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ABSTRACT 

 

Characterization of the Substrate Interactions and Regulation of Protein Arginine 

Methyltransferase 1 (PRMT1) 

 

by 

 

Yalemi Morales, Doctor of Philosophy 

Utah State University, 2016 

 

Major Professor: Dr. Joan M. Hevel 

Department: Chemistry and Biochemistry 

 

Protein arginine methylation is a posttranslational modification catalyzed by the 

family of proteins known as the protein arginine methyltransferases (PRMTs). Thousands 

of methylated arginines have been found in mammalian cells. Many targets of arginine 

regulation are involved in important cellular processes like transcription, RNA transport 

and processing, translation, cellular signaling, and DNA repair. Since PRMT dysregulation 

has been linked to a variety of disease states, understanding how the activity of the PRMTs 

is regulated is of paramount importance. PRMT1 is the predominant PRMT, responsible 

for about 85% of all arginine methylation in cells, but very little is known about how 

PRMT1 is regulated.  Although a few methods to regulate PRMT1 activity have been 

reported, the details of interaction and regulatory mechanisms remain largely unknown.  

To better understand how PRMT1 is able to bind its substrates and how PRMT1 

activity is regulated, we followed a mechanistic and structural biology approach to better 
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understand how PRMT1 interacts with its substrates and protein regulators. In this study 

the regulation of Hmt1 methyltransferase activity by the Air1 and Air2 proteins was 

analyzed and only one was determined to affect Hmt1 activity. The posttranslational 

phosphorylation of Hmt1 had also been reported to affect Hmt1 activity in vivo and our 

preliminary studies suggest that additional factors may help influence the regulatory effect 

of phosphorylation. Lastly, we report a new method of PRMT regulation through the 

reversible oxidation of key PRMT1 cysteine residues. We are also able to show that this 

regulation occurs in cells and affects several PRMT isoforms.  

 

 (195 pages) 
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PUBLIC ABSTRACT 

Protein Arginine Methyltransferase 1 Interactions and Regulation 

Yalemi Morales 

Protein arginine methyltransferases, or PRMTs, are enzymes that can add one or 

two methyl groups to certain arginine residues in target proteins. The modification of the 

target protein, or substrate, changes the substrate just enough to affect its function. This 

typically occurs by allowing the target protein to interact with new proteins or molecules, 

or by preventing interactions that occur with the unmodified target protein. In mammalian 

cells, there are thousands of arginines that can be methylated and many of those are found 

in proteins involved in critical cellular processes like RNA transport and processing, 

transcription, and translation. Therefore, it is important to understand how the PRMTs 

select which arginine substrates to methylate, and how this activity is regulated. 

The work presented in this dissertation includes several lines of investigation that 

together aimed to describe how PRMT1, the predominant PRMT in mammalian cells, 

interacts with substrates and can be regulated. The visualization of PRMT1 interactions 

with target proteins was sought out through protein crystallography, but could not be 

achieved within the scope of this study. The regulation of the yeast PRMT1 (Hmt1) protein 

by the Air1 and Air2 proteins was analyzed and only one was determined to affect the rate 

of methyl groups transferred. The modification of the yeast PRMT1 through 

phosphorylation was also investigated and preliminary results suggest that additional 

factors are likely involved in the regulatory effect of phosphorylation. Lastly, a new method 

of PRMT1 regulation through reversible oxidation was reported and was confirmed to be 

conserved method of regulation for several members of the PRMT family of enzymes.  



vi 

ACKNOWLEDGMENTS 

 

 I would like to take this opportunity to thank my major advisor Dr. Joanie Hevel 

for her patience, guidance, encouragement, and support throughout my studies at Utah 

State University. I am very grateful for her mentorship which has helped me grow as a 

student, teacher, scientist, and mother.  I would also like to thank my supervisory committee 

members, Dr. Sean Johnson, Dr. Lance Seefeldt, Dr. Scott Ensign, and Dr. Gregory 

Podgorski, for their advice, suggestions, and encouragement.  

 I also have to thank my lab mates and peers for their lessons and their friendship. 

Dr. Whitney Wooderchak-Donahue, Dr. Laurel Gui, Dr. Brenda Suh-Lailam, Dr. Ryan 

Jackson, Dr. Jeremy Bakelar, Dr. Bradley Hintze, Owen Price, Damon Nitzel, Betsy 

Caceres, Heather Tarbet, Lacy Taylor, Brooke Siler, Drake Smith, and many others have 

helped me tremendously and made my PhD years some of my best.  

 Most importantly, I would like to thank my family for supporting me through this 

time in my life. I especially want to thank Todd Gary for always being there to listen and 

encourage me through the many failures and long days of work. My daughter Allisen Gary 

also helped me realize how strong I can be and helped me realize the things that are truly 

important to me. Without the support of my family, friends, mentors, and peers, I would 

not have made it through this journey. Thank you all very much! 

Yalemi Morales 

 

  



vii 

CONTENTS 

           Page 

ABSTRACT ....................................................................................................................... iii 

PUBLIC ABSTRACT ..........................................................................................................v 

ACKNOWLEDGMENTS ................................................................................................. vi 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES .............................................................................................................x 

 

CHAPTER 

1. INTRODUCTION .................................................................................................. 1 

  References ...............................................................................................................6 

 

2. LITERATURE REVIEW .........................................................................................9 

 References .............................................................................................................36 

 

3. INVESTIGATING PRMT1: SUBSTRATE INTERACTIONS.............................52 

 Introduction ...........................................................................................................53 

 Experimental Procedures ......................................................................................57 

 Results ...................................................................................................................62 

 Discussion .............................................................................................................71 

 References .............................................................................................................76 

 

4. HMT1 REGULATION BY THE AIR1/2 PROTEINS .........................................79 

 Introduction ...........................................................................................................80 

 Experimental Procedures ......................................................................................85 

 Results ...................................................................................................................93 

 Discussion ...........................................................................................................103 

 References ...........................................................................................................105 

 

5. INVESTIGATING THE EFFECTS OF PHOSPHORYLATION ON  

          HMT1 ACTIVITY ............................................................................................... 110 

 Introduction ......................................................................................................... 111 

 Experimental Procedures .................................................................................... 112 

 Results ................................................................................................................. 115 

 Discussion ...........................................................................................................120 

 References ...........................................................................................................121 

 



viii 

6. REDOX CONTROL OF PROTEIN ARGININE  

 METHYLTRANSFERASE 1 (PRMT1)  

 ACTIVITY ...........................................................................................................124 

 Introduction .........................................................................................................125 

 Experimental Procedures ....................................................................................128 

 Results .................................................................................................................135 

 Discussion ...........................................................................................................147 

 References ...........................................................................................................153 

 

7.  SUMMARY AND FUTURE DIRECTIONS ......................................................160 

 References ...........................................................................................................167 

 

APPENDIX ......................................................................................................................174 

 

CURRICULUM VITAE ..................................................................................................181 

  



ix 

LIST OF TABLES 

 

Table Page 

2-1. PRMT protein regulators ....................................................................................24 

3-1. Npl3 construct interaction with Hmt1.................................................................70 

4-1. Data collection statistics for Air2-Hmt1 crystal ...............................................103 

 

  



x 

LIST OF FIGURES 

 

Figure Page 

2-1.  Structure of AdoMet and SN2 mechanism of AdoMet-dependent 

methyltransferases ..............................................................................................10 

2-2. Reactions catalyzed by the PRMTs ....................................................................12 

2-3. Schematic comparison of the nine mammalian PRMT isoforms .......................13 

2-4. Structural overview of a PRMT monomer..........................................................15 

2-5. Zoomed in view of the PRMT1 active site (PDB: 1OR8) ..................................18 

2-6. PRMT substrate binding modes ..........................................................................20 

2-7. PRMT dimer interacting regions ........................................................................30 

3-1. Reactions catalyzed by the mammalian protein arginine  

 methyltransferases...............................................................................................54 

3-2. Structure of rat PRMT1 bound to R3 peptide (PDB: 1OR8) ..............................56 

3-3. Summary of initial S14-PRMT1 crystallization conditions ................................64 

3-4. Diffraction pattern and electron density of PRMT1 crystal containing  

 the eIF4A1-CH3 peptide .................................................................................... 65 

3-5. Npl3 sequence and arginine methylation sites ....................................................68 

3-6. Npl3 constructs designed ....................................................................................69 

3-7. Summary of Hmt1 and Cterm Npl3 crystallization conditions ......................... 72 

4-1. Reactions catalyzed by yeast protein arginine methyltransferases  ....................81 

4-2. The TRAMP complex is an essential nuclear exosome cofactor  ..................... 83 

4-3. Air1 and Air2 sequence alignment .................................................................... 85 

4-4. Air1 and Air2 truncated constructs used to test binding to Hmt1  

 as well as ability to inhibit Hmt1 activity  ......................................................... 95 

4-5. Effect of Air1 and Air1 on the methylation of Npl3 by Hmt1 ...........................97 

4-6. Air1 zinc binding is required for inhibitory effect on Hmt1 ...............................98 

4-7. Air1 zinc knuckles 4 and 5 are required for Hmt1 inhibition .............................99 

4-8. Sequence alignment of Air2 and Air1 zinc knuckles 4 through 5 .......................99 

4-9. Air1 N-ZnK5 and N22+2 Hmt1 complex crystals  

 and diffraction patterns ......................................................................................102 



xi 

4-10. Initial Air1-Hmt1 electron density map created after molecular  

 replacement using N22+2 Hmt1 hexamer as search model ...........................102 

5-1. Methylation of Npl3 by Hmt1 phosphorylation variants  ..................................117 

5-2. Activity of Hmt1 phosphorylation variants at two AdoMet  

 concentrations ....................................................................................................117 

5-3. Activity of Hmt1 phosphorylation variants with varying [Npl3],  

 or with R3 peptide ..............................................................................................119 

5-4. Effect of N-terminal tags on Npl3 methylation by Hmt1  

 phosphorylation variants ....................................................................................120 

6-1. ADMA formation and degradation ....................................................................126 

6-2. PRMT1 activity is (A) inhibited by H2O2 in a concentration dependent  

 manner and (B) activity lost can be recovered by reduction .............................136 

6-3. The effect of reducing agents on PRMT1 enzymatic activity ...........................138 

6-4. The enhancing effect of DTT on PRMT1 methyltransferase activity is 

independent of the His6-tag ................................................................................140 

6-5. Oligomeric state of PRMT1 proteins assessed by size exclusion 

chromatography .................................................................................................142 

6-6. Methyltransferase activity of PRMT1 cysteine variants in the absence or 

presence of DTT ................................................................................................144 

6-7. Sulfenic acid detection and free thiol content in PRMT1 ..................................148 

6-8. Cysteine residues in rPRMT1 ............................................................................149 

6-9. Redox control is conserved among PRMT family members .............................151 

7-1. PRMT1 methyltransferase activity is impaired by oxidation in vivo ................162 

7-2. Sulfenic acid levels in PRMT1 increase with increasing cellular  

 oxidative stress ...................................................................................................163 

7-3. PRMT6 structures in (A) oxidized and (B) reduced forms................................165 

7-4. Position of PRMT6 active site E167 in (A) oxidized and (B) reduced  

 forms ..................................................................................................................165 

7-5. PRMT1 product formation on the R3 peptide depends on the redox state ........167 

 



 

CHAPTER 1 

INTRODUCTION 

 

 Posttranslational modification of proteins allows organisms to expand upon the 

limits of the proteome by influencing protein localization, protein-protein or protein-

nucleic acid interactions, and protein stability. Protein arginine methylation is a type of 

posttranslational modification that has been implicated in a many fundamental biological 

pathways such as RNA transport and processing, DNA repair, transcriptional regulation, 

and signal transduction (reviewed in (1-4)).  The family of enzymes responsible for the 

catalysis of protein arginine methylation is the protein arginine methyltransferases 

(PRMTs). Due to the significant role PRMTs play in many cellular pathways, 

dysregulation of PRMT expression and/or activity has been linked to several human 

diseases including cardiovascular disease (5-7), stroke (8,9), asthma (10), viral 

pathogenesis (11-13), multiple sclerosis (14), and carcinogenesis (15-17).  

 Unlike other posttranslational modifications such as phosphorylation and even 

lysine methylation which can be reversed by phosphatases or lysine demethylases, no 

enzyme has yet been found to reverse the posttranslational methylation of arginine 

residues. The seemingly irreversible nature of this modification underscores the 

importance of proper regulation over the activity of the protein arginine methyltransferases. 

Yet, although much progress has been made in understanding the pathways in which the 

PRMTs are involved, surprisingly little is known about how the PRMTs select and interact 

with substrates, or how their activity is regulated.  
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 The goal of this dissertation is to understand how PRMT1, the predominant protein 

arginine methyltransferase, functions by characterizing the molecular details of substrate 

interactions, and to determine how the methyltransferase activity of PRMT1 is regulated.  

 In Chapter 3, I used structural biology techniques in an attempt to observe the 

interactions of PRMT1 with a substrate. A previously solved structure of PRMT1 was co-

crystallized with a substrate containing three methylatable arginines (18). This structure 

contained clear density only for the active site arginine, while only broken tracks of 

backbone density were observed for the other residues in the substrate peptide. The poor 

resolution observed for the peptide in this structure was hypothesized to be due to crystal 

heterogeneity resulting from the three possible methylatable arginines each binding the 

active site on different PRMT1 molecules. In order to limit the binding modes, only peptide 

substrates containing a single arginine were used in my crystallization attempts. 

Furthermore, since the initial structure was able to depict the residues coordinating the 

binding of the substrate arginine, a peptide substrate containing a monomethylated arginine 

was chosen for our attempts in order to decipher how the MMA substrate is coordinated in 

the PRMT1 active site for the second catalytic step. Unfortunately, we have been unable 

to solve a structure with clear electron density for any bound substrate. To overcome this 

problem, a new strategy of co-crystallizing PRMT1 with a protein substrate was put in 

place . The yeast PRMT1, Hmt1, and a truncated Npl3 protein substrate were chosen for 

this approach. The structure of Hmt1 had been previously solved by X-ray crystallography 

(19) and Npl3 is the best characterized Hmt1 substrate. The Npl3 protein was truncated to 

remove a flexible N-terminal region that is not required for Hmt1 interaction in order to 

improve the favorability of crystallization. Crystals have been obtained containing both 
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Hmt1 and the substrate Npl3 construct; however, these crystals have failed to provide X-

ray diffraction patterns of sufficient quality to solve a structure. Further optimization of 

crystallization conditions is recommended in order to improve diffraction resolution and 

produce a structure capable of revealing the molecular details of how PRMT1 interacts 

with substrate proteins.  

 Beginning in Chapter 4, my work shifts towards characterizing the regulation of 

PRMT1. In this chapter, I worked in collaboration with the Johnson lab to investigate the 

previously reported regulation of Hmt1 by the Air1 and Air2 proteins (20). The Air1/2 

proteins are part of the TRAMP (Trf4/Mtr4/Air1 or Trf5/Mtr4/Air2) nuclear RNA 

surveillance complex studied in the Johnson lab. However, the Air (arginine 

methyltransferase-interacting RING finger) proteins were both initially identified and 

named after their ability to interact with Hmt1 substrates in a yeast two hybrid study. In 

this initial report, Air1 was shown to inhibit Hmt1 methylation both in vivo and in vitro. A 

large degree of sequence similarity between Air1 and Air2, in combination with a knockout 

screen indicating the two might be functionally redundant led to the conclusion that both 

may be Hmt1 regulators. Investigations using C-terminally truncated constructs of both 

Air1 and Air2 quickly showed that while Air1 is indeed an Hmt1 inhibitor, Air2 was unable 

to inhibit Hmt1 methylation of any of the substrates tested. To further probe the Hmt1 

inhibition by Air1, several constructs of Air1 were created to map both the regions of 

interaction with Hmt1, as well as the minimal region required for inhibition. We were able 

to determine that a ~60 amino acid region of Air1 containing the fourth and fifth zinc 

knuckle motifs of the protein are enough to inhibit methyltransferase activity. Further work 

should be done to finalize the minimal Air1 construct required for Hmt1 inhibition and 
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characterize the method of inhibition. Additionally, since discovering that Air2 does not 

seem to inhibit Hmt1, but is still able to form a stable complex, we have attempted to solve 

the crystal structure of the complex and provide the first insights on how the PRMTs 

interact with other proteins. Crystals containing both proteins have been optimized and 

have produced diffraction data suitable to ~3.2 Å. This structure has not yet been solved, 

but molecular replacement using a previously solved Hmt1 structure has produced initial 

electron density maps in which the structure of the complex will be built. Similar efforts to 

crystallize and solve the structure of an Air1/Hmt1 complex are recommended.  

 In Chapter 5, I attempt to validate results indicating that Hmt1 activity and 

oligomeric state could be regulated by posttranslational phosphorylation on the N-terminus 

of Hmt1 (21). This report indicated that in vivo phosphorylation of Hmt1 at Ser9 results in 

an increase in the methylation of Npl3. However, because in vitro studies were not 

performed, it is unclear if phosphorylation affected the intrinsic activity of Hmt1 or if this 

PTM resulted in recruitment of another factor that modulated the methyltransferase 

activity. Since this report elegantly demonstrated that the phosphorylation effects could be 

mimicked using a glutamate substitution at position 9, I set out to characterize the 

mechanism by which phosphorylation affects Hmt1 activity. Hmt1 S9E (phosphorylation 

mimic) and S9A (unable to be phosphorylated) constructs were expressed, purified, and 

their activities measured in order to corroborate the in vivo published results. However, 

despite the use of several different solubility tags and a variety of substrates, it was 

impossible to validate the previous results with our in vitro methylation assay. This 

discrepancy hints at the possibility that the published results were a result of recruitment 

of an unknown factor, rather than solely due to the phosphorylation event. 
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 In Chapter 6, I followed the discovery of Dr. Shanying Gui and Damon Nitzel, 

previous students in the Hevel lab, who had observed that PRMT1 activity changes as a 

function of the redox state and that this effect is cysteine-dependent. I was able to further 

characterize that PRMT1 activity decreases in a hydrogen peroxide (H2O2) concentration-

dependent manner and is reversible within physiologically relevant levels of H2O2. 

Additionally, I was able to identify the cysteine residues necessary for this redox effect to 

occur and determine that the two critical cysteines are oxidized to sulfenic acid. 

Furthermore, I then looked at cysteine conservation among the PRMT isoforms and found 

that PRMT3, PRMT6, and PRMT7 are also under redox control. This work not only reveals 

the details of a novel PRMT1 regulatory mechanism, but also indicates that redox 

regulation is a conserved feature of several members of the PRMT family.  

 Chapter 7 includes preliminary results from several ongoing projects and discusses 

possible future directions. Follow up work on the redox regulation of PRMT1 is discussed. 

Ex-vivo assays show that oxidation of PRMT1 in cells results in increased sulfenic acid 

formation and diminished PRMT1 activity, indicating that the redox regulation described 

in vitro is likely also occurring in vivo. In addition, a detailed comparison between PRMT1 

and PRMT6 suggests that while redox regulation is conserved, the mechanism through 

which oxidation impairs enzymatic activity may be different among the two isoforms. 

Constructs created to validate this hypothesis will be discussed, as well as avenues for 

future investigation. Lastly, preliminary data seems to indicate that the redox state of 

PRMT1 may influence product specificity. A summary of the initial data and suggestions 

for future work will be discussed.    
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 In summary, this dissertation provides new insights into regulatory mechanisms 

poised to control PRMT methyltransferase activity in cells. The investigation/validation of 

previously reported regulators along with the discovery of a new PRMT regulatory 

mechanism provide a strong foundation for future avenues of investigation.  
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CHAPTER 2 

LITERATURE REVIEW 

 

Methylation 

Cellular methylation requires the presence of a methyl group donor such as S-

adenosyl-L-methionine (AdoMet/SAM) (Figure 2-1-A) or tetrahydrofolate (THF) and a 

methyl acceptor. AdoMet is the second most commonly used enzyme cofactor after 

adenosine triphosphate (ATP) (1). Methionine and ATP are used by methionine 

adenosyltransferase to synthesize AdoMet, which can be used by AdoMet-dependent 

methyltransferases (MTases) as a methyl group donor, leaving the product S-adenosyl-L-

homocysteine (AdoHcy/SAH). AdoMet is the preferred methyl group donor in biological 

systems likely due to the favorable energetics of the methyl transfer reaction which releases 

-17 kcal/mol, more than twice the energy released during ATP hydrolysis (1). AdoMet-

dependent methyltransferases are remarkably diverse enzymes, utilizing any of five 

different structural folds to bind AdoMet and catalyze the transfer of a methyl group to 

substrates ranging from small molecules, to nucleic acids, to proteins (2). At the atomic 

level, the targets for MTases can be carbon, oxygen, nitrogen, sulfur, or even halides (1,3). 

The diversity in methyl group acceptors means that MTases have evolved a wide variety 

of mechanisms to activate the catalytic nucleophile. However, despite the many differences 

among the AdoMet-dependent MTases, all are thought to proceed in an SN2-like 

mechanism and transfer the methyl group from AdoMet to the substrate with an inversion 

of symmetry (Figure 2-1-B) (3).  
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FIGURE 2-1. Structure of AdoMet and SN2 mechanism of AdoMet-dependent 

methyltransferases. (A) Structure of S-adenosyl-L-methionine (AdoMet) which includes 

the adenosine moiety and the methionine moiety. (B) In this general SN2 reaction 

mechanism, a general base (:B) deprotonates the target atom (X=N, O, S, or C) prior, 

during, or after methyl transfer. A transition state forms from the nucleophilic attack of the 

target atom onto the methyl group carbon of AdoMet, resulting in the methyl group transfer 

from AdoMet to the target atom.  

 

Protein Arginine Methylation 

Protein arginine methylation is a type of posttranslational modification (PTM) 

which enables organisms to expand the limits of their genomes and enlarge the 

functionality of proteins. The AdoMet-dependent methylation of arginine residues does not 

alter the positive charge of the amino acid, but it does increase the hydrophobicity and 

steric bulk, thereby affecting how modified proteins interact with other proteins or nucleic 

acids. Arginine methylated proteins are involved in a wide array of cellular processes, 
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including transcription (4), translation (5), RNA transport and metabolism (6,7), and DNA 

damage repair (8).  

 This widespread PTM is catalyzed by nine known mammalian protein arginine 

methyltransferases (PRMTs), as well as homologs present in yeast, protozoa, plants, 

nematodes, and fish, but not in bacteria (2).  The PRMTs are classified based on their 

product formation as either type I, type II, type III, or type IV enzymes (Figure 2-2). Types 

I, II, and III PRMTs methylate the terminal () guanidino nitrogen atoms of arginine 

residues in protein substrates, resulting in a modified monomethylarginine (MMA) residue. 

While PRMT7, the only known type III PRMT can only make MMA, type I and II enzymes 

are capable of catalyzing the addition of a second methyl group. Type I PRMTs (PRMT1, 

2, 3, 4, 6, 8) can add a second methyl group to the same nitrogen atom, making asymmetric 

dimethylarginine (ADMA). Type II PRMTs (PRMT5, 9) can also add a second methyl 

group to the unmodified terminal nitrogen atom, making symmetric dimethylarginine 

(SDMA). Type IV PRMTs, which have thus far been identified only in yeast, catalyze the 

monomethylation of the internal () guanidino nitrogen atom (Figure 2-2). Correct product 

formation is critical given that different products can have different biological 

consequences (9,10). Yet, very little is currently known regarding how product specificity 

is regulated for the PRMTs.    

 

Protein Arginine Methyltransferase Family 

Each of the nine members of the mammalian PRMT family contain four conserved 

amino acid sequence motifs (I, post-I, II, and III) characteristic of the class I seven β-strand  
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FIGURE 2-2. Reactions catalyzed by the PRMTs. The four types of PRMTs are 

classified based on the products formed. All catalyze the transfer of a methyl group from 

AdoMet to a substrate arginine residue making -MMA, MMA, ADMA, or SDMA.  

 

AdoMet-dependent methyltransferases (2,11), as well as a highly conserved THW loop 

(Figure 2-3). Although the PRMTs vary widely in length, a 310 amino acid conserved core 

(gray in Figure 2-3) is present in all isoforms. Most isoforms also have extended N-terminal 

additions (blue and green in Figure 2-3) that are unique to each isoforms and may be 

responsible for altering substrate recognition (12), dictating protein-protein interactions 

(13), specifying cellular localization (14), or even regulating methyltransferase activity 

(15), thus facilitating the unique function of each PRMT isoform.  

PRMT1 is the predominant type I PRMT in mammalian cells, catalyzing 85% of 

cellular protein arginine methylation (16). PRMT1 has been found to localize in both the 

cytoplasm and the nucleus and is ubiquitously expressed in all tissues (17,18). Seven 

PRMT1 splice variants have been found in humans that display distinct activity, substrate 

specificity, and subcellular localization (12). PRMT2 is also a ubiquitously expressed type 



13 

 
FIGURE 2-3. Schematic comparison of the nine mammalian PRMT isoforms. The 

catalytic core is colored in gray with each conserved motif (I, post-I, II, III, and THW loop) 

highlighted in dark blue, or light blue if not strictly conserved. Various N-terminal modules 

are also shown in green. PRMT2 has an SH3 domain, PRMT3 has a zinc finger domain 

(ZnF), PRMT5 has a TIM barrel motif, PRMT8 has a myristoylation site (Myr), and 

PRMT9 has a tetratricopeptide repeat (Tri-TPR).  

 

I PRMT (19). PRMT2 contains an N-terminal SH3 domain which is essential for 

interactions with proline-rich proteins (20). PRMT2 functions as a coactivator for the 

estrogen receptor (21,22) and has been shown to directly interact with and stimulate the 

activity of PRMT1 in cells (23). PRMT3 is an exclusively cytoplasmic type I PRMT 

isoform which contains an N-terminal zinc finger domain shown to play a role in PRMT3 

substrate recognition (24,25).  PRMT3 is found mostly in association with ribosomes, 

where it methylates the S2 protein of the small ribosomal subunit (13,26). The type I 

PRMT4 (also commonly called CARM1) is a transcriptional coactivator that can function 

synergistically with PRMT1 and histone acetyltransferases (27). PRMT4 has also been 

found to methylate mRNA stabilizing proteins and splicing factors, indicative of a role in  

coupling transcription and RNA processing (28). PRMT5 is the predominant type II PRMT 

and can be found as part of several different protein complexes (29). In the cytoplasm, 

PRMT5 is part of the “methylosome” complex where its activity is implicated in snRNP 
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biogenesis through the methylation of Sm proteins (30). In the nucleus, PRMT5 can 

complex with chromatin remodeling proteins which are able to enhance PRMT5 activity 

towards selected targets (31). PRMT6 is a primarily nuclear type I PRMT (32). PRMT6 

has been implicated in viral immunity since methylation by PRMT6 negatively regulates 

the activity of the HIV transactivator protein Tat, thereby acting as a restriction factor for 

viral replication (33).  PRMT7 is the only known type III PRMT, capable of catalyzing 

only MMA formation (34). PRMT7 contains a duplicated core catalytic domain, both of 

which are required for activity (35). PRMT8 is a type I PRMT found primarily in the human 

brain (14). It is uniquely found to be localized at the plasma membrane through N-terminal 

myristoylation (14). PRMT8 has been found to associate with PRMT1 and to self-regulate 

through automethylation on its N-terminal region (36). PRMT9 has been recently 

determined to have type II PRMT activity (37). PRMT9 also contains a duplicated catalytic 

core, along with an N-terminal tetratricopeptide repeat, although the functional importance 

of these domains for PRMT9 activity is unknown (38).  

 

PRMT Structure and Substrate Binding  

The crystal structures of many of the PRMT isoforms have been solved (39-50), 

revealing a striking structural conservation of the PRMT catalytic core. The monomeric 

structure of all PRMTs can be divided into three conserved parts (Figure 2-4): an AdoMet 

binding domain (green), a β barrel domain (gray), and a dimerization arm (blue). The 

AdoMet binding domain adopts a typical Rossmann fold conserved in other class I 

AdoMet-dependent methyltransferases (51), while the β barrel domain is unique to the 

PRMT family and is thought to participate in substrate binding (39,41). The dimerization 
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arm is inserted into the β barrel domain and although the length and sequence composition 

varies among the PRMT isoforms, a highly similar helical fold is observed in all PRMT 

crystal structures. The conservation of the dimeric interface coincides with the formation 

of head-to-tail homodimers observed in all PRMT structures (43) (human,  mouse, and  C. 

elegans PRMT7 are the exception since they contain a duplicated core which mimics the 

dimeric structure (48)). Dimerization appears required for methyltransferase activity, as 

experiments in PRMT1, PRMT3, and A. thaliana PRMT10 (AtPRMT10) have shown that 

removal or mutation of the dimerization arm results in abolished methyltransferase activity 

(39-41,43).  

 

 
FIGURE 2-4. Structural overview of a PRMT monomer. The structure of rat PRMT1 

(PDB: 1OR8) is used to illustrate the general fold of all PRMT isoforms. The AdoMet 

binding domain adopts a typical Rossmann fold (green) to bind the AdoMet cofactor 

(green) and is capped by N-terminal helices (helix αY is shown in orange, while αX is not 

present in this structure). The substrate arginine residue is colored in pink, while the β 

barrel domain is in gray and the dimerization arm is in blue. 
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 AdoMet binding by PRMTs is coordinated primarily through the conserved motifs 

found in the typical Rossmann fold of class I AdoMet-dependent methyltransferases. Motif 

I (VLD/EVGxGxG) forms the base of the AdoMet binding site. The carboxylate of the 

acidic residues within the post-I motif (L/V/IxG/AxD/E) form hydrogen bonds with the 

hydroxyl groups of the ribose moiety of AdoMet. While motif II (F/I/VDI/L/K) stabilizes 

motif I through the formation of a parallel B sheet, and motif III (LR/Kxxg) forms a parallel 

B sheet with motif II. The THW loop is close to the active site cavity and helps stabilize 

the N-terminal helix, which is important for arginine substrate recognition. In addition to 

these conserved motifs, the AdoMet binding pocket is completed by a conserved structural 

element composed of two helical segments, helices αX and αY, than fold onto the bound 

cofactor and provides a physical division between the cofactor binding site and the arginine 

binding site (see helix αY, orange in Figure 2-4). Most of the available PRMT crystal 

structures are missing most or all of the αX helix, suggesting that dynamics may be 

involved in cofactor binding and release. In support of this theory, the mouse PRMT6 

crystal structure was recently published in both oxidized and reduced states (49), capturing 

the αX helix in an unfolded, inactive state when oxidized, and a properly folded active state 

when reduced, and thus providing direct evidence of the protein dynamics involved in 

cofactor binding.  

 The active site of all PRMTs contains a pair of conserved glutamate residues (E144 

and E153 in rat PRMT1). These residues commonly referred to as the “double-E loop”, 

hydrogen bond with the positively charged guanidino nitrogen of the target arginine residue 

and thereby create the correct orientation for catalysis (magenta in Figure 2-5) (41).  
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 The active site of type I PRMTs also contain a pair of conserved methionine 

residues (M48 and M155 in rat PRMT1) which are positioned very close to the guanidino 

group of the target arginine residue and have been found to affect the type and degree of 

methylation (blue in Figure 2-5). Mutation of both methionines in rat PRMT1 was found 

to affect the MMA/ADMA ratios (52). Mutation of M48 of rat PRMT1 to the 

correspondingly conserved phenylalanine residue in the type II PRMT5 led to the 

transformation of rPRMT1 into a mixed type I/type II enzyme (53). The equivalent 

mutation in PRMT5 (F379 in C. elegans PRMT5 to methionine) also transformed this type 

II enzyme into a mixed type II/type I PRMT (44). This result is intriguing since the 

equivalent position on the other type II PRMT, PRMT9, is a methionine; indicating that 

other unidentified factors collaborate to confer the product specificity of the PRMTs. 

Current work in the Hevel lab is also investigating the role of residues in the type III 

PRMT7 in conferring this isoform its strict type III activity.   

While much has been revealed on the details of AdoMet binding and the PRMT 

catalytic mechanism (reviewed in (54)), the structures of PRMTs with peptide substrates 

bound have only revealed pieces of information on how PRMTs recognize and bind their 

substrates. Recently, the Trypanosoma brucei PRMT7 (TbPRMT7) and human PRMT5 

(hPRMT5) structures were both solved in the presence of a histone H4 peptide, providing 

the first clear images of how these PRMTs interact with the H4 substrate. In the PRMT5 

structure, the substrate arginine is presented/projected into the active site at the tip of a 

sharp β-turn in the peptide substrate (55)(Figure 2-6-A), and in the PRMT7 structure, the 

peptide substrate forms a wide turn on the surface of the active site (50)(Figure 2-6-B).  
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FIGURE 2-5. Zoomed in view of PRMT1 active site (PDB: 1OR8). Double-E-loop 

glutamates (E144 and E153) are in magenta; two methionines involved in product 

specificity (M48 and M155) are in blue. Substrate arginine (pink) and AdoHcy (green) are 

also shown. Note that E153 in this structure points away from the active site arginine 

(inactive conformation) due to the low pH of the crystallization conditions.  

 

However, both the type II hPRMT5 and the type III TbPRMT7 recognize the substrate 

primarily through peptide backbone interactions. Because of the wide array of substrates 

and substrate sequences methylated by these enzymes, structures with additional substrates 

will be needed in order to determine if the observed binding modes (turns in the backbone 

bracketing the arginine) are inherent for these PRMTs, or rather are substrate-specific, a 

possibility suggested by PRMT1 studies.  

The structure of rat PRMT1 (rPRMT1) was solved with a substrate peptide 

containing three arginines (R3; GGRGGFGGRGGFGGRGGFG) (39). Heterogeneity 

likely caused by the three different methylatable arginines each binding the active site of 

different molecules resulted in clear electron density only for an arginine residue in the 

active site, while the rest of the substrate peptide side chains could not be observed. 

However, patches of electron density revealed three possible peptide binding grooves 
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(39)(Figure 2-6-C), suggesting that different PRMT1 substrates might interact with 

PRMT1 using different binding modes.   In support of this theory, biochemical 

manipulation of a residue on one of these grooves altered the pattern of PRMT1 

methylation on hypomethylated cell extracts, inhibiting methylation of some proteins while 

leaving methylation of others unchanged (56). Interestingly, the PRMT4 structure also 

revealed multiple potential binding grooves on the surface of this isoform (42).  

Similar to what was observed in the hPRMT5 and TbPRMT7 structures, binding of 

the R3 peptide to rPRMT1 seems to occur mainly through backbone interactions.  This 

observation is also supported by substrate profiling studies which have shown little to no 

consensus sequence for substrate recognition by PRMT1 (57,58), (although there is a 

prevalence of ‘RGG’, ‘RXR’, and ‘RG’ sequences observed in vivo). The presence of 

glycine around the targeted arginine builds conformational flexibility into the region of 

methylation that may be a requirement of specific binding modes.  Alternatively, the 

prevalence of glycine could reflect the physical contortions that substrates must commit to 

in order to access an active site situated in the rim of the dimeric structure.  

Although the PRMTs seem somewhat promiscuous, small changes in the sequences 

of protein substrates can have profound effects on methyltransferase activity. For example, 

a single amino acid change in the helicase eIF4A1 (a PRMT1 protein substrate) from 

‘RGG’ to ‘RSG’ (to mimic the sequence found in eIF4A3, which is not normally a PRMT1 

substrate) abolished methylation by PRMT1 (57). Surprisingly, when the same RGG  

RSG change was made in a peptide substrate methylation was retained, suggesting that 

other interactions distant from the target arginine are important in influencing the substrate  
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FIGURE 2-6. PRMT substrate binding modes. Surface representations of (A) hPRMT5 

(4GQB, residues 331-636) and (B) TbPRMT7 (4M38, residues 82-374) binding to a 

histone H4 peptide fragment (red) and AdoMet analog or AdoHcy (green). In both, active 

site glutamates are shown in purple to provide orientation, while the backbone of the H4 

peptide fragment (SGRGKRRK in (A) and SRGK in (B)) is in red with only the arginine 

side chain shown for clarity. In (A), the H4 peptide forms a sharp β-turn to present the 

arginine into the hPRMT5 active site. In (B), the H4 peptide forms a wide turn on the 

surface of the TbPRMT7 active site. (C) Surface representation of a rPRMT1 monomer 

(PDB ID: 1OR8). Gray core with blue dimerization arm and orange helix αY. Active site 

glutamates are shown in purple. The active site arginine is shown in red, along with the 

three peptide binding grooves. 
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specificity (57).  This idea is supported by a study showing that mutation of positively 

charged or polar residues distal from the arginine within peptide substrates of PRMT1 to 

non-charged residues led to decreased catalytic efficiency of the PRMT1 enzyme (59). 

Although the field has made advances in understanding facets of substrate 

recognition and binding (particularly for PRMT1), the current studies also show that 

recognition and binding are complex and emphasize the need for a structure of a PRMT 

with a protein substrate bound, a goal that was attempted as described in chapter 3. 

However, even upon determination of such a structure, we may find that different classes 

of protein substrates bind the PRMT isoforms using a set of binding modes instead of a 

single binding site. 

 

PRMT Mechanism  

The kinetic mechanisms of the type I PRMT1 and PRMT6, as well as the type II 

PRMT5 have all shown a rapid equilibrium sequential random mechanism in which either 

one of the two substrates can bind in a random fashion (60,61). Methyl transfer seems to 

be the rate limiting step (62), and subsequent product release also occurs in a random 

fashion. However, an investigation of the PRMT2 mechanism found ordered substrate 

binding and product release with AdoMet binding first and AdoHcy release occurring last 

(63).  

 The determination that different methyl marks on substrates can lead to opposing 

biological consequences, highlights the importance of understanding the factors that may 

influence the distributive or processive methylation of type I and type II PRMTs. Although 



22 

all type I and type II PRMTs have the potential to be processive and synthesize a 

dimethylated product without releasing the monomethylated product, only PRMT1, 

PRMT6, and PRMT5 have been carefully examined. Interestingly, our lab has found 

PRMT1 activity is semi-processive, with the degree of processivity varying depending on 

the substrate tested (64). The type II PRMT5 enzyme works through a distributive 

mechanism, where the dimethylated product only appears after the monomethylated 

product exceeds the unmodified substrate (65). Since proper control over the processivity 

of these enzymes is essential for biological wellness, it is striking how little is known about 

what factors may PRMT enzyme processivity. A careful investigation of how regulators 

affect PRMT activity may lead to identification of factors that affect processivity as well.    

 

PRMT Regulators 

Protein regulators— A variety of PRMT-binding proteins have been reported to 

regulate methyltransferase activity by inhibiting, activating, or even changing the PRMT 

substrate specificity (see Table 2-1). Several proteins have been reported to inhibit the 

activity of PRMTs (Table 2-1). In one example, hCAF1 inhibited PRMT1 methylation of 

Sam68 and histone H4, but not hnRNPA1 (66). The hCAF1 protein is part of the 

mammalian CCR4-NOT complex which is involved in the regulation of transcription and 

RNA metabolism in yeast and mammalian cells.  Interestingly, multiple components of the 

yeast CCR4-NOT complex have also been shown to associate with the PRMT1 homolog, 

Hmt1 (67). Since many PRMT1 substrates are RNA-binding proteins involved in various 

aspects of RNA processing and transport, PRMT1 regulation by hCAF1 and association 
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with the CCR4-NOT complex suggests these proteins are involved in crosstalk between 

transcription and RNA processing. The exact mechanism of regulation and substrates 

involved remain unknown and will prove to be a strong avenue for future investigations.  

The PRMT5-MEP50 complex is a prime example of protein-induced activation 

since binding by the MEP50 protein is necessary for PRMT5 activity in mammalian cells 

(30,68).  Current evidence points to a mechanism in which MEP50 binding is required for 

the PRMT5-MEP50 complex to simultaneously engage the protein substrate and orient the 

target arginine to the catalytic site (55,68). Other binding proteins can function as 

modulators of the PRMT5-MEP50 complex enhancing activity towards specific substrates 

(see Table 2-1). One well-characterized example is the SWI/SNF chromatin remodeling 

complex which can bind PRMT5-MEP50 and enhance methyltransferase activity toward 

histone substrates. Thus, the components present at a specific time in complex with PRMT5 

and MEP50 function to fine-tune PRMT5 methylation activity and preferred targets 

depending on the precise cellular needs. While many regulatory complexes have been well 

described for PRMT5, the high number of PRMT-interacting proteins (69-71) may suggest 

that similar multi-protein regulatory mechanisms have yet to be identified for the other 

PRMTs.  

Posttranslational modifications— Automethylation activity has been reported for 

several PRMTs; the functional significance of these modifications remains under 

investigation, but thus far seem specific to particular PRMT isoforms. PRMT6 

automethylation on its N-terminal region (R29, R35, R37 of human PRMT6) contributes  
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Table 2-1. PRMT protein regulators 

PRMT 

Isoform 

Protein regulator Effect of interaction 

PRMT1 hCAF1 Inhibition towards certain substrates (66) 

Btg1  Stimulates activity towards selected 

substrates (72) 

Tis1/Btg2 Stimulates activity towards selected 

substrates (72) 

orphan nuclear receptor 

TR3 (NR4A1) 

Inhibition of PRMT1 activity (73) 

PP2Ac Inhibition of PRMT1 activity (74) 

PRMT2 Enhances PRMT1 activity (23) 

Air1 Inhibition of Hmt1 (yeast PRMT1) 

activity (75) 

PRMT3 DAL-1/4.1B Inhibition of PRMT3 activity (76) 

PRMT4 NUMAC Targets CARM1 to nucleosomal H3 in 

vivo (77) 

PRMT5 MEP50 Required for PRMT5 activity in 

mammalian cells (30) 

COPR5 Changes balance of activity from H3R8 

toward H4R3 in vivo (78) 

hSWI/SNF complex 

(BRG and BRM) 

Enhances PRMT5 activity towards 

histones (31) 

RIOK1 Regulates PRMT5 substrate specificity 

(79) 

pICLN Regulates PRMT5 substrate specificity 

(79) 

CDK4 Enhances PRMT5 activity and triggers 

neoplastic growth in vitro (80) 

Exon junction complex 

(RNA binding protein 

Y14) 

Increased activity of MEP50:PRMT5 

towards Sm proteins of the small nuclear 

ribonucleoprotein core (81) 

DAL-1/4.1B Mediates PRMT5 methylation in a 

substrate-specific manner (82) 

PRMT6 HMGA1 Increased MIF methylation by PRMT6 in 

vitro (83)  

PRMT7 CTCFL Enhanced PRMT7* activity (84)* 

* The reported CTCFL regulation of PRMT7 needs to be re-evaluated. PRMT7 is now 

known to be a type III PRMT, and is therefore unable to catalyze SDMA formation. In 

the report by Jelinic et al. CTCFL was shown to increase SDMA formation in vivo on 

Histone H4R3 (84), which neither indicates, nor discounts PRMT7 activity enhancement 

since it did not directly measure PRMT7 activity.  
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to PRMT6 protein stability and regulates its anti-HIV-1 activity (85). PRMT4 

automethylation occurs on its C-terminal end at R551 of the mouse sequence, which 

exhibits strict conservation in vertebrates.  Preventing automethylation impaired both 

PRMT4-activated transcription and pre-mRNA splicing (86). PRMT8 automethylation 

occurs in cis at N-terminal arginines R58 and R73 of the human sequence and is 

independent of PRMT8 G2 myristoylation. Preventing PRMT8 automethylation increased 

the turnover rate and decreased KM of AdoMet, but not of peptide substrates (36), 

indicating that automethylation regulates PRMT8 activity by decreasing the affinity of the 

enzyme for AdoMet (87).   PRMT1, PRMT3, and PRMT7 automethylation has also been 

reported, but neither the location of the methylated arginines nor functional significance 

have yet been uncovered (52,88-90). While there are reports showing that PRMT4 

automethylation is regulated at the level of alternative splicing (91), the significance and 

regulation of automethylation on other PRMT isoforms remains to be determined.  

Phosphorylation has also been reported to regulate several PRMTs. A constitutively 

active JAK2 mutant found in leukemia phosphorylates PRMT5 at three conserved tyrosines 

(Tyr297, Tyr304, and Tyr307 of the human PRMT5 sequence) on the N-terminal domain, 

diminishing PRMT5 activity, likely by disrupting the substrate binding pocket, resulting in 

decreased PRMT5 activity and contributing to the myeloproliferative phenotype 

(55,92,93). Two distinct mechanisms for phosphor-inhibition of PRMT4 function have 

been reported. An initial report indicated that phosphorylation in the PRMT4 dimerization 

arm (Ser229 mouse/rat, Ser228 human) severely impacted dimer formation and led to 

reduced AdoMet binding and methyltransferase activity (94). A second report has revealed 

that PRMT4 phosphorylation of Ser217 (Ser216 human PRMT4) abolished AdoMet 
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binding and methyltransferase activity in vitro, while promoting cytoplasmic localization 

and abrogating its coactivator function in vivo. The side chain hydroxyl group of Ser217 

forms a hydrogen bond with the backbone carbonyl of Tyr154 which is believed to close 

the AdoMet cavity (95), phosphorylation likely disrupts this interaction and as a result the 

enzyme no longer binds AdoMet. This data led Feng et al. to propose a model in which 

Ser217 phosphorylation serves as a molecular switch to control PRMT4 activity during the 

cell cycle (95). Interestingly, Ser217 and Tyr154 are strictly conserved among type I 

PRMTs, suggesting the possibility for a conserved regulatory mechanism. Reports have 

also indicated that PRMT1 may be phosphorylated, although they differ on the site and 

effect of phosphorylation. Rust et al. found that PRMT1 phosphorylation on Tyr291 (in a 

region conserved for type I PRMTs called the THW loop) alters both substrate specificity 

and protein-protein interactions (96). Messier et al. reported yeast PRMT1 (Hmt1) 

phosphorylation on Ser9 activates Hmt1 activity in vivo (97). Hmt1 Ser9 is conserved in 

rat and human PRMT1 (Ser21) and it will be interesting to determine whether 

phosphorylation at this residue is conserved and can regulate function in higher eukaryotes.  

Regulation by modification or masking of substrate arginines— Posttranslational 

modifications adjacent to arginine methylation sites have also been shown to regulate 

PRMT activity by masking or blocking methylation. Histone tails are heavily modified in 

order to regulate transcription and are a perfect example of the interplay different PTMs 

can have in regulating other modifications. In one example, PRMT5 methylation of histone 

H3R8 leads to a decrease in transcription; however this methylation can be blocked by 

H3K9 acetylation (98).  In turn, the H3R8me2a or H3R8me2s marks can block methylation 

of H3K9 (99). In another example, H3R2 methylation by PRMT6 is inhibited, but not 
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completely blocked by the H3K4me3 mark (100) and H3K4 methylation is also blocked 

by prior H3R2 methylation (101). In a striking example, acetylation of H4K5 shifts H4R3 

from being a primarily PRMT1 substrate to a preferred PRMT5 substrate, shifting the 

balance from ADMA to SDMA and thus leading to suppressed transcription (102). The 

interplay between histone tails modifications thus regulates PRMTs by varying the 

substrate accessibility or preference, and may also regulate product specificity. Examples 

of this substrate masking effect are now also beginning to emerge for non-histone 

substrates. It was recently shown that PRMT6 methylation of the androgen receptor occurs 

at AKT consensus site motifs and is mutually exclusive with serine phosphorylation by 

AKT (103,104). Phosphorylation of the C-terminal tail of RNA Polymerase II  at Ser2 or 

Ser5 has also been reported to block Arg1810 methylation by PRMT4, resulting in 

misexpression of a variety of small nuclear RNAs and small nucleolar RNAs (105). Since 

many PRMT non-histone substrates are also heavily modified (hnRNPk, Npl3, Sam68, 

PABPN1, etc.), it is not difficult to imagine that similar masking of substrate arginines will 

continue to emerge and be found to play a regulatory role in many PRMT-regulated 

signaling pathways. 

Another indirect path of regulating protein arginine methylation is through the 

activity of protein arginine deiminase (PAD4), which removes an amino group from the 

guanidino side chain of arginine, converting a previous arginine substrate into a non-

substrate citrulline (106,107)(for a recent in-depth review of protein arginine deiminases 

see Fuhrmann et al. (54)). Although PAD4 was initially believed to also convert MMA 

(but not DMA) to citrulline (107), later work by Raijmakers et al. showed that 

monomethylarginine is a poor substrate for PAD4 (108). PAD4 was the first enzyme shown 
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to antagonize histone methylation and it has subsequently been shown to also deiminate at 

least one site on p300, preventing PRMT4 methylation (109). Other examples of 

antagonistic effects of citrullination at methylation sites in non-histone proteins are 

continually emerging (110,111).  It will be interesting to see how many of the PRMT 

substrates can become citrullinated, what regulates PAD4 activity and substrate selection, 

and whether this is truly an irreversibly process or one that can be reversed by a yet 

undiscovered aminotransferase.  

Impact of oligomeric state on PRMT activity— As previously discussed, the 

PRMT field has widely accepted that PRMTs must form at least a dimer in order to be 

catalytically active (39,40,43). This concept has been supported by dimer observations in 

all known PRMT crystal structures (39,41-43,45-48,50), as well as by biochemical 

characterizations indicating loss of activity when the dimerization arm is removed or 

mutated (39-41,43). Most dimer molecular interactions occur between the dimerization 

arm of one monomer and the outer surface (αY, αZ, αA, and αB) of the AdoMet binding 

domain of the other monomer (Figure 2-7).  Although the dimerization arm sequences for 

different PRMTs vary widely in length and amino acid composition, in each case 

hydrophobic interactions make up the majority of the dimer interface, complemented by a 

small network of hydrogen bonds (note that the residues on the surface of the AdoMet 

binding domain are highly conserved among PRMTs). 

Cheng et al. calculated the atomic position fluctuations (APFs) of AtPRMT10 Cα 

atoms in monomeric and dimeric states. The αY-αZ region, which both forms direct 

contacts with AdoMet and contributes to the conserved substrate binding groove I, and the 
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dimerization arm region displayed significantly reduced APFs in the dimeric form. These 

reduced fluctuations are a result of direct involvement in forming the dimer interface and 

suggest that stabilization of this region by dimerization likely improves the binding of 

AdoMet and substrate proteins (43). This stabilizing effect of dimerization is consistent 

with the report that the PRMT4 dimerization arm phosphorylation mimic S229E exhibits 

decreased AdoMet binding and methyltransferase activity (94). To date, the only data 

suggesting any PRMT may exist as a monomer was presented by Tang et al. in the initial 

characterization of PRMT3, where PRMT3 isolated from mammalian cell extracts 

migrated as a monomer over gel filtration, although no activity was shown for this 

monomeric PRMT3 (24). Herrmann et al. corroborated the presence of PRMT3 monomers 

using glycerol gradient experiments and additionally observed that PRMT6 behaved as a 

monomer in fluorescence correlation spectroscopy experiments (18). However, it should 

be noted that there is no evidence to suggest methyltransferase activity can be obtained 

from a PRMT monomer.  FRET experiments yielding KD of dimerization for PRMT1 and 

PRMT6 homodimers indicate that the strength of dimer formation varies among the 

PRMTs and can be impacted by the presence of AdoMet (112). Together, the data thus far 

indicates that dimerization is conserved throughout the PRMTs and serves to stabilize 

cofactor binding and orient the active site for catalysis.   

In addition to dimers, several PRMTs have been detected as high molecular weight 

oligomers in solution both in vivo and in vitro (18,39,40,62,113). Feng et al. introduced the 

idea that changing the oligomeric state of PRMT1 affects methyltransferase activity (62). 

In these studies, crosslinking data showed an increase in oligomerization with increasing 
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FIGURE 2-7. PRMT dimer interacting regions. rPRMT1 (IOR8) dimer interactions 

occur through the dimerization arm (blue, residues 188-216) of one monomer and the outer 

surface of the AdoMet binding domain (helices αY, αZ, αA, and αB shown in lime) of the 

second monomer.  

 

protein concentration correlated to an increase in the turnover rate per PRMT1 monomer 

reaching a plateau around 0.5µM PRMT1 (62). Recently, the oligomeric state of PRMT1 

was also shown to change as a function of the redox state (114). However, while this work 

showed that reduced PRMT1 is more active and forms a lower molecular weight oligomer 

than oxidized PRMT1, a clear explanation for this effect could not be discerned. Future 

work should address the factors driving the formation of PRMT1 high molecular weight 

aggregates and exactly how these affect methyltransferase activity.  

Redox control of PRMT activity— A novel redox-based PRMT regulatory 

mechanism was also recently discovered and published as described in chapter 6. We were 
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able to show that rPRMT1, hPRMT3, hPRMT6, and TbPRMT7 all display a reversible 

increase in methyltransferase activity in the presence of reductant (PRMT8 is also believed 

to be under redox control, but was not tested) (114). Further biochemical characterization 

revealed that two PRMT1 cysteine residues (C101 and C208 of rat PRMT1) can become 

reversibly oxidized to sulfenic acid. Preventing oxidation at these two sites abolished the 

typical increase in methyltransferase activity in the presence of reductant, indicating that 

these two cysteine residues allow rPRMT1 activity to be regulated by the redox 

environment. Sequence alignment shows that one of these two cysteines (Cys208 in 

rPRMT1) is conserved in all but one (TbPRMT7) of the PRMTs shown to be redox 

regulated. Only PRMT8 shows conservation of both cysteine residues, while the type III 

TbPRMT7 contains only three cysteines, none of which are conserved in the other PRMTs. 

These variations in cysteine conservation imply that while redox regulation may be a 

conserved trait for several PRMT family members, the mechanism of redox control likely 

varies among them.   

The biological implications of redox regulation remain to be determined. However, 

it is impossible not to speculate on the potential involvement of PRMT1 in the cellular 

oxidative stress response. In one example, Lafleur et al. suggests that PRMT1 may be 

important for the cellular hypoxic response (115). PRMT1 acts as a repressor of both HIF-

1 and HIF-2 which are essential mediators for the adaptive transcriptional response to low 

oxygen conditions (115). It will be interesting to determine if during hypoxia and HIF 

activation, PRMT1 activity is decreased by increased oxidative stress resulting in a 

decrease on PRMT1-dependent HIF repression to maintain elevated HIF-1α levels. 

Although Lafleur et al. did not observe this phenomenon under their hypoxic conditions, 
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it was suggested that this feedback regulation may only be observed under longer periods 

of hypoxic exposure (115). The impact of this newly discovered redox regulatory 

mechanism on several PRMT family members will surely be the focus of much 

investigation in years to come.  

 

Biological Importance of PRMTs   

The continued development of techniques for detecting PRMT substrates has 

allowed the identification of thousands of in vivo arginine methylation sites in proteins 

involved in a plethora of biological pathways (2,5,69,89,116-118). However, in order to 

truly understand the impact of the PRMTs, the effects of methylation on the substrate 

protein structure and on its molecular interactions must be related to the corresponding 

cellular function of the substrate protein. This level of understanding often requires the 

creative application of a combination of in vivo and in vitro techniques. A brief 

representation of the many ways PRMTs are involved in critical biological pathways, with 

particular focus on PRMT1, is presented below.  

Transcription—The PRMTs have a well-established involvement in the regulation 

of gene transcription (119). PRMTs have been shown to form numerous interactions with 

transcription factors and transcriptional coactivators in addition to their ability to directly 

methylate histones and RNA polymerase II (28). PRMT1 and PRMT4/CARM1 can 

cooperatively enhance gene expression and are generally considered transcriptional 

activators (120), while PRMT5-dependent SDMA formation is generally associated with 
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transcriptional repression (65,121). Additionally, methyltransferase activity in yeast has 

also been found to regulate transcription elongation and termination (122) 

Cell signaling— Posttranslational modifications drive cellular signaling by altering 

protein function through the promotion or prevention of specific protein-protein 

interactions. PRMT1 binds the type I interferon α/β (INF α/β) receptor and PRMT1 

knockdown interfere with the biological function of this receptor (123). Knockdown of 

PRMT1 expression similarly was shown to attenuate the signaling cascade from the insulin 

receptor (IR) (124), indicating that PRMT1 methylation is a positive regulator of IR 

function and subsequent glucose uptake.  

mRNA transport and splicing—  Many of the known PRMT substrates are RNA-

binding proteins (RBPs) that contain GAR (glycine-arginine rich) or PGM (proline-

glycine-methionine) motifs, which are some of the preferred sites of PRMT1 and CARM1 

methylation, respectively (28,125). In many RBP binding sites, arginine residues are key 

amino acids for RNA-protein interactions (126). Arginine methylation has been found to 

both negatively (methylation can block hydrogen bonding) and positively (increased 

arginine hydrophobicity when methylated may facilitate stacking with RNA bases) 

regulate protein-RNA interactions (127). In yeast, the PRMT1 homolog Hmt1 methylates 

mRNA export factor Npl3 (128), an activity which is required for the mRNA shutting 

function of Npl3 (129). Hmt1 also methylates Snp1, a U1 small nuclear RNP (snRNP)–

specific protein (130). The deletion of HMT1 was found to deregulate the recruitment of 

U1 snRNP and its associated components to intron-containing genes (130), therefore 

implicating arginine methylation in the promoting target specificity in splicing.  
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DNA damage repair— The loss of PRMT1 has been linked to genome instability 

(131). PRMT1 is known to methylate and regulate the exonuclease activity of MRE11, a 

key enzyme in DNA double-strand break repair and overall genome stability (132). 

Importantly, arginine methylation seems to be required for MRE11 localization to the site 

of DNA damage (133). The p53-binding protein 1 (53BP1), which is important for the 

early events of detection, signaling, and repair of DNA double-strand breaks is also 

methylated by PRMT1 (134), and methyltransferase activity was also found to be required 

for 53BP1 localization to DNA damage sites (135).  

 

Protein Arginine Methylation and Diseases 

Cardiovascular disease— All type I PRMTs have the ability to make ADMA, but 

the predominant arginine methyltransferase, PRMT1, is responsible for most of the ADMA 

formation in cells (16). Altered levels of free ADMA, which is generated by the proteolysis 

of asymmetrically dimethylated proteins, have been found in a variety of disease states 

(136) Recently, plasma ADMA levels have been used as a biomarker for prognosis after a 

cardiac event (137,138). ADMA is a competitive inhibitor of nitric oxide synthase (NOS) 

(139), which is responsible for the production of nitric oxide, a potent vasodilator. 

Therefore, the inhibition of NOS by ADMA has major consequences on the cardiovascular 

system (139,140). Elevated expression of PRMT1, the primary generator of ADMA in 

cells, has been found in coronary heart disease (141), implicating the dysregulation of 

PRMT1 activity with cardiovascular disease (142) as well as other pathophysiological 

conditions such as kidney failure (143,144) and chronic pulmonary disease (145,146).  
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Cancer— The role of PRMTs in cancer has been extensively reviewed recently 

(147). Overexpression or aberrant splicing of PRMT1 has been reported in leukemia 

(148,149), as well as breast (150-153), prostate (154,155), colon (156,157), and lung cancer 

(158). In Mixed Lineage Leukemia (MLL), PRMT1 was shown to be an essential 

component of an MLL oncogenic transcriptional complex which unitizes both histone 

acetylation and arginine methylation (H4R3) activities to enhance the expression of critical 

MLL targets (148). The essential role of PRMT1 in this oncogenic complex has made it as 

a prominent therapeutic target (159).  

Viral pathogenesis— Arginine methylation has been shown to regulate the viral 

replication of both the human immunodeficiency virus (HIV-1) and the hepatitis delta virus 

(HDV). The HIV-1 transactivator protein (Tat) is methylated by PRMT6, which negatively 

regulates its transactivation activity (160). Correspondingly, knocking down PRMT6 

increased HIV-1 production and viral infectiousness (160), indicating that arginine 

methylation offers some protection against HIV infection (33). In contrast, PRMT1 

methylation of the small hepatitis delta antigen (sHDAg) appears to enhance its nuclear 

transport and therefore facilitate viral replication (161), suggesting that blocking 

methylation may offer protection against some viruses (162).  

 

CONCLUSIONS 

 Protein arginine methylation is critical for organismal well-being. The vast array of 

PRMT substrates implicates this posttranslational modification in important cellular 

pathways. Not surprisingly, the dysregulation of PRMT activity has been implicated in a 

number of high-profile human diseases like cardiovascular disease, cancer, and viral 
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pathogenesis. Yet, despite the important role of the PRMTs, how these proteins are 

regulated remains mostly unclear. We have aimed to understand how PRMT1, the 

predominant PRMT in cells, interacts with its substrates and is regulated. This dissertation 

provides increased understanding of both existing and novel PRMT1 regulatory 

mechanisms, which will contribute to the PRMT research field, and provide a foundation 

for an advanced understanding of PRMT roles in vivo.  
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CHAPTER 3 

INVESTIGATING PRMT1: SUBSTRATE INTERACTIONS 

 

ABSTRACT 

Protein arginine methyltransferases (PRMTs) catalyze the methylation of terminal 

guanidino nitrogens of arginine residues in their protein substrates. PRMTs play a pivotal 

role in biology, yet much of the basic biochemistry for this class of enzymes remains 

unexplored. In particular, the molecular basis for substrate recognition by the PRMTs is 

poorly understood. The only current crystal structure of a PRMT1 with a substrate bound 

has very weak electron density around the substrate peptide side chains and therefore 

provides no information about what interactions are important for binding parts of the 

substrate besides the target arginine. Additionally, it remains unclear how a 

monomethylated peptide binds and is dimethylated by PRMT1. Herein, we aimed to co-

crystallize PRMT1 with a monomethylated peptide substrate in order to understand how a 

monomethylated arginine is coordinated by the PRMT1 active site, and to learn how 

PRMT1 interacts with other parts of the peptide substrate. Many peptide containing crystals 

were screened, but no electron density for substrates was observed. A new strategy to use 

a protein substrate rather than a peptide also resulted in successful crystallization.  Thus, 

detection of electron density of a suitable resolution has not been attained. Further trials 

are required to optimize crystal diffraction to produce better resolved data.  
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INTRODUCTION 

 Protein arginine methyltransferases (PRMTs) catalyze the transfer for methyl 

groups from the cofactor S-adenosyl-L-methionine (SAM or AdoMet) to the terminal 

guanidinium group of arginine residues in substrate proteins. Development, 

carcinogenesis, heart disease, and viral pathogenesis are among the processes influenced 

by the PRMT family of enzymes (1). Nine human PRMT isoforms (PRMT1-PRMT9) have 

been identified with homologues present in yeast, protozoa, C. elegans, Drosophila 

melanogaster, Trypanosoma brucei, plants, and fish, among others (2). PRMTs catalyze 

the methylation of arginine residues resulting in the formation of monomethylarginine 

(MMA), asymmetric dimethylarginine (ADMA), or symmetric dimethylarginine (SDMA) 

(Fig. 3-1). PRMTs can be classified into three distinct categories based on produt 

formation: type I PRMTs monomethylate and asymmetrically dimethylate arginyl residues 

(PRMT1, PRMT2, PRMT3, PRMT4/CARM1, PRMT6, and PRMT8), type II PRMTs 

monomethylate and symmetrically dimethylate arginyl residues (PRMT5, and PRMT9), 

while type III PRMTs can only monomethylate arginine residues (PRMT7). PRMT 

methylation can alter protein-protein, protein-DNA, and protein-RNA interactions (2). 

PRMTs also regulate many cellular processes such as transcription, DNA repair, RNA 

processing and export, and cell differentiation (2,3). Intriguingly, MMA, ADMA, and 

SDMA can have opposing biological consequences (4,5).    

Protein structures have been solved for many of the PRMTs from a variety of 

organisms and with a variety of cofactors. These structures include those of PRMT1 (6), 

PRMT3 (7), PRMT4/CARM1 (8), PRMT5 (9), PRMT6 (10), PRMT7 (11), and the plant  
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FIGURE 3-1. Reactions catalyzed by the mammalian protein arginine 

methyltransferases. PRMTs catalyze the transfer of a methyl group from AdoMet to a 

substrate arginine residue to form MMA, ADMA, or SDMA. Type I PRMTs (PRMT1, 2, 

3, 4, 6, 8) can make MMA and ADMA. Type II PRMTs (PRMT5 and 9) can make MMA 

and SDMA. PRMT7, the only type III PRMT can only make MMA.  

 

PRMT10 (12). These structures have provided a wealth of information regarding 

oligomerization, active site residues, and product specificity. PRMT1 is responsible for 

about 85% of arginine methylation in humans (13) and as the predominant PRMT in vivo, 

it is of particular interest. The rat PRMT1 homolog differs from human PRMT1 at only 

one residue (rH161 = hY161) and has high expression levels and activity, therefore making 

it an ideal model with which to study PRMT1. The crystal structure of rat PRMT1 was 

solved in 2003 with AdoHcy and R3, a 19 amino acid peptide substrate derived from 

fibrillarin (GGRGGFGGRGGFGGRGGFG) (6). Because the peptide in this structure 

contains three potential methylation target arginines, it can be described as a slippery 

substrate; that is, one in which several parts of the substrate can be in the active site at any 

given time (Figure 3-2-A and B). The structure of the PRMT1-AdoHcy-R3 complex 

yielded electron densities revealing the location of bound peptide ligands. However, the 
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densities were broken into three separate peptide fragment binding sites and, except for the 

arginine in the active site, the side chain densities were not sufficiently resolved to allow 

clear identification of the amino acids (6). The three disconnected densities were suggested 

to represent a mixture of binding modes of the R3 peptide (Figure 3-2-C). The solved 

structure has been very valuable in identifying active site residues involved in binding and 

processing of the target arginine. However, it is still unclear how the monomethylated 

peptide binds and is dimethylated. Furthermore, because electron density was not observed 

for the peptide substrate side chains, little is known about what protein interactions are 

important with other parts of the substrate. Additionally, the observation of three different 

binding modes generated the possibility that various substrates may bind PRMT1 utilizing 

different binding grooves. 

In order to better understand how PRMT1 binds its substrates, we set out to 

crystallize PRMT1 with a peptide containing only one monomethylated arginine. The 

target peptide chosen has two advantages: 1) it is not “slippery” and therefore should result 

in better electron density allowing visualization of the interactions between PRMT1 and 

the other parts of the substrate and 2) it would be the first monomethylated substrate 

crystallized with PRMT1, thus providing a better understanding of how a monomethylated 

species binds PRMT1 and is coordinated for a second catalytic step. Given that MMA and 

ADMA can produce different biological outcomes (5), knowing how PRMT1 is able to 

orient a monomethyl substrate is of great significance.  
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FIGURE 3-2. Structure of rat PRMT1 bound to R3 peptide (PDB: 1OR8). (A) PRMT1 

(gray) was crystallized in the presence of AdoHcy (blue) and the R3 peptide substrate 

(blue). While most of the peptide backbone was observed, electron density was not 

observed for any of the peptide side chains, except for the active site arginine. (B) 

Representation of the three methylatable arginines in the R3 peptide each bound in the 

PRMT1 active site. (C) Surface representation of the PRMT1 monomer highlighting the 

three peptide binding grooves (green) where peptide backbone electron density was found.  

 

Another goal of this work was to obtain a crystal structure containing PRMT1 and 

a full protein substrate. PRMT1 functions as a ring-like dimer arranged in head to tail 

fashion with a central cavity. This arrangement results in two active sites located on 

opposing ends of the central cavity. The substrate binding surface of PRMT1 is expected 

to be acidic because most PRMT1 substrates contain multiple positively charged arginines. 

The surface charge distribution of the dimer shows that acidic residues are enriched on the 

inner surface of the dimer ring and on the outer surface of the β barrel motif. While arginine 

substrates are commonly located on flexible loop regions of substrate proteins, how 

arginines in substrate proteins arrange into the PRMT1 dimer central cavity remains 
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unknown. In order to determine how a protein substrate is bound and methylated by 

PRMT1, we set out to choose a suitable protein substrate and solve a crystal structure of 

the proteins in complex.  

 For both goals, I have optimized purification protocols, created optimal constructs, 

and found various initial crystallization conditions. Further work should be done in order 

to optimize these conditions and obtain larger, better diffracting crystals.  

 

EXPERIMENTAL PROCEDURES 

Materials— AdoHcy was purchased from Sigma. All the peptides were 

synthesized by the Keck Institute and purified to ≥ 95%. The Natrix, Index, and Salt 

crystallization screens were purchased from Hampton Research, and the JCSG Core Suite 

screen was purchased from Qiagen.  

Expression and Purification of S14-PRMT1— S14-PRMT1 (rat PRMT1v1 with 

first 13 residues removed) was expressed with a His6 tag in E. coli BL21 cells at OD600 of 

0.4 with 0.5 mM IPTG for 18 hours at 22° C. The cells (~24 g) were lysed by sonication 

in lysis/wash buffer containing 50 mM sodium phosphate pH 7.5 and 20 mM imidazole at 

a 1 to 4 cell mass to buffer ratio. The soluble fraction was separated by centrifugation and 

allowed to incubate with 16 ml Ni-NTA Agarose (Qiagen) resin for 3 hours at 4° C. The 

Nickel resin was washed of impurities six times with four times the column volume using 

50 mM sodium phosphate pH 7.5 and 70 mM imidazole (this was later corrected to 20 mM 

imidazole and two additional washes were added with 70 mM imidazole buffer to increase 

overall purification yield). The protein was eluted five times with one column volume of 
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50 mM sodium phosphate pH 7.5 and 250 mM imidazole. The protein was dialyzed 

overnight into 50 mM sodium phosphate pH 7.5 buffer and then loaded at a rate of 1 ml/min 

onto a HiTrap MonoQ (GE) column. The MonoQ column was run using a salt gradient 

with buffer A: 50 mM sodium phosphate pH 7.5 and buffer B: 50 mM  sodium phosphate 

pH 7.5, 1 M NaCl. The gradient was run at 1 ml/min with step 1) 100% buffer A for 5 ml, 

step 2) increase to 20% buffer B over 15 ml, step 3) hold 20% buffer B for 5ml, step 4) 

increase to 40% buffer B over 15 ml, step 5) hold 40% buffer B for 5ml, step 6) increase 

to 100% buffer B over 20 ml, and step 7) hold 100% buffer B for 10 ml. Fractions 

containing protein (typically around 35% buffer B) were slowly concentrated to less than 

1ml total volume using a 30 kDa cutoff centrifugal filter concentrator (Amicon). The 

protein was then loaded onto a 24 ml Superdex 200 gel filtration column equilibrated with 

50 mM sodium phosphate, 300 mM NaCl pH 7.5, and run at 0.6 ml/min while collecting 

2.5 ml fractions. Pure S14-PRMT1 was then buffer exchanged into 20 mM Tris pH 8.0, 

250 mM NaCl, 1 mM EDTA, 0.1% β-mercaptoethanol, 5% glycerol and concentrated to 

≥ 20 mg/ml prior to using for crystallization. AdoHcy was added to a final concentration 

of 600 µM (concentration used for crystallization in paper) after the S14-PRMT1 was 

concentrated to ~20 mg/ml and prior to setting up crystallization trials. This step was 

slightly problematic due to the low solubility of AdoHcy in water. AdoHcy was made up 

in 1 M hydrochloric acid at a concentration of 120 mM and a small volume of this stock 

solution was added to the protein to a final concentration of 600 µM AdoHcy. Because 

proteins tend to be less stable when very concentrated, the acidic addition often caused 

some of the protein to precipitate and become inviable for crystallization. If this occurred, 
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the solution was spun down and the soluble portion transferred to a new tube to use for 

crystal trials.  

Expression and Purification of Hmt1 Constructs— E. coli BL21 cells expressing 

His6-tagged Hmt1 were grown in Luria Broth media at 37° C to OD600 reached 0.6, 

followed by induction with 0.5 mM IPTG at 22° C for 20 hours. Cell pellets were 

resuspended in two times cell volume lysis buffer (50 mM sodium phosphate pH 7.5, 100 

mM NaCl, 20 mM imidazole, or 5 mM imidazole when purifying tagless constructs) and 

lysed using sonication. The cell lysate was clarified via centrifugation and incubated with 

Nickel resin (GoldBio) in a 1:1 cell mass: resin ratio for 1-2 hours at 4° C. The resin was 

washed eight times with eight column volumes of lysis buffer, followed by three washes 

with eight column volumes of wash buffer (50 mM sodium phosphate pH 7.5, 100 mM 

NaCl, 70 mM imidazole). The protein was then eluted off the resin five times with two 

column volumes of elution buffer (50 mM sodium phosphate pH 7.5, 100 mM NaCl, 250 

mM imidazole). Elutions were pooled and dialyzed into 50 mM Hepes pH 7.5, 10% 

glycerol. The protein was then concentrated to ≥15 mg/ml and used immediately for 

crystallization trials.    

Expression and Purification of Truncated Npl3 Proteins— His6-tagged full 

length Npl3 was received from Ann McBride (pAM436). The pAM436 plasmid was 

generated by inserting an N-terminally His6-tagged Npl3 into the pET24b+ vector using 

NdeI and SacI restriction sites. The His6-TEV-T7 (HTT7) Npl3 constructs were all created 

in the Hevel lab as follows. An ultramer was synthesized by GenScript containing a 5’ 

NdeI site followed by a 3 amino acid spacer, then a His6 tag which was also followed by a 

9 amino acid spacer prior to sequence for a TEV cleavage site. A NcoI site was next and 
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then a T7 affinity tag followed by a BamHI site. The ultramer then contained codon 

optimized Cterm Npl3 sequence (aa 284-414) and ended with a 3’ KpnI site. This construct 

was received in a pUC57 vector. Because the 3’ restriction site in the ordered sequence 

was mistakenly coding for a KpnI restriction site, instead of the desired SacI site, the entire 

sequence was PCR amplified using forward primers containing the 5’ NdeI site and reverse 

primers matching the end of the Cterm Npl3 sequence and coding for a 3’ SacI site. This 

PCR product was then ligated into a pAM436 plasmid that had been double digested with 

NdeI and SacI to remove all tags and Npl3 sequence. The resulting plasmid had a pET24b+ 

backbone and contained coding sequence for a His6 tag, a TEV cleavage site, and a T7 tag; 

all flanked by NdeI and BamHI sites; this is referred to as the “HTT7” vector. Between the 

BamHI sites and the SacI site was the Cterm Npl3 codon optimized construct, which could 

be exchanged for any other sequence using the flanking restriction sites. These BamHI and 

SacI sites were then used to insert all other Npl3 constructs, into the “HTT7” plasmid.  

E. coli BL21 NiCo21 (DE3) cells expressing His-TEV-T7 tagged Cterm Npl3 

(residues 284-414) protein were grown in Luria Broth media at 37° C until OD600 reached 

0.6, followed by induction with 0.5 mM IPTG at 22° C for 20 hours. Cell pellets were 

resuspended in two times cell volume lysis buffer (50 mM sodium phosphate pH 7.5, 500 

mM NaCl, 20 mM imidazole) and lysed using sonication. The cell lysate was clarified via 

centrifugation and incubated with Nickel resin (GoldBio) in a 2:1 cell mass to resin ratio 

for 1-2 hours at 4° C. The resin was washed eight times with eight column volumes of lysis 

buffer, followed by three washes with eight column volumes of wash buffer (50 mM 

sodium phosphate pH 7.5, 100 mM NaCl, 70 mM imidazole). The protein was then eluted 

off the resin five times with two column volumes of elution buffer (50 mM sodium 
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phosphate pH 7.5, 100 mM NaCl, 500 mM imidazole). Elutions were pooled, filtered and 

further purified using MonoQ and Heparin columns (GE) in tandem. Fractions containing 

Npl3 were pooled and dialyzed into 50 mM Hepes pH 7.5, 10% glycerol. The protein was 

then concentrated to ≥ 1 mg/ml, beaded in liquid nitrogen, and stored at -80° C.   Note that 

all Npl3 constructs were expressed and purified as above.  

Expression and co-purification of Hmt1 and Npl3 protein— E. coli BL21 cells 

expressing tagless Hmt1 were grown in Luria Broth media at 37° C to OD600 reached 0.6, 

followed by induction with 0.5 mM IPTG at 22° C for 20 hours. E. coli BL21 NiCo21 

(DE3) cells expressing His-TEV-T7 tagged Cterm Npl3 (residues 284-414) protein were 

grown in Luria Broth media at 37° C to OD600 reached 0.6, followed by induction with 0.5 

mM IPTG at 22° C for 20 hours. Seven grams of each cell pellet were weighed out and 

combined into 30 ml of lysis buffer (50 mM Hepes pH 7.5, 0.5 M NaCl, 20 mM imidazole) 

and lysed by sonication. The combined cell lysates was incubated with GoldBio Nickel-

charged resin for 1 hour at 4° C. The Nickel resin was then washed twelve times with 5 

column volumes of lysis buffer to remove any Hmt1 not complexed with HTT7 Cterm 

Npl3, as well as any nonspecific nucleic acids bound to the proteins. The resin was then 

washed twice with 5 column volumes of 50 mM Hepes pH 7.5, 0.1 M NaCl, 20 mM 

imidazole wash buffer, prior to eluting the protein complex six times with two column 

volumes of 50 mM Hepes pH 7.5, 0.1 M NaCl, 250 mM imidazole. The protein-complex 

containing elutions were pooled and dialyzed overnight into 50 mM Hepes pH 7.5 buffer 

to remove excess salt and imidazole. The proteins were then concentrated using a 30 kDa 

cutoff spin concentrator (Millipore) to ≥ 15 mg/ml and used for crystallization attempts. 
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Protein Interaction Determination— Initial attempts to map the interacting 

regions of Npl3 with Hmt1 using binding to T7 resin were unsuccessful due to strong 

nonspecific binding by Hmt1 to the T7 resin even in the absence of Npl3. Ultimately, 

protein interactions were probed by mixing lysates and co-purifying tagless Hmt1 with 

various HTT7-tagged Npl3 constructs over Nickel affinity resin. Positive interactions 

resulted in protein co-purification, while negative interactions resulted in most of the Hmt1 

being present in the unbound fraction. Note that although tagless Hmt1 could also form 

nonspecific interactions with the Nickel resin, the amount of resin and protein present still 

allowed for clear distinction between true binding vs nonspecific binding. This was not the 

case when using T7 resin due to the small amount of both resin and protein used for these 

studies which required visualization by Western blotting in order to determine the presence 

of protein.  

 

RESULTS  

S14-PRMT1: Peptide Substrate Crystallization and Optimization— Initial 

attempts to solve a PRMT1 substrate bound structure were modeled closely after the 

published rat PRMT1 (rPRMT1) structure (6). The rPRMT1/R3 crystals were grown in 

mother liquor containing 100 mM Tris pH 9.0 and 1.6 M ammonium phosphate monobasic 

(final pH ~4.7). The concentration of peptide used, when present, was 1 mM and the protein 

was 20 mg/ml and contained 600 µM AdoHcy (6). Our initial crystallization trials were set 

up on a 24 well sitting drop vapor diffusion hand tray in mother liquor containing 100 mM 

Tris pH 9.0 and varying the final ammonium phosphate monobasic concentration from 1.3 
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M to 1.8 M in 0.1 M increments. Using protein concentrated to 20 mg/ml or greater, drops 

were set up containing either 1.5 µl protein: 1.5 µl mother liquor, 2 µL protein: 1 µl mother 

liquor, or 1 µl protein: 2 µl mother liquor and the trays were placed in a 4° C crystallization 

chamber. Initial results indicated that using 2 µl: 1 µl protein to well solution ratio resulted 

in precipitation of the protein and not crystal formation. Small, needle shaped crystals were 

obtained when using a 1.5 µl: 1.5 µl protein to well solution ratio in the presence of 1.5 M 

to 1.8 M ammonium phosphate monobasic. Therefore, future crystallization conditions 

were based around these initial results. Many large batches of cells were grown, purified, 

and used in crystal trials. A summary of the most promising conditions that yielded crystals 

is depicted in Figure 3-3.   

While conditions were optimized for production of crystals in the absence of 

peptide, any time monomethylated peptide was present in the crystallization attempts, 

either no crystals, or crystals of very small size formed. At this point, we turned to wider 

screening for any conditions that would yield crystals in the presence of peptide. Purified 

protein was taken to the lab of Dr. Chris Hill at the University of Utah where a Phenix 

crystallization robot was used to set up many conditions at once using much lower volumes 

of protein, effectively allowing us to screen hundreds of conditions using the same amount 

of protein needed to set up one 24 well hand tray. Two new conditions were obtained from 

this effort that yielded crystals in the presence of JMH1W-CH3 peptide 

(KGGFGGR(CH3)GGFGGKW) (0.2 M magnesium acetate, 0.1 M sodium cacodylate pH 

6.5, 30% (v/v) 2-methyl-2,4-pentanediol) (0.1 M bicine pH 9.0, 2% (v/v) 1,4 dioxane, 10% 

w/v PEG 20,000). Sitting drop vapor diffusion hand trays were then set up around these 
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FIGURE 3-3. Summary of initial S14-PRMT1 crystallization conditions. The initial 

conditions found to produce S14-PRMT1 crystals are described in detail, along with the 

concentration of protein and substrates present and the shape of the resulting crystals. 

 

conditions, but unfortunately these crystals were salt, rather than protein crystals. We 

turned once again to trying to optimize the published crystallization conditions to grow 

crystals in the presence of peptide. Eventually, crystals containing S14-PRMT1- AdoHcy- 

eIF4A1-CH3 (YIHRIGR(CH3)GGR) were grown that produced good quality diffraction 

pattern when sent to the Stanford Synchrotron Radiation Lightsource. The structure was 

solved by molecular replacement using the existing PRMT1 structure (PDB: 1OR8) as a 
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search model. Unfortunately, although some density was present in the active site where 

peptide is expected to bind, it was not clear enough to build any peptide residues (Figure 

3-4).  

 

 

FIGURE 3-4. Diffraction pattern and electron density of PRMT1 crystal containing 

the eIF4A1-CH3 peptide. A crystal of S14-PRMT1-AdoHcy-eIF4A1-CH3 is shown along 

with two frames of a typical diffraction pattern that was used to solve the structure. 

However, there was not enough density visible in the active site to build the peptide 

substrate.  

 

 Given the lack of success in attaining a PRMT1 structure with a peptide substrate 

bound, a strategic decision was made to focus on attaining a structure with a protein 

substrate bound instead. The use of protein substrates is advantageous since these are the 

substrates PRMT1 methylates in vivo. Additionally, the length of a protein substrate is 

much greater than that of any peptide and a structure would yield a clearer picture of how 

substrate interactions far away from the PRMT1 active site contribute to determining 

whether a specific arginine-containing motif is a PRMT1 substrate. This is significant since 
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previous work in the Hevel lab showed that a single amino acid change in the helicase 

eIF4A1 (a PRMT1 protein substrate) from ‘RGG’ to ‘RSG’ (to mimic the sequence found 

in eIF4A3, which is not normally a PRMT1 substrate) abolished methylation by PRMT1. 

However, when the same RGG to RSG change was made in a peptide substrate methylation 

was retained, suggesting that sequences distant from the site of methylation are important 

in influencing the PRMT1 substrate specificity (14). For these reasons, all efforts were 

aimed at obtaining a structure of PRMT1 in complex with a protein substrate.  

Hmt1: Protein Substrate Interaction Analysis— As previously mentioned, two 

PRMT1 crystals structures have thus far been solved, one from rat PRMT1, and one from 

yeast PRMT1, also called Hmt1 (heterogeneous nuclear ribonucleoprotein 

methyltransferase). Hmt1 is the major arginine methyltransferase in Saccharomyces 

cerevisiae and is the only known type I PRMT in this organism. Surprisingly, while 

mammalian PRMT1 is essential for survival, yeast HMT1 is not essential for normal yeast 

growth unless the HMT1 knockouts are combined with mutations in the Npl3 protein (15). 

Npl3 is a major Hmt1 substrate that functions to shuttle mRNA between the nucleus and 

the cytoplasm (15). Functionally, inactivation of Hmt1 decreases the nuclear export of its 

major known substrates, Hrp1 and Npl3 (15), implicating arginine methylation in the 

regulation of mRNA and ribonucleoprotein (mRNP) export.  

Npl3 is a heterogeneous nuclear ribonucleoprotein that contains a C-terminal 

domain rich in arginine and serine residues that are essential for its role in RNA transport. 

Methylation directly affects Npl3 export by weakening contacts with nuclear proteins (16). 

Efficient export does not require methylation, but unmethylated arginine residues lead to 

nuclear retention of hnRNPs and previous data has also shown that the C-terminal domain 
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of Npl3 alone (Cterm) can partially rescue RNA transport in Npl3-deficient cells (16). 

Given the importance of arginine methylation by Hmt1 on Npl3, these two proteins were 

chosen for our guided attempts at crystallization of Hmt1 in complex with a protein 

substrate.  

The Npl3 protein is composed of a long, unstructured N-terminus, two RNA 

recognition motifs (RRMs), and a long arginine and serine (RS) rich C-terminal domain. 

While the RRM motifs have a conserved secondary structure (which has been solved by 

NMR (17)), the rest of the protein is predicted to be largely unstructured. Interestingly, the 

long C-terminal domain of Npl3 contains 15 RGG, 3RG, and 2RxR peptides (starting at 

R284 in Figure 3-5), all of which are potential methylation sites. Importantly, the RS-rich 

C-terminal domain of Npl3 alone has been shown to rescue growth of an Δnpl3 strain, 

highlighting its importance for Npl3 function (18).  Mass spectrometry studies have 

identified 16 arginine residues that are dimethylated in vivo, and one additional methylation 

site (16) (Figure 3-5). It was also noted that Npl3 function was greatly affected by lysine 

substitution at methylation sites. Notably, lysine substitutions in the four RGG tripeptides 

at the N-terminus of the RS domain had a greater influence on Npl3 function than mutating 

RGGs closer to the C-terminal end (16). The optimal Hmt1 co-crystallization partner 

should: 1) form a stable complex with Hmt1 and be easily purified, 2) provide enough 

steric bulk to limit binding modes in the crystal, and 3) form quality diffracting crystals. 

With all of this in mind, we set out to create the best possible construct of Npl3 to co-

crystallize with Hmt1 in order to decipher how Hmt1 binds and methylates protein 

substrates. 
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FIGURE 3-5. Npl3 sequence and arginine methylation sites. The sequence of the Npl3 

protein is shown, the two RNA recognition motifs (RRMs) are colored in light blue, while 

the long C-terminal tail is colored in dark blue. Arginines found exclusively dimethylated 

are marked with a filled circle, while those found monomethylated and dimethylated are 

marked with open circles.  

 

Npl3 Construct Design— Hmt1 constructs were designed both with a His6-tag and 

without any affinity tags in order to study the interaction between Hmt1 and truncated parts 

of Npl3. The design of Npl3 constructs required either the absence or presence of a His6-

tag, which could be cleaved in order to quickly assess Hmt1: Npl3 interaction. All Npl3 

constructs were generated containing an N-terminal His6-tag, followed by a TEV cleavage 

site and a T7 short affinity tag, which is collectively referred to as an HTT7 tag. This design 

allowed us to take advantage of the His6-tag for quick purification, or to cleave the His6-

tag and study Npl3 interaction with Hmt1 via pull-down studies binding Npl3 to a T7 resin. 

Attempts to study the interaction between Hmt1 and Npl3 bound to T7 resin was 

unsuccessful due to the ability of Hmt1 to bind to the T7 resin in a nonspecific fashion 

(data not shown). Subsequent interaction studies were done by binding HTT7-Npl3 

(various constructs) to Nickel resin and determining whether tagless Hmt1 could be co-

purified.   
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FIGURE 3-6. Npl3 constructs designed. Npl3 constructs were designed with an N-

terminal His6-TEV-T7 tag for purification and interaction studies.  Constructs were 

designed to isolate each domain in Npl3 and to test the minimal region and number or 

arginines required for arginine methylation to occur. 

 

While it is known that the Npl3 methylation sites are contained within the C-

terminal tail, it was unknown whether additional regions of the Npl3 protein were required 

for Hmt1 recognition. Therefore, constructs were created containing only RRM1, only 

RRM2, RRM1 and 2, the C-terminal domain only (Cterm), or RRM2 with various lengths 

of C-terminal domain (see Figure 3-6 and table 3-1) in order to minimize the possible 

binding modes while maintaining steric bulk for crystallization.  

The Npl3 constructs were tested for their ability to co-purify tagless Hmt1, and to 

be methylated. Although all constructs presented in Table 3-1 were created, many remain 

to be tested. Ultimately, while work continued to produce an optimal, minimal construct 

which could be methylated and stably bind Hmt1, the Cterm Npl3 construct was used in 

efforts to solve a structure of Hmt1 and a substrate protein complex.  
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Table 3-1. Npl3 construct interaction with Hmt1   

Npl3 construct Residues Able to pull down Hmt1? Methylated? 

Full Length Npl3 1 - 414 yes yes 

RRM1 Npl3 121 - 194 no no 

RRM2 Npl3 199 - 273 no no 

RRM1 and 2 Npl3 121 - 273 no no 

Cterm Npl3 284 - 414 yes yes 

R284 Npl3 1 - 284 no no 

RRM2Rgg286 Npl3 199 - 286 no no 

R290 Npl3 1 - 290 no N/A 

RRM2 Rggf297 Npl3 199 - 297 N/A N/A 

RRM2 Rggf301 Npl3 199 - 301 N/A N/A 

RRM2 Rggf305 Npl3 199 - 305 N/A N/A 

RRM2 Rggf310 Npl3 199 - 310 N/A N/A 

RRM2 Rggf317 Npl3 199 - 317 N/A N/A 

 

Hmt1: Protein Substrate Crystallization and Optimization— For crystallization 

attempts, HTT7 Cterm Npl3 (R284 - 414) and excess tagless Hmt1 cells were mixed and 

purified in tandem. The His6-tag on the Npl3 construct was used to bind to Nickel resin 

and any tagless Hmt1 not in complex with Npl3 was removed during the Nickel resin 

washing steps, assuring that only stable complex was purified. Additionally, because it is 

known that both Npl3 and Hmt1 bind nucleic acids, the lysis and initial wash buffers 

contained 500 mM NaCl in order to break up any weak nucleic acid interactions. After the 

Nickel purification step, the complex was dialyzed to remove excess imidazole and 

subsequently concentrated prior to setting up crystallization trials. The concentration step 

used a 30 kDa cutoff concentrator in order to assure protein complex formation; since the 

Cterm Npl3 construct has a molecular weight of about 15 kDa, any protein not in complex 
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with Hmt1 should flow through the concentrator membrane, assuring that only the larger 

molecular weight complex was used for crystallization.  

Crystallization attempts were first tried at a complex concentration of 16.3 mg/ml 

or 26.86 mg/ml. Crystallization conditions were screened using commercially available 

kits (Natrix, Index, Salt [Hampton Research], and JCSG Core Suites [Qiagen]) by the 

sitting drop vapor diffusion method in 96-well three drop plates, and employing a Gryphon 

crystallization robot (Art Robbins Instruments) with 100 nl protein solution + 300 nl 

mother liquor drops, 200 nl protein solution + 200 nl mother liquor drops, and 300 nl 

protein solution + 100 nl mother liquor drops. The plates were placed in a 4° C 

crystallization chamber and monitored periodically. Initial crystal hits were followed up by 

hand with larger volume crystallization trays using the hanging drop vapor diffusion 

method. A representative summary of the crystal hits found is shown in Figure 3-7.  

As shown in Figure 3-7, most conditions yielding crystals preferentially 

crystallized one protein or the other and only one condition contained both Hmt1 and Cterm 

Npl3. Additionally, these initial crystal hits diffracted poorly with the best crystals reaching 

only about 15 Å resolution. Further optimization of these crystallization conditions, with 

special focus on the condition yielding the protein complex should be able to improve the  

crystal diffraction.  

 

DISCUSSION 

 While much biochemical work has been done to probe the parameters 

guiding PRMT1 substrate specificity (14,19,20), the field has been largely constrained by  
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FIGURE 3-7. Summary of Hmt1 and Cterm Npl3 crystallization conditions. The 

conditions found to produce Hmt1, Cterm Npl3, or Hmt1-Cterm Npl3 complex crystals are 

described. Crystal shapes and the proteins present in each crystal are also shown. 

 

the absence of a crystal structure clearly detailing the molecular interactions between 

PRMT1and its substrates. The work reported here aimed to fill this knowledge gap by first 

attempting to solve a structure of PRMT1 in complex with a peptide substrate, and later 

with a protein substrate.  

 The basic strategy outlined by the only available structure of PRMT1 with a 

substrate (PDB ID: 1OR8) was modified in an attempt to solve a similar structure with a 
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monomethylated peptide substrate. Although unsuccessful in attaining additional 

information about substrate binding, the work summarized in this chapter has helped in 

solving the structure of a PRMT1 variant (21), and should serve as a guide for future 

attempts at solving a seemingly elusive substrate bound PRMT1 structure. In hindsight, the 

use of phosphate buffer in purifying the rat PRMT1 protein was likely responsible for the 

many salt crystals obtained during the initial screening phase and should be avoided for 

any future crystallization attempts. Hepes buffers were used in the second phase of this 

work (Hmt1/Npl3) and there was a steep decline in the number of salt crystals obtained 

from initial crystallization screens. Since this work was done we have also learned that 

PRMT1 is under redox control and is susceptible to oxidation in air (22). Any future 

PRMT1 crystallization attempts should maintain reductant in all steps of purification in 

order to minimize protein heterogeneity.  

 The choice of substrate for co-crystallization is also critical in obtaining a complex 

with clear substrate density. A peptide substrate containing a single methylatable arginine 

should be targeted to avoid the shifting observed with the R3 substrate, and the sequence 

and KD of the peptide also need to be considered when choosing the optimal crystallization 

partner, Work by Osborne et al. using variants of the H4-21 peptide (Ac-

SGRGKGGKGLGKGGAKEHRKV) showed that C-terminal basic residues are important 

for substrate recognition (20). For this reason, it will be important to maintain a positive 

patch in the peptide sequence for PRMT1. The dissociation constant (KD) of most peptide 

substrates have been reported in the low micromolar rage and may limit the success of 

solving a structure of PRMT1 in complex with a peptide. For example, the KD determined 

by Dr. Gui in our lab for the eIF4A1-CH3 peptide which could not be observed in the 
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previously mentioned structure is 2.61 ± 0.20 µM, while the KD for the H4-21 peptide is 

0.080 ± 0.018 µM (data generated by Dr. Laurel Gui in Hevel lab), indicating this peptide 

is much better suited for co-crystallization. In fact, and as will be discussed later, structures 

of other PRMT isoforms have been solved recently with the H4-21 peptide bound. While 

the H4-21 peptide associates strongly with PRMT1, the KD of the monomethylated version 

is 1.33 ± 0.12 µM, making it a less suitable substrate for co-crystallization. Although a KD 

for a protein substrate has not been reported, a variety of substrate proteins are able to 

precipitate with PRMT1, indicating that PRMT1 forms stronger interaction with protein 

substrates; making the use of a protein substrate likely a more successful strategy for co-

crystallization attempts.  

The structures of human PRMT5 (hPRMT5) and Trypanosoma brucei PRMT7 

(TbPRMT7) containing portions of histone H4 substrate peptide have been published. 

Although the substrate bound structure of these type II and type III, PRMTs have helped 

identify how the histone H4 peptide substrate is bound by each of these isoforms, progress 

has not been made in deciphering the PRMT1 substrate binding mechanism. However, the 

differences and similarities in binding modes between the hPRMT5 and TbPRMT7 

structures may help indicate what features may be specific to each isoform, or conserved 

among the PRMTs. The substrate arginine is projected into the active site of hPRMT5 at 

the tip of a sharp β-turn in the peptide substrate In contrast, the peptide substrate TbPRMT7 

forms a wide turn on the surface of the active site (9,23). These differences seem to indicate 

that hPRMT5 requires flexibility in the substrate sequence immediately surrounding the 

target arginine in order to form a sharp β-turn, whereas no such constraints seem necessary 

for TbPRMT7 substrates to bind into the active site. However, these generalizations are 
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speculative since only one substrate bound structure has emerged for each isoform and 

different binding modes may likely exist for different substrates, a possibility suggested by 

the current PRMT1 substrate bound structure (6). The R3 

(GGRGGFGGRGGFGGRGGFG) peptide substrate co-crystallized with rat PRMT1 was 

mapped onto the PRMT1 core as patches of backbone density along three possible peptide 

binding grooves with only an arginine residue clearly identifiable in the active site. The 

presence of the three binding grooves led to the theory that different PRMT1 substrates 

might interact with PRMT1 using different binding modes through different binding 

grooves. In support of this theory, biochemical manipulation of a residue on one of these 

grooves resulted in an altered pattern of PRMT1 methylation on hypomethylated cell 

extracts, inhibiting the methylation of some proteins while leaving the methylation of 

others unchanged (24).  

 Similar to what was observed in the hPRMT5 and TbPRMT7 structures, binding of 

the R3 peptide to rPRMT1 seems to occur mainly through backbone interactions.  This 

observation is also supported by substrate profiling studies which have shown little to no 

consensus sequence for substrate recognition by PRMT1 (14,19), (although there is a 

prevalence of ‘RGG’, ‘RXR’, and ‘RG’ sequences observed in vivo). The presence of 

glycine around the targeted arginine builds conformational flexibility into the region of 

methylation that may be a requirement of specific binding modes.  Alternatively, the 

prevalence of glycine could reflect the physical contortions that substrates must commit to 

in order to access an active site situated in the rim of the dimeric structure. Additional 

PRMT structures with various substrates are critical to be able to answer many of these 

questions and should be the focus of future work.  
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  This chapter has summarized crystallization efforts aimed at determining the 

molecular details of how PRMT1 is able to interact with substrates. Although a structure 

was not achieved, this work was able to narrow down several crystallization conditions that 

can serve as a road map for future crystallization attempts. The recently obtained structures 

of hPRMT7 and TbPRMT7 bound to H4 peptide substrates highlight the need for substrate 

bound PRMT structures.   
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CHAPTER 4 

HMT1 REGULATION BY THE AIR1/2 PROTEINS 

 

ABSTRACT 

PRMTs are crucial enzymes that affect a multitude of biological processes and 

pathways by posttranslationally methylating protein arginine residues. However, despite 

the knowledge that dysregulation of PRMTs leads to disease, very little is currently known 

about how the PRMT proteins are regulated. Evidence suggests the Air1/2 proteins may 

regulate Hmt1 (yeast PRMT1) activity, but the mechanism of regulation is unknown.  Here 

we provide the first data to show that while Air1 is a regulator of Hmt1 activity, the Air2 

protein does not have a significant effect on methyltransferase activity. We have 

determined that a ~60 amino acid region of the Air1 protein is sufficient for the inhibition 

of Hmt1 activity. Interestingly, this same region of Air1 is necessary for interactions with 

Trf4, a member of the nuclear RNA surveillance TRAMP complex. We also present 

conditions used to generate a crystal containing an Air2-Hmt1 complex that has produced 

3.2 Å quality data that will be used to solve the structure of this complex. This could be the 

first structure showing how a protein interacts with any of the PRMTs and could lead to 

insights on how Air2 binds and interacts with Hmt1. 
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INTRODUCTION  

 Protein arginine methyltransferase (PRMT) activity has emerged as an important 

player in numerous essential biological processes (1,2). Several disease states have been 

linked to dysregulation of arginine methyltransferase activity (3-10), marking PRMTs an 

important potential drug targets (11). However, before significant progress can be made in 

this area, the general knowledge of the regulation of PRMTs needs to be dramatically 

increased. In fact, despite the large number of pathways known to be affected by arginine 

methylation, very little is currently known about how arginine methyltransferase activity 

is affected by protein regulators.  

 Nine PRMT isoforms have been described in humans, and four have been described 

in Saccharomyces cerevisiae (Rmt2, Hsl7, Sfm1, and Hmt1)(12). Each of the yeast PRMTs 

exhibits unique product specificity (Figure 4-1). Rmt2 is a type IV PRMT that methylates 

the -nitrogen of arginine, an activity currently observed only in yeast (13). Hsl7 is a type 

II PRMT capable of forming monomethylarginine (MMA) and symmetric 

dimethylarginine (sDMA) (14). Sfm1 is a SPOUT methyltransferase family member 

tentatively classified as a type III PRMT, since only MMA formation has been observed 

(15). Hmt1, the predominant S. cerevisiae arginine methyltransferase, is a type I PRMT 

capable of both MMA and asymmetric dimethylarginine (aDMA) formation. Hmt1, like 

its human homolog PRMT1, is responsible for most PRMT activity in S. cerevisiae, 

accounting for about 66% of all MMA and 89% of all ADMA formed in vivo (16,17). 

While the number of identified Hmt1 substrates continues to grow (18), the best 

characterized substrates are RNA binding proteins such as Npl3 and Hrp1. Although the 

full effect of methylation on such proteins is still unclear, Hmt1 activity has been shown to 
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facilitate the export of mRNA-shuttling proteins from the nucleus, thus implicating Hmt1 

methylation in nucleocytoplasmic RNA transport (19). Given that Hmt1 is the only known 

type I PRMT in S. cerevisiae and seems to function as the work horse of yeast arginine 

methylation, Hmt1 serves as a good model on which to study how other proteins are able 

to regulate PRMT activity. In all organisms, only a handful of proteins have been reported 

to modulate PRMT1 activity (1). In S. cerevisiae, the Air1 protein is the only protein to 

have a proven role in regulating yeast arginine methylation (20).  

 

 

FIGURE 4-1. Reactions catalyzed by yeast protein arginine methyltransferases. Four 

types of PRMTs are present in yeast and are classified by the products formed. The type I 

PRMT, Hmt1 can form MMA and aDMA. The type II Hsl7 can form MMA and sDMA. 

The Sfm1 protein has only been found to catalyze MMA formation and is classified as a 

type III. The type IV Rmt2 catalyzes the monomethylation of the -nitrogen of arginine, 

making -MMA.  
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Air1 and Air2, or Arginine methyltransferase-interacting RING finger proteins 1 

and 2, were discovered in 2000 by Inoue et al. in a study aimed at finding Hmt1-interacting 

proteins in S. cerevisiae (20). This report went on to show that Air1 can inhibit Hmt1 

methylation of the Npl3 protein, both in vivo and in vitro (20). Although not specifically 

tested, the high degree of similarity between Air1 and Air2, along with functional overlap 

suggested from single and double knockout experiments in which severe growth defect 

was observed only when both proteins were absent, led to the suggestion that Air1 and Air2 

may both regulate Hmt1 activity (20). Even though this discovery occurred over a decade 

ago, the interaction has not been explored further until now.  

 The primary function of the Air1/2 proteins is within the TRAMP 

(Trf5(4)/Air1(2)/Mtr4 polyadenylation) complex. The TRAMP complex is an essential 

exosome cofactor that is able to recognize a wide variety of RNA substrates including 

aberrant forms of tRNAs, rRNA processing intermediates, snoRNAs, and cryptic unstable 

transcripts (21-24). The TRAMP complex recognizes a particular RNA substrate and adds 

a short poly-adenylate tail to the 3’ end of the RNA, stimulating it for degradation by the 

nuclear exosome (Figure 4-2) (23,25).  

The nuclear exosome is conserved in eukaryotes from yeast to humans, and 

homologs of TRAMP components are found in many organisms as well, including humans 

(26,27). In the TRAMP complex, Mtr4 is a helicase which unwinds substrate RNA 

secondary structure before delivery to the exosome. Trf5 and Trf4 are RNA specific 

poly(A) polymerases that add short (4-5) poly(A) tails to the 3’ end of the RNA substrate 

which targets the RNA for degradation; either one can be found as part of the TRAMP 
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FIGURE 4-2. The TRAMP complex is an essential nuclear exosome cofactor. The 

TRAMP complex is composed of Trf4/5, Air1/2, and the Mtr4 helicase. TRAMP adds short 

poly(A) tails to the 3’ end of substrate RNA, which targets the RNA for degradation by the 

exosome.  

 

complex. The homologs Air1 and Air2 are putative RNA binding proteins with 45% 

sequence similarity, each composed of a core (68% sequence identity in core) containing 

five zinc knuckle motifs (C-X2-C-X4-H-X4-C) flanked by extended N- and C-terminal 

sequences which are predicted to be largely unstructured (Figure 4-3). The zinc knuckle 

(also commonly called zinc finger) motifs are typically found to fold into reverse turns, 

coordinating a zinc ion using one histidine and three cysteine residues, and are known for 

their ability to bind RNA (28,29), although these motifs have been shown to bind DNA 

and proteins as well (30-32). Either Air1 or Air2 can be found as part of the TRAMP 

complex, suggesting they may be functionally redundant in this complex. One of the most 

intriguing questions regarding the TRAMP complex is how it is capable of identifying a 
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vast number of RNA targets which have no obvious sequence or secondary structure in 

common. The Trf4/5 proteins lack a recognizable RNA binding motif, suggesting that it is 

the Air1/2 proteins that provide RNA binding function, likely through the use of the zinc 

knuckle motifs. Recently, a crystal structure of the catalytic core of Trf4 and a fragment of 

Air2 (zinc knuckles 4 and 5) showed that these two zinc knuckles serve in the interaction 

of Air2 with Trf4 (32). This study was also able to demonstrate that in vitro, zinc knuckle 

one of Air2 enhances polyadenylation of some tRNAs by Trf4. This is the only report that 

has shown any part of Air2 being involved in substrate discrimination. Presumably, Air1 

would interact with Trf5 in a very similar manner. While the role Air1/2 play in substrate 

recognition as part of the TRAMP complex is still not fully understood, the regulation of 

Hmt1 by the Air1/2 proteins creates an interesting link between nuclear RNA surveillance 

and Hmt1 methylation. Therefore, understanding how the Air1/2 proteins function to 

regulate Hmt1 activity will not only yield valuable information regarding PRMT regulatory 

mechanisms, but given the role of Hmt1 in facilitating mRNA export, regulation by the Air 

proteins which have an established role in RNA surveillance hints at a functional role for 

Hmt1 in the RNA regulation of S. cerevisiae.  

 In order to understand Hmt1 regulation by the Air1/2 proteins, I have worked in 

collaboration with the Johnson lab (Utah State University) whose main research focus is 

the TRAMP complex, to express and purify recombinant Air1 and Air2 for 

methyltransferase inhibition studies. Several constructs of both Air1 and Air2 were created 

to map the areas of interaction with Hmt1, and to determine the minimal region necessary 

for Hmt1 inhibition. The solubility and stability of the Air proteins proved to be the limiting 
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FIGURE 4-3. Air1 and Air2 sequence alignment. Both Air1 and Air2 contain five zinc 

knuckle motifs within their core region. These are flanked by N-terminal and C-terminal 

sequences predicted to be primarily unstructured.  

 

factor for these studies, and therefore a full characterization of the mode of inhibition could 

not be attained. However, attempts to determine the molecular level details of the 

interaction between Hmt1 and the Air proteins via co-crystallization have shown 

significant promise and will be the focus of future efforts.  

  

EXPERIMENTAL PROCEDURES 

Materials— AdoMet was purchased from Sigma as a chloride salt (≥80%, from 

yeast).  [3H]AdoMet (83.1 Ci/mmol) was purchased from Perkin Elmer. ZipTip®
C4/C18 

pipette tips were purchased from Millipore. The R3 (acGGRGGFGGRGGFGGRGGRG), 
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JMH1W (KGGFGGRGGFGGKW), and RKK (GGRGGFGGKGGFGGKW) peptides 

were synthesized by the Keck Institute (Yale  

University) and purified to ≥ 95%.  

Expression and Purification of Hmt1— E. coli BL21 cells expressing His6-tagged 

Hmt1 were grown in Luria Broth media at 37° C to OD600 reached 0.6, followed by 

induction with 0.5mM IPTG at 22° C for 20 hours. Cell pellets were resuspended in two 

times cell volume lysis buffer (50 mM sodium phosphate pH 7.5, 100 mM NaCl, 20 mM 

imidazole) and lysed using sonication. The cell lysate was clarified via centrifugation and 

incubated with Nickel resin (GoldBio) in a 1:1 cell mass: resin ratio for 1-2 hours at 4° C. 

The resin was washed eight times with eight column volumes of lysis buffer modified to 

contain 500 mM NaCl, followed by three washes with eight column volumes of wash 

buffer (50 mM sodium phosphate pH 7.5, 100 mM NaCl, 70 mM imidazole). The protein 

was then eluted off the resin five times with two column volumes of elution buffer (50 mM 

sodium phosphate pH 7.5, 100 mM NaCl, 250 mM imidazole). Elutions were pooled and 

dialyzed into 50 mM Hepes pH 7.5, 10% glycerol. The protein was then concentrated, 

aliquoted, and flash frozen in liquid nitrogen prior to storage at -80° C.  

Expression and Purification of Air Proteins (Done by Johnson lab)— Air1 and 

Air2 constructs were created, expressed, and purified in the Johnson Lab as previously 

described (33). In brief, His6-tagged and His6_TEV_FLAG-tagged (HTFlag) codon 

optimized Air1 and Air2 constructs were created. Expression constructs were transformed 

into in BL21 (DE3) codon+ RIL E. coli cells (Agilent Technologies). Overnight starter 

cultures were grown at 37° C in 30 ml LB media supplemented with 250 µM ZnSO4 and 

appropriate antibiotics. Approximately 5 ml starter culture was used to inoculate each 500 
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ml LB growth flask that had also been supplemented with 250 µM ZnSO4 and appropriate 

antibiotics. The cell growths were incubated at 37° C until OD600 reached 0.6-0.8, at which 

point protein expression was induced with the addition of 0.3 mM IPTG. The cultures were 

then incubated at room temperature for 16 hours, harvested by centrifugation, and dry cell 

pellets were stored at -80° C until used.  

 To purify the Air1/2 protein constructs, cells were resuspended in lysis buffer (50 

mM Hepes pH 7.5, 500 mM NaCl, 2 mM β-mercaptoethanol, 200 µM ZnSO4, 10% 

glycerol, 10 mM imidazole, 1 µg/ml aprotinin, 1.4 µg/ml pepstatin, 1 µg/ml leupeptin, and 

0.2 mg/ml lysozyme), using 3 ml of buffer for every gram of cells.  Cells were lyzed by 

sonication and cleared lysate was incubated with 5 ml GoldBio or GE Nickel affinity resin 

for 1 hour at 4° C. The Nickel resin was then washed with 700 ml lysis buffer (without 

protease inhibitors or lysozyme), followed by 200 ml of high salt buffer (50 mM Hepes pH 

7.5, 1 M NaCl, 2 mM β-mercaptoethanol, 200 µM ZnSO4, 10% glycerol) and then low salt 

buffer (100 ml of 50 mM Hepes pH 7.5, 150 mM NaCl, 2 mM β-mercaptoethanol, 200 µM 

ZnSO4, 10% glycerol). The protein was then eluted from the resin three times with 20 ml 

of 50 mM Hepes pH 7.5, 150 mM NaCl, 2 mM β-mercaptoethanol, 200 µM ZnSO4, 10% 

glycerol, 500 mM imidazole, allowing the elution buffer to incubate with the resin for 5 

minutes prior to elution. The three Nickel elutions were then polled and loaded onto a 5 ml 

Heparin column (GE), which was then run using a 100 ml gradient from 0 to 100% low 

salt to high salt buffer as used in the Nickel step, except without ZnSO4 present. For 

inhibition studies, the protein peaks were then collected, concentrated and buffer 

exchanged in a 10kDa cutoff concentrator (Millipore) to the low salt buffer. The 
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concentrated to protein (~ 0.5 mg/ml) were then be aliquoted and flash frozen in liquid 

nitrogen prior to storage at -80° C.    

 For the constructs Air2 N-ZnK5, Air2 N-ZnK3, and Air1 ZnK4-5, the proteins were 

purified on Nickel resin as noted above, but then loaded onto a 5 ml MonoQ column (GE) 

instead of Heparin. The contaminants would bind to the column while these constructs 

would not. Therefore, the flow through would be collected, concentrated, buffer 

exchanged, and frozen as described above.  

 It should also be noted that all Air1/2 inhibition data shown in this chapter 

corresponds to His6-tagged Air1/2 constructs. HTFlag constructs were used for binding 

studies and were also tested for inhibition but no effect was detected with any HTFlag Air1 

constructs, indicating this longer tag was somehow able disrupt the Air1 inhibition of 

Hmt1. 

Expression and Purification of Npl3— His6-tagged full length Npl3 (pAM436) 

was a generous gift from Dr.  Ann McBride (Bowdoin University). E. coli BL21 NiCo21 

(DE3) cells expressing His6-Npl3 protein were grown in Luria Broth media at 37° C until 

OD600 reached 0.6, followed by induction with 0.5 mM IPTG at 22° C for 20 hours. Cell 

pellets were resuspended in two times cell volume lysis buffer (50 mM sodium phosphate 

pH 7.5, 500 mM NaCl, 20 mM imidazole) and lysed by sonication. The cell lysate was 

clarified via centrifugation and incubated with Nickel resin (GoldBio) in a 2:1 cell mass to 

resin ratio for 1-2 hours at 4° C. The resin was washed eight times with eight column 

volumes of lysis buffer, followed by three washes with eight column volumes of wash 

buffer (50 mM sodium phosphate pH 7.5, 100 mM NaCl, 70 mM imidazole). The protein 
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was then eluted off the resin five times with two column volumes of elution buffer (50 mM 

sodium phosphate pH 7.5, 100 mM NaCl, 500 mM imidazole). Elutions were pooled, 

filtered and further purified using MonoQ and Heparin columns (GE) in tandem. Fractions 

containing Npl3 were pooled and dialyzed into 50 mM Hepes pH 7.5, 10% glycerol. The 

protein was then concentrated to ≥ 1mg/ml, beaded in liquid nitrogen, and stored at -80° 

C.    

Methyltransferase Activity Assay— A quantitative methylation assay using 

ZipTipC4/C18 pipette tips was used in testing the enzymatic activity under steady-state 

conditions (34). Briefly, methyltransferase activity was tested with 100 nM Hmt1, 2 μM 

AdoMet (1 μM [3H]AdoMet), 380 nM BSA, and 10 nM MTAN (5'-methylthioadenosine 

/S-adenosylhomocysteine nucleosidase) in 50 mM sodium phosphate (pH 8.0), initiated 

with 500 nM Npl3 protein substrate at 30° C. When present, 500 nM Air1/2 (various 

constructs) was added to the reaction mixture and allowed to incubate for 10 minutes on 

ice prior to initiation with substrate. When used, EDTA was present at a 1 mM final 

concentration and RNAse at 15 µg/ml.  At different time points, 5 µl samples were removed 

from reactions, quenched to stop the reaction, and processed with ZipTipC4/C18 pipette tips 

to separate the unreacted [3H]AdoMet from the radiolabeled product. 

Co-expression and Purification of His6 Air2 and N22+2 Hmt1— A pETDuet 

construct containing codon optimized Air2 N-ZnK5 in cloning site 1 (His6-tag) and 

untagged Hmt1K13S in cloning site 2 was obtained from the Johnson lab. The Hmt1K13S 

protein was removed from cloning site 2 using the NdeI and XhoI restriction sites. A 

N22+2 Hmt1 construct was received from Dr. Anne McBride (Bowdoin University) and 

was used as a template for PCR amplification with primers containing a 5’ NdeI site and a 
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3’ XhoI site. This PCR product was ligated into the pETDuet cloning site 2 to create a 

pETDuet vector which co-expressed His6-Air2 N-ZnK5 and untagged N22+2Hmt1.  

The Air2-Hmt1 construct was transformed into BL21 (DE3) codon+ RIL E.coli 

cells. A single colony from a fresh transformation plate was used to inoculate a 50 ml LB 

overnight culture supplemented with 250 μM ZnSO4 and antibiotics (ampicillin and 

chloramphenicol). Approximately 5 ml of the starter culture was used to inoculate each of 

six 500 mL cultures of LB media (also containing 250 μM ZnSO4) in 2.5 L baffled flasks. 

The cell cultures were incubated at 37° C at 300 rpm until an OD600 of 0.3 was reached. 

Protein expression was induced by adding 0.05 mM IPTG. The cultures were then moved 

to a room temperature shaker and adjusted to 200 rpm for 20 hours. The cells were then 

harvested by centrifugation and stored at -80° C until used.  

About 21 g of cells were resuspended in 63 ml of lysis buffer containing 50 mM 

Tris pH 7.5, 50 mM NaCl, 200 µM ZnSO4, 1 µg/ml aprotinin, 1.4 µg/ml pepstatin, 1 µg/ml 

leupeptin, and 0.2 mg/ml lysozyme. The cells were lysed by sonicating at 6/80 four times 

for 20 pulses with 30 second rest on ice in between. The cleared lysate was incubated with 

12 ml Nickel resin in six 15 ml conical tubes (GoldBio) which had been previously 

equilibrated with buffer 1 (50 mM Tris pH 7.5, 50 mM NaCl, 200 µM ZnSO4) for 1 hour 

at 4° C. The resin was then washed fourteen times with 7 ml buffer 1 per tube. Two washes 

were done with 5 ml per tube of 50 mM Tris pH 7.5, 150 mM NaCl, 200 µM ZnSO4, 5 

mM imidazole. The protein complex was finally eluted with 3 ml per tube of elution buffer 

(50 mM Tris pH 7.5, 50 mM NaCl, 200 µM ZnSO4, 250 mM imidazole, 5 mM β-

mercaptoethanol). The elutions were filtered and loaded onto a 5 ml Heparin column (GE) 

at 3 ml/min. Although some Air2 protein stuck to the Heparin column, the complex was 
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found in the unbound fraction which was concentrated down to 5 ml total volume using a 

30 kDa cutoff concentrator (Millipore). The 5 ml of concentrated Air2/Hmt1 complex 

was loaded onto a 120 ml size exclusion column (HiLoadTM 16/60 SuperdexTM 75 prep 

grade (Amersham)) equilibrated with 50 mM Tris pH 7.5, 50 mM NaCl, 200 µM ZnSO4, 

5 mM β-mercaptoethanol, 10% glycerol and run at 1 ml/min for 270 minutes while 

collecting 3 ml fractions.  Fractions 18, 17, and a combination of 14-16 and 19-20 were 

each separately concentrated to ≥ 20 mg/ml (F17 seemed to have a 2:1 Hmt1 to Air2 ratio; 

F18 had an approximately 1:1 ratio). Final concentrations were: F17 = 27.44 mg/ml, F18 

= 23.7 mg/ml, and the mixed fractions = 22.3 mg/ml. Each was used to set up crystal trays 

immediately upon concentrating and the leftover protein was flash frozen in 200 µl aliquots 

and stored at -80° C. Attempts to optimize crystallization conditions used frozen protein 

from each batch. No significant difference was observed in the ability to form crystals 

between the three batches of protein. Prior freezing of the protein complex also did not 

seem to deter crystal formation or crystal quality.  

Crystallization, Crystal Optimization, and Data Collection of Air2/Hmt1 

Complex— Concentrated Air2 (N-ZnK5) and N22+2 Hmt1 described above was used 

for sitting-drop vapor diffusion crystallization screening trials using an Art Robbins 

Gryphon LCP Crystallization Robot (Art Robbins Instruments) located in the Johnson lab. 

Intelli-plate 96-well crystallization plates (Art Robbins Instruments) were used for 

crystallization trials. Five different crystallizations screens each containing 96 individual 

crystallization solutions were used to set up five 96-well crystallization plates for each 

concentrated complex fraction. The crystallizations screens used were the MCSG suite 

(Microlytic) which consist of four different screens (MCSG 1-4), and the Index screen 
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(Hampton Research). Crystallization plates were incubated at 4° C. After one week protein 

crystals were observed in many crystallization conditions and the best looking crystals 

were analyzed for diffraction quality using a home-source X-ray generator (MicroMax-

007HF) and detector (Rigaku R-Axis IV++), as well as being subjected to washing with 

crystallization solution, run on an SDS-PAGE gel and stained with SYPRO Ruby (Sigma) 

to determine the presence of both proteins in the crystal. Several analyzed crystals were 

salt, but the majority were poor diffracting (> 15 Å) protein crystals. One condition from 

the Index screen, position H7 (0.15 M D, L-Malic Acid pH 7.0, 20% PEG3350) showed 

the best diffraction quality (~ 10 Å) and contained both proteins as shown by gel analysis.  

Additional 24-well hanging drop trays were set up to screen around this condition: 

(D, L Malic Acid pH 7.0 was varied from 0.1 M to 0.225 M; the pH was also varied to 6.5, 

7.5, and 8.2; PEG 3350 concentrations were varied from 19% to 20.5%). In addition, two 

hanging drop hand trays were set up with the original Index H7 condition to test the effect 

of additives. Using the F18 protein complex in a 1:3 and 2:2 protein to well solution ratio 

with a total drop volume of 4.5 µl which included 0.5 µl of additive from the Hampton 

Research Additive Screen (HR2-428), four drops were set up per well containing 500 µl of 

0.15 M D, L-Malic Acid pH 7.0, 20% PEG 3350. These trays were placed at 4° C and 

crystals were noted after two days. Two additive conditions in the 1:3 ratio tray produced 

large crystals which were analyzed for diffraction quality. The addition of 1 M tri sodium 

citrate yielded crystals diffracting to 8 Å, while the addition of 1 M NDSB-256 improved 

diffraction to ~5 Å. Another hanging drop vapor diffusion tray was set up using 0.15 M D, 

L-Malic Acid pH 7.0, 20% PEG 3350 as the well solution with both 1 M tri sodium citrate 

and 1 M NDSB-256 additives in varying ratios, along with different drop ratios and 



93 

different well solution volumes. Since most of these conditions produced crystals, the best 

from each were flash frozen in a cryo buffer supplemented with 7.5% glycerol and were 

sent to the Stanford Synchrotron Radiation Lightsource (SSRL) for data collection. 

Ultimately, a 3.2 Å resolution dataset was collected from a crystal grown for 2 days at 4° 

C in a 4.5 µl drop containing 1 µl protein complex (F18 fraction), 3 µl 0.15 M D, L-Malic 

Acid pH 7.0, 20% PEG 3350, and 0.5 µl 2 M NDSB-256 additive. Additionally, an X-ray 

excitation scan was conducted on this crystal at SSRL which detected the presence zinc 

ions, suggesting that the crystal contained Air2 zinc knuckles. Molecular replacement was 

performed using Phaser (35) from the Phenix program suite (36). The search model used 

was N22+2 Hmt1 hexamer (Protein Data Bank entry 1G6Q). 

 

RESULTS  

Air1 and Air2 Interact With Hmt1— The only report of the interaction between 

the Air1/2 proteins and Hmt1 found that Air1 binds directly with Hmt1 and at least the first 

56 amino acids of Hmt1 are essential for the binding of Air1 (20). However, the regions of 

Air1 necessary for binding Hmt1 were not indicated. Additionally, although it was 

suggested that Air2 would likely function in a manner similar to Air1, Hmt1 inhibition or 

binding by the Air2 protein was never proven. Therefore, a partnership was established 

with the Johnson lab at Utah State University in order to identify the regions of Air1, and 

possibly Air2, required for Hmt1 binding. Using the few predicted structural features of 

Air1/2 as a guide (ZnK), several truncated Air1 and Air2 constructs were created and tested 

for their ability to complex with Hmt1 (Figure 4-4-A). It was first established that without 
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the extended C-terminal region, both Air1 and Air2 are able to form a stable complex with 

Hmt1. The Johnson lab was able to perform in vitro pull-down experiments to show that 

truncated Air1 constructs are able to bind Hmt1 (Figure 4-4-B). Notably, the Air1 protein 

region spanning zinc knuckles 4 through 5 is enough to form a stable complex with Hmt1, 

although this does not discount binding by other regions of Air1. Size exclusion 

chromatography studies further established that an Air2 N-ZnK3 construct is sufficient to 

form a stable complex with Hmt1 in vitro (Figure 4-4-C), indicating that while Air2 region 

spanning zinc knuckles 4 through 5 may interact with Hmt1, this region is not necessary 

for stable complex formation. Due to protein availability, it has not been possible to 

determine whether this region alone is able to bind Hmt1. Future studies should attempt to 

clarify whether Air1 and Air2 indeed utilize the same regions for Hmt1 binding. 

Additionally, isolating minimal binding regions of the Air1/2 proteins would facilitate 

quantitative analyses of the binding interactions (as well as potentially enable further 

characterization of the mechanism of Hmt1 inhibition), and may prove promising for use 

in crystallization trials to determine exactly how Air1/2 and Hmt1 interact at the molecular 

level.    

Characterization of the Differential Effects of Air1 and Air2 on Hmt1 Activity— 

Although full length Air1 was previously confirmed to inhibit Hmt1 methylation of Npl3 

both in vitro and in vivo (20), the suggested regulatory role of Air2 on methyltransferase 

activity was never verified. C-terminal truncated constructs of Air1 and Air2 generated by 

the Johnson lab were used in conjunction with an in vitro methyltransferase assay 

developed in the Hevel lab to test their effect on the Hmt1 methylation of Npl3. As depicted 
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FIGURE 4-4. Air1 and Air2 truncated constructs used to test binding to Hmt1 and 

the ability to inhibit Hmt1 activity. (A) Air1 and Air2 truncated constructs are shown. 

All were made with both His6 and His6-TEV-FLAG tags. (B) FLAG-tagged Air 1 N-ZnK5 

and Air1 ZnK4-5 pull down Hmt1 on FLAG resin. Samples were run on SDS-PAGE and 

visualized by anti-His antibody. (C) Purified Hmt1 and Air2 N-ZnK3 co-elute on a size 

exclusion column, forming a complex with apparent 1:1 stoichiometry.  

 

in Figure 4-5, we were able to shown to that Air1 N-ZnK5, even without the C-terminal 

region is able to inhibit Npl3 methylation by Hmt1. In contrast, the Air2 N-ZnK5 construct 

has no significant effect on the ability of Hmt1 to methylate Npl3 (Figure 4-5). This result 

highlights a clear functional difference between the Air proteins.  

Characterization of Air1 Inhibition of Hmt1 Activity— Once Air1 regulation of 

Hmt1 was confirmed, the next step was to characterize what features of Air1 are needed 
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for inhibition of Hmt1. Air1 has no predicted secondary structure, other than the five zinc 

knuckle motifs which are thought to primarily enable Air1 to bind RNA (37,38). Zinc 

knuckles 4 and 5 of Air2 have also been shown to participate in protein-protein binding 

interactions with Trf4, and are believed to also mediate Air1 interactions with Trf5 (32). 

We therefore set out to determine whether RNA-binding or zinc-binding by the Air1 

protein are necessary for Hmt1 inhibition. Our preliminary results (Figure 4-6) show that 

treatment with RNAse has no significant effect on the regulation of Hmt1 activity by Air1. 

However, treatment with EDTA to remove the zinc coordinated by the zinc knuckle motifs 

completely abolished the ability of the Air1 protein to inhibit methyltransferase activity 

(Figure 4-6). Therefore, we conclude that while RNA binding is not important for Air1 

regulatory function, intact zinc knuckle motifs are required for Air1 to inhibit Hmt1 

methylation of Npl3.     

Given the significance of the Air1 zinc knuckle motifs for the regulation of Hmt1, 

we next set out to determine which zinc knuckles are necessary for this effect. Air1 

constructs containing Air1 N-ZnK3 were unable to affect Hmt1 activity, while Air1 N-

ZnK5 and, importantly, Air1 ZnK4-5 constructs were able to inhibit methylation of Npl3 

(Figure 4-7). These results indicate that the minimal region of Air1 required for Hmt1 

regulation lies within the ~60 amino acid region between zinc knuckles 4 and 5. 

Significantly, this is the same region known to regulate the interaction of Air2 with Trf4 

(32). In vivo, Air1 and Air2 are predicted to be the limiting components of the TRAMP 

complex (39). Therefore, the revelation that the same region of Air1 necessary to inhibit 

Hmt1 activity is seemingly required for interaction with Trf5 are puzzling, especially with  
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FIGURE 4-5. Effect of Air2 and Air1 on the methylation of Npl3 by Hmt1. The rate 

of Hmt1 activity on Npl3 was normalized to 100%.  The addition of Air2 N-ZnK5 slightly 

enhanced the rate of Npl3 methylation, but only as typically observed upon the addition of 

more total protein (same as BSA addition, data not shown). The addition of Air1 N-ZnK5 

inhibited activity of Hmt1 on Npl3. Data shown is average of minimum two replicates.  

 

no known evidence that either Air1 or Air2 may exist independently of Trf5 or Trf4 in the 

cell. The potential puzzle aside, the results discovered here may provide an opportunity to 

further narrow the regions of Air1 required for Hmt1 inhibition. Since Air2 does not inhibit 

Hmt1, the residues between zinc knuckles 4 and 5 of Air1 that are not conserved in Air2 

and that are not Trf4/5 binding residues are likely to be the ones responsible for the 

inhibition of Hmt1 (Figure 4-8). Future studies should target these residues. Through either 
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alanine scanning, or the construction of chimeric Air1/2 proteins, it should be possible to 

define the sequences required for Hmt1 inhibition.  

 

 

FIGURE 4-6. Air1 zinc binding is required for inhibitory effect on Hmt1. The percent 

inhibition by Air1 N-ZnK5 on Hmt1 activity is unchanged by the addition of 15 µg RNAse. 

The addition of 1 mM EDTA chelates the zinc from the Air1 protein and abolishes 

inhibition of Hmt1 activity. Single activity measurements shown for the addition of RNAse 

and EDTA.  
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FIGURE 4-7. Air1 zinc knuckles 4 and 5 are required for Hmt1 inhibition. An Air1 

construct missing zinc knuckles 4 and 5 (Air1 N-ZnK3) is unable to inhibit Hmt1 activity, 

while ~60 amino acid region containing Air1 ZnK4-5 alone is shown to retain the inhibitory 

effect.  

 

 

FIGURE 4-8. Sequence alignment of Air2 and Air1 zinc knuckles 4 through 5. Strictly 

conserved residues are colored in blue while semi-conserved residues are in light blue. 

Dark blue triangles above indicate Air2 residues shown to interact with Trf4 (PDB: 3NYB). 

Red arrows indicate residues that are not conserved between Air1 and Air2, or required for 

interaction with Trf4 which should be targeted for mutagenesis.  
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Characterization of the Hmt1-Air Interaction Through Crystallography— A 

crystallographic approach was also pursued to determine the molecular details of the 

interaction between the Air proteins and Hmt1. The Hmt1 protein has been previously 

crystallized with an N-terminal truncation shown to improve crystal formation and 

diffraction (40). The Johnson lab created several constructs for the co-expression of Air2 

and full-length Hmt1 and were successful in obtaining crystals of the complex. However, 

these crystals had poor diffraction quality and could not be used to solve a structure of the 

complex (33). Using the Johnson lab constructs, purification strategy, and crystallization 

conditions as a guide, I attempted to improve upon their efforts by using the N-terminally 

truncated Hmt1 construct that had been previously crystallized in order to enhance crystal 

diffraction.  

 A His6-tagged Air2 N-ZnK5 construct was co-expressed with the N22+2 Hmt1 

construct that had been previously crystallized. Following the Johnson lab optimized 

purification strategy as a guide, ≥ 95% clean Air2-Hmt1 complex was purified and used 

for crystallization trials. Hundreds of new conditions were screened for their ability to 

crystallize this complex, and while several resulted in protein crystals, none provided 

usable X-ray diffraction. We then turned to the crystallization condition previously used 

by the Johnson lab to generate 7 Å diffraction patterns and were able to get crystals that 

contained both proteins (Figure 4-9-A) and that diffracted out to about 10 Å (Figure 4-9-

B).  We then set out to optimize this condition to improve the diffraction quality. Ratios of 

reagents were varied without much improvement. Through the use of an additive screen 

(Hampton Research) we were finally able to produce crystals that diffracted at our home 

X-ray source out to 5 Å (condition: 1 µl Air2/Hmt1 complex, + 3µl well solution (0.15 
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M D, L-Malic Acid pH 7.0, 20% PEG 3350) + 0.5 µl additive (1 M NDBS-256)). Several 

crystals grown under these optimized conditions were then sent to the Stanford 

Synchrotron Radiation Lightsource (SSRL) where we were able to collect usable 

diffraction data out to 3.2 Å (Figure 4-9-C).  

 We have been able to solve a partial structure using molecular replacement to place 

six N22+2 Hmt1 molecules into an electron density map. The previously solved 

N22+2 Hmt1 structure was also a hexamer (40). As it stands, no Air2 has yet been built 

into the structure, but there are many areas of open density remaining where Air2 may be 

built. Of slight concern is the fact that the majority of the remaining density appears to have 

secondary structural features not expected to occur in Air2 (Figure 4-10). However, an X-

ray excitation scan was conducted on the crystal at SSRL which detected the presence of 

zinc ions within the crystal. This, along with the previous detection of both Air2 and Hmt1 

in a crystal under this condition (Figure 4-9-A), suggests that Air2 is present. Further work 

will be done to build Air2 into the existing electron density and finally decipher how Air2 

interacts with Hmt1 at the molecular level.  

 Additional work currently underway in the Hevel lab will focus on using a similar 

strategy to solve the structure of Air1 N-Znk5 or Air1 ZnK4-5 in complex with N22+2 

Hmt1. Such a structure will represent the first depiction of how Hmt1 is able to interact 

with another protein and will also provide the first molecular details of how Hmt1 can be 

regulated.  
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FIGURE 4-9. Air2 N-ZnK5 and N22+2 Hmt1 complex crystals and diffraction 

patterns. (A) SDS-PAGE analysis of crystal composition shows that both proteins are 

present in the crystals which are shown below. (B) Initial ~10 Å diffraction observed prior 

to optimization of crystallization conditions. (C) Typical diffraction image from 3.2 Å 

dataset collected after crystal optimization.  

 

 

FIGURE 4-10. Initial Air2-Hmt1 electron density map created after molecular 

replacement using N22+2 Hmt1 hexamer as search model. Hmt1 hexamer is shown 

in yellow and symmetry molecules are shown in pink. Empty density will be examined and 

used to build the Air2 structure.  
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Table 4-1. Data collection statistics for Air2-Hmt1 crystal 

Data Collection  

Space Group C121 

Cell dimensions  

     a, b, c  (Å) 239.4, 103.3, 118.1 

     α, β, γ  (deg) 90.0, 91.97, 90 

Resolution (Å) 50-3.45 (3.6-3.45)a 

Rsym 0.224 (0.987) 

I / σI 6.64 (2.03) 

Completeness (%) 99.8 (99.9) 

Redundancy 6.5 (6.4) 
a Values in parenthesis are for highest-resolution shell.  

 

DISCUSSION 

 This collaborative work has begun to examine the regulation of Hmt1 by the Air1/2 

proteins. We have been able to determine the first functional difference between the Air 

proteins by showing that Air2 is unable to regulate the methylation of Npl3 by Hmt1 

(Figure 4-5). It should be noted that regulation of Hmt1 by Air2 cannot be discounted since 

no other substrates have been tested. One approach to search for Hmt1 substrates that that 

are methylated under the influence Air2 control is to use hypomethylated yeast cell extracts 

from an Air2-null background to test for Hmt1 activity in the absence and presence of Air2 

in order to test whether Air2 may be a substrate-dependent Hmt1 regulator. Additionally, 

it was recently reported that Air2 is an Hmt1 substrate and can be methylated at two 

arginines on the C-terminal tail (41). Arginine methylation of the Air2 C-terminal tail was 

shown to increase the interaction between Air2 and Npl3 (41), indicating that this region, 

which was not included in any of the constructs tested in this work is important and should 

be retained in any future attempts to determine whether Air2 is able to regulate Hmt1.  
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 We have been able to corroborate that Air1 regulates Hmt1 and have identified the 

region between zinc knuckles 4 and 5 as responsible for this regulatory effect (Figure 4-7). 

Although unable to fulfill the initial goal of characterizing the mechanism of inhibition 

(competitive vs. noncompetitive) due to limitations obtaining clean Air1 protein, we were 

able to narrow down the region responsible for inhibition to a ~60 amino acid stretch of 

Air1. Analysis of this region has allowed us to identify specific residues for targeted 

mutagenesis to learn their effect on Hmt1 activity. Additionally, smaller constructs (for 

example, Air1 ZnK4+linker4 and Air1 linker4+ZnK5) should be created to hone in on the 

minimal Air1 region required for Hmt1 regulation. Depending on the length of a minimal 

construct, peptides can be ordered and used to characterize the mechanism of inhibition if 

protein production continues to be an issue.  

 We confirmed that Air1 regulates the methylation of Npl3 (20). Only one additional 

protein substrate, histone H4, was tested in this work.  H4 methylation was also inhibited 

by the presence of Air1 (data not shown). The methylation of all peptide substrates tested 

(JMH1W, R3, and RKK peptides) was also inhibited by Air1 (data not shown). However, 

as is the case with Air2, methyltransferase reactions should be performed on 

hypomethylated yeast cell extracts in the absence or presence of Air1 in order to fully 

assess if Air1 is a broad spectrum Hmt1 regulator of if the effects are substrate dependent. 

 A continuation of work started by the Johnson lab (33) has recently produced 

exciting results in the form of a full 3.2 Å X-ray diffraction dataset which will be used to 

solve the structure of an Air2/Hmt1 complex (Table 4-1). A similar strategy has also 

been recently initiated to solve the crystal structure of an Air1/Hmt1 complex. This 

would be the first structure of Air1, and the first structure detailing how Hmt1 interacts 
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with a regulatory protein. Obtaining the crystal structure of an Air1/Hmt1 complex 

would be a significant addition to the black-box that is PRMT regulation.   

 It is often the case that preliminary results, such as those here presented, are unable 

to answer many specific questions. However, there is immense value in the new questions 

which arise from data such as these. Since it has been shown that Air1 ZnK4 has a role in 

promoting RNA target recognition in the context of the TRAMP complex (42), and we 

have now shown that Air1 ZnK4-5 are implicated in regulating Hmt1 activity, we are left 

with the intriguing question of whether Hmt1 binding to the Air proteins may modulate 

their RNA binding ability or selectivity. It is also interesting to wonder since the TRAMP 

helicase Mtr4 has recently been shown to interact with Hmt1 (43), an interesting question 

is whether  TRAMP has a role in inhibiting Hmt1. Other important questions include: What 

may be the bigger implication of Air1 regulation given the important role of Hmt1 in the 

regulation of mRNA export? Does the human homolog of Air1 (ZCCHC7) regulate human 

PRMT1 activity? There is clearly much work that still needs to be done and a vast extent 

that remains to be learned about the activity and regulation of the PRMTs.  
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CHAPTER 5 

INVESTIGATING THE EFFECTS OF PHOSPHORYLATION 

ON HMT1 ACTIVITY 

  

ABSTRACT 

 Protein arginine methyltransferases (PRMTs) are a family of enzymes that can 

methylate arginine residues in substrate proteins. This posttranslational methylation can 

alter the interactome of the modified substrate protein, thereby extending the range of its 

functions. Given that dysregulation or loss of arginine methyltransferase activity has severe 

biological effects, proper regulation of the arginine methyltransferases is of paramount 

importance. It was recently reported that regulation of Hmt1, the major type I PRMT in 

yeast, through posttranslational phosphorylation is necessary for fine tuning cell-cycle 

progression to environmental conditions. Phosphorylation at Serine 9 of Hmt1 resulted in 

an increase in the in vivo methylation of the RNA binding protein Npl3.  Additionally, the 

in vivo effects observed could be mimicked using a glutamate residue at position 9 of 

Hmt1. However, because in vitro studies were not performed, it remains unclear if 

phosphorylation affects the intrinsic activity of Hmt1, or if phosphorylation results in the 

recruitment of another factor, leading to increased activity. Herein, we aimed to 

characterize how phosphorylation affects the methyltransferase activity of Hmt1 in vitro 

through the use of the S9E phosphomimetic and S9A nonphosphorylatable Hmt1 variants. 

We have been unable to obtain clear results and can therefore neither confirm nor negate 

the claim that phosphorylation of Hmt1 is necessary for activation. Our results, however, 
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do indicate that assay conditions, and even the protein tags used can greatly influence the 

rate of Hmt1 activity and should be taken into account for future work.  

 

INTRODUCTION 

Protein arginine methyltransferases (PRMTs) catalyze the addition of one or two 

methyl groups to protein substrates at arginine residues, thereby altering their function. 

Arginine methylation has been shown to mediate protein-RNA, protein-DNA, and protein-

protein interactions (1). In Saccharomyces cerevisiae the methylation of arginine residues 

by the major yeast methyltransferase Hmt1 is associated with several biological functions 

such as nucleocytoplasmic shuttling (2), mRNA and rRNA processing (3), splicing (4), 

translation (5), and transcription through both histone and non-histone proteins (5,6).   

However, despite the lack of a known demethylase and of the magnitude of processes 

affected by arginine methylation, little is known about how arginine methyltransferases are 

regulated.  

The only current report of Hmt1 regulation via a posttranslational modification 

showed that Hmt1 could be phosphorylated at serine 9 in the Hmt1 N-terminal region. In 

a 2013 Cell paper, Messier et al. reported that Hmt1 activity and oligomerization are 

dependent on phosphorylation (7). In this study they generated phosphomimetic (S9E 

Hmt1) and nonphosphorylatable (S9A Hmt1) variants and performed methylation assays 

with immunoprecipitated TAP-S9EHmt1 or TAP-S9AHmt1 from yeast cells. They showed 

that Npl3 was methylated by yeast-purified S9E Hmt1 in vitro, while yeast-purified S9A 

Hmt1 was unable methylate Npl3. This led to the conclusion that Hmt1 phosphorylation at 
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serine 9 is required for activity. They also concluded from immunoprecipitation 

experiments that phosphorylation is necessary for Hmt1 oligomerization. However, 

immunoprecipitation of Hmt1 also comes with the possibility that other protein factors 

were co-immunoprecipitated, a possibility that was never addressed in the paper. Since the 

authors of this report elegantly demonstrated that the phosphorylation effects could be 

mimicked using a glutamate substitution at position 9, we set out to investigate, in vitro, 

the mechanism by which phosphorylation affects Hmt1 activity. S9E Hmt1 

(phosphomimetic) and S9A Hmt1 (nonphosphorylatable) constructs were expressed, 

purified, and their activities measured in order to corroborate the in vivo published results. 

However, it has been impossible to validate the in vivo results with our in vitro quantitative 

methylation assay (8). This discrepancy hints at the possibility that the published results 

were a result of recruitment of an unknown factor, rather than solely due to the 

phosphorylation event. We end with a discussion of the methods that can be used to finally 

ascertain whether Hmt1 phosphorylation causes an intrinsic effect on methyltransferase 

activity, or if this posttranslational modification affects a change through interactions with 

an unknown regulatory factor.  

 

EXPERIMENTAL PROCEDURES 

Materials— AdoMet was purchased from Sigma as a chloride salt (≥ 80%, from 

yeast). [3H]AdoMet (83.1 Ci/mmol) was purchased from Perkin Elmer. The R3 peptide 

(acGGRGGFGGRGGFGGRGGRG) was synthesized by the Keck Institute (Yale  

University) and purified to ≥ 95%. The lyophilized peptide was dissolved in water and its  
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concentration was determined by mass or by UV spectroscopy (ɛ280 nm = 5,690 M-1cm-

1). ZipTip®C4/C18 pipette tips were purchased from Millipore. 

 Plasmid Generation—A His6-tagged full length wild type Hmt1 plasmid 

(pPS1319) was received from Dr. Anne McBride (Bowdoin University) (9). Constructs 

containing a His6-TEV-T7 (HTT7) tag were created in the Hevel Lab as described in 

chapter 3. Briefly, a pET24b+ vector was used to insert a NdeI_His6-TEV-T7 

(HTT7)_BamHI_Npl3_SacI construct into the NdeI and SacI sites. The Npl3 construct was 

cut out using the BamHI and SacI restriction sites, and a full length wild type Hmt1 

construct was inserted using the same restriction sites. Hmt1 phosphorylation variant 

proteins were generated using the QuikChange® Site-Directed Mutagenesis kit 

(Stratagene) with sets of complementary oligonucleotide primers spanning the desired site 

of mutation.  For each PCR reaction, the pPS1319 vector (from Dr. Anne McBride), or the 

pET24b+HTT7 vector, containing the gene that codes for full length Hmt1 (pET15b-Hmt1 

and pET24b+HTT7-Hmt1, respectively) (9) was used as a template.  Desired mutations 

(S9A and S9E) were confirmed through DNA sequencing.   

Expression and Purification of Hmt1 Constructs— E. coli BL21 cells expressing 

either His6-tagged Hmt1 (WT, S9A, or S9E), His6-TEV-T7 (HTT7) Hmt1 (WT, S9A, or 

S9E), or tagless Hmt1 (WT, S9A, S9E) were grown in Luria Broth media at 37° C to OD600 

reached 0.6, followed by induction with 0.5 mM IPTG at 22° C for 20 hours. Cell pellets 

were resuspended in two times cell volume lysis buffer (50 mM sodium phosphate pH 7.5, 

100 mM NaCl, 20 mM imidazole, or 5 mM imidazole when purifying tagless constructs) 

and lysed using sonication. The cell lysate was clarified via centrifugation and incubated 

with Nickel resin (GoldBio) in a 1:1 cell mass: resin ratio for 1-2 hours at 4° C. The resin 
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was washed eight times with eight times column volume of lysis buffer, followed by three 

washes with eight times column volume of wash buffer (50 mM sodium phosphate pH 7.5, 

100 mM NaCl, 70 mM imidazole). The protein was then eluted off the resin five times with 

two column volumes of elution buffer (50 mM sodium phosphate pH 7.5, 100 mM NaCl, 

250 mM imidazole). Elutions were pooled and dialyzed into 50 mM sodium phosphate pH 

7.5, 100 mM NaCl, 10% glycerol. For samples in which the His tag was cleaved from the 

HTT7 tag, 1 mg of each protein was dialyzed into storage buffer (50 mM sodium phosphate 

pH 7.5, 100 mM NaCl, 10% glycerol) for 1 hour, then into TEV cleavage buffer (50 mM 

sodium phosphate pH 7.5, 100 mM NaCl, 10% glycerol, 1 mM EDTA, 10 mM β-

mercaptoethanol) for 1 hour prior to the addition of 0.2 mg TEV protease. The protease 

was added and allowed to work overnight at 4° C in a new bucket of TEV cleavage buffer. 

After 12 hours, the proteins were dialyzed back into storage buffer for 1 hour. The TEV 

cleaved proteins were then loaded onto a 1 ml HisTrap column (GE) which bound the 

cleaved tag and the TEV protein, while the cleaved Hmt1 constructs were collected in the 

unbound fraction.  The protein was then concentrated to ≥ 1 mg/ml, beaded in liquid 

nitrogen, and stored at -80° C.    

Expression and Purification of Npl3 Protein— E. coli BL21 Ni-Co (DE3) cells 

expressing His-TEV-T7 tagged full length Npl3 protein were grown in Luria Broth media 

at 37° C to OD600 reached 0.6, followed by induction with 0.5 mM IPTG at 22° C for 20 

hours. Cell pellets were resuspended in two times cell volume lysis buffer (50 mM sodium 

phosphate pH 7.5, 100 mM NaCl, 20 mM imidazole) and lysed using sonication. The cell 

lysate was clarified via centrifugation and incubated with Nickel resin (GoldBio) in a 2:1 

cell mass: resin ratio for 1-2 hours at 4° C. The resin was washed eight times with eight 
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times column volume of lysis buffer, followed by three washes with eight times column 

volume of wash buffer (50 mM sodium phosphate pH 7.5, 100 mM NaCl, 70 mM 

imidazole). The protein was then eluted off the resin five times with two column volumes 

of elution buffer (50 mM sodium phosphate pH 7.5, 100 mM NaCl, 500 mM imidazole). 

Elutions were pooled, filtered and further purified using MonoQ and Heparin columns 

(GE) in tandem. Fractions containing Npl3 were pooled and dialyzed into 50 mM sodium 

phosphate pH 7.5, 100 mM NaCl, 10% glycerol. The protein was then concentrated to ≥ 

1mg/ml, beaded in liquid nitrogen, and stored at -80° C.    

Methyltransferase Activity Assays—  Hmt1 methylation rates were 

measured according to an established methyltransferase activity assay (8) with the 

following modifications. 100 nM Hmt1 (WT, S9A, or S9E) was incubated with 10 nM 

AdoHcy nucleosidase (MTAN), 0.38 µM BSA, 1 µM (or 10 µM) AdoMet (Sigma), and 1 

µM [3H]-AdoMet (Perkin Elmer, specific activity 83.1 Ci/mmol) in 50 mM sodium 

phosphate buffer pH 8.0 at 4° C for 10 minutes prior to initiation with substrate and 

incubation at 30° C. Substrates used were 200 µM R3 peptide or Npl3 (0.1 µM to 1 µM).  

 

RESULTS  

 Initial Activity Measurements of Hmt1 Phosphorylation Variants— In order to 

investigate the effects of phosphorylation on Hmt1 activity, His6-tagged wild type (WT 

Hmt1), phosphomimetic (S9E Hmt1), and nonphosphorylatable (S9A Hmt1) constructs 

were recombinantly expressed and purified from E. coli cells. Using an established 

quantitative methyltransferase activity assay (8), the ability of each Hmt1 construct to 
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methylate recombinant Npl3 was measured. An in vitro confirmation of the previously 

published results should show weak to zero activity from non-phosphorylated WT Hmt1 

and S9A Hmt1, while the phosphomimetic S9E Hmt1 construct would be expected to have 

robust methyltransferase activity on the Npl3 substrate, as was shown in vivo (7). However, 

our initial findings did not yield these results. Instead, we observed the opposite of these 

predictions (Figure 5-1). The nonphosphorylatable (S9A Hmt1) variant showed robust 

methyltransferase activity, while WT Hmt1 and S9E Hmt1 proteins methylated Npl3, at a 

much lower rate. We were surprised by these results, prompting us to re-sequence the 

plasmids, re-express, purify, and again measure Npl3 methylation by these proteins, but 

the second set of results were very similar to the first (see error bars in Figure 5-1), 

indicating that an error was not committed on our part.  

 AdoMet Concentrations Affect Activity of Hmt1 S9A— The typical steady-state 

methyltransferase assay conditions used in the Hevel lab employ saturating concentrations 

of arginine-containing  substrate, but only use 2 µM AdoMet (SAM) which is below the 

reported KM for PRMT1 of 6 ± 1 µM (10). While the concentration of AdoMet used in the 

Cell paper was not reported, 2 µM [AdoMet] is fairly standard.  To examine a potential 

influence of AdoMet concentration on PRMT1 activity, the rates of Npl3 methylation by 

the Hmt1 phosphorylation variants at both 2 µM and 11 µM AdoMet ([AdoMet] used in 

Figure 5-1) were compared. At 2 µM AdoMet, the extreme difference in the methylation 

rates between the various Hmt1 constructs was not observed. Instead, the S9E Hmt1 and 

S9A Hmt1 rates become comparable.  
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FIGURE 5-1. Methylation of Npl3 by Hmt1 phosphorylation variants. The reactions 

were carried out with 100 nM Hmt1 (WT, S9E, or S9A), 10 µM AdoMet + 1 µM 

[3H]AdoMet, and 1 µM Npl3 substrate in 50 mM sodium phosphate buffer pH 8.0 at 30° 

C. Error bars indicate the standard deviation from the average between two biological 

replicates.  

 

 
 

FIGURE 5-2. Activity of Hmt1 phosphorylation variants at two AdoMet 

concentrations. The average rate of methyl group transferred is shown for each Hmt1 

phosphorylation variant in the presence of 1 µM Npl3 and either 2 µM or 11 µM AdoMet. 

Error bars shown represent the standard deviation between two biological replicated.   
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 Further attempts to replicate the conditions used in the reactions with yeast purified 

TAP-Hmt1 constructs focused on varying the concentration of the Npl3 substrate, since the 

original report used 700 nM Npl3 and our conditions used 1 µM. However, the S9A Hmt1 

construct that was unable methylate 700 nM Npl3 when purified from yeast cells, 

efficiently methylated 700 nM Npl3 in vitro (Figure 5-3-A). It must be noted that the data 

in Figure 5-3-A represents the measurement of only one rate for each Npl3 concentration 

per Hmt1 construct and therefore no attempts were made to fit the data to a Michaelis-

Menten equation. Since no clear distinction in the rate of methyl transfer was observed for 

the Hmt1 phosphorylation variants using the Npl3 protein substrate, the rates of 

methylation of R3 peptide substrate (ac-GGRGGFGGRGGFGGRGGFGG) were also 

measured (Figure 5-3-B). Again, no significant difference in the overall methylation rates 

was observed.  

Effect of N-terminal Tag on the Activity of Hmt1 Phosphorylation Variants— 

Although TAP-Hmt1 constructs tested by Messier et al. have not been used in the Hevel 

lab, the activity of TAP-tagged WT Hmt1 is known to be consistently very poor 

(conversations with Dr. Michael Yu), while the activity of recombinant WT Hmt1 (with a 

Histidine tag) in the Hevel lab has typically been robust. Therefore, the Hmt1 

phosphorylation variants were expressed with different affinity tags to determine if N-

terminal tags can affect the activity of the Hmt1 phosphorylation variants. The N-terminal 

Histidine tag that we employed does seem to have a direct effect on the overall activity of 

all of our constructs (Figure 5-4). The highest level of activity is shown by the constructs 

with the longest tag (HTT7 tag is 40 amino acids long, cleaved HTT7 (cHTT7) is 12 amino 

acids long, while the His6 tag is 6 amino acids long). Interestingly, the HTT7-tagged Hmt1 
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phosphorylation variants were able to methylate 1 µM Npl3 in a parallel to the results of 

Messier et al. (S9A Hmt1 significantly more impaired than S9E Hmt1). The TAP-Hmt1 

constructs used to immunoprecipitate the Hmt1 phosphorylation variants from yeast cells 

code for ProteinA-TEV-CBP-Hmt1, meaning that after TEV cleavage, the constructs used 

for methyltransferase assay by Messier et al. retained a 26 amino acid calmodulin binding 

protein (CBP) tag on the N-terminus of Hmt1. Our results, while only single data points, 

suggest that perhaps the observations made by Messier et al. could have been influenced 

by the use of a purification tag.   

 

 

FIGURE 5-3. Activity of Hmt1 phosphorylation variants with varying [Npl3], or with 

R3 peptide. The rates of methyl group transfer are shown for each Hmt1 phosphorylation 

variant with varied substrate concentration at 2 µM AdoMet. Error bars, when shown, 

indicate the standard deviation between at least two biological replicates.  
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FIGURE 5-4. Effect of N-terminal tags on Npl3 methylation by Hmt1 

phosphorylation variants. Single rate measurements are shown for the various Hmt1 

phosphorylation variants with one of the following N-terminal tags: His6 tag, His6-TEV-

T7 (HTT7) tag, or TEV-cleaved HTT7 tag. The methyltransferase activity of these 

constructs was measured in the presence of 1 µM Npl3, and 2 µM AdoMet.  

 

DISCUSSION 

The proper regulation of PRMT1 activity is critical for organismal well-being. 

Regulation of protein activity can be achieved many ways, including posttranslational 

phosphorylation which regulates many proteins, including several PRMT isoforms (11-

13). Recently, the yeast PRMT1 homolog, Hmt1, was reported to be activated in vivo 

through phosphorylation on an N-terminal serine residue (7). In this report, it was also 

shown that a phosphomimetic Hmt1 variant (S9E) immunoprecipitated from yeast cells 

could mimic the activity and oligomerization of phosphorylated Hmt1, while a 

nonphosphorylatable yeast-purified S9A Hmt1 variant had no activity.  However, there is 

precedent for the need to corroborate results observed in vivo with in vitro methods. One 
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well known example was the misclassification of PRMT7 as a type II PRMT due to 

contamination of immunoprecipitated type III PRMT7 with the type II PRMT5 (14). Since 

the report by Messier et al. did not address the possibility that their results may have been 

affected by the co-immunoprecipitation of an unknown factor with Hmt1, we determined 

to characterize the activity of recombinant Hmt1 phosphorylation variants (S9E and S9A) 

using a quantitative in vitro methyltransferase assay developed in our lab (8). We were 

unable to replicate the in vivo observations and find that the N-terminal tags used to purify 

Hmt1 may affect the measurement of Hmt1 activity. Tag-free constructs of the Hmt1 

phosphorylation variants should be used to be sure that our inability to reproduce the in 

vivo results is not a result of the tags attached to the protein.  

A possible experiment to ascertain whether phosphorylation at serine 9 of Hmt1 

has an intrinsic effect on Hmt1 activity, or affects activity through the recruitment of an 

unknown factor is to determine the activity of tag-free, recombinantly expressed 

phosphomimetic S9E Hmt1 and nonphosphorylatable S9A Hmt1 with and without an 

Hmt1-null yeast cell lysate. If an unknown yeast factor binds to and activates 

phosphorylated Hmt1, a stark difference should be noted between the methylation of S9E 

Hmt1 in the presence or absence of yeast lysate, whereas no significant difference would 

indicate an intrinsic effect on Hmt1 activity from phosphorylation. 
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CHAPTER 6 

REDOX CONTROL OF PROTEIN ARGININE METHYLTRANSFERASE 1 

 (PRMT1) ACTIVITY1 

 

ABSTRACT 

Elevated levels of asymmetric dimethylarginine (ADMA) correlate with risk 

factors for cardiovascular disease. ADMA is generated by the catabolism of proteins 

methylated on arginine residues by protein arginine methyltransferases (PRMTs), and is 

degraded by dimethylarginine dimethylaminohydrolase (DDAH). Reports have shown that 

DDAH activity is down regulated and PRMT1 protein expression is upregulated under 

oxidative stress conditions, leading many to conclude that ADMA accumulation occurs via 

increased synthesis by PRMTs and decreased degradation. However, we now report that 

the methyltransferase activity of PRMT1, the major PRMT isoform in humans, is impaired 

under oxidative conditions.  Oxidized PRMT1 displays decreased activity, which can be 

rescued by reduction. This oxidation event involves one or more cysteine residues that 

become oxidized to sulfenic acid (-SOH). We demonstrate a hydrogen peroxide 

concentration-dependent inhibition of PRMT1 activity that is readily reversed under 

physiological H2O2 concentrations. Our results challenge the unilateral view that increased 

                                                           
1Morales, Y., Nitzel, D. V., Price, O. M., Gui, S., Li, J., Qu, J., and Hevel, J. M. (2015) 

Redox Control of Protein Arginine Methyltransferase 1 (PRMT1) Activity. The Journal of 

biological chemistry 290, 14915-14926 
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PRMT1 expression necessarily results in increased ADMA synthesis, but rather 

demonstrate that enzymatic activity can be regulated in a redox-sensitive manner. 

 

INTRODUCTION 

 Endothelial dysfunction plays a major role in cardiovascular disease, the leading 

cause of death in the United States (1).  Several factors have been suggested to contribute 

to endothelial dysfunction such as decreased activity and/or expression of endothelial nitric 

oxide synthase (eNOS) and/or increased vascular formation of oxygen-derived free 

radicals (2,3). Asymmetric dimethylarginine (ADMA) is an endogenously synthesized 

inhibitor of NOS that has been gaining increased attention in the cardiovascular field (2,4-

9). In the heart, ADMA and other NOS inhibitors cause reduced heart rate and cardiac 

output (10,11).  Interestingly, in addition to decreasing levels of nitric oxide, evidence 

suggests that ADMA may also uncouple NOS (conditions under which NOS generates 

superoxide anion), thus increasing oxidative stress and inducing additional endothelial 

dysfunction (7,12).  Furthermore, ADMA was shown to increase endothelial oxidative 

stress and up-regulate expression of redox-sensitive genes that encode endothelial adhesion 

molecules (13), increasing propensity for plaque buildup. Taken together, the available 

data indicates that ADMA levels represent a risk factor for the development of endothelial 

dysfunction. 

ADMA is generated through the degradation of cellular proteins containing 

asymmetrically dimethylated arginine residues (Fig. 6-1). Arginine residues in certain 

proteins can be modified by the addition of one or two methyl groups; this modification is 

catalyzed by the protein arginine methyltransferase (PRMT) family of enzymes. Nine 
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human PRMT isoforms can be subdivided into three types determined by their final 

methylation products. Type 1 PRMTs (such as PRMT1) form monomethylarginine 

(MMA) and/or ADMA and represent the majority of identified PRMTs. Type 2 PRMTs 

form MMA and/or symmetric dimethylarginine (SDMA), and type 3 PRMTs produce only 

MMA (14). Each of the methylated arginine products (MMA, ADMA, and SDMA) can 

induce different biological responses in the cell; however, only MMA and ADMA are 

inhibitors of NOS activity (9,14). ADMA in the body is metabolized by dimethylarginine 

dimethylaminohydrolase (DDAH) to citrulline and dimethylamine (15).  Thus, the amount 

of free ADMA at any given time is a reflection of PRMT, proteasome, and DDAH 

activities. 

  

 
FIGURE 6-1. ADMA formation and degradation. Protein arginine methyltransferases 

(PRMTs) transfer a methyl group from donor AdoMet to arginine residues in substrate 

proteins. Type 1 PRMTs can transfer one or two methyl groups to the same terminal 

guanidino nitrogen producing monomethyl arginine (MMA) or asymmetric 

dimethylarginine (ADMA), respectively. Upon degradation of the methylated proteins, 

free MMA and ADMA inhibit NO synthesis by acting as competitive inhibitors of nitric 

oxide synthase. Free ADMA is catabolized by dimethylarginine dimethylaminohydrolase 

(DDAH) to citrulline and dimethylamine, or excreted in urine. 
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Evidence has shown that under oxidative stress, a condition linked to a variety of 

disease states, free ADMA levels are increased.  In many instances these studies also 

showed that PRMT1 RNA or protein expression is increased and DDAH activity is 

decreased (11,16-20).  This has led many to conclude that the increased expression of 

PRMT1 protein results in increased protein methylation, giving rise to a larger pool of the 

precursors for free ADMA (6,18,21).  While it is clear that elevated ADMA levels are 

connected to oxidative stress, the assumption that increased levels of PRMT1 protein 

expression are directly responsible for increased free ADMA production has not been 

validated. In fact, a recent report showed a significant reduction in the production of 

ADMA-containing polypeptides in both replicative and H2O2-induced premature senescent 

cells (22). In order to clarify the role of PRMT1 in free ADMA accumulation under 

oxidative stress conditions, we set out to investigate if oxidative conditions affect PRMT1 

catalytic activity.  

Here we report that PRMT1, the major human PRMT isoform, is susceptible to 

oxidation. Oxidized rat PRMT1, which differs from human PRMT1 at just one residue, is 

characterized by impaired enzymatic activity that can be rescued by reduction. We 

demonstrate a reversible, concentration-dependent inhibition of PRMT1 activity by H2O2. 

Furthermore, we show that this oxidation event involves at least two cysteines which are 

oxidized to sulfenic acid (-SOH). Our results provide the first direct evidence that PRMT1 

enzymatic activity can be regulated in a redox-sensitive manner. 
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EXPERIMENTAL PROCEDURES 

Materials— AdoMet was purchased from Sigma as a chloride salt (≥ 80 %, from 

yeast).  [3H]AdoMet (83.1 Ci/mmol) was purchased from Perkin Elmer. R3 peptide 

(acGGRGGFGGRGGFGGRGGRG) was synthesized by the Keck Institute (Yale 

University) and purified to ≥ 95%. The lyophilized peptide was dissolved in water and its 

concentration was determined by mass or by UV spectroscopy (ɛ280 nm= 5,690 M-1cm-1). 

Bulk histones from calf thymus were purchased from Sigma. Histone 4 protein was 

purchased from New England Biolabs. ZipTip®
C4/C18 pipette tips were purchased from 

Millipore. DCP-Rho1 sulfenic acid probe was purchased from Kerafast and 5IAF thiol-

specific probe was purchased from Life Technologies.  

Plasmid Generation— The His6-ratPRMT1 plasmid (HisPRMT1) was previously 

generated (23). To create a construct with a cleavable His6-tag, a DNA segment coding for 

a tobacco etch virus (TEV) cleavage site was designed with both N- and C-terminal NdeI 

restriction sites. The NdeI restriction enzyme was used to cut open the vector at an NdeI 

site between the His6-tag and the enzyme coding sequence, and the designed TEV insert 

ligated using the Quick LigationTM kit (New England Biolabs) to form the His6-TEV-

ratPRMT1 plasmid (HisTevPRMT1). The C101S, C342S, C254S, C208S, C101S/C208S 

variants were generated using the HisTevPRMT1 plasmid (or confirmed HisTevPRMT1 

C101S plasmid for C101S/C208S) as a PCR template for site directed mutagenesis using 

the QuikChange Lightning Kit (Stratagene) and sets of complementary oligonucleotide 

primers spanning the desired site of mutation. To replace all 11 cysteine residues of 

PRMT1 with serines and create HisTevPRMT1 cys (or cys-), properly coded DNA with 

N-terminal NdeI and C-terminal BamHI restriction sites was ordered from GenScript. The 
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PRMT1 sequence in His6-TEV-PRMT1 was excised with NdeI/BamH1 and replaced with 

the synthetic PRMT1 cys insert. The cysteine-less with C101 reintroduced (cys-C101), 

cysteine-less with C208 reintroduced (cys-C208), and cysteine-less with both C101 and 

C208 reintroduced (cys-C101C208) variants were generated using the HisTevPRMT1 cys 

plasmid as a PCR template for site directed mutagenesis using the QuikChange Lightning 

Kit (Stratagene) and sets of complementary oligonucleotide primers spanning the desired 

site of mutation. All plasmids were transformed using the E.coli DH5α cell line. Plasmids 

were purified (Qiagen Plasmid Mini Kit) and sequenced to confirm the correctness of the 

open reading frame prior to protein expression. 

Recombinant Protein Expression and Purification— Full-length His-tagged 

PRMT1 (residues 1-353) was expressed and purified as described previously (23). Briefly, 

E. coli BL21 cells were transformed with the above constructs and grown on Luria Broth 

medium / kanamycin agar plates. Selected colonies were grown in Luria Broth to A600 = 

0.6 and induced with 0.5 mM IPTG for 24 hours at 25⁰ C. Cell pellets were resuspended 

in lysis/wash buffer (50 mM sodium phosphate [pH 7.6], and 20 mM imidazole), sonicated, 

and centrifuged at 47,000 x g for 20 minutes at 4⁰ C. The clarified supernatant was 

incubated with Nickel Sepharose 6 Fast Flow resin (Qiagen) rotating for 2 hours at 4° C. 

The binding reaction was pelleted at 700 x g, the supernatant discarded, and the resin 

washed 4 times with lysis/wash buffer, 7 times with wash buffer containing 70 mM 

imidazole, and then eluted in 6 washes with 250 mM imidazole buffer. The elutions were 

pooled and dialyzed into storage buffer (50 mM sodium phosphate [pH 7.6], and 10 % 

glycerol), concentrated to greater than 1 mg/mL, and beaded in liquid nitrogen for storage 

at -80° C. To generate cleaved constructs, half of the His6-TEV enzymes were put into 
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cleavage buffer (50 mM sodium phosphate, 1 mM DTT, 2 mM EDTA, and 5 % glycerol); 

the TEV enzyme added and allowed to cleave overnight. The cleaved enzyme was dialyzed 

into storage buffer, re-incubated with nickel resin (removal of TEV and remaining His6-

tag), and the subsequent supernatant was dialyzed, concentrated, and stored the same as 

the His6-tagged elutions.  Enzyme cleavage and purity (> 90%) were assessed during and 

after purification using SDS-page. pET21a TbPRMT7 and pET28b human PRMT6 were 

purified as PRMT1. pET28a human PRMT3 (residues 211-531) was grown and purified 

as described in Wang et al. (24). Protein concentrations were determined by UV 

spectroscopy (PRMT1 ɛ280 nm= 54,945 M-1cm-1, PRMT3 ɛ280 nm= 37735 M-1cm-1, PRMT7 

ɛ280 nm= 37150 M-1cm-1, PRMT6 ɛ280 nm= 59040 M-1cm-1) and by the Bradford assay with 

bovine serum albumin as a standard. 

Kinetic Assays of PRMT1 Constructs— Conditions of methylation reactions were 

as published previously (23). Briefly, enzyme activity was assessed at 37° C in assays 

containing 100 nM PRMT1, 2 μM AdoMet (1 μM [3H]AdoMet), 0.38 µM bovine serum 

albumin, 100 nM AdoHcy nucleosidase (MTAN, purified as described in ref. (25)) and 

initiated with 200 μM peptide substrate or 2 μM protein substrate. Reactions in the presence 

of DTT were performed by pre-incubation of the reaction with 1 mM DTT for 10 minutes 

at 4⁰ C prior to initiation with substrate. At different time points, 5 µL samples were 

removed from reactions and quenched with 6 µL of 8 M guanidinium hydrochloride. 

Samples were processed with ZipTip®C4/C18 pipette tips (Millipore) (for protein or peptide 

substrates, respectively) to separate the unreacted [3H]AdoMet and the radiolabeled 

product (26). Time-dependent incorporation of radiolabel into substrates was quantified 

using a scintillation counter (Beckman Coulter). Methyltransferase activity for hPRMT3, 
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hPRMT6, and TbPRMT7 were performed as above, except 1 mM bulk histones (Sigma), 

and 1 mM Histone 4 protein (NEB) were used as substrates for hPRMT6 and TbPRMT7, 

respectively.  

Conditions for testing the effect of hydrogen peroxide on enzymatic activity were 

published previously (27) and were modified as follows. PRMT1was pre-reduced in 1mM 

DTT for 2 hours on ice then rapidly desalted on a 7 kDa ZebaTM Spin desalting column 

(Thermo Scientific). PRMT1 (2 µM final concentration) was oxidized with 0, 0.4 µM, 4 

µM, 40 µM, 200 µM, 400 µM, or 800 µM H2O2 for 10 minutes at 37⁰ C and then incubated 

with catalase (300 U/ml) for 1 minute at 37⁰ C. The mixture was then kept on ice and used 

for kinetic assays as above. Methyltransferase activity was unaffected by the addition of 

catalase (data not shown). In all cases, data reported is the average of at least three 

independent measurements.  

Size Exclusion Chromatography— Gel filtration chromatography was performed 

on a SuperdexTM 200 10/300GL column (GE Healthcare) in 50 mM sodium phosphate pH 

7.6, 150 mM NaCl, and 5 % glycerol at 0.4 ml/min flow rate. Freshly purified PRMT1 

variants were allowed to equilibrate overnight into gel filtration buffer, with or without the 

addition of 1 mM DTT, 2 mM EDTA prior to examination.  All constructs were analyzed 

by loading 300 µL of enzyme at a concentration of 10-20 µM and run at 0.4 mL/min for 

75 minutes.  

In Vitro DCP-Rho1 Labeling of Sulfenic Acid in Recombinant PRMT1—

 DCP-Rho1 labeling of purified PRMT1 was modified from the method described 

in Poole et al.(28). Briefly, 2.5 µM recombinantly expressed, air oxidized WT PRMT1, 

cysteine-less PRMT1, cysteine-lessC101, cysteine-lessC208, or cysteine-lessC101C208 
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enzymes were incubated with 1 mM DTT or with buffer in the presence of 6 M urea for 1 

hour at 22° C prior to addition of 10 µM DCP-Rho1 for 20 minutes at 22° C in a final 

reaction volume of 25 µl. The labeling reaction was quenched by addition of 4X SDS 

loading dye and boiling for 5 minutes. Labeled proteins were separated from unreacted 

label by 12 % SDS-PAGE, and band quantification was performed using the Image Lab 

software from BioRad and is reported as the average of three independent measurements.   

In Vitro 5IAF Labeling of Free Thiol Content in Recombinant PRMT1—

 5IAF labeling of purified PRMT1 was modified from the method described in Wu 

et al. (29) with optimization conditions aided by Hansen et al. (30). Briefly, 2.5 µM 

recombinantly expressed, air oxidized WT PRMT1, cysteine-less PRMT1, cysteine-

lessC101, cysteine-lessC208, or cysteine-lessC101C208 enzymes were incubated with 1 mM 

DTT or with buffer in the presence of 6 M urea for 1 hour at 22° C prior to addition of 2.5 

mM 5IAF  for 1 hour at 22° C in a final reaction volume of 25 µl. The labeling reaction 

was quenched by addition of 4X SDS loading dye and boiling for 5 minutes. Labeled 

proteins were separated from unreacted label by 12 % SDS-PAGE, and band quantification 

was performed using the Image Lab software from BioRad and is reported as the average 

of three independent measurements.   

  LC-MS/MS Analysis of Sulfenic Acid Content in Recombinant PRMT1—

 120 µg WT PRMT1 was treated with 5 mM dimedone in the presence of 6 M urea for 

2 hours at 22° C. The sample was then buffer exchanged twice into 50 mM ammonium 

bicarbonate to remove excess dimedone and all urea. After reduction and alkylation, the 

labeled sample was precipitated by stepwise addition of 6 volumes of cold acetone with 

continuous vortexing and then incubated overnight at -20° C. After centrifugation at 20,000 
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g for 30 minutes at 4° C, the supernatant was removed, and the pellet was allowed to air-

dry. Two consecutive digestions steps were employed for the on-pellet-digestion. In step 1 

(digestion-aided pellet dissolution), Tris buffer (50 mM, pH 8.5) containing trypsin at an 

enzyme/substrate ratio of 1:40 (w/w) was added and incubated at 37° C for 6 hours with 

vortexing at 500 rpm in a ThermoMixer shaking incubator (Eppendorf); in step 2 (complete 

cleavage), another portion of trypsin solution was added at an enzyme/substrate ratio of 

1:40 (w/w) in a 50 µl final volume. The mixture was incubated at 37° C for 12 hours to 

achieve a complete digestion. The digestion was terminated by adding 1 % (v:v) formic 

acid and centrifuged at 20,000 g for 30 min at 4° C; the supernatant was used for LC-

MS/MS analysis.  

  Four µl of the digested solution was analyzed by nanospray LC-MS/MS, which 

constitutes an Orbitrap Fusion Tribrid mass spectrometer with ETD (Thermo Fisher 

Scientific, San Jose, CA) coupled to an ultra-high pressure Eksigent ekspert NanoLC 425 

system (Dublin, CA) with a autosampler of Eksigent NLC 400 (Made in the Netherlands). 

A nano-LC/nanospray setup was used to obtain a comprehensive separation of the complex 

peptide mixture and sensitive detection. Mobile phases A and B were 0.1 % formic acid in 

1 % acetonitrile and 0.1 % formic acid in 88 % acetonitrile, respectively. Samples were 

loaded onto a large ID trap (300 µm ID × 5 mm, packed with Zorbax 5 µm C18 material) 

with 1 % B at a flow rate of 10 µL/min for 3 min. A series of nanoflow gradients was used 

to back-flush the trapped samples onto the nano-LC column (75 µm ID × 100 cm, packed 

with Pepmap 3-µm C18 material). The column was heated at 52 °C to improve both 

chromatographic resolution and reproducibility. Gradient profile was as follows: i) a linear 

increase from 3 to 8% B over 5 min; ii) an increase from 8 to 27 % B over 117 min; iii) an 
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increase from 27 to 45 % B over 10 min; iv) an increase from 45 to 98 % B over 20 min; 

and v) isocratic at 98 % B for 20 min. 

  The mass spectrometry was operating under data-dependent product ion mode. A 

3 second scan cycle included an MS1 scan (Orbitrap) followed by MS2 scans (dual-cell 

ion trap) by alternating CID and ETD activation, was programed. The parameters used for 

MS and MS/MS data acquisition under the CID mode were: top speed mode with 3s cycle 

time; Orbitrap: scan range (m/z) = 400-1600; resolution = 120 K; AGC target = 5 × 105; 

maximum injection time (ms) = 50; Filter: precursor selection range = 400-1500; include 

charge state = 2-7; dynamic exclude after n times = 1, duration time 60 s; Decision: data 

dependent mode: top speed, precursor priority = most intense; for CID, isolation mode = 

quadrupole; isolation window = 1.6; collision energy (%) = 30; detection type: Ion trap; 

iontrap scan rate: Rapid; AGC target = 1 × 104; maximum injection time (ms) = 50; 

microscan = 1; and for ddMS2 (ETD), ETD reaction time (ms) 200; ETD reagent target 

1.0 x 106; Maximum ETD reagent injection time (ms): 200; AGC target = 1 × 104; 

maximum injection time (ms) = 50; microscan = 1. 

CID and ETD activation spectra were processed using Peaks 7. Briefly, raw files 

were searched against the sequence of PRMT1, with the precursor mass tolerance of 20 

ppm and peptide fragment mass tolerance of 1 Da. And the static side chain modifications 

of carbamidomethyl (57.021), and dynamic side chain modifications of oxidation (15.995) 

and dimedone (138.068) controlled the protein FDR as 0.1 %.  
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RESULTS  

PRMT1 Activity is Reversibly Inhibited by Oxidation— The elevated levels of free 

ADMA that are observed under oxidative stress conditions (7) could arise from a few 

distinct mechanisms. Both proteosomal degradation and methyltransferase activities could 

affect the rate of free ADMA formation. Increased synthesis of ADMA-containing proteins 

(the precursors to free ADMA) could occur by increasing the expression of PRMT proteins 

while maintaining normal enzyme activity, or by increasing the methyltransferase activity 

of the current pool of PRMT proteins.  Since PRMT1 is responsible for ~85% of arginine 

methylation in cells and is the primary source of ADMA (31), altered expression and/or 

activity of this isoform would be expected to contribute greatly to altering levels of ADMA.  

In order to determine if oxidative conditions induce any changes in PRMT1 activity, we 

treated fully reduced recombinant PRMT1 with hydrogen peroxide, a common cellular 

oxidant, and measured the resulting methyltransferase activity. 

Recombinantly expressed PRMT1 was pre-reduced with dithiothreitol (DTT), and 

rapidly desalted to remove residual DTT. The reduced PRMT1 was then incubated with 

various concentrations of H2O2 (0.4—800 µM final concentration) followed by the addition 

of catalase to remove any remaining H2O2. Surprisingly, when the peroxide-treated 

PRMT1 was assayed, methyltransferase activity was found to be significantly inhibited by 

peroxide in a dose-dependent manner (Fig. 6-2A). At concentrations of hydrogen peroxide 

greater than 4 µM, PRMT1 activity was significantly impaired and could not be fully 

recovered (data not shown). However, at the physiologically relevant concentration of 0.4 

µM (physiological levels in mammals range from 0.001 µM to 0.7 µM)(32), hydrogen 

peroxide was also able to inhibit PRMT1 activity, and subsequent reduction with DTT 
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resulted in full recovery of activity (Fig. 6-2B). These experiments provide the first 

evidence that PRMT1 enzymatic activity is susceptible to reversible oxidative impairment 

under physiologically relevant oxidative conditions. 

 

 
FIGURE 6-2. PRMT1 activity is (A) inhibited by H2O2 in a concentration dependent 

manner and (B) activity lost can be recovered by reduction. In (A), reduced PRMT1 

was incubated with 0 (), 40 (), 200 (), 400 (), or 800 () µM H2O2 for 10 minutes 

at 37⁰ C, followed by the addition of catalase. Methyltransferase activity of the treated 

PRMT1 was measured with 200 µM R3 peptide as a substrate as described in Experimental 

Procedures.  In (B), reduced PRMT1 was treated with a physiologically-relevant 

concentration of hydrogen peroxide or phosphate-buffered saline (PBS) and subsequently 

treated with 1mM DTT or PBS prior to methyltransferase assays. 

 

PRMT1 Enzymatic Activity Increases After Reduction— In order to better 

understand the sensitivity of PRMT1 to oxidation, we purified recombinant PRMT1 in the 

absence of reductant and measured methyltransferase activity in the absence and presence 

of a reductant.  Pre-incubation with DTT increased methyltransferase activity by greater 

than 10-fold with the R3 peptide substrate (Fig. 6-3A). We examined the duration of this 

effect by rapidly desalting PRMT1 following the DTT pre-incubation step. The activity of 
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the desalted PRMT1 was increased only by 2-fold using the R3 peptide (Fig. 6-3A), 

indicating that the effect of DTT is transient and that PRMT1 oxidation occurs quickly in 

the absence of a reductant. We further studied the relationship between enzymatic activity 

and the concentration of DTT by comparing PRMT1 activity with varied concentrations of 

DTT ranging from 0.1 mM to 10 mM (Fig. 6-3B). Our results indicate that the effect of 

DTT is concentration-dependent, achieving a maximal rate enhancement at 1.5-2 mM DTT 

(Fig. 6-3B).  During the course of this study, more than 50 human and rat PRMT1 proteins 

were purified in the absence of reductant and showed anywhere from a 1.8-fold to 70-fold 

increase in methyltransferase activity when DTT was included in the reaction or the 

enzyme was pre-incubated with DTT (data not shown).  We note that in many cases, our 

purification protocol can be accomplished in as few as ~8 hours.  These results demonstrate 

that PRMT1 is sensitive to oxidation by not only hydrogen peroxide, but also cellular 

conditions and/or the mild conditions used for purification. 

Methylation of the sulfhydryl groups in DTT was previously observed with small 

molecule plant O-methyltransferases, where it acted as an intermediate acceptor molecule 

(33). Even though DTT methylation was not detected in our control reactions lacking 

peptide substrate (control Fig. 6-3A), we replaced DTT in our assay with an alternative 

thiol-free reductant, Tris(2-carboxyethyl)phosphine (TCEP). When 1 mM TCEP was used 

to reduce PRMT1, the rate enhancement with the R3 peptide was identical to that observed 

using 1 mM DTT (Fig. 6-3A). We conclude that the enhancement of HisPRMT1 

methyltransferase activity is due to the reducing power of the DTT or TCEP additives.  
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FIGURE 6-3. The effect of reducing agents on PRMT1 enzymatic activity. In (A) 

PRMT1 methyltransferase activity was measured without substrate (), or with 200 µM 

R3 peptide in the absence () and presence of DTT () or TCEP (), or after desalting 

following a 10 minute pre-incubation with DTT (). In (B), methyltransferase activity 

was measured as a function of DTT concentration.   

 

Several different affinity tags are used for PRMT1 purification and variable 

methylation rates have been observed (34-36). We questioned whether our His6-tag was 

influencing the observed rate changes upon reduction. To address this concern, we 

expressed a tag-less version of rat PRMT1. However, this version of PRMT1 was unstable 

and lost activity rapidly (data not shown). As an alternative strategy, we created a His6-

tagged, tobacco etch virus (TEV) cleavable, rat PRMT1 construct (HisTevPRMT1) which 

allowed us to cleave the tag after an initial purification step and then use the tag-free version 

(tag-freePRMT1) for kinetic assays. Both tagged and tag-free versions of PRMT1 

exhibited rate enhancement upon reduction, although the tag-free version was markedly 

more active than the tagged version even without DTT in the assay (Fig. 6-4). This 

observation is easily explained when the method for acquiring tag-free protein is taken into 

consideration. The protocol for TEV cleavage includes an overnight dialysis step in a 
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buffer containing 1 mM DTT and 2 mM EDTA and therefore the resulting tag-free enzyme 

used in the activity assays is already somewhat pre-reduced. To confirm this theory, we 

again purified the cleavable (HisTevPRMT1) enzyme by nickel chromatography.  Purified 

enzyme was divided into two separate dialysis bags.  TEV was added to one, and the other 

was left uncleaved; however, both tagged and cleaved samples were dialyzed overnight in 

the same 1 mM DTT, 2 mM EDTA containing buffer. Methyltransferase activity of these 

newly purified tagged and tag-free PRMT1 enzymes revealed no significant rate 

enhancement upon addition of DTT (Fig. 6-4). The addition of only EDTA had no 

significant effect on methyltransferase activity (Fig. 6-4). These results confirm that it is 

not the tag, but rather the reducing treatment of the tag-free enzyme which enhanced the 

enzymatic activity of PRMT1. 

Reduction Alters the Oligomeric State of PRMT1— It has been shown that 

PRMT1 forms at least a homo dimer in order to be catalytically active (36-38). Feng et al. 

introduced the idea that changing the oligomeric state of PRMT1 affects its enzymatic 

activity (34).  Since reduction of PRMT1 results in increased activity, we wondered if 

reduction had an effect on the oligomeric state of the enzyme. Size exclusion 

chromatography experiments in the presence or absence of DTT were carried out to 

determine the oligomeric state of PRMT1 under different redox environments (Fig. 6-5). 

Unreduced PRMT1 migrates over a broad range of oligomeric states, with the majority of 

the protein existing in oligomers that migrate at molecular weights above 660 kDa. As a 

reference, PRMT1 is thought to be active as an 80 kDa dimer (although a dimer form has 

not been observed on size exclusion chromatography) (36,39). Overnight incubation with 

1 mM DTT and 2 mM EDTA results in a shift towards a homogeneous oligomeric state 
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migrating between 200 and 450 kDa (Fig. 6-5). Analytical ultracentrifugation, a more 

sensitive technique for determining molecular weights, showed the same shift towards a 

smaller oligomeric species upon reduction as was observed using size exclusion 

chromatography (data not shown). In conclusion, oxidized PRMT1 forms a large molecular 

weight functional aggregate, while reduction of PRMT1 causes a shift towards a smaller, 

more uniform, oligomeric state that correlated with an increase in enzymatic activity. 

 

 
FIGURE 6-4. The enhancing effect of DTT on PRMT1 methyltransferase activity is 

independent of the His6-tag. Enzymatic activity of HisTevPRMT1 (), cleaved PRMT1 

(), and dialyzed HisTevPRMT1 () measured with 200 µM R3 peptide in the absence 

(open) and presence (closed symbols) of DTT respectively, as well as HisTevPRMT1 

treated with EDTA only as a control (). 

 

Reduction Alters the Oligomeric State of PRMT1— It has been shown that 

PRMT1 forms at least a homo dimer in order to be catalytically active (36-38). Feng et al. 

introduced the idea that changing the oligomeric state of PRMT1 affects its enzymatic 

activity (34).  Since reduction of PRMT1 results in increased activity, we wondered if 

reduction had an effect on the oligomeric state of the enzyme. Size exclusion 
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chromatography experiments in the presence or absence of DTT were carried out to 

determine the oligomeric state of PRMT1 under different redox environments (Fig. 6-5). 

Unreduced PRMT1 migrates over a broad range of oligomeric states, with the majority of 

the protein existing in oligomers that migrate at molecular weights above 660 kDa. As a 

reference, PRMT1 is thought to be active as an 80 kDa dimer (although a dimer form has 

not been observed on size exclusion chromatography) (36,39). Overnight incubation with 

1 mM DTT and 2 mM EDTA results in a shift towards a homogeneous oligomeric state 

migrating between 200 and 450 kDa (Fig. 6-5). Analytical ultracentrifugation, a more 

sensitive technique for determining molecular weights, showed the same shift towards a 

smaller oligomeric species upon reduction as was observed using size exclusion 

chromatography (data not shown). In conclusion, oxidized PRMT1 forms a large molecular 

weight functional aggregate, while reduction of PRMT1 causes a shift towards a smaller, 

more uniform, oligomeric state that correlated with an increase in enzymatic activity.  

The Oxidation-Dependent Effects on PRMT1 Activity Require a Cysteine(s) 

Residue— One of the most common mechanisms for oxidative damage is the oxidation of 

cysteine residues (40-43). We took a broad approach to evaluate whether any cysteine 

residues were responsible for the effects of oxidation/reduction by creating a PRMT1 

variant where all eleven rat PRMT1 cysteine residues were mutated to serine 

(HisTevPRMT1cys or cys-). Interestingly, the cysteine-less PRMT1 showed no 

enhancement in methyltransferase activity upon pre-incubation with DTT (Fig. 6-6). In 

addition to activity measurements, the oligomeric state of the cysteine-less PRMT1 variant 

was assessed by size-exclusion chromatography (Fig. 6-5). The cysteine-less PRMT1  
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FIGURE 6-5. Oligomeric state of PRMT1 proteins assessed by size exclusion 

chromatography.  PRMT1 without DTT treatment (top) or incubated overnight with 1 

mM DTT and 2 mM EDTA (middle), compared to Cysteine-less PRMT1 which migrates 

at the same position regardless of treatment with DTT or EDTA.  Reduction of PRMT1 or 

removal of all cysteine residues results in a shift towards a smaller oligomeric state.   

 

enzyme exhibited a migration pattern similar to that of the maximally active, reduced 

PRMT1, regardless of its treatment (data not shown).We conclude from these observations 

that indeed one (or more) cysteine(s) are responsible for the redox switching of PRMT1 

activity. 

C101, C342, C254, and C208 are not Individually Responsible for Reductive 

Effects— We examined the rat PRMT1 crystal structures (36) for cysteine residues capable 

of undergoing oxidation and found that out of the eleven cysteines present in rat PRMT1, 

cysteines 101, 208, 232, 254, and 342, are all solvent accessible (Fig. 6-8). Cysteines 9 and 

15 are not visible in the crystal structure and were not considered in this study since a 

human PRMT1 variant lacking the first 27 amino acids exhibits enhanced activity after 
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reduction (data not shown). A recent quantitative reactivity profiling study identified C101 

as hyper-reactive with 4-hydroxyl-2-nonenal (HNE) (44), indicating that C101 may be 

susceptible to oxidation. Cysteine 101 is situated on the far edge of the AdoMet binding 

pocket and directly interacts with the adenine ring structure of AdoMet (see Fig. 6-8), and 

thus, seemed like an excellent target to control enzymatic activity depending on its redox 

state.  Mutation of C101 to serine results in a construct mimicking wild type 

methyltransferase activity, including the response to DTT (Fig. 6-6). Closer evaluation of 

our rat PRMT1 M48L crystal structure (23) showed additional electron density around 

cysteine 342, suggesting possible oxidation of the thiolate moiety to a reducible sulfenic 

acid moiety. Although this residue is relatively removed from the active site, it has been 

suggested that residues distant from the active site can regulate PRMT substrate specificity 

(45). However, the C342S variant also mimicked wild type enzymatic activity, including 

the DTT enhancement (Fig. 6-6). The PRMT1 crystal structure (36) also shows that C254 

forms an intermolecular disulfide bond with another PRMT1 dimer, and was therefore also 

mutated to determine if reduction of this disulfide caused the increase in activity and the 

corresponding shift towards a smaller oligomeric state. However, as we saw with the other 

two individual cysteine variants, C254S activity was still enhanced upon reduction with 

DTT (Figure 6-6). The C254S PRMT1 variant also behaved as WT PRMT1 when run on 

size exclusion chromatography (data not shown)(36).   

As previously mentioned, it is believed that PRMT1 dimerization is necessary for 

catalytic activity. In fact, all currently available Type 1 and Type 2 PRMT structures reveal 

a conserved mode of dimerization between catalytic subunits (36-38,46,47). Each subunit 

contains a dimerization helix-turn-helix dimerization arm (blue in Fig. 6-8) that extends  
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FIGURE 6-6. Methyltransferase activity of PRMT1 cysteine variants in the absence 

or presence of DTT. WT PRMT1, Cysteine-less PRMT1, C101S PRMT1, C342S 

PRMT1, C254S PRMT1, C208S PRMT1, and C101S/C208S PRMT1 methylated 200 µM 

R3 peptide in the absence (light gray/purple) or presence (dark gray/purple) of DTT. 

Results shown correspond to the average of at least two biological replicates. Removing 

all cysteine residues from PRMT1, or making C101 and C208 unavailable for oxidation 

resulted in abolished redox control over PRMT1 catalytic activity.  
 

 from the C-terminal 𝛽-barrel (dark gray in Fig. 6-8) and rests upon the N-terminal AdoMet 

binding domain (light gray in Fig. 6-8) of the other subunit; coming together to form an 

active dimer with a central cavity and two opposing active sites (Fig. 6-8).  

Zhang, X. et al. reported that removal of the helix-turn-helix dimerization arm of 

PRMT1 not only eliminated homodimerization, but also AdoMet binding and 

methyltransferase activity. It was thus suggested that the dimer interaction is required to 

engage the residues on the other side of the structural elements to interact with AdoMet 

properly (36). In the analysis of another type 1 PRMT structure, Cheng, Y. et al. computed 

the atomic position fluctuations (APFs) of the monomer and dimer to determine the impact 
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of dimerization of the motion of atPRMT10, also a type 1 PRMT. They found two regions 

to have lower APFs in dimeric form than in monomeric form: the αγ-loop-αZ (40-68 in 

atPRMT10) (orange in Fig. 6-8) and the dimerization arm (187-235 in atPRMT10) (blue 

in Fig. 6-8), suggesting that these regions are stabilized upon dimer formation. The αγ-

loop-αZ region is directly involved in AdoMet binding and the formation of the substrate 

binding groove I (36). It was also suggested that stabilization of this region by dimerization 

likely improves the binding of AdoMet and substrate proteins (37). Additionally, 

Higashimoto et al. demonstrated that in PRMT4 (CARM1), phosphorylation of S229, 

located on the outer face of the AdoMet binding domain, compromised dimerization, 

negatively regulated methyltransferase activity, and lowered AdoMet binding (48). The 

presence of a charged functional group adjacent to the hydrophobic dimerization arm 

binding surface likely destabilizes dimerization interactions.  Cysteine 208 of PRMT1 is 

located on the PRMT1 dimer interface (Fig. 6-8). Given the importance of dimerization for 

PRMT activity and the predicted susceptibility to oxidation, this residue was also deemed 

likely to be culpable for the effect of oxidation in impairing methyltransferase activity. 

Additionally, use of the Cysteine Oxidation Prediction Algorithm (COPA) which uses 

distance to the nearest cysteine sulfur, solvent accessibility, and pKa as parameters for thiol 

oxidation susceptibility, suggested Cysteine 208 is susceptible to oxidation by exposure 

(49). However, measurement of the enzymatic activity of the individual C208S variant 

revealed this construct was also enhanced by DTT (Fig. 6-6).  

If PRMT1 dimerization is indeed stabilizing substrate binding, we rationalized that 

oxidation of C208 in the dimerization arm in conjunction with C101 in the AdoMet binding 

pocket could be responsible for the diminished methyltransferase activity observed under 
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oxidizing conditions. In order to explore this hypothesis, a C101S/C208S variant of 

PRMT1 was created, and methyltransferase activity was measured in the presence and 

absence of DTT. Remarkably, methyltransferase activity of the double variant was the 

same under both oxidizing and reducing conditions (Fig. 6-6). We note that the activity of 

the double variant (C101S/C208S) is lower than the activity of reduced wild type enzyme, 

suggesting that these residues may have an additional role in PRMT1 activity. Surprisingly, 

when both C101 and C208 are unavailable for oxidation, the protein does not completely 

shift to a smaller oligomeric state as the cysteine-less construct (data not shown). In 

conclusion, making C101 and C208 unavailable for oxidation resulted in abolished redox 

control over PRMT1 catalytic activity.  

Sulfenic Acid Formation at C101 and C208 In Vitro— In order to further analyze the 

oxidation events occurring at C101 and C208, we used the sulfenic acid-specific probe 

DCP-Rho1, which contains a rhodamine attached to the functional core of dimedone. To 

detect sulfenic acids, air oxidized wild type PRMT1 (WT), cysteine-less with C101 

reintroduced (cys-C101), cysteine-less with C208 reintroduced (cys-C208), and cysteine-less 

with both C101 and C208 reintroduced (cys-C101C208) were incubated with DCP-Rho1 or 

DMSO as a negative control in the presence or absence of reductant under denaturing 

conditions.  Cysteine-less PRMT1 (cys-) was also subjected to labeling as a negative 

control. Analysis of the fluorescent label incorporation (Fig. 6-7-A and B) clearly shows 

the presence of sulfenic acid at cysteine 101 and 208 of PRMT1. Interestingly, while both 

cysteine 101 and 208 are necessary for oxidative impairment of C101, we consistently 

observed more sulfenic acid formation at C208, suggesting either that C101 is less 

susceptible to oxidation than C208, or that the sulfenic acid form of C101 is transient and 
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can be further oxidized to sulfinic or sulfonic acid. The possibility that these two cysteine 

residues may somehow be involved in a disulfide linkage was ruled out using Native PAGE 

analysis (data not shown).  Free thiol content analysis using the 5IAF probe (Fig. 6-7-C 

and D) and performed in parallel with the DCP-Rho1 labeling, shows similar free thiol 

content for cys-C101 and cys-C208. When analyzed together, these results are consistent with 

a higher propensity for irreversible oxidation at C101.In addition to the fluorescent probes, 

WT PRMT1 treated with sulfenic-acid-specific dimedone was subjected to LC-MS/MS 

analysis to further confirm sulfenic acid formation. Using this method, dimedone 

incorporation was observed at both C101 and C208 (Figure 6-7-E and F), confirming the 

fluorescent probe results. In conclusion, the reversible activity impairment observed under 

oxidative conditions is consistent with sulfenic acid formation at C101 and C208 of 

PRMT1.  

 

DISCUSSION 

Elevated ADMA concentrations have been proposed to predict cardiovascular 

mortality in patients with chronic renal insufficiency (50) and acute coronary events (8). 

Additionally, ADMA is not only a marker, but also a mediator of oxidative stress within 

vascular tissue (7). Given that PRMT1 is the primary source of ADMA in eukaryotes, it is 

of the utmost importance to understand how PRMT1 activity and ADMA synthesis are 

regulated under oxidative stress conditions. Here, we have shown that PRMT1 activity is 

decreased in vitro under physiologically relevant oxidative conditions, an effect which is 

readily reversed upon reduction and is associated with cysteine oxidation to sulfenic acid.   
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FIGURE 6-7. Sulfenic acid detection and free thiol content in PRMT1.  In (A), (B), 

(C), and (D) Air oxidized wild type PRMT1 (WT), cysteine-less (cys-), cysteine-less with 

C101 reintroduced (cys-C101), cysteine-less with C208 reintroduced (cys-C208), and 

cysteine-less with both C101 and C208 reintroduced (cys-C101C208) were denatured in 6M 

urea and incubated with 1 mM DTT or buffer prior to addition of 10 µM DCP-Rho1 or 2.5 

mM 5IAF. Labeled samples were resolved by SDS-PAGE.  (A) shows a representative 

image of the rhodamine fluorescence signal and the corresponding coomassie bands. (B) 

graphical representation of triplicate gel analysis. Normalized percent DCP-Rho1 

fluorescence represents the percentage of fluorescent signal divided by the amount of 

protein observed in the coomassie bands which is interpreted as the relative amount of 

sulfenic acid present. (C) shows a representative image of the 5IAF fluorescence signal 

and the corresponding coomassie bands. (D) graphical representation of triplicate 5IAF gel 

analysis, interpreted as relative amount of free thiols present. (E) and (F) show a 

representative MS/MS fragmentation spectra for peptides containing dimedone-modified 

sulfenic acids in PRMT1. In (E), the CID fragments of peptide IECSSISDYAVK labeled 

with dimedone at C101. (F) ETD fragments of peptide MCSIKDVAIK labeled with 

dimedone at C208. The mass shift by the modification is 138.068 (exact number), as 

denoted in peptide sequence.  
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FIGURE 6-8. Cysteine residues in rPRMT1. PRMT1 dimer (1OR8) colored as 

described in text (AdoMet binding domain in light gray, β-barrel domain in dark gray, 

dimerization arm in blue, αγ-loop-αZ in orange, AdoHcy in green, and cysteine residues in 

red. Residues 26-39 were modeled based on the position of this helix in the PRMT3 

structure (1F3L).  (A) PRMT1 dimer (B) Surface representation showing close active site 

interactions between AdoHcy, C101 and F36. (C) Top view of dimerization arm in one 

monomer interacting with AdoMet binding site in other monomer. (D) Back view showing 

packing of C208 in one monomer with alpha helix in AdoMet binding domain of other 

monomer.  

 

Our results complicate the view that the increased PRMT1 protein expression observed 

under oxidative stress conditions is responsible for increased ADMA levels, by supporting 

a model in which PRMT1 activity can be regulated in a redox-sensitive manner. While it 

has long been known that DDAH breakdown of ADMA is under redox control, we provide 
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the first evidence that the activity of enzymes involved in the formation of ADMA 

precursors are regulated in a redox-sensitive fashion.  

Removal of two cysteine residues implicated in PRMT1 dimerization and cofactor 

binding eliminates the redox-dependent control over PRMT1 methyltransferase activity. 

Dimerization is strictly conserved in all known PRMTs and seems necessary for 

methyltransferase activity (36-38). One of the pathways proposed for signal 

communication between the dimer interface and the catalytic center uses the mainly 

hydrophobic dimer interactions between the αγ-loop-αZ (orange in Fig. 6-8) of one 

monomer and the  helix-turn-helix dimerization arm of another (blue in Fig.6-8) (36,37,46). 

It has been proposed that this dimer interaction is required to engage residues into proper 

conformation for interaction with the AdoMet cofactor (36). It is feasible that oxidation of 

residues involved in this cooperative effort could disrupt PRMT1 methyltransferase 

activity by affecting AdoMet binding. Interestingly, cysteine 208 is conserved in PRMT3 

and PRMT6, while both cysteine 101 and 208 are conserved in PRMT8. Remarkably, the 

type III PRMT7 from Trypanosoma brucei, which contains only three cysteine residues 

that do not align with any cysteines in PRMT1, but does contain a cysteine at a different 

location in its dimerization arm, also shows increased activity upon reduction.  Activity 

measurements using human PRMT3, human PRMT6, and TbPRMT7 demonstrate that 

these type 1 and type 3 PRMTs are also under redox control (Figure 6-9). Ongoing studies 

will help provide insight as to how these residues affect AdoMet interactions and PRMT 

methyltransferase activity.    
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FIGURE 6-9. Redox control is conserved among PRMT family members. Human 

PRMT3 (residues 211-531), human PRMT6, and TbPRMT7 activities were tested with R3 

peptide, bulk histones, or Histone 4 respectively in the absence or presence of DTT. The 

average of three activity measurements are shown as relative percent activity for each 

isoform with its corresponding substrate.  

 

While the active form of PRMT1 is expected to be a dimer, size exclusion 

chromatography analysis, as well as dynamic light scattering, have shown the enzyme 

typically migrates as a high molecular weight oligomer (34,36,38,51,52). Feng et al. 

suggested that PRMT1 multi-oligomerization (i.e., greater than a dimer) is concentration 

dependent in the range of 0-0.5 µM and that the final PRMT1 multi-oligomeric complex is 

the most active form (34). It is important to note that the Feng study was done with fully 

reduced PRMT1 and at significantly lower enzyme concentrations than those used in this 

study.  Our results show that oxidized PRMT1, which displays less activity, shifts from a 

large oligomeric species to a smaller, but still large oligomeric state under reducing 

conditions. While our results seem to be at odds with the Feng study, they only serve to 

highlight the high degree of complexity that exists in relating PRMT1 oligomerization and 
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activity. Interestingly, while cysteine-less PRMT1 remains a smaller oligomer under both 

reducing and oxidizing conditions, the C101S/C208S PRMT1 variant presents as a mix of 

both large and smaller oligomers under reducing conditions (data not shown). It is difficult 

to assess what may be causing PRMT1 to form such large oligomeric aggregates, and the 

link between PRMT1 cysteine oxidation and protein oligomerization remains to be 

determined. While our results add to the larger story, much remains to be discovered on 

the impact of oligomeric state on PRMT1 activity.  

It is also important to point out that much of the work in the PRMT field is carried 

out exclusively under reducing conditions. Our work emphasizes the importance of 

PRMT1 as a redox-sensitive enzyme and the need for careful control of its redox 

environment. Since PRMT1 activity is under redox control, it is possible that experiment 

conditions might inadvertently alter activity and/or interaction partners. In the future, it 

will be highly important to take into account the redox environment of experiments before 

reaching conclusions. Additionally, while the different affinity tags that were used in this 

study did not change the increase in activity observed upon PRMT1 reduction, the overall 

methyltransferase activity was generally lower for HisTevPRMT1 constructs than for 

HisPRMT1 constructs. Since the tags are located on the N-terminal end of the enzyme, this 

observation may hint at the importance of the N-terminal PRMT1 sequence in controlling 

enzymatic activity.  

In addition to providing ADMA precursor pools, growing evidence supports the 

involvement of PRMT1 in the cellular oxidative stress response as a modifier of signal 

transduction. PRMT1 has recently been reported to be involved in the transcriptional 

regulation of the human ferritin gene, up-regulation of which is an important cellular 
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defense response to oxidative stress (53). It was also recently reported that PRMT1 

methylation is involved in the transcriptional repression of HIFα (54), a protein needed to 

activate the cellular adaptive response to hypoxia, another condition linked to high levels 

oxidative stress. Finally, we note that oxidative stress in HEK293 cells was reported to 

enhance PRMT1-mediated methylation of FOXO1 in the nucleus (55). The observed 

increase in FOXO1 methylation seems contradictory to our results and highlights the 

importance of further investigating the effect of oxidation in vivo on PRMT1 substrate 

specificity, and/or cellular localization. In future studies, it will also be interesting to 

determine how redox regulation affects the role of PRMT1 in signal transduction. 

In summary, this work has demonstrated that PRMT1 is a redox-responsive 

enzyme. Oxidation at two cysteine residues potentially destabilizes dimerization leading to 

diminished methyltransferase activity, while reduction readily reverses the effects of 

oxidation under physiologically relevant conditions, consistent with sulfenic acid 

formation observed at both cysteine residues. Our results provide the first direct evidence 

that PRMT1 enzymatic activity can be regulated in a redox-sensitive manner and raise the 

concern that the current paradigm used to explain free ADMA accumulation in vivo may 

be incomplete. 
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CHAPTER 7 

SUMMARY AND FUTURE DIRECTIONS 

 

The protein arginine methyltransferases catalyze the post-translational 

modification of proteins implicated in a variety of fundamental cellular pathways, and 

unsurprisingly, their dysregulation has been linked to may human diseases (reviewed in 

Chapter 2). As the predominant PRMT in cells (31), PRMT1 methylation must be tightly 

regulated in order to respond adequately to specific cellular needs. However, despite the 

critical need for proper PRMT1 regulation, very little is actually known about the factors 

that influence PRMT1 substrate selection, product made (MMA vs. ADMA), and overall 

methyltransferase activity. The work presented here has combined structural and kinetic 

approaches to better understand how PRMT1 binds its substrates, and how overall 

methyltransferase activity can be regulated. A summary of each project and future 

directions along with existing preliminary data are described below. 

Investigation of the In Vivo Effects of Oxidation on PRMT1— We discovered 

that PRMT1 (as well as PRMT3, PRMT6, and PRMT7) methyltransferase activity can be 

regulated by the redox environment in vitro. To determine whether this regulatory 

mechanism is relevant in cells, we have collaborated with the lab of Dr. Michael Yu (State 

University of New York, Buffalo) to test the methyltransferase activity of PRMT1 after 

treating cells with increasing amount of oxidants. The Yu lab grew human embryonic 

kidney (HEK293 that had been transfected to over express FLAG-tagged PRMT1) cells to 

about 85% confluency prior to treatment with hydrogen peroxide (0, 0.6 mM, or 1.2 mM 
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H2O2) for 1 hour at 37° C to mimic increasing cellular oxidative stress conditions. They 

then used magnetic beads containing anti-FLAG antibody to immunoprecipitate FLAG-

tagged PRMT1 from these cells. The immunoprecipitated PRMT1 (IP PRMT1) was then 

sent to our lab where we used a gel-based methyltransferase assay to determine the effect 

of cellular oxidative stress on the ability of PRMT1 to methylate histone H4. As shown in 

Figure 7-1-A and B, the methyltransferase activity of PRMT1 decreases with increasing 

levels of cellular oxidative stress. Additionally, the immunoprecipitated PRMT1 samples 

were also probed for sulfenic acid content using the same sulfenic acid-specific fluorescent 

probe (DCP-Rho1) used in our in vitro studies. As depicted in Figure 7-2, increasing 

cellular oxidative stress is associated with increasing sulfenic acid formation on PRMT1, 

suggesting that the redox regulatory mechanism described in vitro (discussed in chapter 6) 

also occurs in vivo. The in vivo significance of PRMT1 redox regulation remains to be 

determined. Newly emerging Bioorthogonal Profiling of Protein Methylation (BPPM) 

approaches (56), may be used for PRMT1 in cells with and without oxidative stress 

treatment to determine whether substrate preference is affected by the redox state and 

provide an indication of what specific pathways may be affected by this regulatory 

mechanism. A more targeted avenue of investigation would be to characterize the effect of 

PRMT1 redox regulation on pathways that have already linked PRMT1 to the cellular 

oxidative stress response. Such pathways include the PRMT1-dependent transcriptional 

regulation of HIFα or of the human ferritin gene, which are needed for the cellular adaptive 

response to hypoxia and the cellular defense response to oxidative stress, respectively.     
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FIGURE 7-1. PRMT1 methyltransferase activity is impaired by oxidation in vivo. In 

(A), immunoprecipitated PRMT1 from HEK293 cells treated with 0, 0.6, or 1.2 mM H2O2 

was used to methylate 1 µM histone H4 protein using 2 µM [3H]AdoMet as the methyl 

group donor in 50 mM sodium phosphate pH 8.0 at 30° C. At the noted time points, 10 µl 

was removed from each reaction, quenched in SDS sample buffer and boiled for 5 minutes 

prior to running on a 12% SDS-PAGE gel. The proteins were transferred to a PVDF 

membrane which was dried and exposed to a Tritium imaging screen (BioRad) for 96 

hours. After exposure the amount of PRMT1 present in each lane was detected using an 

anti-PRMT1 antibody (Bethyl). In (B) a graphical representation of (A) is shown, with the 

activity normalized based on the levels of PRMT1 present.  

 

Impact of Redox Regulation of PRMT1 on Substrate Binding— While we have 

clearly determined that PRMT1 oxidation at two critical cysteine residues leads to a 

decrease in the PRMT1 enzymatic activity, the mechanism through which oxidation 

impacts activity remains undetermined. Methods such as fluorescence quenching, 

isothermal titration calorimetry (ITC), or fluorescence anisotropy could be used to 

determine the effect that oxidation on the indicated cysteine residues may have on the 

ability of PRMT1 to bind AdoMet and peptide substrates in both the unmethylated and 

monomethylated forms. 
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FIGURE 7-2. Sulfenic acid levels in PRMT1 increase with increasing cellular 

oxidative stress. The sulfenic acid-specific DCP-Rho1 fluorescent probe was used as 

described in chapter 6 to quantify the sulfenic acid levels in PRMT1 immunoprecipitated 

from HEK293 cells treated with 0, 0.6, or 1.2 mM H2O2.  

 

Mechanism of PRMT6 Redox Regulation— Sequence conservation analysis of the 

PRMT1 cysteines necessary for redox control of PRMT1 activity led us to identify 

PRMT3, PRMT6, PRMT7, and PRMT8 as additional PRMT isoforms that may be 

regulated by oxidative stress since at least one of the two cysteines were conserved in these 

isoforms (57). As described in chapter 6, we were able to confirm the redox regulation of 

PRMT3, PRMT6, and PRMT7. While our redox regulation manuscript was under review, 

the structure of the mouse PRMT6 was solved in both an oxidized and reduced form (58). 

Although the two structures (PDB ID: 4C03 reduced, 4C05 oxidized) crystallized in 

different space groups (P21212 and I41, respectively), the monomers of each form overlap 
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with an rmsd of 0.59. The main difference between the two structures occurs in the 

positioning of the N-terminal helix αX (orange in Figure 7-3) which is properly folded in 

the reduced structure (Figure 7-3-B) and unfolded in the oxidized structure (Figure 7-3-A). 

The oxidized form of the PRMT6 structure shows the presence of a disulfide bond bridging 

helix αX in the AdoMet binding domain of one monomer to the dimerization arm of the 

other monomer (disulfide bond links C53 and C232 of two mouse PRMT6 monomers), 

resulting in a covalent dimer with an unfolded αX helix (58). As discussed in chapter 2, it 

has long been known that the helix αX is essential for the activity of all PRMTs. In mouse 

PRMT6, proper folding of the αX helix locks and buries the cofactor in place for catalysis. 

Additionally, the Y50 and Y54 residues position the double-E-loop E167 in an active 

conformation for catalysis (Figure 7-4). Therefore, indicating that proper folding of the αX 

helix is necessary for catalysis, but not for initial cofactor binding.  

 The determination of this structure in differing conformations that depend on the 

redox state 1) validates our determination that PRMT6 is under redox control, 2) indicates 

that PRMT6 likely has a mechanism of redox control that is different from PRMT1 since 

there is no cysteine present on the PRMT1 αX helix, and 3) serves as a guide for us to begin 

work to determine the mechanism of PRMT6 redox control.  

  I have initiated construction of several human PRMT6 cysteine to serine variant 

constructs (ie. cysteine-less PRMT6) which can be used to determine the mechanism of 

redox control of PRMT 6 activity. These can be used much like the PRMT1 constructs 

were to identify the specific cysteines necessary for redox regulation. It will be interesting 

to determine if only the presence of the two cysteines found to form a disulfide bond are 
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FIGURE 7-3. PRMT6 structures in (A) oxidized and (B) reduced forms. In (A) and 

(B) the structures of oxidized (PDB: 4C05) and reduced (PDB: 4C03) PRMT6 are shown. 

The N-terminal helix αX has been colored in orange in both forms. (A) Helix αX is 

disordered in the oxidized (light green) structure and mouse PRMT6 cysteine 53 (red) 

forms a disulfide bond with cysteine 232 (blue) of the adjacent monomer. (B) The αX helix 

of PRMT6 is properly folded over the cofactor and substrate binding pockets in the reduced 

(light blue) PRMT6 structure. 

 

 

FIGURE 7-4. Position of PRMT6 active site E167 in (A) oxidized and (B) reduced 

forms. Active site comparison of (A) oxidized and (B) reduced PRMT6, colored as in 7-3. 

Residue E167 of the double-E loop has been colored in magenta in both. In the reduced 

structure, residues Y50 and Y54 of the N-terminal helix αX help position E167 in the 

position required for catalysis.  
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required, since neither of those are conserved in any other PRMT isoform, or if additional 

cysteines play a role in the redox regulation of PRMT6 activity.  

 Interestingly, the PRMT6 structure suggests that the redox state of this enzyme may 

affect substrate binding and catalysis but have no effect on cofactor binding (58). As 

suggested for PRMT1, fluorescence quenching, isothermal titration calorimetry (ITC), or 

fluorescence anisotropy should be used to determine the specific effects of oxidation on 

the on the ability of PRMT1 to bind AdoMet and peptide substrates in both the 

unmethylated and monomethylated forms. 

Redox Regulation of PRMT1 Product Formation— Another interesting discovery 

that has emerged since we reported the redox regulation of PRMT1 activity is that the 

PRMT1 redox state may influence the product formation of the PRMT1 enzyme. Using an 

HPLC-based PRMT product detection assay (59), my lab mate Tamar Caceres found that 

reduced PRMT1 forms primarily MMA, while oxidized PRMT1 makes both MMA and 

ADMA when methylating the R3 peptide (Figure 7-5). I attempted to determine whether 

oxidized PRMT1 makes more ADMA than reduced PRMT1 when methylating a different 

substrate, histone H4 protein. Initial results indicate that reduced PRMT1 catalyzed more 

ADMA on the H4 protein than the oxidized enzyme (data not shown). Although these 

results are preliminary and will be tested again to confirm these observations, they hint at 

the possibility that redox regulation of PRMT1 activity may affect the processivity of the 

enzyme in a substrate dependent manner. This subject will continue to be investigated in 

the Hevel lab. Similar studies should also assess whether reduction/oxidation affects the 

processivity of PRMT6.  
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FIGURE 7-5. PRMT1 product formation on the R3 peptide depends on the redox 

state. Reverse HPLC analysis of the methylation products of the R3 peptide indicate that 

(A) the presence of a reducing agent impedes ADMA formation, while (B) ADMA 

formation can be catalyzed in the absence of reducing agent. 

SUMMARY 

 This dissertation provides new insights into regulatory mechanisms that control 

PRMT methyltransferase activity. New insights into the workings of previously reported 

PRMT1 regulators, along with the discovery of a novel regulatory mechanism for several 

members of the PRMT family, provide a strong foundation for future research that will 

help unravel mechanisms that control PRMT activity.  
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