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ABSTRACT

Computational Fluid Dynamic Modeling of Natural Convection in Vertically Heated Rods

by

Mahesh Surendran, Master of Science

Utah State University, 2016

Major Professor: Robert E. Spall, Ph.D.
Department: Mechanical and Aerospace Engineering

Natural convection is a phenomenon that occurs in a wide range of applications such as

cooling towers, air conditioners, and power plants. Natural convection may be used in decay

heat removal systems such as spent fuel casks, where the higher reliability inherent of natural

convection is more desirable than forced convection. Passive systems, such as natural con-

vection, may provide better safety, and hence have received much attention recently. Cooling

of spent fuel rods is conventionally done using water as the coolant. However, it involves

contaminating the water with radiation from the fuel rods. Contamination becomes danger-

ous and difficult for humans to handle. Further, the recent nuclear tragedy in Fukushima,

Japan has taught us the dangers of contamination of water with nuclear radiation. Natural

convection can perhaps significantly reduce the risk since it is self-sufficient and does not

rely on other secondary system such as a blower as in cases of forced convection.

The Utah State University Experimental Fluid Dynamics lab has recently designed an

experiment that models natural convection using heated rod bundles enclosed in a rectan-

gular cavity. The data available from this experiment provides an opportunity to study and

validate computational fluid dynamics (CFD) models. The validated CFD models can be



iv

used to study multiple configurations, boundary conditions, and changes in physics (natu-

ral and/or forced convection). The results are to be validated using experimental data such

as the velocity field from particle image velocimetry (PIV), pressure drops across various

sections of the geometry, and temperature distributions along the vertically heated rods.

This research work involves modeling natural convection using two-layer turbulence models

such as k − ε and RST (Reynolds stress transport) using both shear driven (Wolfstein)

and buoyancy driven (Xu) near-wall formulations. The interpolation scheme employed is

second-order upwinding using the general purpose code STAR-CCM+. The pressure veloc-

ity coupling is done using the SIMPLE method. It is ascertained that turbulence models

with two-layer formulations are well suited for modeling natural convection. Further it is

established that k−ε and Reynolds stress turbulence models with the buoyancy driven (Xu)

formulation are able to accurately predict the flow rate and temperature distribution.

(70 pages)
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PUBLIC ABSTRACT

Computational Fluid Dynamic Modeling of Natural Convection in Vertically Heated Rods

Mahesh Surendran

Spent fuel rods are conventionally stored in spent fuel pools for decades in order to contain

the nuclear radiation. From the recent nuclear tragedy in Fukushima, Japan, we are aware

of the danger of nuclear contamination. Leaving the spent fuel rods for a prolonged period of

time with continuous heat transfer may cause damage to the containing structure and cause

nuclear contamination. Buoyancy is phenomena in which fluid is caused to move around a

heated source due to density differences. This phenomenon can be used in enhancing the

heat transfer by placing the spent fuel rods in casks filled with helium gas. In doing so,

the risk of structural damage due to thermal agitation may be significantly reduced. The

physics involved in such phenomena are complex. This complicated physics in fluids can

be modeled using high performance computers and a powerful numerical technique called

computational fluid dynamics (CFD). However, the accuracy of the CFD simulations must

be ascertained first. The accuracy of is determined by comparing the CFD simulation with

experimental results.

The Experimental Fluid Dynamics Lab at Utah State University has recently designed an

experiment that mimics the heat transfer around spent fuel rods using vertically heated rods

enclosed in a rectangular cavity. The information available from this experiment can been

used to study the accuracy of CFD simulations. Once the CFD simulation is validated using

experimental data, they can be used to study various other similar geometric configurations

and boundary conditions. The computer models are cost effective and time saving.
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CHAPTER 1

INTRODUCTION

1.1 Research Motivation

Natural convection is a phenomenon driven by buoyancy forces that are generated by

a density difference due to temperature gradients. In such phenomena, the fluid surrounds

the heat source; the heat is then diffused to the surrounding fluid, which causes density

differences. The lighter, hotter fluid rises and is replaced by cooler, heavier fluid. This

then becomes a continuous convective process and is generally called buoyancy driven flow.

Natural convection is of great importance since it is present freely in nature and has many

applications. In particular, natural convection around vertical and horizontal cylinders is of

interest to the nuclear industry. The nature of the flow is affected by the shape, position,

aspect ratio (height vs. diameter), and the type of encapsulation. Natural convection over

single cylinder has been studied for decades, and recent studies have been extended to

bundles and arrays enclosed in a cavity. This thesis aims at modeling natural convection

for vertically heated rods. The effects that natural convection has on the vertically heated

rods are studied through computational fluid dynamics (CFD). The solutions are compared

with experimental studies conducted in the Experimental Fluid Dynamics lab at Utah State

University by Jones [1].

1.2 Literature Review

The Reynolds number Eq. (1.1) represents the ratio of inertial force over viscous force.

The Rayleigh number Eq. (1.2) represents the ratio of buoyancy force over viscous force. The

Nusselt number Eq. (1.3) represents the ratio of convective heat transfer over conductive

heat transfer. The Prandtl number Eq. (1.4) represents the ratio of viscous diffusion over

thermal diffusion. The Grashof number Eq. (1.5) represents the ratio of buoyancy force over
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viscous force. These dimensionless numbers have significant importance in establishing the

physics of the flow.

Re =
ρV d

µ
(1.1)

Ra =
gβ

να
(Ts − T∞)x3 (1.2)

Nu =
hL

k
(1.3)

Pr =
ν

α
(1.4)

Gr =
Ra

Pr
=
gβ(Ts − T∞)D3

ν2s
(1.5)

The Reynolds number can establish the importance of inertial and viscous resistance.

Generally, for flows in smooth pipes with Reynolds number 2,300 or above suggests that the

flow is fully turbulent. For natural convection, the fluid motion is not known beforehand;

therefore, this dimensionless number cannot be used. In convective flows, where the flow is

induced by buoyancy forces, the Rayleigh number is used to determine the nature of the flow.

For flat plates, Rayleigh numbers over 109 suggest the flow is fully turbulent. The Nusselt

number can suggest if heat transfer is primarily conductive or convective. Large values of

the Nusselt number suggests the heat transfer is convective and turbulent, typically in the

range of 100-1000. The Grashof number, which is similar to Raleigh number, is used in flows

involving natural convection. For turbulent flows, the Grashof number is over 109.

From the literature survey conducted for this thesis, it is shown that there are several

studies done in natural convection with numerous configurations; for example, vertical,

horizontal, both with and without confinement. Nusselt [2] made a major contribution to

the study of natural convection over a vertical cylinder. Contemporaries like Ackerman [3]

have studied natural convection and validated Nusselt’s theory. A major contribution is
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presented by Morgon [4] and Churchill and Chu [5], in which they both proposed time-

averaged Nusselt number correlations.

Recently, Kuehn and Goldstein [6] and Farouk and Guceri [7] have conducted heat

transfer analysis of natural convection around a single horizontal isothermal circular cylin-

der. They were able to report on the angular and radial velocity around the cylinder for

Rayleigh numbers << 107, and were also able to account for the local and area-averaged

Nusselt number for a range of Prandlt numbers. Saitoh et al. [8] and Cesini et al. [9] con-

ducted natural convection for horizontal cylinders. They have shown that heat transfer is a

maximum at the bottom of the cylinder and is reduced vertically due to the influence of the

thermal boundary layer thickness. Most research in this field has been limited to laminar

convective flow. However, the motion of the buoyancy driven flow can also be turbulent.

Turbulent flow may occur at Rayleigh number of 2 × 109 or more [4]. Kitamura et al. [10]

investigated the effects of turbulence and its influences on the heat transfer around a hori-

zontal cylinder, and found that the transitions occur for a Rayleigh number of 2.1×109. For

Rayleigh numbers of 3.6×1013, only the flow at the top of the cylinder is turbulent. Lieber-

man and Gebhart [11] and Marsters [12] conducted an investigation of natural convection

for an array of heated cylinders, Yousefi and Ashjaee [13] investigated natural convection

from a vertically aligned array of horizontal cylinders in which the effect of spacing and

Rayleigh numbers on the heat transfer was investigated. It was discovered that the upper

cylinders have reduced heat transfer relative to the lower cylinders. These studies have

also shown that the spacing of the cylinders has an effect on the heat transfer. It further

states that the temperature in the plume region is greater than the bulk fluid temperature.

The plume region also has a forced convection effect on the upper cylinders in Lieberman

and Gebhart [11]. Sparrow and Niethammer [14] studied free convection heat transfer for

an array of two vertically separated cylinders in the range of Rayleigh numbers 2 × 104

to 2 × 105 with uniform wall temperature boundary conditions. Their study found that a

gradual increase in the space between the cylinders increased the average Nusselt number.



4

A significant amount of numerical modeling of natural convection has been done in

two-dimensions. For instance, Ghasmi et al. [15] modeled natural convection using a two-

dimensional numerical model for different Rayleigh numbers. They concluded that an in-

crease in Rayleigh number improves the natural convection flow and results in a reduction

of heat source temperature. Most recently, Meng and Li [16] studied natural convection in

horizontal cylinder filled with water based alumina nano fluid in three-dimensional model.

Limited information about three-dimensional numerical modeling is available in the litera-

ture. However, since the last decade or two computational power has substantially increased,

and it is now possible to develop robust three-dimensional CFD models of convective heat

transfer.

1.3 Experimental Configuration

Fig. 1.1: CAD model of experimental configuration.

Fig. 1.1 is a CAD model of the geometric configuration in the Experimental Fluid

Dynamics lab at Utah State University. The setup consists of four vertically positioned

rods encapsulated inside a rectangular domain with a contraction at the inlet and an outlet
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transformation. More details about the experimental configuration are presented in Chapter

3. The benchmark studies by Jones [1] suggests that the Grashof number is >> 2× 109 at

the vertical mid-point of the rods; therefore, the flow is assumed to be turbulent.
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CHAPTER 2

NUMERICAL METHOD

2.1 Computational Fluid Dynamics

Computational fluid dynamics (CFD) is a numerical method used for the analysis of

problems related to various physics such as fluid flow, heat transfer, combustion, and chem-

ical reaction. CFD has a wide range of application in different fields such as aerospace,

mechanical, nuclear, and chemical engineering. In CFD, the fluid is assumed to be a con-

tinuum. The finite volume approach is used to formulate the governing equations. Three

important conservation equations must be satisfied to establish a CFD solution.

• Conservation of mass

• Conversation of momentum

• Conservation of energy

The governing equations are integrated over the control volume and discretized so that

they form a system of algebraic equation, which can then be solved by a computer.

2.2 Reynolds Averaged Navier-Stokes

The Navier-Stokes equations are the most important in fluid mechanics, as these equa-

tions can mathematically describe the physics of fluid motion. However, analytical solutions

for the Navier-Stokes equations are only available for very simple laminar flows. Most real

life flows are turbulent and three-dimensional; hence an analytical solution may not be

achievable. The Navier-Stokes equations can be solved using Direct Numerical Simulation

(DNS), which solves Navier-Stokes equations as is; however, it would require extensive

computational resources and time, and this is not a feasible approach in general. Reynolds-

Averaged Navier-Stokes (RANS) are time-averaged equations of motion for fluid flow. The
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idea is to decompose turbulence into two components, which are the mean and fluctuating

components. This is called Reynolds decomposition.

ui(
−→x , t) = Ui(

−→x ) + u′i(
−→x , t) (2.1)

Here ui is the velocity at any instant, Ui is the mean component, and u′i is the fluctuating

component. The Navier-Stokes equations are averaged using Eq. (2.1). In general, there are

time-averaged as well as ensemble averaged approaches. The former is used for steady state

flows (flows which are time independent) and the latter for transient flows (flows which are

time dependent).

ρ
∂ui
∂t

+ ρuj
∂ui
∂xi

= ρf i +
∂

∂xj

[
− pδij + µ

(∂ūi
∂xj

+
∂ūj
∂xi

)− ρu′iu′j ] (2.2)

The RANS equation are given by Eq. (2.2) for an incompressible Newtonian fluid written

in index notation. The Reynolds averaging results in additional terms in the equation and

these terms are called the Reynolds stresses.

τij = −ρu′iu′j (2.3)

In order to close the system, the components of the Eq. (2.3) must be solved. Generally, this

is known as the turbulence closure problem. An ideal turbulence model should be capable of

being applied to a wide range of problems, it should have reasonable accuracy, and must be

computationally inexpensive. Some simplifications must be done to the Reynolds stresses

in order to incorporate two-equation models.

2.3 Boussinesq Hypothesis

The Boussinesq hypothesis (note that this is not related to Boussinesq approximation

used for simplification of free-convection flows) is a widely used simplification used to ob-

tain two-equation turbulence models. It hypothesizes that the momentum transfer, due to

turbulent eddies, can be modeled using an “eddy viscosity.” For an incompressible flow, the
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Reynolds stresses can be modeled using the following equation,

ρτij = µt

[
∂Ui
∂xj

+
∂Uj
∂xi

]
− 2

3
δijρk, (2.4)

where k is the turbulent kinetic energy per unit mass, µt is the eddy viscosity and Ui is the

mean velocity component. Using the Boussinesq hypothesis, the six Reynolds stresses are

reduced to two unknowns, µt and k. This is established by defining the turbulent kinetic

energy k as,

k =
1

2
u′iu
′
j . (2.5)

The average root mean square velocities divided by the reference mean velocities defines

the turbulent kinetic energy Ti.

Ti =
2
3k

1/2

Uref
(2.6)

By specifying the turbulence intensity, the turbulent kinetic energy per unit mass can be

ascertained. The specification of the turbulence intensity is based on how intense the tur-

bulence is. Turbulence transport of scalar quantities such as mass, density etc. can also be

modeled similarly, as show in Eq. (2.7),

− ρu′iϕ′ = Γt
∂Φ

∂xi
(2.7)

where Γt is the eddy diffusivity. Both momentum turbulence transport as well as scalar

transport modeling of turbulence is done using similar procedure; therefore, the eddy diffu-

sivity Γt and turbulent viscosity µt are nearly equal. Two-equation turbulence models are

widely used in the industry and academia. The Boussinesq hypothesis is generally used by

all commercial and open source CFD solvers.
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2.4 Turbulence Models

The selection of turbulence models is based on availability in the commercial software

STAR-CCM+ [17]. Models ranging from one-equation (Spalart-Allmaras) to seven-equation

models (RST) are available in STAR-CCM+, see Table 2.1. The one-equation model is of

particular interest to the aerospace industry as it is one of the simplest turbulence models

and is computationally economical. The k− ε and k−ω turbulence models are widely used

and popular in industry because their relative accuracy, for being economic, and widely

validated for numerous problems by both industry and academia. Modifications to the two-

equation models are employed for solving flows involving low Reynolds number flows and

transitional flows. The RST models are not as widely used as the two-equation models in

industry since they are computationally expensive and not as well validated as the k − ε

and k − ω models. However, recently the RST models have received renewed interest since

the computational power has increased exponentially.

For modeling natural convection, two-equation models with a two-layer formulation

are of particular interest. This approach was first put forth by Rodi [18]. The method

divides the viscous sub-layer into two parts. The dissipation rate ε and turbulent viscosity

µt are specified as functions of wall distance. The k − ε and RSM models with two-layer

formulations are the focus for this thesis work. Two-layer formulations using buoyancy

driven [19] and shear driven [20] near-wall approaches are studied in detail to assess the

steady state temperature distributions on the rods. The turbulence models used are shown

in Table 2.1.

Table 2.1: Turbulence models.

No. of Equations Turbulence Model

One Spalart-Allamaras

Two k − ε

Two k − ω

Seven RST
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2.4.1 Spalart-Allmaras One-Equation Model

The Spalart-Allmaras turbulence model is a one-equation turbulence model. This model

solves a transport equation for the eddy turbulent viscosity [21]. The model is specialized

for applications in the aerospace industry and is suitable for solving problems with adverse

pressure gradients in the boundary layer. Recently, this model has also been used for solving

problems involving internal fluid flow in turbo-machines. However, this model is generally

not suitable for low Reynolds number flows. The Spalart-Allmaras turbulence model solves

transport equation for a viscosity like variable ν̃ given as,

∂ν̃

∂t
+µj

ν̃

∂xj
= Cb1

[
1−ft2]S̃ν̃+

1

σ
{∇.

[
(ν+ν̃)∇ν̃+Cb2|∇ν|2]}−

[
Cw1fw−

Cb1
κ2

ft2](
ν̃

d
)2+ft1∆U

2

(2.8)

where the turbulent eddy viscosity is computed as,

νt = ν̃fu1 fu1 =
κ3

κ3 + C3
µ1

κ =
ν̃

ν
. (2.9)

The other terms in the equation are,

S̃ ≡ S +
ν̃

κ2d2
fu2 fu2 = 1− κ

1 + κfu1
(2.10)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6
g = r + Cw2(r

6 − r) r ≡ ν̃

S̃κ2d2
(2.11)

ft1 = Ct1gt exp

(
−Ct2

ω2
t

∆U2

[
d2 + g2t d

2
t ]

)
(2.12)

ft2 = Ct3 exp(−Ct4κ2) (2.13)

S =
√

2ΩijΩij . (2.14)
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Here, Ωij is the rotational tensor and is defined as

Ωij =
1

2

(
∂ui
∂uj
− ∂uj
∂xi

)
(2.15)

Eq. (2.8) represents the transport equation where d is the distance from the closest surface

and ∆U2 is the normal of the difference between the velocity at the tip of the field and the

field point. The closure coefficients are summarized in Table 2.2.

Table 2.2: Closure coefficients for Spalart-Allmaras model.

coefficients value

σ 2/3

Cb1 0.1355

κ 0.41

Cw1 Cb1/κ
2 + (1 + Cb2)/σ

Cw2 0.3

Cw3 2

Cv1 7.1

Ct1 1

Ct2 2

Ct3 1.1

Ct4 2
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2.4.2 Standard k − ε Two-Equation Model

The k − ε model is one of the most widely used turbulence models in industry as well

as academia. Its popularity can be attributed mainly to it being computationally inexpen-

sive and being widely validated. Launder and Spalding [22] proposed this model in 1972.

Applying the Boussinesq hypothesis to the Reynolds stress terms, two additional transport

equations must be solved to close the system. These equations determine the turbulent ki-

netic energy k and turbulent dissipation ε. For an incompressible flow, Eq. (2.16) describes

the transport equation for the turbulent kinetic energy.

∂

∂t
(k) +

∂

∂xi
(kUi) =

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+G− ε (2.16)

Eq. (2.17) is the transport equation for turbulent dissipation rate where, G (Eq.2.18) rep-

resents the generation of turbulent kinetic energy due to mean velocity gradients. The

coefficients for the Eq. (2.16) and Eq. (2.17) are Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, and

σε = 1.3.

∂

∂t
(ε) +

∂

∂xi
(εUi) =

∂

∂xi

[(
ν +

νt
σk

)
∂ε

∂xi

]
+ Cε1

ε

k
G− Cε2

ε2

k
(2.17)

G = 2µtSijSji. (2.18)

Here, Sij is the strain tensor defined as

Sij =
1

2

[
∂Ui
∂xj

+
∂Uj
∂xi

]
. (2.19)

The eddy viscosity is calculated from the following relation,

νt = Cµ
k2

ε
(2.20)

where Cµ = 0.09
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The coefficients used in the Eq. (2.17), (2.19), and (2.20) have been ascertained empir-

ically over the years using air and water. They are generally valid for most other fluids [23].

These constants are usually left at default values.

2.4.3 Realizable k − ε Two-Equation Model

The realizable k − ε model is a modified version of the standard k − ε model, pro-

posed by Shih [24]. This modified version can capture physics that involves flow separation

and recirculation, boundary layers under strong adverse pressure gradients, flows involving

rotation, etc.

The k transport equation for both standard and realizable models are identical (Eq.2.16).

The significant difference is in modeling the turbulent dissipation ε as given by Eq. (2.21).

∂

∂t
(ε) +

∂

∂xi
(εUi) =

∂

∂xi

[(
ν +

νt
σk

)
∂ε

∂xi

]
+ Cε1Sε− Cε2

ε2

k +
√
νε

(2.21)

Here,

Cε1 = max

[
0.43,

η

η + 5

]
(2.22)

where,

η = S
k

ε
(2.23)

and

S =
√

2SijSji. (2.24)

The eddy viscosity is calculated similar to the standard k− ε approach and is given by Eq.

(2.25).

νt = Cµ
k2

ε
. (2.25)

However, Cµ is not a constant. It is defined as,

Cµ =
1

A0 +As
kU∗

ε

(2.26)
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where,

U∗ =

√
SijSij + Ω̃ijΩ̃ij (2.27)

and

Ω̃ij = Ωij − εijkωk. (2.28)

The variable Ω̃ij is the mean rate of rotation tensor with angular velocity ωk and the

permutation tensor εijk. The closure coefficients are given as

A0 = 4.04, AS =
√

6 cos(φ) (2.29)

where,

φ =
1

3
cos−1

[√
6
SijSjiSki

(SijSij)3/2

]
. (2.30)

2.4.4 Standard k − ω Two-Equation Model

Kolmogrov (1942) proposed the original k−ω model with k as turbulent kinetic energy

and ω as the dissipation rate. Over the years several modifications have been made to the

original model by Saffman [25], Launder and Spalding [26] and Wilcox [27]. The Wilcox

k − ω model has incorporated modification for low Reynolds number, compressibility, and

shear flow spreading.

The k in this turbulence model the is same as that of the standard k− ε model (2.16).

However, σk = 2.0 and ε is defined as,

ε = β∗fβ∗kω. (2.31)

For incompressible flow, fβ∗ has the following function,

f∗β =


1 κk ≥ 0

1+68κ2
k

1+400κ2
k

κk & 0

(2.32)
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where,

κk =
1

ω3

∂k

∂xj

∂ω

∂xj
(2.33)

β∗ = β∗∞

[
4/15 + (Ret/Rk)

4

1 + (Ret/Rk)4

]
(2.34)

Ret =
k

νω
. (2.35)

The specific dissipation rate ε is where k − ω models incorporate detailed changes in com-

parison with the k − ε model. The ε transport equation is given as

∂

∂t
(ε) +

∂

∂xi
(εUi) =

∂

∂xi

[(
ν +

νt
σk

)
∂ε

∂xi

]
+ α

ω

k
G− βfβω2 (2.36)

where,

α =
α∞
α∗

[
α0 +Ret/Rω
1 +Ret/Rω

]
(2.37)

α∗ = α∗∞

[
β/3 +Ret/Rk

1 +Ret/Rk

]
(2.38)

and

fβ =
1 + 70κω
1 + 80κω

κω =
∣∣ΩijΩjkSki

(β∗∞ω)3
∣∣. (2.39)

Here Ωij is the mean rotation tensor,

Ωij =
1

2

[
∂Ui
∂xj
− ∂Uj
∂xi

]
. (2.40)

The turbulent viscosity is defined as

νt = α∗
k

ω
. (2.41)

The closure coefficients are summarized in Table 2.3.
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Table 2.3: Closure coefficients for k − ω model.

coefficients value

α∗∞ 1

α∞ 0.52

α0
1
9

β∗∞ 0.09

β 0.072

Rβ 8

Rk 6

Rω 2.95

σk 2.0

σω 2.0

2.4.5 Reynolds Stress Turbulence Seven-Equation Model

The RST model is the most computationally intensive RANS model. It is also known as

Differential Reynolds Stress (DRS) Model. The RST model does not assume the Boussinesq

hypothesis. Rather, this model solves the RANS equation without any simplification of the

Reynolds stresses (Eq.2.42) and was first reported by Launders in 1975 [28].

τij = −ρu′iu′j (2.42)

Transport equation for τij and ε are solved to close the system.

The RST model also requires significantly more iterations than the one-equation and

two-equation turbulence models to converge. This could be due to the mathematical stiff-

ness of RST model. The RST model is effective in comparison with two-equations models

when the flow involves physics and that which are dominated by streamline curvature and

rotational effects. The general RST model can be found in [28], and the STAR-CCM+

implementation can be found in [17].
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For a two-layer model, the first four coefficients are expressed in terms of the turbulent

Reynolds number as recommended by Launders and Shima [29],

C1 = 1 + 2.58aa
1
4
2 {1− exp

[
(−0.0067Ret)

2]} Ret =
k2

εv
(2.43)

C2 = 0.75
√
a, (2.44)

C1w = −2

3
C = 1 + 1.67, (2.45)

C1w = −2

3
C = 1 + 1.67, (2.46)

C2w = max

[
4C2 − 1

6C2
, 0

]
(2.47)

where the parameter a and tensor invariant a2 and a3 are defined as,

a = 1− 9

8
(a2 − a3), a2 = A : A, a3 = AijAkjAji (2.48)

where the anisotropic tensor A is defined as,

A =
R

k
− 2

3
I. (2.49)
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2.5 Near-Wall Turbulence

The walls in the geometry present a different problem while modeling turbulence. In

the presence of a wall with a no-slip condition, the flow is reduced to laminar owing to

the viscous effects. The velocity near the wall changes rapidly within a small distance. For

high speed flows, the boundary layer is very thin, and in order to capture the effects of the

boundary layer, many nodes may be required. This will result in an expensive computation.

The appropriate selection of a wall treatment is hence essential for correct modeling of the

physics.

There are several ways to model the near-wall turbulence. In STAR-CCM+ there are

three approaches for wall treatment; low-wall y+, high-wall y+, and all-wall y+. The inner

region on the boundary layer is split into three layers; viscous, log-law, and buffer layers.

In the low-wall y+ method, wall treatment requires no modification in the viscous region

and the governing equations are integrated up to the wall. This means that finer cells are

required at the near wall region to accurately model the physics. For high Reynolds number

flows this method can be expensive since the boundary layer is very thin with a high velocity

gradient, which requires several cells near the wall to capture the physics. This treatment is

suitable for low Reynolds-number-flows with a thicker boundary layer. In order to maintain

this condition, the wall y+ must be maintained near 1.

In the high-wall y+ wall treatment, the viscous layer requires some modification. Wall

functions are used to model the physics in the viscous layer. The wall shear stress, turbulent

production and turbulent dissipation are derived using the boundary layer theory. This

treatment assumes that the near wall cell lies in the log-law region of the boundary layer

with y+ > 30. This approach significantly reduces the computation for high Reynolds

number flow.

The all-wall y+ wall treatment is a combination of both low and high-wall y+ treatment.

When the cell falls in the buffer layer, a blending function is used to calculate the turbulent

quantities. This treatment is used for complex geometries with relatively low and high

mesh resolution near wall. In some cases, with complicated geometries, it may be difficult
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to achieve a mesh with a reasonable resolution everywhere along the wall; therefore, the

all-wall y+ approach is a good remedy for such geometries.

The definition for y+, frictional velocity ut, and wall shear stress τw are,

y+ =
ut
√
y

ν
(2.50)

where,

ut =
√
τw/ρ (2.51)

and

τw = µ
∂u

∂y

∣∣
wall

. (2.52)

The two-layer approach suggested by Rodi [18] is an alternative to model low Reynolds

number flow. Here, in the two-layer approach the turbulence model is coupled with a one-

equation model. The turbulent dissipation ε and turbulent viscosity µt are specified as

function of wall distance. The ε specified near the wall blends with values computed from

the transport equation far from the wall.

The dissipation rate near the wall is computed as,

ε =
k3/2

lε
(2.53)

Two two-layer one-equation models are studied; those by Wolfstein [20] and Xu [19].

The Wolfstein model is recommended primarily for modeling shear driven flows and the Xu

model for buoyancy driven flows.

The one-equation Wolfstein model is,

lε = cly

[
1− exp

(
−Rey
Aε

)]
(2.54)
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where, Aε = 2cl and cl = kC
−3/4
µ , Cµ = 0.09, and k = 0.42. The turbulent viscosity is

calculated from the following,

µt
µ

= ReyC
(1/4)
µ k

[
1− exp

(
−Rey
Aµ

)]
. (2.55)

The one-equation Xu model is,

lε =
8.8y

1 + 10/y∗v + 5.15× 10−2y∗v

1√
v2/k

(2.56)

where,

v2/k = 7.19× 103Rey − 4.33× 10−5Re2y + 8.8× 10−8Re3y (2.57)

and

y∗ν = Rey
√
v2/k. (2.58)

The two-layer models are computationally more expensive than wall functions, yet it

must be employed since near-wall resolution is imperative for natural convection. Accurate

prediction of near-wall physics is the key for accurate modeling of natural convection since

the heat transfer from the wall is what actually drives the flow. The two-layer approach is

incorporated into the k − ε model and linear pressure strain RST model. Other turbulence

models investigated in this thesis employ either low-wall y+ or all-wall y+ treatments.

Consequently, the wall y+ is maintained at approximately 1 throughout the heat transfer

surfaces. In STAR-CCM+, the two-layer approach can also be modeled with all-wall y+

treatment. Some of the regions in the geometry may not have been meshed with such

high resolution at near the wall. The all-wall y+ functionality in the software mitigates the

problem by switching to wall functions.
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2.6 Calculation of Physical Properties

The density is calculated using incompressible ideal gas law (Eq.2.59), which is a func-

tion of temperature and pressure. This is defined as,

ρ =
pabs
RT

(2.59)

where, ρ is the density, pabs is the absolute reference pressure, R is the universal gas constant,

and T is temperature.

The viscosity is calculated using Sutherland’s law (Eq.2.60) where, T0 and µ0 are ref-

erence temperature and viscosity respectively. S is Sutherland’s constant. The thermal con-

ductivity for air is calculated using a linear fit between 100K to 1000K. The reference values

are set as show in Table 2.4.

µ

µ0
=

(
T

T0

)3/2(T0 + S

T + S

)
(2.60)

Table 2.4: Reference material properties.

Property Value

Density 1.0289 Kg/m3

Pressure 86529 Pa

Temperature 293 K
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CHAPTER 3

NUMERICAL MODEL

3.1 Computational Domain

Fig. 3.1: Wind tunnel in vertically oriented configuration.

Fig. 3.1 is a representation of the wind tunnel in the Experimental Fluid Dynamics lab

at Utah State University from Jones [1]. It is set up in a manner such that the test section

can be configured vertically or horizontally and also in various orientation in z axis. For

natural convection, a vertical configuration is used. The computational domain consists of

an inlet contraction, test section, and outlet transformation. The test section contains four
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vertical rods. These rods are held at their positions by grid spacers. Five grid spacers are

used in the test section.

Fig. 3.2: Horizontal view of the test section.

The test section is two meters with a cross-sectional area of 304.8 × 304.8 millimeters,

as shown in Fig. 3.2 these dimensions are not shown in the figure. One of the four walls is

constructed with aluminum 6061-T6 plate which is included in the numerical model. The

rods are 1.58 meters long with an inner and outer diameter of 0.00952 meters and 0.3175

meters respectively. The rods are also made of aluminum 6016-T6 material.

The rods shown in Fig. 3.2 are heated using thermocouple wires. These wires are sent

into the test section through conduits as shown in Fig. 3.3. The computational geometry

also consists of hangers present downstream of the domain near the last grid spacer.

The first four of the grid spacers are integrated with the swirl vanes as shown in Fig.

3.4, however the fifth one is left out. The presence of these swirl vanes have eliminated

symmetry inherent in the base geometry. The swirl vane elements are employed with an

intention to increase the interaction of the fluid with the rods to improve heat transfer.

The computational domain is split into solid and fluid domains. The solid domain
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Fig. 3.3: Conduits used for sending thermocouple wires.

Fig. 3.4: Swirl elements on grid spacer.
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mainly consists of the rods and the aluminum plate, while the fluid domain is essentially

the test section, contraction, gird spacers, hangers, conduits, and outlet transformation.

3.2 Mesh

Splitting the computational domain into smaller, finite volumes is called meshing. This

is done using the meshing module available in the commercial software STAR-CCM+ [17].

The fluid domain is meshed using the trimmed mesher and is an unstructured scheme

that uses hexahedral elements. The trimmed mesher is suitable for geometries that are

complex. Structured prism layers are also modeled along with the trimmed mesher to resolve

the boundary layer with wall y+ maintained at approximately 1. Fig. 3.5 is a view of the

fluid domain. Special attention is given to conduits and grids spacers with swirl vanes. The

mesh is refined at these locations. The meshed region downstream of the grid spacers is also

refined since capturing the physics here is essential.

Fig. 3.5: Meshed view of the fluid domain.

The solid domain shown in Fig.3.6 is meshed using the unstructured polyhedral ele-

ments which reduce the cell count in the domain significantly. The solid domain is relatively
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smaller than the fluid domain and only models diffusion, hence the meshing requirement is

significantly less.

Fig. 3.6: Meshed view of the solid domain.

The solid and the fluid domains are not mapped conformally, i.e., they have no con-

nectivity between the meshes. The interface module in STAR-CCM+ is used to calculate

the interaction between the solid and fluid domains.

3.3 Boundary Condition

The boundary conditions are specified similar to that of the experimental setup. A

heat flux boundary condition of 2333 W/m2 is specified in the inner surface of the rods,

which is equivalent to specifying 700 W/m2 at the outer surface. Similarly, for second case

1335 W/m2 is specified at the inner surface, which is equivalent to 400 W/m2 in the outer

surface. It must be noted that the heat flux boundary condition is not uniform throughout

the surfaces as there are sections where there is zero heat flux. This non uniform heat flux

boundary condition is implemented using the field functions. The reference temperature is

set at 293 K, and the reference pressure is set at 86529 Pa. A stagnation inlet is specified
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at the inlet. To take into account the pressure drop due to the flow straighteners present at

the inlet, a pressure loss coefficient is specified at the inlet using Bernoulli’s equation. The

pressure loss is specified as show in Table 3.1 from Jones [1].

Table 3.1: Pressure loss coefficient.

Case W/m2 Coefficient

400 233 ± 56

700 160 ± 35

The boundary condition at the outlet is specified as a pressure outlet. The walls

throughout were specified as adiabatic with a no-slip condition. The turbulence intensity is

specified as 1 percent and turbulent viscosity ratio as 10.

Interpolation schemes consist of second-order upwinding for the convective terms and

the second-order central difference for the diffusion terms. The pressure velocity coupling is

achieved using the SIMPLE method. Initial guesses are used for initializing the numerical

model. An accurate value can help in speeding convergence. Therefore, the temperature in

the solid region is set to 360K initially and z-velocity in fluid domain is set to 0.15 m/s.

Under relaxations were set adequately low in order to assist convergence.
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RESULTS

The results from two cases are presented here. The first with a heat flux boundary

condition of 700 W/m2 and the second with a heat flux boundary condition of 400 W/m2.

The first case is studied in greater detail than the second as it was discovered from the

former that some of the turbulence models do not accurately model the relevant physics.

Therefore, they are excluded from consideration for the second case. In the computational

procedure, residuals were driven down to 10−3 or lower in steady state for all cases, except

the k − ω. The k − ω results are excluded from comparison with experimental data since

those runs did not sufficiently converge; however, a steady mass flow rate was achieved.

For the 400 W/m2 case, only the k − ε and RST turbulence models with Xu near-wall

formulation are studied. A grid independence study using the k − ε and RST turbulence

models with Xu near-wall formulation is also presented later in this chapter.

4.1 700 W/m2 Case

The flow rates for the different turbulence models are compared with the experimental

study of Jones [1]. The temperature distribution along two of the rods is presented and

compared with the experimental results. Experimental velocity profiles at eight different

locations are also compared with different turbulence model results. The performance of

the turbulence models with two-layer formulations is also compared. Various contour plots

of velocity and temperature are presented. Approximately 8 million cells are used for each

of the simulations. This is proven to be sufficient from a grid independence study which is

discussed later in this chapter.

From Table 4.1 it is clear that the flow rates from CFD solution of the Spalart-Allmaras

and k − ω turbulence models do not correlate well with the experimental data. All other

models with two-layer formulations have a better agreement with the experimental result;
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Table 4.1: Flow rates for 700 W/m2 case.
Turbulence Model CFD kg/s Exp kg/s

Spalart-Allmaras 0.0188 0.025

Standard k − ε, Xu 0.0287 0.025

Realizable k − ε,Xu 0.0257 0.025

Realizable k − ε, Wolf 0.0202 0.025

RST, Xu 0.0273 0.025

RST, Wolf 0.0236 0.025

k − ω 0.0138 0.025

notably realizable k − ε model has the strongest correlation. However the standard k − ε

model seems to slightly over estimate the flow rate. Since the two-layer models are suitable

for flows requiring high near wall resolution, they often show better agreement with the

experimental data. The pressure loss coefficient of K = 166 specified at inlet leads to results

that agree with the experimental mass flow rate for all models except the Spalart-Allmaras

and k − ω.

Fig. 4.1: Temperature distribution on rods with various turbulence models for 700 W/m2

case.

The plot in Fig. 4.1 is a plot of dimensionless temperature as a function of distance along
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the streamwise direction on the rod walls. The temperature distribution along two rods is

compared with the experimental results. Models such as the k − ε and RST with Xu two-

layer formulation have a better agreement with the experiment. The Wolfstein formulation

specifically used in shear driven flows has over predicted the temperatures. Other models

have also significantly over predicted the temperature distribution. This may be due to

lower convection and/or turbulent diffusion near-wall. Comparing the turbulent viscosity

ratios of the two-layer models may provide answers to this. There is negligible difference in

temperature distribution for the standard k− ε and realizable k− ε models, hence only the

realizable is presented here as this model predicts flow rate closer to experimental data.

Fig. 4.2: Axial variation of turbulent viscosity ratio.

Shown in Fig. 4.2 is a comparison of the turbulent viscosity ratios for the two two-

layer formulations using both the k − ε and RST turbulence models. The plot is a graph

of turbulent viscosity plotted along a straight line from the periphery of the rod to the

edge of the domain. The plots have a direct correlation with the temperature distribution.

The Xu formulation has a higher turbulent viscosity ratio; hence, a higher effective thermal
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conductivity. Less thermal resistance in the boundary layer leads to lower rod wall temper-

atures. The Wolfstein formulation has much lower turbulent viscosity ratio; therefore, the

rod wall temperature is higher. Comparing the k − ε and RST model with Xu near-wall

formulation, the k− ε has a slightly higher turbulent viscosity ratio; therefore, from Fig. 4.1

it is noticeable that the k− ε model predicts slightly lower rod wall temperature compared

to the RST model with Xu formulation. When a similar comparison is made with Wolfstein

formulation it can be seen that the k − ε model again seems to predict a slightly lower rod

wall temperature, which is also due to the difference in turbulent viscosity ratios. It is clear

that the Xu near-wall formulation is well suited for natural convection flows.

Fig. 4.3: Experimental vs. CFD velocity profile at x=0.0m, z=0.476m, 700 W/m2.

The velocity profiles are plotted at eight different regions of the domain corresponding

to the experiment in the wake region between the rods. Shown in Fig. 4.3 is a plot of the

velocity profiles at x=0.0m and z=0.476m. There is clearly no correspondence here with

the experimental data, although some trends can be observed in some of the turbulence

models, they are not significant. Similar inferences can be made from Fig. 4.4 and Fig.
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Fig. 4.4: Experimental vs. CFD velocity profile at x=0.0m, z=0.825m, 700 W/m2.

Fig. 4.5: Experimental vs. CFD velocity profile at x=0.0m, z=1.174m, 700 W/m2.
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Fig. 4.6: Experimental vs. CFD velocity profile at x=0.0m, z=1.524m, 700 W/m2.

4.5. Although from Fig. 4.6 it can be seen that the k − ε Xu formulation model has some

modest agreement with the experimental data. Towards the center, at y=0.15m it fails to

correspond, perhaps due to inadequate mesh resolution. Other models have significantly

over-predicted or under-predicted the velocities.

From Fig. 4.7, the velocity profile at x=-0.06m, z=0.476m, reveals that some of the

turbulence models have been able to establish a similar trend with that of the experimental

data. It must be noted that the RST models with Xu formulation show the strongest

agreement with the experiment. This is established by the presence of two values at y=0.15m

in the domain which are very close to the experimental data. The k − ε models have failed

to show any agreement at this location.

From Fig. 4.8 the turbulence models may seem to establish a velocity trend but there

is no strong correlation with the experiment. Similarly, from Fig. 4.9 such inference can also

be made. Albeit, Spalart-Allmaras seems to show stronger trend than the other models.

From Fig. 4.10 it can be observed that although some of the turbulence models again
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Fig. 4.7: Experimental vs. CFD velocity profile at x=-0.06m, z=0.476m, 700 W/m2.

Fig. 4.8: Experimental vs. CFD velocity profile at x=-0.06m, z=0.825m, 700 W/m2.
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Fig. 4.9: Experimental vs. CFD velocity profile at x=-0.06m, z=1.174m, 700 W/m2.

Fig. 4.10: Experimental vs. CFD velocity profile at x=-0.06m, z=1.524m, 700 W/m2.
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establish some trend with the experimental results, the k − ε model with Wolfstein near-

wall formulation seems to have a stronger correlation with the experimental data.

None of the turbulence model velocity profile seems to strongly correlate with the

experimental data at all eight locations. Some perform better than others at different loca-

tions. The RST models seems to be slightly better than the other turbulence models when it

comes to correlating velocity profiles. It must also be taken into account that these locations

are present in the wake regions behind the grid spacers. The relative low mesh resolutions

in the wake regions may have caused such disparity between the experimental and CFD

results. The cell count in the domain is 8 million and to resolve the wake region with higher

mesh resolution is currently beyond practical bounds.

A contour plot of velocity is plotted on y=0.0 plane along the streamwise direction.

The plots presented here represent the turbulence models that have been able to accurately

predict the experimental results, notably the k − ε and RST turbulence models with Xu

near-wall formulation. Comparing the contour plots of velocity, the k − ε model predicts

a slightly higher velocity in the plume region downstream than does the RST model. The

temperature contour plot for the mentioned two turbulence models has about 1.5K tem-

perature difference between them globally. Overall, there is a negligible difference between

the contour plots obtained from the two turbulence models.

4.2 400 W/m2 Case

Only two turbulence models are studied for the 400 W/m2 case; the k − ε and RST,

both with Xu near-wall formulation. From the 700 W/m2 case, it is clear that these two

turbulence models are able to predict solutions closest to the experimental results. In this

section, flow rate, the temperature distribution on the rods, as well as velocity profiles at

8 locations are presented. Contour plots of velocity and temperature along the stream wise

direction are also presented.

From Table 4.2, the flow rate for the two models is reasonably close to the experimental

result. The percentage error in CFD results is around 5 percent, which is within the ac-

ceptable range. The loss coefficient of K = 286 specified at inlet has resulted in an accurate
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Fig. 4.11: Contour plot of velocity for k − ε Xu model; 700 W/m2.
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Fig. 4.12: Contour plot of velocity for RST Xu model; 700 W/m2.
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Fig. 4.13: Contour plot of normalized temperature for k − ε Xu model; 700 W/m2.
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Fig. 4.14: Contour plot of normalized temperature for RST Xu model; 700 W/m2.

reduction of flow rate across the domain.

Fig. 4.15 is a plot of the temperature distribution. It can be seen that both the models

have been able to predict the distribution with good accuracy. A closer look at the tem-

perature distribution for rod 1 and rod 2 for the RST Xu model suggests that there is a

change in distribution which is more than that of k− ε with Xu near-wall formulation. This

may be due to the presence of the swirling elements on the grid spacers. As anticipated,

the two-layer formulation of Xu has repeatedly shown good correlation with experimental

data.

The velocity profiles are located exactly as in the case of 700 W/m2. Figures 4.16, 4.17,

4.18, and 4.19 show velocity profiles at locations x = 0.0m and z = 0.474m, 0.825m, 1.174m,
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Table 4.2: Flow rates for 400 W/m2 case.
Turbulence Model CFD kg/s Exp kg/s

Realizable k − ε, Xu 0.0201 0.019

RSM, Xu 0.0208 0.019

Fig. 4.15: Temperature distribution on rods with two turbulence models for the 400 W/m2.

and 1.524m, respectively. As expected, there is no strong correlation with the experimental

data at these locations perhaps due to inadequate grid resolution.

Figures 4.20, 4.21, 4.22, and 4.23 show velocity profiles at locations x = -0.06m and z =

0.474m, 0.825m, 1.174m, and 1.524m, respectively. The results have improved in comparison

to results at location x=0.0m. The notable velocity profile is the RST Xu model in Fig.

4.20, where a similar pattern is observed with the 700 W/m2 case. The profiles at other

locations do not exhibit strong agreement with experimental data.

Contour plots of velocity and temperature are plotted along streamwise direction on

x=0.0 plane. The k − ε model predicts slightly higher velocity in comparison to RST. The

temperature profiles have little or no difference in general with 1K differences globally.

From both the cases, it can be inferred that difference in the heat flux boundary con-

dition affects the velocity magnitude. This is no surprise as a higher temperature gradient
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Fig. 4.16: Experimental vs. CFD velocity profile at x=0.0m, z=0.476m, 400 W/m2.

Fig. 4.17: Experimental vs. CFD velocity profile at x=0.0m, z=0.825m, 400 W/m2.
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Fig. 4.18: Experimental vs. CFD velocity profile at x=0.0m, z=1.174m, 400 W/m2.

Fig. 4.19: Experimental vs. CFD velocity profile at x=0.0m, z=1.524m, 400 W/m2.
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Fig. 4.20: Experimental vs. CFD velocity profile at x=-0.06m, z=0.476m, 400 W/m2.

Fig. 4.21: Experimental vs. CFD velocity profile at x=-0.06m, z=0.825m, 400 W/m2.
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Fig. 4.22: Experimental vs. CFD velocity profile at x=-0.06m, z=1.174m, 400 W/m2.

Fig. 4.23: Experimental vs. CFD velocity profile at x=-0.06m, z=1.524m, 400 W/m2.
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must create higher density differences in the near-wall region of the heat transfer surface;

therefore, higher velocities result. Even though there is an obvious difference in velocity

magnitude, there seems to be some patterns observed in both the cases, for example from

Fig. 4.7 and Fig. 4.20. However, both the cases have no strong correlation with the experi-

mental results when comparing velocity profiles. Having said this, the k− ε and RST model

with Xu formulation do accurately predict the temperature distribution for both cases, as

well as the mass flow rate.

Fig. 4.24: Contour plot of velocity for k − ε Xu model; 400 W/m2.
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Fig. 4.25: Contour plot of velocity for RST Xu model; 400 W/m2.

Fig. 4.26: Contour plot of normalized temperature for k − ε Xu model; 400 W/m2.
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Fig. 4.27: Contour plot of normalized temperature for RST Xu model; 400 W/m2.
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4.3 Grid Independence Study

Even though the solutions for flow rates and temperature distributions are accurate,

there may be discretization error due to inadequate cell resolution in the domain. For a

solution to achieve grid independence the solution must remain relatively unchanged with

systematic reduction in cell size (i.e. increase in cell count).

The 700 W/m2 case is chosen for this study. Cell counts of 4, 8, and 16 million are used.

Since the only change in both cases are the heat flux boundary conditions and pressure loss

coefficients, grid independent study for one case will be sufficient. This study includes flow

rates and temperature distribution for the k − ε and RST with Xu near-wall formulation.

Table 4.3: Flow rate: grid independence study for k − ε Xu turbulence model.
Cell Count CFD kg/s

4 million 0.0266

8 million 0.0257

16 million 0.0267

The results from Table 4.3 for the k − ε suggest that there is no significant change in

mass flow rate. The consequent results are with an error margin of 3 percent.

Fig. 4.28: Temperature distribution: grid independent study for k− ε Xu turbulence model.

The temperature distribution shown in Fig. 4.28 reveal no noticeable difference in
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results with increase in cell count. Based on the results from Table 4.3 and Fig. 4.28 it can

be concluded that the solution for wall temperature using k − ε turbulence model with Xu

formulation is essentially grid independent.

Table 4.4: Flow rate: grid independence study for RST Xu turbulence model.
Cell Count CFD kg/s

4 million 0.0287

8 million 0.0273

16 million 0.0278

Fig. 4.29: Temperature distribution :grid independence study for k−ε Xu turbulence model.

From Table 4.4, it can be observed that the flow rates computed using the RST model

have little difference with an error of 3 percent. Temperature distribution shown in Fig.

4.29 also suggest negligible change in results.

From the grid independent study it can be concluded that the solutions for flow rate and

rod wall temperature are sufficiently grid independent for both the k−ε and RST turbulence

models with Xu near-wall formulation and that the solution from the intermediate mesh
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size of 8 million is acceptable.



52

CHAPTER 5

CONCLUSION

Numerical modeling of natural convection in vertically heated rods is performed. The

turbulence is modeled using the steady Reynolds-averaged Navier-Stokes equation. Five dif-

ferent turbulence models are chosen; namely, standard and realizable k− ε, Reynolds stress

transport, Spalart-Allmaras, and standard k − ω. In addition, Xu (buoyancy driven), and

Wolfstein (shear driven) two-layer near-wall formulations are employed along with k − ε

and RST models. The interpolation schemes used are second-order upwinding for convec-

tive terms and second-order central differencing for diffusion terms. The pressure velocity

coupling is done using the SIMPLE method. Two cases with different heat flux bound-

ary conditions are studied, 700 W/m2 and 400 W/m2. The solutions are compared with

experimental studies conducted by Jones [1].

The realizable k − ε and RST model with Xu near-wall formulation have strongest

correlation with the temperature distribution and flow rates of the experiment. The Wolf-

stein two-layer formulation does not perform as well as the Xu formulation, notably because

Xu formulation produces a higher near-wall turbulent viscosity ratio than Wolfstein with

an increase in the thermal diffusion. Also, the Xu formulation is specifically designed for

buoyancy driven flows. The Spalart-Allmaras model also failed to correlate well with the

temperature distribution and mass flow rate results from experiment.

It can be concluded that none of the turbulence models were able to accurately predict

the velocity profiles at various location for both cases. Notably, the RST model with Xu

near-wall formulation is better than the other models at some of the locations. The k −

ω turbulence model has failed to converge. The Spalart-Allmaras model exhibited weak

correlation with the experimental results. The disparity in velocity profiles may also be

likely due to inadequate mesh resolution in the wake region behind the grid spacers. With

the currently available computational resources a higher resolution is not practical. Large
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eddy simulations or detached large eddy simulations may be able to accurately capture the

physics in the wake region since both the models require high fidelity mesh resolution, but

this is currently not within the scope of the study.

However, the realizable k − ε and RST turbulence models with Xu formulation, were

able to accurately predict the flow rates as well as the temperature distributions, even

though the velocity profiles have a weak correlation with the experimental results at the

various locations. Further, the Xu near-wall formulation has repeatedly shown to have

good agreement with the experimental data. Hence, it is concluded that for flows involving

buoyancy the Xu near-wall formulation is well suited.
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