%%upwind scheme
a=1;
amin=min(0,a);
amax=max(0,a);
dx=0.01;
dt=0.5*dx;
tend=0.5;

%%%Discretization of domain
x=-1:dx:1;
t=0:dt:tend;

%%%initial condition
n=length(x);
u0=zeros(1,n);
u0(1:ceil(n/2))= 1;
u0((ceil(n/2)+1):n)=0;
unext=zeros(1,n);
u=u0;

%%%upwind
for k=t

for j=2:n-1
unext(j)=u(j)-a*dt/dx*(u(j)-u(j-1));
unext(1)=unext(2);
unext(n)=unext(n-1);

end
u=unext(1:n);

end
%%%%plot
%%%exact solution and numerical solution
y = zeros(size(x));
region1 =(-1<=x) & (x<=0.5) ;
y(region1) =1;
region2 = (0.5<=x) & (x<=1);
y(region2) = 0;

plot(x,y,x,u,’.’); xlim([0,1]); ylim([-.5,1.5]);
title(’upwind scheme’);
xlabel(’x’);
ylabel(’u’);

%%%
%%%%%Lax-Wendroff

89

for k=t
for j=2:n-1

unext(j)=u(j)-dt/(2*dx)*a*(u(j+1)-u(j-1))+
(dt^2/2)/(dx^2)*(a^2)*(u(j+1)-2*u(j)+u(j-1));

unext(1)=unext(2);
unext(n)=unext(n-1);

end
u=unext(1:n);

end
%%
%%%%%Lax-Friendrichs
for k=t

for j=2:n-1
unext(j)=.5*(u(j+1)+u(j-1))-(a*dt/dx)/2*(u(j+1)-u(j-1));
unext(1)=unext(2);
unext(n)=unext(n-1);

end
u=unext(1:n);

end
%%%
%%%%%Beam-Warming
for k=t

for j=3:n
unext(j)=u(j)-(dt/(2*dx))*a*(3*u(j)-4*u(j-1)+u(j-2))

+(dt^2)/(2*dx^2)*a^2*(u(j)-2*u(j-1)+u(j-2));
unext(1)=unext(2);
unext(2)=unext(3);

end
u=unext(1:n);

end
%%%
%%%%%TVD scheme

r=zeros(1,n);
frl=zeros(1,n);
frh=zeros(1,n);
fll=zeros(1,n);
flh=zeros(1,n);
fright=zeros(1,n);
fleft=zeros(1,n);
unext=zeros(1,n);
u=u0;

for k=t
for j=2:n-1

if u(j)==u(j+1)
r(j)=1;

elseif a>0
r(j)=(u(j)-u(j-1))/(u(j+1)-u(j));

elseif a<0
r(j)=(u(j+2)-u(j+1))/(u(j+1)-u(j));

end
r(1)=1; r(n)=1;

end
%%%flux limiter function
phi=(r+abs(r))./(1+abs(r));

for j=2:n-1
frl(j)=amax*u(j)+amin*u(j+1);
frh(j)=(1/2)*a*(u(j)+u(j+1))-(1/2)*(a^2)*(dt/dx)*(u(j+1)-u(j));
fll(j)=amax*u(j-1)+amin*u(j);
flh(j)=(1/2)*a*(u(j-1)+u(j))-(1/2)*(a^2)*(dt/dx)*(u(j)-u(j-1));

90

fright(j)=frl(j)+phi(j)*(frh(j)-frl(j));
fleft(j)=fll(j)+phi(j-1)*(flh(j)-fll(j));
unext(j)=u(j)-dt/dx*(fright(j)-fleft(j));

end
unext(1)=unext(2);
unext(n)=unext(n-1);
u=unext(1:n);

end
%%%%plot
plot(x,y,x,u,’.’); xlim([0,1]); ylim([-.5,1.5]); title(’TVD scheme’);
xlabel(’x’);
ylabel(’u’);
%%
%%
%%%Burgers’ equation u_t+(1/2 u^2)_x=0
%%
clear all;
%%%%selection of equation,method, and initial condition
type_burger=menu(’Choose the equation:’,...
’Inviscid Burgers equation’, ’Viscid Burgers equation’);
if (type_burger==1)
method=menu(’Choose a numerical method:’,...
’Upwind conservative’,’Lax-Friedrichs’, ’Lax-Wendroff’,’Beam-Warming’);
else

method=menu(’Choose a numerical method:’,...
’Parabolic Method’);

end

ictype=menu(’Choose the initial condition type:’,...
’shock’,’expansion’);

%%%%Selection of numerical parameters
xend=1;
tend=0.5;
dx=0.01;
dt=0.5*dx;
x=-1:dx:xend;
t=0:dt:tend;
n=length(x);

%%%% set-up initial solution
u0=init(x,ictype);
u=u0;
unew=0*u;

%%%%numerical method
if (type_burger==1)

for i=1:n,
switch method
case 1 %%%upwind conservative
unew(2:end)=u(2:end)-dt/dx*(f(u(2:end))-f(u(1:end-1)));
unew(1)=u(1);

case 2 %%%Lax-Friedrichs
unew(2:end-1)=0.5*(u(3:end)+u(1:end-2))-0.5*dt/dx* ...
(f(u(3:end))-f(u(1:end-2)));
unew(1)=u(1);
unew(end)=u(end);

case 3 %%%Lax-Wendroff
unew(2:end-1)=u(2:end-1) ...
-0.5 *dt/dx*(f(u(3:end))-f(u(1:end-2)))...
+0.5*(dt/dx)^2*...

91

(df(0.5*(u(3:end)+u(2:end-1))).*(f(u(3:end))-f(u(2:end-1)))-...
df(0.5*(u(2:end-1)+u(1:end-2))).*(f(u(2:end-1))-f(u(1:end-2))));
unew(1)=u(1);
unew(end)=u(end);

case 4%%%Beam-Warming
unew(3:end)= u(3:end)-0.5*(dt/dx)*(3*f(u(3:end))-4*f(u(2:end-1))

+...f(u(1:end-2)))...
+0.5*(dt/dx)^2*...
(df(0.5*(u(3:end)+u(2:end-1))).*(f(u(3:end))-f(u(2:end-1)))- ...
df(0.5*(u(2:end-1)+u(1:end-2))).*(f(u(2:end-1))-f(u(1:end-2))));
unew(1)=u(1);
unew(2)=u(2);

end
u=unew;

end
else

for i=1:n,
switch method
case 1 %%%Parabolic method
D=0.01;
fminus=0.5*(f(u(2:end-1))+f(u(1:end-2)));
fplus=0.5*(f(u(2:end-1))+f(u(3:end)));

unew(2:end-1)=u(2:end-1)+dt*(D*(u(3:end)-2*u(2:end-1)
+u(1:end-2))/(dx)^2
...-(fplus-fminus)/dx);
unew(1)=u(1);
unew(end)=u(end);

end
u=unew;

end
end

y = zeros(size(x));
region1 =(-1<=x) & (x<=0.5) ;
y(region1) =1;

region2 = (0.5<=x) & (x<=1);
y(region2) = 0;

plot(x,y,x,u,’.’); xlim([0,1]); ylim([-.5,1.5]);
xlabel(’x’);
ylabel(’u’);
%%%
%%% initial condition for Burgers’ equation
%%%

function ui=init(x,ictype)
xshift=0;
if(ictype==1)

uL=1;
uR=0;
ui=uR+(uL-uR)*((x-xshift)<=0.0);

elseif(ictype==2)
uL=0.5;
uR=1;
ui=uR+(uL-uR)*((x-xshift)<=0.0);

end

92

%%%
%%% f(u)=1/2 u^2, f’(u)=u
%%%
function ret=f(u)

ret=0.5*u.^2;

function ret=df(u)
ret=u;

%%
%%%%%%figure for Haar wavelet
%%
function Haar
iter=8;
[phi,psi,x]=wavefun(’db1’,iter);
figure(1),
subplot(2,1,1), plot(x,phi), hold on
plot(-0.5+2*x, zeros(size(x))), hold off
title(’phi Haar’)
axis([-0.5,1.5,-1.5,1.5])
subplot(2,1,2),plot(x,psi), hold on
plot(-0.5+2*x, zeros(size(x))), hold off
title(’psi Haar’)
axis([-0.5,1.5,-1.5,1.5])
%%%
function upshape(n,nval)
%%%
%%%This method will generate the shape function data for
%%%various conservation law schemes
%%%INPUT: n=2^x (x= any integer; n=4,8,16,....)
%%% nval=compute the number of points to update
%%%(nval=1,then your point is 2*n+1)
%%%Output:Upwind method with lifting schemes
%%%
alpha=1;
%%%initial shapefunction
for i=1:n+1

shapefunc(1,i)=0;
end
%%Initialize the discrete dirac function value and the number of
%%values to the left and right of the center
indmid=n/2+1;
shapefunc(1,indmid)=1;

%%%Find new(1,i)=U_{i+1/2};
%%%U_{i+1/2}=U{i+1)+(U(i)-U(i+1))*alpha
%%% lifting framework
for l=1:nval
for i=1:2^(l-1)*n
new(1,i)=shapefunc(1,i+1)+(shapefunc(1,i)-shapefunc(1,i+1))*alpha;
end
for j=1:2^(l-1)*n
newshape(1,2*j-1)=shapefunc(1,j);
newshape(1,2*j)=new(1,j);
end
newshape(1,2^(l)*n+1)=shapefunc(1,2*(l-1)*n+1);
shapefunc=newshape;
end
x(1)=0;
dx=1/(2^nval*n);
for i=1:2^nval*n

x(i+1)=x(i)+dx;
end

93

figure (1);
plot(x,shapefunc,’.’);
axis([0 1 -0.5 1.5]);
%%%%%%Find the new shape function
na=2^nval*n/2;
for i=1:na

tempfunc(i)=shapefunc(i+na/2);
end
for j=1:na+1

tempfunc(j+na)=shapefunc(j+na/2);
end
newshapefunc=tempfunc;
%%%find the wavelet function
for l=1:2^nval*n+1

wvletfunc(l)=shapefunc(l)-newshapefunc(l);
end
figure (2)
plot(x,wvletfunc,’.’); %%%wavelet function graph
axis([0 1 -1.5 1.5]);
%%%
function TVDshape(n,nval,cfl)
%%%
%%This method will generate the shape function data for various
%%conservation law schemes by TVD scheme
%%Input:n=2^x (x= any integer; n=4,8,16,....)
%%% nval=compute the number of points to update
%%% cfl=cfl condition number, 0<cfl<1
%%Output:TVD method with lifting schemes
%%%

%%%initial shapefunction
for i=1:n+1

shapefunc(1,i)=0;
end
%%Initialize the discrete dirac function value and the number
%%of values to the left and right of the center
indmid=n/2+1;
shapefunc(1,indmid)=1;

%%%
%%%Find new(1,i)=U_{i+1/2};
%%%U_{i+1/2}=U_{i+1)+(U_(i)-U_(i+1))*alpha
%%% Lifting framework%%
for l=1:nval
%%%%flux limiter work of Sweby
num(1)=0; den(1)=0; num(2^(l-1)*n+1)=0; den(2^(l-1)*n+1)=0;
for i=2:2^(l-1)*n
num(i)=shapefunc(i-1)-shapefunc(i);
den(i)=shapefunc(i)-shapefunc(i+1);
end
%%% compute the sign of the ratio

for i=1:2^(l-1)*n+1
signn(i)=1;
if num(i)<0

signn(i)=-1;
end
signd(i)=1;
if den(i)<0

signn(i)=-1;
end
signr(i)=signn(i)*signd(i);

94

end

for i=1:2^(l-1)*n+1
if signr(i)<0

c(i)=0;
else

if den(i)==0
c(i)=2;

else
theta(i)=num(i)/den(i);

if(0< theta(i)) &&(theta(i)< 1/2)
c(i)=2*theta(i);
elseif (1/2<=theta(i)) &&(theta(i)<1)
c(i)=1;
elseif (1<=theta(i))&& (theta(i)<2)
c(i)=theta(i);
else
c(i)=2;
end

end
end

end

%%% alpha value for TVD
for i=1:2^(l-1)*n+1

alpha(i)=(1/2)*(1+cfl)+(1/2)*(1-cfl)*(1-c(i));
end
%%%Lifting frame work
for i=1:2^(l-1)*n
new(1,i)=shapefunc(1,i+1)+(shapefunc(1,i)
-shapefunc(1,i+1))*alpha(i+1);
end
for j=1:2^(l-1)*n

newshape(1,2*j-1)=shapefunc(1,j);
newshape(1,2*j)=new(1,j);

end
newshape(2^l*n+1)=0;
shapefunc=newshape;
end

x(1)=0;
dx=1/(2^nval*n);
for i=1:2^nval*n

x(i+1)=x(i)+dx;
end
figure (1) %%%shape function graph
plot(x,shapefunc,’.’);
axis([0 1 -0.5 1.5]);
%%%%%%Find the new shape function
na=2^nval*n/2;
for i=1:na

tempfunc(i)=shapefunc(i+na/2);
end
for j=1:na+1

tempfunc(j+na)=shapefunc(j+na/2+1);
end
newshapefunc=tempfunc;
%%%find the wavelet function
for l=1:2^nval*n+1

wvletfunc(l)=shapefunc(l)-newshapefunc(l);

95

end
figure (2)
plot(x,wvletfunc,’.’); %%%wavelet function graph
axis([0 1 -inf inf]);
%%%
function sampleshapefunction(n,nval,gamma1,gamma2,ncfl)
%%%
%%This method will generate the shape function data for
%%various conservation law schemes
%%Input:n=2^x (x= any integer; n=4,8,16,....)
%%% nval=compute the number of points to update
%%% gamma1,gamma2
%%% ncfl=cfl(i) (cfl(1)=0, cfl(2)=0.1,...cfl(11)=1)
%%Output:Numerical method with lifting schemes
%%Using Lax-Wendroff (gamma1=1/2, gamm2=1/2),
%%Beam-Warming(gamma1=1/2, gamma2=-1/2)
%%

nstep=10;
dcfl=1/nstep;
cfl(1)=0;
for i=1:nstep

cfl(i+1)=cfl(i)+dcfl;
alpha(i)=gamma1+gamma2*cfl(i);

end
%%%initial shapefunction
for i=1:n+1

shapefunc(1,i)=0;
end
%%Initialize the discrete dirac function value and the
%%number of values to the left and right of the center
indmid=n/2+1;
shapefunc(1,indmid)=1;

%%%
%%%Find new(1,i)=U_{i+1/2};
%%%U_{i+1/2}=U_{i+1)+(U_(i)-U_(i+1))*alpha
%%% Lifting framework%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for l=1:nval
for i=1:2^(l-1)*n
new(1,i)=shapefunc(1,i+1)+
(shapefunc(1,i)-shapefunc(1,i+1))
*alpha(ncfl);
end
for j=1:2^(l-1)*n
newshape(1,2*j-1)=shapefunc(1,j);
newshape(1,2*j)=new(1,j);
end
newshape(1,2^(l)*n+1)=0;
shapefunc=newshape;
end
%%%%%%Find the new shape function
na=2^nval*n/2;
for i=1:na

tempfunc(i)=shapefunc(i+na/2);
end
for j=1:na+1

tempfunc(j+na)=shapefunc(j+na/2);
end
newshapefunc=tempfunc;
%%%%%%interval of x
x(1)=0;

96

dx=1/(2^nval*n);
for i=1:2^nval*n

x(i+1)=x(i)+dx;
end
figure (1) %%%shape function graph
plot(x,shapefunc,’.’);
axis([0 1 -0.5 1.5]);

%%%find the wavelet function
for l=1:2^nval*n+1

wvletfunc(l)=shapefunc(l)-newshapefunc(l);
end
figure (2)
plot(x,wvletfunc,’.’); %%%wavelet function graph
axis([0 1 -1.5 1.5]);

97

CURRICULUM VITAE

Ju Y. Yi

EDUCATION:

Doctor of Philosophy, Mathematical Science, 2016
Utah State University, Logan, UT
Adviser: Dr. Joe Koebbe

Master of Art, Mathematics (Applied), 2000
University of California, San Diego (UCSD), La Jolla, CA

Bachelor of Science in Mathematics, 1998
University of California, Los Angeles (UCLA), Los Angeles, CA

Glendale community college, 1992-1995

RESEARCH INTERESTS:

Computational and applied mathematics, with special emphasis on wavelet construc-
tion and analysis of numerical schemes

TEACHING INTERESTS:

Undergraduate and graduate numerical analysis courses, PDE, ODE and numerical
optimization courses

SKILLS:

Problem Solving: Excellent analytical and logical reasoning skills. Able to multi-
task. Can learn new skills quickly. Able to lead or work within a group environment.

Computer Languages and Math Program:

• Many years experience with C++

• Matlab (Fluent), Maple, Mathematica

• OpenCL, OpenMP

Other:

• Creative, motivated, innovative, stunningly beautiful. LATEX, mathematical
ability (obviously). Teaching skills.

• Korean (Fluent)

• Statistical Program: R

• Pass Actuarial Exam 1 (Exam P)-2003

98

Employment, Ventura College

Instructor for College Algebra, Pre-Algebra Fall 2016
Preparation and presentation of lectures, supervision of group work, writing and grad-
ing tests,grading projects and papers, preparing and grading the final exam for the
course.

Employment, Utah State University

Graduate Instructor for College Algebra Summer 2012, Summer 2015
Graduate Instructor for Trigonometry Summer 2014
Preparation and presentation of lectures, supervision of group work, writing and grad-
ing tests,grading projects and papers, preparing and grading the final exam for the
course. Set-up online program (WillyPlus):homework, quiz, etc.

Recitation leader for Calculus 1 Fall 2015
Recitation leader for College Algebra Fall 2011, Spring 2012, Fall 2014, Spring
2015
Recitation leader for Calculus Techniques Spring2014
Ran discussion/problem/review sessions twice a week that augmented the business
calculus course, graded exams, some guest lecturing.

Graduate Instructor for Calculus 2 Spring 2013, Fall 2013
Graduate Instructor for Calculus 1 Fall 2012, Summer 2013
Preparation and presentation of lectures, supervision of group work, writing and grad-
ing tests,grading projects and papers, preparing and grading the final exam for the
course.

Grader for Theory of Linear Algebra (graduate course) fall 2014

Employment, Thinkers’ Club, LLC

Director 2003-2009

• Teaching K-12th grade for mathematics, SAT, ACT

• Personal Management

• Control after school program

Employment, University of California, Los Angeles

Teaching Assistant 2001-2002
Ran discussion/problem/review sessions twice a week that augmented the course,
graded papers and quizzes, some guest lecturing.

• Calculus 1
• Vector Calculus
• Ordinary Differential Equation

99

ACTIVITIES:

USU SIAM Co-Founded the student chapter, 2012-2015

Science Unwrapped, SIAM chapter presentation-“image and data compression”,
March 21, 2014 at USU

AMS student chapter member, 2013-2015

	Definition and Construction of Entropy Satisfying Multiresolution Analysis (MRA)
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	1 INTRODUCTION
	2 REVIEW OF NUMERICAL METHODS FOR THE APPROXIMATE SOLUTION OF SCALAR HYPERBOLIC CONSERVATION LAWS
	2.1 Scalar Conservation Laws: Definition and Examples
	2.1.1 Linear Conservation Laws: f(u)=au, a=0
	2.1.2 An Example of a Nonlinear Conservation Law: Burgers' Equation
	2.1.3 Weak Solutions and Entropy Conditions

	2.2 Numerical Methods for Approximately Solving Scalar Conservation Laws
	2.2.1 Some Definitions for Numerical Methods
	2.2.2 Examples of Classical Methods
	2.2.3 Examples of Modern Methods
	2.2.3.1 Total Variation Diminishing (TVD) Scheme
	2.2.3.2 Monotone Upstream Conservative Limited Scheme
	2.2.3.3 Essentially Non-Oscillatory (ENO) scheme

	2.3 Example Results from Numerical Methods
	2.3.1 Numerical Examples: Linear Scalar Conservation Laws
	2.3.2 Numerical Examples: Nonlinear Conservation Laws

	3 POLYNOMIAL FRAMEWORK FOR CONSTRUCTING APPROXIMATE SOLUTION METHODS
	3.1 Definition and Notation
	3.2 Description of a Polynomial Framework for Approximate Solution of Conservation Laws
	3.2.1 Definition of Grid-line Values: Uj12n
	3.2.2 Examples Using the Polynomial Definition for Uj12n
	3.2.2.1 Linear Conservation Law Examples
	3.2.2.2 Nonlinear Conservation Law Examples

	4 SHAPE FUNCTION CONSTRUCTION FOR MULTIRESOLUTION ANALYSIS (MRA)
	4.1 History of Wavelets and Multiresolution Analysis
	4.1.1 Prior to 1930
	4.1.2 1930 through 1940
	4.1.3 1940 through 1980
	4.1.4 1980 to the Present Day

	4.2 The Lifting Scheme
	4.2.1 Construction of the Haar Multiresolution Analysis via Lifting
	4.2.2 Construction of Linear Interpolating Wavelets

	4.3 Multiresolution Analysis (MRA): Definitions and Notation
	4.4 Polynomial Framework Lifting Approach
	4.4.1 Upwind Scheme
	4.4.2 Lax-Wendroff Scheme
	4.4.3 Beam-Warming Scheme
	4.4.4 TVD Scheme
	4.4.5 Lax-Friedrichs Scheme

	5 CONSTRUCTION OF WAVELETS BASES CONDITIONED ON HYPERBOLIC CONSERVATION LAWS
	5.1 Upwind Scheme Example
	5.2 Lax-Wendroff Scheme Example
	5.3 Beam-Warming Scheme Example
	5.4 TVD Scheme Example
	5.5 Lax-Friedrichs Scheme
	5.6 How to use the MRA in Applications

	6 CONSTRUCTION OF APPROXIMATE SOLUTIONS OF CONSERVATION LAWS VIA A FINITE VOLUME APPROACH
	6.1 Building a Representation of Solution
	6.2 An Example: Finite Volume Approach and Simpson's Rule
	6.2.1 Linear Conservation Law Case
	6.2.2 Nonlinear Conservation Law

	7 CONVERGENCE OF THE APPROXIMATE SOLUTIONS TO A UNIQUE WEAK SOLUTION OF THE CONSERVATION LAW
	7.1 Uniform Bound on the Approximate Solution
	7.2 A Discrete Entropy Condition on the Approximate Solution
	7.3 Stability of the Approximate Solution
	7.3.1 A Total Variation Bound
	7.3.2 Convergence to a Weak Solution

	7.4 Uniqueness

	8 CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	APPENDICES
	Appendix A. Matlab Code
	CURRICULUM VITAE

