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ABSTRACT 

 

 

Discharge-Suspended Sediment Relations: Near-channel Environment Controls Shape  

 

and Steepness, Land Use Controls Median and Low Flow Conditions 

 

 

by 

 

 

Angus A. Vaughan, Master of Science 

 

Utah State University, 2016 

 

 

Major Professor: Patrick Belmont, Ph.D. 

Department: Watershed Science 

 

 

We analyzed recent total suspended solids (TSS) data from 45 gages on 36 rivers 

throughout the state of Minnesota. Watersheds range from 32 to 14,600 km2 and represent a 

variety of distinct settings in terms of topography, land cover, and geologic history.  Our study 

rivers exhibited three distinct patterns in the relationship between discharge and TSS: simple 

power functions, threshold power functions, and peaked or negative power functions. 

Differentiating rising and falling limb samples, we generated sediment rating curves (SRC) of 

form TSS = aQb, Q being normalized discharge. Rating parameters a and b describe the vertical 

offset and steepness of the relationships.  We also used the fitted SRCs to estimate TSS values at 

low flows and to quantify event-scale hysteresis. 

In addition to quantifying the watershed-average topographic, climatic/hydrologic, 

geologic, soil and land cover conditions, we used high-resolution lidar topography data to 

characterize the near-channel environment upstream of gages.  We used Random Forest statistical 

models to analyze the relationship between basin and channel features and the rating parameters.  

The models enabled us to identify morphometric variables that provided the greatest explanatory 
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power and examine the direction, form, and strength of the partial dependence of the response 

variables on individual predictor variables.  The models explained between 43% and 60% of the 

variance in the rating curve parameters and determined that Q-TSS relation steepness (exponent) 

was most related to near-channel morphological characteristics including near-channel local 

relief, channel gradient, and proportion of lakes along the channel network.  Land use within the 

watershed explained most variation in the vertical offset (coefficient) of the SRCs and in TSS 

concentrations at low flows. 

                             (120 pages) 
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PUBLIC ABSTRACT 

 

 

Discharge-Suspended Sediment Relations: Near-channel Environment Controls Shape  

 

and Steepness, Land Use Controls Median and Low Flow Conditions 

 

Angus A. Vaughan 

 

Erosion, transport and deposition of fine sediment (clay, silt and fine sand) influence the 

form and function of river systems. Excess suspended sediment degrades stream ecosystems and 

is implicated as a leading cause of water quality and aquatic life impairment. Therefore, 

understanding the factors that control fine sediment transport patterns is an interesting topic for 

basic science and one that has important management and policy implications. 

In this study, we sought to understand how attributes of the landscape and channel 

network might control the shape, steepness and vertical offset of the relationship between river 

discharge and suspended sediment. Watershed and channel attributes included in our analysis 

were high-resolution topography, geology, soil erodibility, climate, and land use. Our results 

indicated that land use within the watershed most controlled sediment concentrations at low and 

moderate flows, with higher percentages of agriculture and lower forest cover associated with 

higher sediment concentrations. Conversely, the steepness, or rate-of-change, of the discharge-

suspended solids relationships was dominantly affected by the topography and landforms near the 

channel. Rivers with high sediment concentrations at high water discharge were those with steep 

channel gradients and with bluffs and tall banks near the channel, which are likely important 

sediment sources. These results support previous findings that sediment load reduction at high 

flows may be best achieved by management approaches aimed at reducing the magnitude and 

frequency of high flows and controlling erosion from near-channel sediment sources, rather than 

additional regulations on land use aimed at reducing erosion from upland soils.  
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INTRODUCTION 

 

Predicting the flux of suspended sediment from a watershed is a fundamental problem in 

geomorphology, with important implications for water quality, land and water resource 

management and policy, and aquatic ecosystem health.  Fine sediment (clay, silt and fine sand) is 

generally the dominant component of a river’s sediment load [Syvitski et al., 2000; Turowski et 

al., 2010], globally comprising about 90% of total sediment and a large fraction of the 

phosphorus and carbon flux to the ocean [Milliman and Meade, 1983; Owens and Walling, 2002; 

Regnier et al., 2013].  Suspended sediment concentrations measured at a given location integrate 

influences from all sediment sources and sinks above that point, and are therefore expected to 

depend on watershed characteristics such as geology, climate, vegetative cover, level of 

glaciation, rainfall intensity, slope, topographic relief, and human impacts [Langbein and 

Schumm, 1958; Ahnert, 1970; Wischmeier and Smith, 1978; Summerfield and Hulton, 1994; 

Syvitski et al., 2000, 2014; Mueller and Pitlick, 2013].  However, long-term denudation rates do 

not depend strongly on climate (precipitation or mean annual temperature) or topographic relief, 

but instead on changes in base level [Hack, 1975; Riebe et al., 2001; von Blanckenburg, 2005]. 

Recent studies have demonstrated that the near-channel environment may be a dominant factor 

contributing sediment, even in agricultural watersheds [Walter and Merritts, 2008; Belmont et al., 

2011b; Stout et al., 2014; Donovan et al., 2015], which raises the question, ‘do metrics 

characterizing watershed-average or near-channel conditions provide better predictability for 

riverine sediment fluxes?’  

Erosion, transport and deposition of fine sediment influence the form and function of 

river systems.  Concentrations of suspended sediment, especially at overbank discharges, have 

implications for rates of vertical accretion and sediment storage on floodplains [Wolman and 

Leopold, 1957; Knox, 1977b; Lauer and Parker, 2008; Viparelli et al., 2013].  Fine sediment in 

excess of a channel’s transport capacity can lead to channel narrowing by accretion on channel 
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bars and inset floodplains [Grams and Schmidt, 2005; Dean et al., 2011].  Systematic increases in 

river flows can likewise widen and deepen channels and exacerbate near-channel erosion 

[Belmont et al., 2011b; Lenhart et al., 2011; Schottler et al., 2014]. Understanding how and at 

what discharges fine sediment is transported through a river network is, therefore, a 

geomorphically important problem.  

Although suspended sediment is a natural component of aquatic ecosystems, excess 

sediment degrades stream ecosystems and is implicated as a leading cause of water quality and 

aquatic life impairment.   For example, excessive SSC can cause significant reduction in algal 

biomass and primary productivity by reducing light penetration and photosynthesis, with 

cascading effects to higher trophic levels [Bilotta and Brazier, 2008; Finlay, 2011].  Elevated 

SSC can also cause a reduction of population size and species richness among invertebrates 

through abrasion or clogging of exposed respiratory or feeding structures, forcing of increased 

invertebrate drift, and loss of habitat through clogging of interstitial spaces in coarse streambed 

sediments [Richards and Bacon, 1994; Wood and Armitage, 1997; Bilotta and Brazier, 2008]. 

Prolonged exposure to elevated SSC can cause mortality, reduced growth, reproduction and 

recruitment among fish, as well as shift aquatic predator-prey relationships and prompt fish 

migration out of affected reaches [Schwartz et al., 2008, 2011]. Suspended sediment transport is 

also strongly associated with nutrient and contaminant transport. Phosphorus is commonly 

adsorbed to fine sediment particles and sediment-associated transport often dominates the total 

phosphorus load exported from a catchment, which can cause eutrophication problems in water 

bodies downstream [Walling et al., 1997; Verstraeten and Poesen, 2002].  Additionally, 

pesticides, organic contaminants, heavy metals, and other pollutants are stored and transported 

along with fine sediments [Pereira et al., 1996; Symader et al., 1997; Peck et al., 2004; Jones et 

al., 2006; Kolok et al., 2014]. Understanding the controls on the suspended sediment fluxes, 
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therefore, is not only an intriguing topic for basic science, but also one that has important 

management and policy implications.   

An important metric for characterizing the suspended sediment regime in river systems is 

the empirical sediment rating curve (SRC) [Asselman, 2000; Hu et al., 2011; Warrick, 2014].  

SRCs describe the average relation between river discharge (Q) and suspended sediment 

concentration (SSC) or total suspended solids (TSS)1.  Q-TSS relationships are distinguishing 

characteristics of a river’s sediment regime that represent the combined effects of erosion, 

transport and deposition occurring across the range of flows upstream from that point in the 

watershed.  Therefore, regional variation in Q-TSS relationships may offer insight into 

geomorphic processes and dominant sediment sources and sinks within watersheds and thereby 

provide a basis for identifying regions that require different management, restoration and 

rehabilitation practices.    

In this study, we sought to improve understanding of landscape and environmental 

controls on Q-TSS relationships.  We used Q and TSS data to construct SRCs for 45 gages on 36 

separate rivers throughout the state of Minnesota, USA (Figure 1).  We observed a wide range of 

forms for Q-TSS relationships and sought to understand spatial and geomorphic patterns in those 

relationships by asking the following questions:  Which landscape or channel characteristics most 

                                                           
1 SSC and TSS are related but distinct terms, often used interchangeably in the literature to refer 

to the solid-phase material suspended in the water column [Gray et al., 2000].  SSC and TSS refer 

to distinct laboratory analytical methods for measuring sediment concentrations.  SSC is based on 

the dry weight of all sediment from a known volume of water-sediment mixture.  TSS is based on 

the dry weight of sediment from a subsample of the original sample. SSC samples are collected 

using a width- and depth-integrated sampling technique, whereas TSS are collected as grab 

samples [Ellison et al., 2014].  For samples containing substantial proportions of sand-size 

material, TSS values tend to be lower than the corresponding SSC values, and SSC measurements 

are thus considered more reliable for natural-water samples [Gray et al., 2000; Ellison et al., 

2014].  Sediment concentration values are reported as TSS for our study gages and we refer to the 

data accordingly.  Hereafter we also use TSS to refer to suspended sediment concentrations more 

generally. 
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influence the shape of Q-TSS relationships?  Why are some river systems more sensitive to 

increases in discharge than others?  Can analysis of Q-TSS relationships offer insight into 

dominant sediment sources and geomorphic processes within a watershed and channel-floodplain 

system? Can we develop a better predictive understanding of Q-TSS relations to support 

decisions related to water quality regulations, water and land management, and restoration 

practices? 

To answer these questions, we generated a large dataset describing the geologic, climatic, 

hydrologic, soil, land use, and topographic setting upstream of study gages.  We utilized high-

resolution topography that adequately characterizes many of the key features that may control the 

movement of water and sediment through the landscape [Passalacqua et al., 2015].  We 

characterized these features at the watershed scale and also characterized features specific to the 

channel-floodplain corridor. We used Random Forest (RF) statistical models to explore the 

association between these factors and the shape of Q-TSS relations, taking advantage of RF 

models’ ability to handle complex, non-linear interactions among variables while making no 

assumptions about the form of those relationships [Cutler et al., 2007; Olson and Hawkins, 

2012].  We used variable importance measures to identify morphometric variables that provided 

the greatest explanatory power and partial dependence plots to examine the direction, form, and 

strength of the partial dependence of response variables on individual predictor variables. 
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Figure 1. Location of study gages within MN, shown over map of HUC-4 major watersheds. 

Base map data from the National Hydrography Dataset (watershed boundaries and streamlines) 

and U.S. Geological Survey (DEM). Projection: NAD 1983, UTM Zone 15 N. Inset: location of 

MN within the USA. 
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BACKGROUND 

 

Sediment Rating Curves and Relation with Basin Characteristics 

 

 

The concentration of sediment in suspension depends not only on the capacity of the flow 

to transport sediment but also on the rate at which fine sediment is supplied.  This can result in 

different sediment concentrations at the same water discharge, depending on the rate of sediment 

supply.  Therefore, suspended sediment transport cannot be predicted as a function of the 

hydraulics alone and empirical relations are used instead. [Asselman, 2000; Fan et al., 2012].  

Such relations are typically derived from statistical regression on the Q and SSC data [Warrick, 

2014] and most commonly take the form of a power relation: 

 

TSS = aQb     (1) 

 

 

Equation 1 can be linearized using a log-transform of the SSC and Q data: 

 

 

log(TSS) = b log(Q) + log(a)  (2) 

 

 

where a and b are the sediment rating coefficient and exponent, respectively [Mimikou, 1982; 

Asselman, 2000; Syvitski et al., 2000; Yang et al., 2007; Sadeghi et al., 2008; Hu et al., 2011; Fan 

et al., 2012; Warrick, 2014].  The empirical relations model the combined effect of increased 

transport capacity at higher discharges and the degree to which new sediment sources are 

accessed or depleted during conditions that cause high discharge [Asselman, 2000]. 

Because suspended sediment transport is a function of sediment supply as well as 

transport capacity, studies have sought to understand the shape of rating curves in terms of 

environmental and basin properties that may influence sediment production and supply to rivers.  

Generally, researchers have focused on basin-scale parameters describing average 

topography/relief, climate, geology, soil properties and land use history [Syvitski et al., 2000; Ali 
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and de Boer, 2008].  Topographic measures that have been related to SRC shape include basin 

area, length and width; watershed mean elevation and slope; basin relief and hypsometric 

integral; average streambed slope and watershed mean and extreme values for various climate 

variables such as temperature and precipitation [Bogárdi, 1961; Mimikou, 1982; Lu and Higgitt, 

1999; Syvitski et al., 2000; Yang et al., 2007]. These studies have used single or multiple 

regression to study correlation between the rating curve parameters and the various basin metrics. 

Additionally, studies have analyzed the influence of similar basin-scale characteristics on 

suspended sediment yield [Lu and Higgitt, 1999; Restrepo et al., 2006; Ali and de Boer, 2008; de 

Vente et al., 2011].   

Watershed-average characteristics may produce adequate predictions of sediment 

dynamics if sediment is being supplied from throughout the watershed.  However, studies of 

multiple streams in Minnesota and elsewhere have demonstrated that sediment supply may be 

dominated by near-channel sources.  For example, Belmont et al. [2011b] used geochemical 

fingerprinting as well as aerial and terrestrial lidar analyses, aerial photography, and water and 

sediment gaging data to create a sediment budget for the Le Sueur River, a tributary and major 

sediment contributor to the Minnesota River (itself a tributary of the Mississippi River) in 

southern Minnesota.  The sediment budget showed that over the period of 2000-2010, 70 percent 

of the fine sediment supplied to the Le Sueur River was derived from the near-channel 

environment, originating from erosion of bluffs, banks, ravines, and from channel incision, even 

though the channel network comprises only 1 percent of the landscape.  In the same study, 

analysis of radiogenic nuclides in cores from Lake Pepin, a naturally dammed lake on the 

Mississippi River below the confluence with the Minnesota River, showed that the dominant 

source of sediment carried by the river has shifted. In the mid-1900s, the sediment load was 

predominantly derived from upland agricultural soil erosion, but since then the sediment has 

shifted to being primarily derived from near-channel sources such bluffs and ravines.   
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Radionuclide sediment fingerprinting data from the Root River in southeastern Minnesota 

suggest that the majority of suspended sediment there, too, is derived from near-channel sources 

[Stout et al., 2014].  The 10Be fingerprinting signature from Root River sediment suggests that the 

original source for the sediment was erosion from agricultural fields, but depleted levels of the 

short-lived tracer 210Pb suggest that much of that sediment has been stored in the floodplain and 

terraces for at least 70 years.  The sediment is now being re-worked from the channel-adjacent 

floodplain and terraces and entering the river system as suspended sediment.   

Because the near-channel environment comprises such a small fraction of any given 

watershed (circa 1%), processes causing erosion from near-channel sources are not likely to be 

well represented by the basin-scale morphometrics commonly used to investigate and explain 

suspended sediment dynamics in rivers.  Analysis to determine the dominant factors controlling 

sediment dynamics in rivers will likely be improved by the development of metrics that 

specifically quantify aspects of the near-channel environment that directly control sediment 

generation and transport. Accurate quantification of the near-channel environment has only 

become feasible recently, with availability of high resolution topography data and imagery 

[Passalacqua et al., 2012, 2015; Tarolli et al., 2012]. 

 

Overview of Regulation of Fine Sediment in Minnesota and Description of Study Area 

 

The United States Environmental Protection Agency [2000] has listed elevated sediment 

loads (siltation) and turbidity as a leading cause of impairment in U.S. streams.  The federal 

Clean Water Act mandates that states monitor streams in order to determine impairment and, if 

necessary, develop Total Maximum Daily Load (TMDL) criteria to address those impairments 

[Minnesota Pollution Control Agency, 2011].  The State of Minnesota established suspended 

sediment criteria by grouping watersheds into four regions, namely the northern, central, and 

southern regions and a distinct region for the mainstem Red River of the North (Figure 2). Total 
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Suspended Solids (TSS) concentrations are required to not exceed 15, 30, 65 or 100 mg/L, 

respectively, more than 10 percent of the time over a multiyear window.   

 

 

Figure 2. Nutrient regions defining TSS TMDL standards in MN. Not shown is the distinct zone 

for the Red River mainstem, with a TMDL criterion of 100 mg/L. 
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The regional delineations are broadly based on USEPA Level III ecoregions. Regional 

criteria are based on two lines of evidence: 1.) Statistical analyses of paired biological and water 

quality (i.e. TSS) data to determine ecologically damaging threshold TSS concentrations and 2.) 

Analysis of TSS data from “least impacted” and reference streams [Minnesota Pollution Control 

Agency, 2011].  The different standards reflect coarse-scale variation in suspended sediment 

regimes and ecological settings across the state, produced by diverse geologic, geomorphic, 

climatic and land use settings and histories.  However, localized variation in geomorphic 

conditions may cause significant variation in sediment transport regimes, and thus background 

loads, within these zones.  An understanding of the environmental and geomorphic factors that set 

the natural background and sensitivity of sediment loads throughout Minnesota is a primary focus 

of this study.  

Coarse-scale variation in watershed settings throughout Minnesota is briefly outlined in 

the section below and a summary of environmental characteristics of each study watershed is 

presented in the Tables A.1-A.6 in Appendix A.   

Streams in the Minnesota River Basin (MRB) are naturally primed to deliver high 

sediment loads, a result of that basin’s geologic history and more recent human alterations to the 

system. The current geomorphic setting of tributaries in the MRB is strongly influenced by the 

incision of the mainstem Minnesota River that occurred during glacial outburst floods from Lake 

Agassiz starting 13,400 years ago [Upham, 1890, 1895; Shay, 1967; Clayton and Moran, 1982; 

Matsch, 1983; Thorleifson, 1996; Fisher, 2003].  The mainstem incised as much as 70 m, 

resulting in a lowered base level for the tributary streams, which have responded with subsequent 

incision and knickpoint migration 35-40 km upstream.  This incision has created high relief and 

more steeply sloped “knick zones” below the knick points [Belmont, 2011; Gran et al., 2011, 

2013].  Within the knick zones, tall bluffs composed primarily of glacial till are common along 

the valley and channel margins.  Bluffs erode through fluvial toe erosion, groundwater sapping, 
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and freeze-thaw processes and supply large amounts of fine and coarse sediment to the channel 

[Sekely et al., 2002; Belmont et al., 2011b; Gran et al., 2011, 2013, Day et al., 2013a, 2013b; 

Schaffrath et al., 2015].  Above the knick zones, the landscape has relatively little relief and 

streams have low gradients with wide alluvial floodplains [Belmont, 2011].  Modern human-

caused alterations have also promoted high sediment yields and geomorphically active systems.  

Stream flows and water yields have increased in the MRB since the mid-20th century, largely due 

to a combination of enhanced artificial drainage from agricultural fields and increase in 

precipitation [Lenhart et al., 2011; Schottler et al., 2014, Kelly et al., in review], with a 

concomitant large increase in sediment loading [Kelley and Nater, 2000; Engstrom et al., 2009; 

Belmont et al., 2011b].  Soils in the MRB are primarily fine-grained Mollisols, and row crop 

(corn and soy) agriculture dominates, comprising 92% of the basin’s land use [Kelley and Nater, 

2000].  Average annual precipitation ranges from 560 mm in the northwestern portion of the 

basin to 800 mm in the southeast, while annual runoff ranges from 50 mm to 150 mm along the 

same gradient [Anthony et al., 2010].  

Stream flows in the Mississippi River Basin have also shown a slightly increasing trend 

over the 20th and early 21st centuries [Novotny and Stefan, 2007].  Surface geology of the Upper 

Mississippi River Basin (defined here as above the confluence with the Minnesota River) is 

similar to that of the MRB, comprising primarily Pleistocene till [Hobbs and Goebel, 1982].  

However, streams in the Upper Mississippi River Basin did not experience the downcutting event 

associated with glacial lake outburst flooding, as did the MRB streams.  Therefore, Mississippi 

River tributaries lack the incised, bluff-dominated, and steep bedslope characteristics of MRB 

tributary knick zones, and are therefore likely to have different sediment transport regimes 

characterized by lower transport rates and sediment concentrations.  The Upper Mississippi Basin 

contains primarily Alfisol soils, whose sandy texture and poor fertility have historically limited 

agricultural land use to 44% of the basin’s area [Kelley and Nater, 2000].  However, the 
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southwestern part of this basin (including the North and South Forks of the Crow River included 

in this study) is dominated by more fertile Mollisols and is heavily farmed. 

The Lower Mississippi River Basin (defined here as below the confluence with the 

Minnesota River down to the southern border of Minnesota) flows through the driftless area of 

southeastern Minnesota.  That region remained mostly unglaciated during the last glacial cycle 

and is characterized by topography consisting of rolling uplands dissected by deeply incised 

bedrock valleys with wide, flat alluvial valley bottoms [Knox, 1977a, 2001, 2006; Beach, 1994; 

Stout et al., 2014].  Poor agricultural land use practices in the late 1800s to the early 1900s 

resulted in a pulse of erosion from agricultural uplands.  Much of the eroded sediment was stored 

in the floodplains and continues to be remobilized by erosion of banks and alluvial terraces, 

maintaining elevated sediment yields despite improved land management practices [Trimble, 

1999, 2009, 2012; Stout et al., 2014; Belmont et al., 2016].  This region is the wettest in the state, 

with average annual precipitation values ranging between approximately 800-900 mm. 

The Lake Superior Basin, located in northeastern Minnesota, is underlain by bedrock of 

the Canadian Shield and is characterized by thin soil cover over volcanic and metamorphic rocks 

[Anthony et al., 2010].  The basin is primarily forested, with little agriculture.  The St. Croix 

River Watershed is also primarily forested and characterized by poor soil for agriculture 

(predominantly Alfisols, with some isolated Inceptisols and Spodosols in the headwaters area) 

[Kelley and Nater, 2000; Engstrom et al., 2009]. Average annual precipitation is relatively high in 

these basins, between about 750 and 800 mm. 

The mainstem Red River of the North flows through highly erodible silt and clay 

lacustrine deposits from Glacial Lake Agassiz [Hobbs and Goebel, 1982].  The fine clay and silt 

lake plain sediments are easily suspended and tend to stay in suspension even during low-flow 

conditions, resulting in high TSS concentrations across the range of flows [Minnesota Pollution 

Control Agency, 2011].  The Red River mainstem, therefore, has the highest TSS threshold 
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criterion in the state, at 100 mg/L. Many Red River tributaries extend beyond the glacial Lake 

Agassiz basin and the surficial geology in those basins is dominantly till and glacio-lacustrine 

sediments [Hobbs and Goebel, 1982].  The topography of the Red River Basin is exceptionally 

flat, and the land use is predominately agriculture (66%) [Melesse, 2004; Anthony et al., 2010].  

This basin is in the driest part of the state, with average annual precipitation values around 500 

mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

 
 

DATA AND METHODS 

 
Q-TSS Data and Relationships 

 

We obtained TSS and Q data from the Minnesota Department of Natural Resources 

(MDNR) and Pollution Control Agency (MPCA) Cooperative Stream Gaging program.  The TSS 

data were collected as grab samples from the middle of the stream cross-section less than 1m 

below the water surface [Ellison et al., 2014].  To minimize the impact of nonstationary 

hydrologic and geomorphic conditions, while still including enough data to produce stable 

relations and meaningful results, we examined data from all gages that have TSS data spanning 

10 years after the year 2000.  Additionally, we obtained data for two gages, Sand Creek and the 

Credit River, from the Metropolitan Council Environmental Services (MCES) stream monitoring 

program.  We relaxed the 10-year criterion to include gages from several watersheds that have 

been the focus of a substantial amount of related research.  These exceptions included three gages 

on the Le Sueur River in the Minnesota River Basin (with 5, 6, and 9 years of data) and five 

gages in the Root River watershed in the Lower Mississippi River Basin (each with 3-5 years of 

data). Including these basins greatly expanded the contrasts in Q-TSS relationships and landscape 

characteristics in our dataset.  The Q-TSS relationships for these gages are constrained by an 

average of 155 points of paired Q and TSS data. 

Due to data availability limitations, we used daily mean discharge values rather than 

instantaneous discharge at the time of the TSS measurement.  However, we compared results 

using instantaneous and daily average data for time periods and gages where both were available 

(partial records at 44 gages, see Appendix B, Figure B.1 and B.2).  We determined that the two 

approaches yielded similar rating curves and that using daily mean Q, available over the entire 

time period, was preferable to using instantaneous Q data over the shorter time period for which 

those data were available.   
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In total, we analyzed paired Q and TSS data from 45 gages: 22 from the Minnesota River 

Basin, 4 from the Upper Mississippi River Basin, 9 from the Lower Mississippi Basin, 6 from the 

Red River of the North Basin, 2 from the St. Croix River Basin, and one each from the Missouri 

River and the Lake Superior Basins (Figure 1).  Watersheds draining to the gages range in size 

from roughly 32 km2 to 15,000 km2 with a median of 1175 km2.  The average number of data 

points (paired Q and TSS values) across all gages was 210 (standard deviation 90), for a total of 

9650 paired Q and TSS points across all gages.  For all sites, the average number of years with 

data was 9.3 (standard deviation 3.1). The average number of years per site with 20 or more 

points was 5.2 (standard deviation 2.7).   

We normalized discharge by the geometric mean of the sample discharges for each gage, 

as suggested by Warrick [2014].  The normalization facilitates comparison between basins of 

different size.  Normalizing by the geometric mean, specifically, is optimal because the geometric 

mean is the center of mass of the log-transformed discharge data. When a least-squares regression 

is fitted to the log-transformed, geometric mean-normalized discharge and the log-transformed 

TSS data, the center of mass of the data is at the y-intercept, and the intercept term of the 

regression (termed â) describes the vertical offset of the center of mass of the TSS data [Warrick, 

2014].  In other words, the SRC coefficient quantifies the TSS value corresponding to the 

geometric mean of discharge values (i.e., the y-intercept, when log(Q/Qm) = 0). This procedure 

also eliminates the potentially problematic correlation between the y-intercept parameter (â) and 

the slope parameter (b). The parameters a and b derived from traditional rating curve analysis are 

strongly negatively correlated, whereas the parameter â provides a more independent and robust 

measure of vertical offset in the sediment rating curve [Warrick, 2014]. 

We fit linear least-squares regressions to the normalized and log-transformed Q and TSS 

data, generating â (intercept) and b (slope) values for each rating curve.  However, many gages 

have Q-TSS relations that are not well represented by a single log-log linear regression.  Some 
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relations have flat slopes at low discharges and then pass a threshold beyond which TSS values 

increase with increasing Q (which we call threshold relations).  Other relations start out flat or 

with positive slope, and then reach a threshold beyond which the TSS concentrations decrease as 

Q increases (we call these “peaked” relations). Examples of each of these forms of Q-TSS 

relation are shown in Figure 3A-C.  Q-TSS relations for all gages are included in Appendix C.  A 

single regression line through all of the data for these gages would misrepresent the relations and 

result in biased regression parameters.  Several studies have experimented with fitting rating 

curves with more complex functions than log-linear (i.e. power) functions.  These techniques 

include regression with modified power functions that include correction factors or additive error 

terms [Asselman, 2000; Sadeghi et al., 2008], regression with second or third order polynomials 

[Sadeghi et al., 2008; Fan et al., 2012], and fitting of various other functions [Sadeghi et al., 

2008].  Warrick [2014] suggests using locally weighted scatter smoothing (lowess) fitting 

techniques and analyzing residuals about those functions for Q/SSC data that don’t follow the 

power function form.  However, none of these approaches readily allow for quantifiable and 

easily interpretable comparison between relations at different gages. 

To more accurately characterize relations that did not follow a simple power function, we 

split the data at breakpoints located at the transitions in slope on rating curves and fit separate 

log-linear relations to the data on each side of the breakpoint.  These breakpoints are a 

distinguishing and important characteristic of many of our study gages and may represent critical 

transitions in geomorphic process or sediment availability.  To find the location of the 

breakpoints, we used the Python programming language function scipy.interpolate.splrep, which 

implements the spline interpolation method outlined by Dierckx [1975].  The algorithm fits a 

linear spline to the data, automatically detecting the ideal location of breakpoints in the data.  The 

number of knots found by the function depends on a user-specified smoothing parameter, whose 

value must be tuned depending on the number of data points and the scatter in the data.  For each 



17 

 

 
 

gage, we computed the spline interpolation over a broad range of smoothing parameter values.  

For the final fit, we kept only those breakpoints that were stable over a broad range of smoothing 

values and persisted as the smoothing parameter approached higher values that eventually 

produced a single spline with no breakpoints.  The necessity of specifying a smoothing parameter 

adds some subjectivity to the process of locating breakpoints.  Final spline fits had either no 

breakpoint (i.e., a simple log-linear relation with no breakpoints) or one breakpoint (for threshold 

and peaked SRC). 

To characterize TSS concentrations at low flow conditions, we used the fitted SRC 

relations to compute the estimated TSS value at the 90% exceedance Q, a low flow condition.  

We computed the 90% exceedance Q using the sampled flows rather than the entire flow record, 

in order to measure a more consistent location on each Q-TSS relation.   

Suspended sediment rating curves commonly display hysteresis, defined here as different 

TSS values for the same discharge on the rising limb and falling limb of a flood [Walling, 1974; 

Loughran, 1976; Walling and Webb, 1982; Klein, 1984; Soler et al., 2008; Fan et al., 2012].  

Multiple studies have shown that improved rating curves with reduced scatter around the 

regression line are obtained by fitting separate rating curves to the rising and falling limb data 

[Walling, 1974; Loughran, 1976; Klein, 1984; Asselman, 2000; Sadeghi et al., 2008].  Inspection 

of rating curves for our study gages revealed that hysteresis is common, especially at higher 

flows, with rising limb TSS values generally higher than falling limb TSS values.  Accordingly, 

we divided the Q-TSS data by flow stage.  For any relations exhibiting breakpoints, we classified 

points to the left of the breakpoint as “low flow”, and points to the right as “high-flow”.  We 

focused most of our analysis on the high-flow data, because high flows tend to be more 

geomorphically important.  We classified points as rising limb or falling limb by whether the 

mean daily discharge for the data point was larger or smaller, respectively, than the previous 

day’s discharge.  We fit separate regressions to the rising and falling limb data in addition to a 
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Figure 3. A – C. Representative Q-TSS relationships, showing the three broad categories of 

relationships observed. D. Explanation of computation of hysteresis metric. 

  

regression fit to all above-breakpoint data (i.e., the combined rising and falling limb data). 

Hysteresis is an interesting and geomorphically meaningful component of the Q-TSS 

response, possibly indicating sediment depletion over the course of storm events.  In order to 

include the magnitude of hysteresis in our analysis, we quantified hysteresis for use as a response 
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variable in an RF model as the average distance between the rising and falling limb regression 

lines.  We computed this value by first calculating the area between the two regression lines (A in 

Figure 3d), subtracting the integral of the falling limb regression line from the integral of the 

rising limb regression line.  Each integral was calculated over the interval from the smallest to the 

largest discharge value in the above-breakpoint (i.e. the combined rising and falling limb) dataset, 

or over the entire dataset if no breakpoint was present.  We then normalized this area by dividing 

by the horizontal distance encompassed by the same interval used for integration (d in Figure 3d).  

This procedure yielded the average distance between the rising and falling limb regression lines.  

Values for all SRC parameters for each gage are in Table A.7 and A.8. 

 

Landscape and Environmental Data and Methods 

 

Basin-Scale Analysis 

We quantified the land cover/land use, soil erodibility, climatic/hydrologic, geologic, and 

topographic setting of study watersheds for use as predictor variables in our RF models.  Datasets 

used and metrics extracted are summarized in Figure 4, and are described in further detail below.  

Values of each metric, for each watershed, are contained in Tables A.1 – A.4. 

 

Land Cover/Land Use 

  

We obtained the 2011 edition of the 2006 land cover layer from the National Land Cover 

Dataset (NLCD) and simplified it into six broad groups: water/perennial ice/snow (NLCD types 

11,12), developed (NLCD 21,22,23,24), barren (NLCD 31), forest/shrub land/herbaceous (NLCD 

41,42,43, 51,52, 71,72,73,74), agriculture (NLCD 81,82), and wetlands (NLCD 90,95).  We 

calculated the percentage of land in each land cover class within all study watersheds and 

included percent forestland, agriculture and wetlands in the statistical models. 
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Figure 4. Summary of GIS datasets used to describe the geomorphic and environmental setting of 

the watersheds and channel networks upstream of study gages.  Also shown are the metrics 

derived from these datasets to quantify them. 

 

Climate 

 We used PRISM (Parameter-elevation Relationships on Independent Slopes Model) data 

to characterize the long-term average climatic setting of the study watersheds. PRISM is a 
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gridded dataset produced by interpolation of climate station (point) data.  Temperature and 

precipitation are calculated for each cell of a DEM based on a climate-elevation regression 

incorporating station data weighted by physiographic similarity of the station to the grid cell.  

Physiographic variables taken into account are location, elevation, coastal proximity, topographic 

facet orientation, vertical atmospheric layer, topographic position, and orographic effectiveness of 

the terrain [Daly et al., 1994, 2008].  We used the 30-year normals to represent long-term climate 

averages, computed at a spatial resolution of 800 m. We obtained average annual precipitation 

and annual minimum, maximum, and mean temperature data and calculated watershed averages 

of those metrics using the Zonal Statistics as Table tool in ArcGIS. 

 We obtained precipitation intensity estimates from the NOAA Precipitation Frequency 

Data Server (http://hdsc.nws.noaa.gov/hdsc/pfds/). We obtained gridded data for the 10 minute, 

60 minute, and 24 hour intensities for precipitation events with a 5-year recurrence interval (i.e., 

powerful, but not catastrophic storms) and used Zonal Statistics as Table in ArcGIS to compute 

average precipitation intensity values for each watershed. 

 

Baseflow Index 

  

Baseflow index (BFI) is the ratio of base flow to total flow in a stream and is a measure 

of the flashiness of a stream.  Flashy streams that receive a relatively high proportion of their 

water as stormflow will have a low BFI, whereas streams with more stable hydrographs generally 

receive most of their water as baseflow and will have a high BFI.  We obtained a 1-km resolution 

gridded BFI dataset produced by the U.S. Geological Survey [Wolock, 2003].  The gridded data 

were generated by interpolating point BFI values estimated for 8,249 streamgages across the US. 

The streamgages each had a streamflow record at least 10 years long and drainage area less than 

1000 km2.  Point estimates of annual BFI at the streamgages were computed using an automated 

hydrograph flow separation program employing a local minima approach with a recession slope 

http://hdsc.nws.noaa.gov/hdsc/pfds/
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test [Wolock, 2003].  We computed the average BFI value for each watershed using the Zonal 

Statistics as Table tool in ArcGIS. 

 

Soils 

 

We used data from the Soil Survey Geographic Database (SSURGO) to characterize soil 

types within the study watersheds.  Specifically, we evaluated soil erodibility K factor data, 

which quantify the susceptibility of soil particles to detachment by water (i.e., by rill or sheet 

erosion).  The K factor represents the average, long-term potential soil response to the erosive 

power of rainstorms. It is a lumped parameter incorporating the integrated erosive effects of 

multiple processes including raindrop impact, surface flow, localized topography-driven 

deposition, and rainwater infiltration.  It represents the inherent erodibility of the soil based on its 

physical properties, and is measured to be independent of antecedent soil-moisture and soil-

surface conditions and rainstorm regimes [Renard et al., 1997]. 

K factor values are reported as both “whole soil” and “rock free” estimates.  Rock free K 

estimates exclude rock fragments larger than 2 mm and indicate the erodibility of only the fine-

earth fraction of the soil layer. These estimates are obtained from regression equations developed 

from rainfall simulation plot experiments.  The equations incorporate the percentage of silt, sand, 

and organic matter as well as soil structure and saturated hydraulic conductivity [Renard et al., 

1997].  K values range from 0.02 to 0.69, with higher K values representing soils that are more 

susceptible to erosion by water.  Whole soil K estimates incorporate the effects of rock fragments, 

which can alter erodibility of a soil.  Rock fragments on the soil surface decrease soil detachment 

by rainfall, while rock fragments present in coarse textured (sandy and loamy) soil can decrease 

infiltration, thereby increasing runoff and soil erosion.  Whole soil K factor estimates are adjusted 

from the rock free estimates accordingly to account for these effects [Renard et al., 1997].   
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As it is not inherently obvious which value is more appropriate, we extracted and 

analyzed both whole soil and rock free K factor values.  To quantify soil erodibility across the 

watershed with a single number, we calculated the mean surface layer K factor within the 

watershed, weighted by area.  K factor data are reported for each soil horizon, but we only 

analyzed the surface layer, as that is the soil directly available to be eroded.  We used the 

dominant condition aggregation method to obtain the K factor value for each SSURGO map unit 

polygon.  We then converted SSURGO soil unit polygons to rasters with 10 m resolution as that 

sufficiently reproduced the detail of the original polygons.  We used the Zonal Statistics as Table 

tool in ArcGIS to compute the watershed average value. 

 SSURGO data are obtained at the county scale, and some discontinuity in the K factor 

data exists across county lines. However, we determined that the discrepancies were not enough 

to cause significant, systematic errors when comparing different parts of the state.  Nevertheless, 

we also obtained STATSGO soil data, which are coarser, regional data scaled up from the 

SSURGO dataset. Due to the method used to rescale the data, the data are more continuous and 

lack the discrepancy at county boundaries seen in SSURGO data.  We computed watershed-

average K factor values from the STATSGO data in addition to the watershed-average values 

computed from the SSURGO datasets, and tested both in our RF models. 

 

Geology 

 

Geologic setting and lithology have been shown to exert strong controls on sediment 

transport regimes in many cases [Hicks et al., 1996; Tamene et al., 2006; Belmont et al., 2007; Ali 

and de Boer, 2008; Mueller and Pitlick, 2013].  Strength of the bedrock and its susceptibility to 

erosion should influence sediment generation and thus transport regime.  We attempted to capture 

this effect by computing the average rock strength of the surficial lithology within the study 

watersheds.  We used the national 1:5,000,000-scale surface geology map by Soller and Reheis 
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[2009] and followed the methods of Olson and Hawkins [2012] to compute average rock strength 

values, measured as uniaxial compressive strength (UCS), for each map unit lithology.  Olson and 

Hawkins [2012] characterized physical and chemical properties, including UCS, of lithologic 

types using data from the OZCHEM National Whole Rock Geochemistry Database, the 

Earthchem Geochemical Database, the National Geochemical Database, and literature searches.   

We used map unit descriptions from Soller and Reheis [2009] to derive lithology 

subclasses for the surface geology map units.  For example, one unit mapped as a predominantly 

loamy/silty till, is described as: “Glacial till sediments – unsorted material ranging in size from 

clay to boulders, deposited by glacial ice. Includes minor areas of ice-contact and lake sediment. 

Predominantly loamy (silty) till.”  In the database constructed by Olson and Hawkins [2012], 

separate physical and chemical attributes are specified for individual grain size/texture classes of 

till (i.e., the boulder subclass of till has different properties than the gravel till subclass).  Because 

the unit described above has grains ranging from clay to boulders, we included a subclass for 

clay, silt, sand, gravel and boulders.  The computation method of Olson and Hawkins [2012] 

allows different subclasses to be weighted differently according to their relative proportion in the 

unit.  Possible weighting descriptions are, in order of descending importance, “major”, “minor”, 

and “incidental”.  Because the above unit was described as predominantly silty, the silt subclass 

was weighted as “major”, while clay and sand were classified as “minor”, and gravel and 

boulders were classified as “incidental”.   

Once a weighted-average rock UCS was computed for each map lithology, we converted 

the data to a raster format with 100 m resolution, which sufficiently preserved the mapped 

features.  We used the Zonal Statistics as Table tool to derive a basin-average UCS value for each 

study watershed. In addition to this quantitative characterization, we also implemented a simpler 

characterization by classifying each watershed and gage location by the dominant surface 

lithology, using the following classes determined from the map of Hobbs and Goebel [1982]: 
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unconsolidated, calcareous till, non-calcareous till, and colluvium.  Our methods for 

characterizing the geology are relatively coarse, as the geologic maps themselves were of coarse 

scale.  We cannot capture, for example, specific locations where the river channel interacts with 

bedrock, alluvial deposits or terraces.  These finer-scale features may be important to sediment 

transport regimes, but are not available at the large scale of our analysis.  Nevertheless, our 

methods capture the broad-scale variations in geology across the state and the corresponding 

variation in rock strength. 

 

Topography 

 

We extracted several common basin-scale morphometrics describing the topographic 

setting of the watersheds.  These metrics included the total relief, mean and maximum elevations 

and mean topographic slope within the watershed.  We also used the Hypsometric Tools ArcGIS 

toolbox [Davis, 2010] to compute the hypsometric integral, which measures the area under the 

hypsometric (area-elevation) curve. 

 

Near-Channel Analysis 

 

To characterize the potential of the channel-floodplain corridor to contribute to 

suspended sediment, we computed metrics describing channel gradient, near-channel local relief, 

stream power and other characteristics.  Local relief is intended to capture the degree to which the 

channel is able to access potential large sediment sources in the form of tall banks, bluffs, and 

terraces.  Those features have been shown to be important sediment sources in watersheds in the 

Midwest and elsewhere [Nolan and Hill, 1991; Simon, 2006; Juracek and Ziegler, 2009; Trimble, 

2009; Belmont et al., 2011b; Stout and Belmont, 2014; Stout et al., 2014; Donovan et al., 2015].  

To calculate local relief, we used the ArcGIS Focal Statistics tool, computing relief within a 

moving square window of 75m by 75m on the 3m lidar DEMs.  From visual inspection of the 

DEMs for multiple study watersheds, that window size is adequately large to encompass most 



26 

 

 
 

geomorphically important features such as bluffs and terraces.  We split the NHDplus stream line 

dataset into 500 m-long segments, and created a 100 m buffer for each segment. We computed 

the average local relief value within each of those buffers (Figure 5A). 

Stream power is a measure of the rate of potential energy expenditure  per unit length of 

channel, or alternatively, the measure of a stream’s ability to perform geomorphic work and 

transport sediment [Knighton, 1998].  It is defined as:  

 

Ω = γQS     (3) 

 

 

where Ω is stream power, γ is the specific weight of water, Q is discharge, and S is channel slope. 

We calculated stream power at 3 km increments along the entire NHDplus stream network for 

study basins.  Streamlines were snapped to the network used by the StreamStats application 

(http://water.usgs.gov/osw/ streamstats/) to enable calculation of a representative discharge, 

which we chose to be the 2 year recurrence interval flood. StreamStats computes estimates of 

peak flow statistics for ungaged sites by implementing regional regression equations that relate 

peak flow statistics calculated from log-Pearson Type III analysis at gaged sites to corresponding 

basin and climatic characteristics. Basin characteristics used in the regression equations are 

drainage area, main-channel slope, percent lake area, storage area, percent soil hydrologic group 

A, percent soil hydrologic group D, and mean annual runoff [Lorenz et al., 2009].  We used 

StreamStats to compute the magnitude of the 2-year recurrence interval flood at the midpoint of 

each 3 km stream segment, and used that discharge as the input to the stream power calculation.  

We calculated channel slope along each NHDplus segment from a 30 m resolution DEM 

“burned” to coincide with the NHD plus stream lines.  We used the ArcGIS Add Surface 

Information tool to calculate an average slope along each segment. Channel slope was calculated 

at 50 m increments along the stream lines, and those local measurements were averaged to 

compute a single value for each 3 km segment. 
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Figure 5. Explanation of near-channel analysis. A. Example of near-channel local relief 

and stream power datasets. Average values for all near-channel metrics were computed 

within the 50 m stream buffer (shown in gray). B. Decay functions used to weight near-

channel metric values computed for each stream segment by their distance upstream 

from the gage.  Aggregate values for each metric were computed by summing distance-

weighted values for each stream segment. Functions decaying to 0 weight at both 10 and 

50 km were used. 
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Unit stream power (stream power normalized by channel width) may be more appropriate 

than total stream power for comparing streams of different sizes.  Width normalization produces a 

metric with units of power per unit area of streambed, rather than power per unit length, which 

allows for a more meaningful comparison of values between rivers of different size. We 

estimated unit stream power using simple downstream hydraulic geometry relations (after 

Leopold and Maddock [1953]) relating stream width to the 2-year recurrence flood: 

 

W = aQb                           (4) 

 

 

where Q is the 2-year recurrence flood computed with StreamStats.  Hand-digitized stream bank 

data were available for the Le Sueur River, which we used to compute average width along the 

stream network.  We used those data in conjunction with the discharge data to compute a value of 

b = 0.7. Using that value, we divide equation 3 (ignoring the coefficient) by equation 4, to obtain: 

 

𝜔 =  
𝛾𝑄𝑆

𝑄0.7 =  𝛾𝑄0.3𝑆        (5) 

 

 

The assumption that the hydraulic geometry relation for stream width computed from one stream 

applies to all study streams (justifying omitting the coefficient parameter and using the exponent 

of 0.7 universally) admittedly makes our unit stream power estimates coarse.  However, several 

recent studies have suggested similar scaling of channel width among rivers in vastly different 

environments [Parker et al., 2007; Jerolmack, 2015].  Nevertheless, the computation addresses 

the issue of different spatial scales in our different study basins, and we tested whether it may be 

more predictive for Q-TSS relations than total stream power. 

In addition to average local near-channel relief and stream power, we also computed 

average near-channel soil erodibility factor values within the same buffers used for local relief.  

Additionally, we computed the area within the stream network buffer comprising lakes, marshes 
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and reservoirs from the NHDplus Waterbodies dataset. Such waterbodies along the stream 

network are likely to act as significant sediment sinks, and thus impact the sediment transport 

regime.  

Sediment entrained far upstream of a stream gage may be redeposited before being 

transported past the gage.  Therefore, near-channel geomorphic conditions far upstream from the 

gage are less likely to directly influence the sediment regime than conditions closer to the gage.  

The area of the stream network that exerts the strongest control on the sediment regime at the 

gage is likely to be limited to the distance that fine sediment particles typically move during 

storm events.  However, predicting and measuring typical travel distances for suspended sediment 

is difficult and travel distances are highly variable from system to system and from storm to 

storm.  Thus, the travel distance behavior of suspended sediment is generally poorly understood 

[Walling, 1983; Bonniwell et al., 1999; De Vente et al., 2007; Pizzuto et al., 2014]. There have 

been several attempts to resolve this problem.  Verhoff et al. [1979] observed phosphorus 

transport as a proxy for fine sediment transport, as the two are often closely related.  Working 

under the assumption that water moves as a kinematic wave with celerity faster than the 

movement of the individual water and sediment (phosphorus) particles, they analyzed the relative 

timing of discharge hydrographs and total phosphorus concentration chemographs at gaging sites 

to estimate average particle travel distances.  For the Sandusky River watershed in Ohio, they 

found that median travel distances varied from about 30 km in a tributary high in the watershed to 

80-200 km on the mainstem river lower in the watershed.  They noted that average travel 

distances were apparently influenced by channel slope and that travel distances were generally 

lower in upper reaches of tributaries than in the mainstem.  For a given point in the watershed, 

travel distances increased with increasing discharge and with increasing storm duration [Verhoff 

et al., 1979]. 
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More recently, efforts have been undertaken to use radionuclides to trace suspended 

sediment plumes and determine average transport distances.  Using similar methods and 

assumptions as Verhoff et al. [1979], but using 7Be, 137Cs, and 210Pb as tracers, Matisoff et al. 

[2002] estimated fine sediment transport distances over a 48-hour storm event.  In two small, 

agricultural watersheds (69.5 km2 and 90.5 km2) draining to Lake Erie, they calculated transport 

distances ranging from 6.3 to 26.1 km over the course of the event.  Using similar methods, 

Bonniwell et al. [1999] estimated fine sediment transport distances over the course of a snowmelt 

hydrograph in a mountain stream.  They calculated transport distances ranging from 60 km at the 

peak of the hydrograph to 12 km during baseflow conditions.  Clearly, fine sediment transport 

distances are highly variable between different watershed settings, and even within individual 

watersheds depending on local conditions and flow.  However, these studies shed light on the 

order of magnitude of transport distance one might expect for fine sediment, in the tens of 

kilometers.   

To represent upstream distance weighting of near-channel morphometrics in a simple, yet 

reasonable way, we created two sets of near-channel data, corresponding to two length scales 

upstream from the gage, 10 km and 50 km.  The shorter length roughly corresponds with the 

shorter particle travel distances measured in the aforementioned studies, and represents channel-

floodplain conditions a short distance (in terms of typical fine sediment transport distances) 

upstream from the gage.  The longer distance incorporates conditions farther upstream, and 

approaches some of the larger transport distances reported above.  Especially in some of the 

larger watersheds in this study, 50 km may underestimate the average event-scale transport 

distances. However, we did not use a larger number because a number of watersheds in this study 

have maximum distances upstream from the gage in the 20-30 km range.  Extending the near-

channel study zone to distances much more than that would bias comparisons between 

watersheds of substantially different size. 
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To achieve the upstream distance weighting, we applied exponential decay functions to 

the raw near-channel metric values for each stream segment (Figure 5B): 

 

𝑀 = 𝑀0 ∗ (𝑒−𝜆𝑑 −  0.01)                    (6) 

 

 

where M is the distance-weighted metric, M0 is the original value of the metric, d is the distance 

of the stream segment upstream from the gage, and λ is a constant. We specifically selected λ 

values to force the exponential decay to <0.01 at either 10 km or 50 km, such that stream 

segments farther upstream than the maximum distance value are effectively eliminated from the 

analysis.  We summed all positive distance-weighted values to get, for each metric, a single value 

representing the aggregate condition for that metric within the specified distance upstream. 

 

Random Forest Modeling 

 

 

We used Random Forest (RF) models to analyze the complex relationships between the 

basin and channel metrics (predictor variables) and the rating curve shapes (response variables).  

RF models are an ensemble tree-based statistical tool, based on Classification and Regression 

Tree (CART) methods, that have been developed relatively recently and are being applied 

extensively to classification and regression problems in ecology, bioinformatics, and other fields 

[Liaw and Wiener, 2002; Cutler et al., 2007; Strobl et al., 2007, 2008; Olson and Hawkins, 

2012].  RF models have been shown to perform as well as or better than the best available 

classification and regression methods [Cutler et al., 2007; Olson and Hawkins, 2012] and have 

several advantageous characteristics compared with more classical statistical techniques such as 

single or multiple linear regression.  RF models can handle complex, non-linear interactions 

among predictor variables, and make no assumptions about the form of the relations between 

predictor and response variables [Cutler et al., 2007; Olson and Hawkins, 2012].  This feature 

offers a clear advantage over linear models.  Many processes in geomorphology are threshold-
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based or otherwise non-linear, so the assumption of a linear relationship between predictor and 

response variables is often suspect.  Additionally, RF models are fully non-parametric, so they 

require no distributional assumptions for variables as do many traditional statistical inference 

methods such as ANOVA or statistical hypothesis testing.  Unlike classical regression models, 

RF models can be used for datasets for which the number of predictor variables greatly exceeds 

the number of observations.  Further, RF models do not assume independence of predictor 

variables [Cutler et al., 2007].  Finally, RF methods not only produce an accurate classifier or 

regression model but, importantly, can also be used to interpret the structure of a multivariate 

dataset through the use of variable importance measures and partial dependence plots. 

RF models are an extension of Classification and Regression Tree (CART) methods, 

which must be understood first to understand RF models.  The CART algorithm produces a tree 

with nodes representing groups of data points that are most similar with respect to values of the 

response variable of interest (either class membership in a classification model or numerical 

values in a regression model) within the groups compared to the dataset as a whole [Breiman et 

al., 1984; Jones and Linder, 2015].  Starting with the original node containing all the data, the 

dataset is split into two new “daughter” nodes based on each data point’s value for one particular 

predictor variable.  Data points with predictor variable values smaller than the split value are 

placed in one node, whereas points with predictor variable values greater than the split value are 

placed in another node. (Note that this process works only for continuous predictor variables. 

Categorical variables for which “smaller” and “larger” have no meaning, are treated slightly 

differently.) The algorithm considers every unique value for each predictor variable in the dataset, 

choosing the optimal predictor variable and value of that predictor variable that results in the 

maximum increase in homogeneity of the response variable in each daughter node compared to 

the unpartitioned data.  For regression RF models, mean squared error is used to measure the 

homogeneity of the response variable within nodes.  Homogeneity is maximized when the mean 
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squared error is minimized.  This occurs when individual response variable values are each close 

to the mean of all values within the node, or in other words, when each individual value is close 

to all others within the node. For classification models, homogeneity is measured with the “Gini” 

index, which measures the proportion of observations in the node whose class is different than the 

most common class in the node.  Each resulting daughter node is recursively partitioned until 

further partitioning no longer increases homogeneity in potential daughter nodes.  At this point 

the tree is said to be fully grown.  To summarize in simple terms, at each partitioning step the 

algorithm chooses the predictor variable that best differentiates the observations of the response 

variable in the node being partitioned, putting observations that are most similar to each other in 

the same daughter node.  The predictions of the model for observations falling in each node are 

computed as the average of all observations in that node (for regression models) or by majority 

vote of classes within the node (for classification models). 

The RF procedure improves on the CART method, being more accurate as well as much 

more stable to small perturbations in the data [Breiman, 2001; Cutler et al., 2007].  The RF 

algorithm grows a large ensemble of classification or regression trees (typically 500), with each 

tree trained on a different bootstrapped sample of the dataset.  The trees are grown in the same 

manner as described above for the CART procedure, with an important exception: The predictor 

variables available to be considered by the model at each partition are limited to a randomly 

selected subsample of the entire set of predictor variables.  Once each tree is fully grown in this 

manner, predictions are made onto the samples not included in each bootstrap sample (termed 

“out-of-bag” samples), and then the predictions are averaged across the entire ensemble of trees. 

Because predictions are made onto the out-of-bag samples not used to train the models, the 

accuracy rates for out-of-bag predictions are essentially cross-validated accuracy estimates 

[Cutler et al., 2007].  The randomness induced by training on different bootstrapped samples (in 

which approximately 63% of the original observations occur at least once) and limiting the 
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potential predictor variables insures that individual trees are independent of one another.  This 

process results in a better classification or regression when predictions across all the trees are 

averaged [Breiman, 2001; Cutler et al., 2007]. 

We constructed separate RF models for each of the following response variables: 1.) The 

general classified shape of the rating curve (simple power function, threshold power function, 

peaked SRC), 2.) The slope of the rising limb rating curve, 3.) the intercept of the rising limb 

rating curve, 4.) the slope of the combined (rising and falling limb) rating curve, 5.) the intercept 

of the combined rating curves, 6.) the predicted TSS value at the 90% exceedance flow (i.e. low 

flow), and 7.) hysteresis.  The first model is a classification RF model.  The rest of the models are 

regression RF models.  The default of 500 trees were generated to construct each model, as a 

sensitivity analysis showed model performance did not improve with a larger number of trees.  

We used the default values for the size of the set of predictor variables available at each partition: 

p1/2 for the classification model and p/3 for the regression model, where p is the total number of 

predictor variables in the model. We used the randomForest package in the R statistical 

computing software to carry out these analyses.   

Variable importance plots generated for RF models constructed using the entire set of 

predictor variables showed that many predictor variables were unimportant. Additionally, 

pairwise comparisons between variables showed that several predictor variables were correlated, 

which can confound interpretation of RF variable importance measures [Strobl et al., 2008; Olson 

and Hawkins, 2012].  To eliminate highly correlated predictor variables and to create the most 

parsimonious model excluding “noisy” variables with no real signal, we adopted an iterative 

modeling approach as suggested by Olson et al. [2012].  Using variable importance plots we 

sequentially eliminated the least important variables from each model, proceeding with variable 

exclusion until model performance declined.  To measure model performance, we used out-of-

bag prediction accuracy for the classification RF model and out-of-bag mean-square error for the 
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regression RF models.  We generated partial dependence plots for each predictor variable 

remaining in the final models to graphically assess the dependence of the response variables on 

these important predictor variables.   

To test our hypothesis that near-channel geomorphic conditions significantly affect 

sediment dynamics and that predictive models would perform worse if using only watershed-

average metrics, we constructed RF models as above, but restricted the predictor variables to only 

the watershed-average variables.  The process for variable selection was the same, but all near-

channel metrics were excluded from the beginning.   
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RESULTS 

 

The Q-TSS relationships broadly fell into three categories (Figure 3).  The most common 

shape (26 gages) was a simple power (log-log linear) relation (Figure 3A).  Six gages had peaked 

relations with a breakpoint above which TSS values decreased as log-log linear relations for the 

rising and falling limb.  Three of the simple power function relations had negative slopes over 

their entire range of Q values, and we classified these along with the peaked SRC, for a total of 9 

peaked/negative SRC (Figure 3B).  Thirteen gages exhibited threshold relations, with Q-TSS 

shape essentially flat up to a given Q value and then increasing as a log-log linear relation above 

that threshold (Figure 3C).  The presence of breaks in slope in the peaked and threshold relations 

suggests that geomorphic thresholds may be crossed at these discharges, at which particular 

sediment sources or sinks are accessed or depleted.  Interestingly, many of the thresholds were 

located near the geometric mean of the sample discharges (i.e., at zero on the Q-TSS plots).  It 

seems unlikely that this phenomenon is simply coincidence and the underlying physical basis for 

this observation merits further investigation, but is beyond the scope of this paper. 

Fitted regression parameters quantified the substantial variation in SRC shape.  Rising 

limb SRC exponents ranged from -2.32 to 1.62, with a mean of 0.46 and median of 0.55.  Rising 

limb coefficients ranged from 4.9 to 202 mg/L, with a mean of 58.5 mg/L and a median of 50.3 

mg/L.   Combined (rising limb and falling limb) SRC exponents ranged from -2.36 to 1.69, with a 

mean of 0.43 and median of 0.49.  Combined SRC coefficients ranged from 4.1 to 138 mg/L, 

with a mean of 43.5 mg/L and a median of 37.7 mg/L.  Values of hysteresis ranged from -0.05 

mg/L to 0.60 mg/L, with a mean of 0.24 mg/L and median 0.25 mg/L.  Full results of the Q-TSS 

analysis, along with results of the morphologic and environmental analyses for each 

gage/watershed, are shown in Appendix B.   
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Several interesting geographic trends were apparent in the data.  The steepest (highest 

exponent) relations, characterizing rivers that are most sensitive to changes in flow, were 

dominantly clustered in the driftless area of southeastern Minnesota and near the mouths (i.e., 

within the knickzones) of Minnesota River tributaries (Figure 6).  Those rivers are generally 

characterized by high near-channel relief and steep stream gradients. Gages with smallest 

exponents or that have negative or peaked SRC were clustered in the central part of the state 

within the Upper Mississippi and St. Croix Watersheds, and near the headwaters of Minnesota 

River tributaries (Figures 6, 7).  These rivers are low-gradient and tend to lack the near-channel 

topography that characterizes rivers with steep power function relations.  Notably, Minnesota 

River tributaries with paired gages exhibited markedly different Q-TSS responses at the gages 

above and within the incised knickzone.  Gages above the knickzone tended to have shallow or 

negatively sloped Q-TSS relations, even though they generally have the same land use, surface 

geology, climate, and soil conditions as the gages within the knickzone that had steep Q-TSS 

relations.  This observation qualitatively highlights the strong control that near-channel 

geomorphic conditions and geologic history exert on the steepness of Q-TSS relations.  Unlike 

the power function and peaked SRCs, clear geographic trends were not immediately obvious in 

the threshold relations (Figure 7). 

The RF model performed well at classifying the simple power function and 

peaked/negative SRC forms, correctly classifying 87% and 80% of the relations, respectively 

(Table 1).  The model performed worse for threshold relations, correctly predicting 58% of the 

relations and misclassifying the rest as simple power functions.  Overall, the model correctly 

classified 78% of the relation forms.  Although we initiated the model using all (39) watershed-

average and near-channel predictor variables, we progressively winnowed the pool of predictor 
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Figure 6.  Map of combined SRC exponent values.  Points are sized relative to the value of the 

exponent or coefficient.  Positive values are shown in green, negative values in yellow.  HUC 4 

watersheds are outlined in color.
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Figure 7.  Map of SRC shapes throughout Minnesota. HUC 4 watersheds are outlined in color. 
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variables to optimize predictive power, iteratively eliminating predictor variables that were 

unimportant. The important variables for this model were, in decreasing order of importance: 

near-channel topographic slope within 10 km upstream of the gage, channel gradient within 50 

km upstream, the near-channel waterbody area within 50 km upstream, channel gradient within 

10 km upstream, and the watershed average mean annual temperature (Figure 8A). Partial 

dependence plots (Figure 8B-F) show that increasing near-channel topographic slope was 

associated with decreased probability of belonging to the peaked/negative class, whereas 

increasing near-channel waterbody area increased the probability of belonging to this class.  The 

remaining relationships were complex. For both stream gradient metrics, increasing gradient was 

associated with decreasing probability of belonging to the peaked/negative class at low stream 

gradient values.  Slightly above the median gradient value, increasing gradient was associated 

with increasing probability of belonging to the peaked/negative class. 

The RF model for predicting SRC rising limb exponents explained approximately 50% of 

the variance in the exponent values and contained mostly near-channel morphologic predictor 

metrics.  Variables selected by the model as important were stream slope within 10 km upstream 

of the gage, near-channel local relief within 10 km upstream of the gage, the near-channel 

waterbody area within 50 km upstream, the mean watershed slope, and the watershed average  

 

Table 1. Predictions for each SRC class from Random Forest model. 

 

  

Predicted Class  

Simple 

Power 

Peaked/negative Threshold % Correctly 

Classified 

 

Actual 

Class 

Simple Power 20 1 2 87% 

Peaked/negative 1 8 1 80% 

Threshold 5 0 7 58% 
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rock-free K-factor (Figure 9A).  Partial dependence plots showed largely non-linear relationships 

between predictor variables and the response variable (Figure 9B-F).  The direction of the 

correlations generally conformed with expectations.  Stream slope was positively correlated with 

the SRC rising limb exponent, with most of the dependence occurring over the bottom quarter of 

stream slope values.  Near-channel local relief was also positively correlated with the SRC 

exponent, with the dependence occurring over almost the entire range of relief values.  Near-

channel waterbody (lake and wetland) area was negatively correlated with the SRC exponent.  

The SRC exponents showed almost no dependence on mean watershed slope at low to moderate 

slope values (approximately the bottom 75% of the data), but SRC exponents then increased with 

increasing slope.  The relationship between SRC exponent values and soil erodibility was slightly 

negative at low K-factor values (bottom 25% of the K-factor data), but then positive at higher 

values.  

Variables selected as important in the RF model for SRC rising limb coefficient (i.e., TSS 

value at the median flow value) were percent coverage of agriculture, 10-minute (5-year 

recurrence) precipitation intensity, percent coverage of forest, local relief within 10 km upstream 

of the gage, and unit stream power within 50 km upstream of the gage (Figure 10A).  The model 

explained 43% of the variance in rising limb coefficient values. Partial dependence plots showed 

relationships were non-linear and mostly consistent with expectations (Figure 10B-F).  Percent 

agriculture had a positive correlation with SRC rising limb coefficient, whereas percent forest 

cover had a corresponding negative correlation.  Percent forest and agricultural coverage were 

negatively correlated, but removing either from the RF model significantly worsened model 

performance. For that reason, both predictor variables were retained.  SRC rising limb coefficient 

values did not depend on precipitation intensity over most of the range of that variable, but were 

strongly positively correlated over the upper 25% of the range.  This metric varied within fairly 

limited range within our study watersheds, from about 110 mm/hr to 130 mm/hr, so the strong 
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dependence occurred over only about 6-7 mm/hr. The gages driving this relationship (i.e. that 

have high rising limb coefficients and high precipitation intensity) were grouped geographically, 

all located within the lower Minnesota River Basin.  Unit stream power had a consistently 

increasing relationship with SRC coefficient, although the relationship flattened out at the highest 

stream power values.  Local relief had a complex relationship with the SRC coefficient, negative 

over the first half of the data range, and then positive over the upper half of the range.   

Results from the RF models for the combined above-breakpoint (rising and falling limb 

dataset) SRC exponents and coefficients were similar to those for the rising limb exponents and 

coefficients in terms of variables selected as important.  The combined SRC coefficient model 

found most of the same important variables as the rising limb model.  Unit stream power within 

50 km upstream was removed, whereas near-channel topographic slope within 10 km and 

watershed area were added.  The combined SRC coefficient model performed slightly worse than 

the rising limb coefficient model (~37% variance explained compared with ~43%).  The 

combined SRC exponent model also found most of the same important variables as the rising 

limb exponent model (Figure 11).  The only exception was that mean watershed slope was 

replaced with mean annual precipitation.  The combined SRC exponent model performed much 

better than the rising limb model, explaining approximately 60% of the variance.   

The RF model for TSS concentrations at the 90% exceedance (i.e., low) flow behaved 

similarly to the SRC coefficient models. The model explained 45% of the variance and found 

percent forest, percent agriculture, watershed area, and near-channel topographic slope within 10 

km as the important predictor variables.  Percent agriculture and basin area were positively 

correlated with low-flow TSS concentrations, whereas percent forest and topographic slope were 

negatively correlated.   

The RF model for hysteresis was winnowed to three key predictor variables – local relief 

within 10 km upstream, mean annual precipitation, and percent wetland – and explained ~ 43% of 
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the variance (Figure 12A).  Hysteresis was strongly positively dependent on near-channel local 

relief and mean annual precipitation at the low end of the ranges of those variables, and then the 

relationships flattened out.  Hysteresis was negatively dependent on percent coverage of wetlands 

(Figure 12B-D). 

The performance of models constructed using only watershed-average variables was, in 

all cases, worse than the models containing both watershed and near-channel metrics. The 

watershed-only rising limb exponent model explained approximately 42% of the variance, 

compared with 50% for the model containing both watershed-average and near-channel metrics. 

For the rising limb coefficient, the watershed-only model explained 31% of the variance, 

compared with 43% for the model containing both watershed-average and near-channel metrics.  

For the combined rising and falling limb exponent models, the comparison was 45% (watershed-

only) to 60% (watershed and near-channel), and for the combined high flow coefficient models, 

30% (watershed-only) to 37% (watershed and near-channel). 
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Figure 8. Results from Random Forest classification model for SRC shape. A. Variable 

importance plot.  X-axis shows the mean decrease in model predictive accuracy when values for 

the variable in question are permuted.  Variables are ranked in terms of importance, with most 

important variable at the top.  Near-channel metrics are shown in bold, watershed-average metrics 

are shown in regular font. B – F. Partial dependence plots showing relative probability 

(represented by a logit expression of the probability) of belonging to the Peaked/Negative class 

given variations in the selected predictor variable.  Also shown on graphs are box-and-whisker 

plots showing distribution of values for each predictor variable. 
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Figure 9.  Results from Random Forest regression model for SRC rising limb exponent. A. 

Variable importance plot.  X-axis shows the percent increase in model mean-square-error when 

values for the variable in question are permuted.  Variables are ranked in terms of importance, 

with most important variable at the top. Near-channel metrics shown in bold, watershed-average 

metrics shown in regular font. B – F. Partial dependence plots showing estimated value of the 

SRC rising limb exponent given variations over the range of the selected predictor variable.  Also 

shown on graphs are box-and-whisker plots showing distribution of values for each predictor 

variable. 
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Figure 10. Results from Random Forest regression model for SRC rising limb coefficient. A. 

Variable importance plot.  X-axis shows the percent increase in model mean-square-error when 

values for the variable in question are permuted.  Variables are ranked in terms of importance, 

with most important variable at the top. Near-channel metrics shown in bold, watershed-average 

metrics shown in regular font. B – F. Partial dependence plots showing estimated value of the 

SRC rising limb coefficient given variations over the range of the selected predictor variable.  

Also shown on graphs are box-and-whisker plots showing distribution of values for each 

predictor variable. 
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Figure 11. Results from Random Forest regression model for SRC combined (rising and falling 

limb data) exponent. A. Variable importance plot.  X-axis shows the percent increase in model 

mean-square-error when values for the variable in question are permuted.  Variables are ranked in 

terms of importance, with most important variable at the top. Near-channel metrics shown in 

bold, watershed-average metrics shown in regular font. B – F. Partial dependence plots showing 

estimated value of the SRC exponent given variations over the range of the selected predictor 

variable.  Also shown on graphs are box-and-whisker plots showing distribution of values for 

each predictor variable. 
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Figure 12. Results from Random Forest regression model for SRC hysteresis. A. Variable 

importance plot.  X-axis shows the percent increase in model mean-square-error when values for 

the variable in question are permuted.  Variables are ranked in terms of importance, with most 

important variable at the top. Near-channel metrics shown in bold, watershed-average metrics 

shown in regular font. B – D. Partial dependence plots showing estimated value of SRC 

hysteresis given variations over the range of the selected predictor variable.  Also shown on 

graphs are box-and-whisker plots showing distribution of values for each predictor variable. 
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DISCUSSION 

 

We sought to understand how topographic and other attributes of the landscape and 

channel network may control the shape, steepness and vertical offset of the relationship between 

river discharge and suspended sediment. Our results indicated that sediment dynamics throughout 

Minnesota could be reasonably well predicted by near-channel characteristics and a few 

watershed-scale average characteristics.  Several interesting insights emerged from our analyses, 

which shed light on dominant geomorphic processes and sediment sources and sinks within these 

watershed and channel-floodplain systems.  

Perhaps the most interesting result was that Q-TSS relation steepness (exponent) was 

most related to near-channel morphological characteristics, whereas the vertical offset 

(coefficient) of the SRCs, as well as TSS concentrations at low flows, were most affected by land 

use within the watershed.  The finding that SRC exponents were strongly positively associated 

with near-channel local relief and stream gradient provides further evidence that tall channel 

banks, bluffs and fluvial terraces, where present, are important sediment sources at high 

discharges, especially in streams with high gradient (and thus erosive and transport power).  That 

hysteresis was also positively associated with higher near-channel local relief suggests that these 

sources may become depleted over the course of storm events.  This hypothesis is consistent with 

the observation that sediment accumulates via mass failure at the toe of bluffs and banks in the 

intervening period between storm events, and then is mobilized at higher discharges and depleted 

before the peak of a flood hydrograph [Belmont et al., 2011a; Day et al., 2013a, 2013b].  The 

negative correlations between SRC exponents and near-channel waterbody area indicates that 

lakes and marshes upstream of gages serve as sediment sinks, especially at high discharges, and 

can exert strong control on transport dynamics.  Interestingly, the percent coverage of waterbody 

areas within the watershed was not selected in any of our models.  Only lakes and wetlands 
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directly connected to the channel network appear to exert sufficient control on the transport 

regime so as to show up in our models. The apparent lack of importance of these features is 

consistent with the notion that sediment delivery ratios are low in this relatively flat landscape 

[Gran et al., 2011; Maalim et al., 2013; Belmont et al., 2014]. 

We showed, however, that other aspects of the upland environment can exert a strong 

control on fine sediment transport regimes.  The finding that SRC coefficients and low-flow (90% 

exceedance) TSS concentrations were most strongly associated with watershed land use, 

exhibiting a positive correlation with agricultural land and negative correlation with forest cover, 

suggests that land use may set the average, or baseline sediment supply conditions for these 

rivers.  Sediment from upland sources such as agricultural fields appears to be available for 

transport by streams not only during events that cause high discharge but during more moderate 

flow conditions as well.  However, the absence of these variables in the shape and exponent 

models suggest that modern land use may exert little control on the shape or steepness of the Q-

TSS relations.   

These findings have important implications for water quality criteria and watershed 

management.  Because land use appears to have most influence on TSS concentrations at low and 

moderate flows, regulations on land use aimed at reducing erosion from upland soils may be most 

effective at reducing TSS during those flow conditions.  However, if the near-channel 

geomorphic environment determines the shape and steepness of the relations, then TSS reduction 

at high flows may be best achieved by management approaches aimed at reducing the magnitude 

and frequency of high flows and controlling erosion from near-channel sources, rather than 

additional regulations on land use aimed at reducing erosion from upland soils.  These findings 

further call into question whether a strict percentage exceedance water quality criterion, as is 

applied in Minnesota and many other states (e.g., a river is considered impaired if the water 
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quality criterion is exceeded more than 10% of the time) adequately accommodates for landscape 

settings that are naturally prone to produce large volumes of sediment.  

That our models explain only 40 to 60 percent of the variance in the various response 

variables suggests that some key conditions may be missing or imperfectly characterized by our 

metrics.   Conditions that are likely important but were not included due to lack of available data 

are grain size distributions in sediment source and sink areas, bank and soil cohesion properties, 

and vegetation type and density along the channel.   

The lack of full explanation of the response variables within the models could also be due 

to error or incompleteness in the characterization of the response variables, such as might be 

caused by seasonal or year-to-year shifting of Q-TSS relations.  We have accounted for within-

event variation in SRCs by splitting the data by rising and falling limb.  However, SRCs have 

also been shown to shift at a seasonal timescale due to differing hydrologic conditions or 

variation in sediment availability associated with early season flushing and late season depletion 

[Mimikou, 1982; Fenn et al., 1985; Syvitski et al., 2000; Lana-Renault and Regüés, 2009].  SRCs 

can also experience annual or persistent shifts due to large hydrologic events or changes in land 

use or water management [Syvitski et al., 2000; Hu et al., 2011; Warrick, 2014].  If SRCs for 

different seasonal or temporal periods encompassed in our data were systematically different, 

grouping all those data together to create one SRC could result in incomplete or erroneous 

characterization of a TSS regime that would more accurately be represented (and predicted) using 

several SRCs describing different seasonal or temporal states of the system.  We examined our Q 

and TSS data for evidence of shifting rating curves at both a yearly and seasonal timescale.  We 

found some evidence of seasonal, counterclockwise hysteresis (with higher TSS concentrations in 

the summer than in the spring) in a number of the peaked relations.  However, we found little 

evidence of persistent, systematic annual changes in SRCs that would warrant splitting the data 

further and predicting separate periods or system states differently.  Our data do not cover a 
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sufficient period of time to test whether longer-term land use and hydrologic changes may have 

altered the Q-TSS relations we observed. 

Previous modeling efforts carried out across larger spatial scales than ours have found 

that watershed-average predictor variables successfully explain significant amounts of variation 

in SRC parameter values. Syvitski et al. [2000] used multiple linear regression to evaluate 

correlations between SRC parameters and watershed properties from catchments throughout the 

world.  Their models for predicting the SRC coefficient from watershed-scale predictor variables 

(including basin relief, mean annual discharge, long-term sediment yield, latitude, and mean 

annual temperature) had R2 values ranging from 0.70 to 0.75, significantly higher than our 

models.  They used combinations of the same predictor variables to generate multiple linear 

regression models predicting the exponent parameter, which had R2 values ranging from 0.51 to 

0.58.  Our RF models for SRC exponents performed comparably or slightly better.  Our combined 

high flow exponent model, which is most similar methodologically to Syvitski’s [2000] SRC 

exponents model, has an R2 value of 0.60.  In this case, our approach using RF models and 

including near-channel predictors appeared to offer an advantage over the methods used in the 

previous study, especially considering the much narrower range of climate, topography and land 

use evaluated in our analysis. Mimikou [1982] constructed multiple linear regression models to 

predict the rating parameters for rivers in Greece, using the following predictor variables: mean 

annual precipitation, watershed area, basin relief, main channel length, and average channel 

slope. Because Greece has pronounced dry and wet seasons, Mimikou [1982] divided the data by 

those seasons and created separate models.  For the rating curve exponent, her models explained 

88% and 61% of the variance in the wet and dry seasons, respectively.  For the rating curve 

coefficient, the models explained 67% and 45% of the variance in the wet and dry seasons, 

respectively.  Nearly all of the explanatory variables used in that study were also included in our 
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study, but most of them were removed from the final models because they were determined to be 

unimportant.  

While no previous studies have characterized the near-channel environment in the level 

of detail that we have here, a few previous studies found that near-channel geomorphic conditions 

explain most variation in SRC form.  Fan et al. [2012] found that SRC coefficients were related to 

bed material and channel cross section shape (width to depth ratio) in the upper Yellow River in 

China, whereas the exponent parameters were related to stream power.  They found that flat 

SRCs (with large coefficient values and small exponent values) corresponded to reaches with low 

stream power and large width-depth ratios. Reaches with flat SRCs also flowed through 

intensively weathered materials or loose sedimentary deposits that can be transported at most 

discharges.  Steeper rating curves (small coefficient, large exponent) corresponded to reaches 

with higher stream power, coarser bed material, and smaller width-depth ratios.  Hu et al. [2011] 

found similar patterns in the Yangtze River, although they also found that human activities 

including damming of the river had significantly altered the sediment transport regimes there.   

These comparisons between our results and results from similar studies raise a paradox, 

in that the studies reach somewhat conflicting conclusions regarding the geomorphic and 

environmental conditions that exert most influence over SRC shape.  Syvitski [2000] and 

Mimikou [1982] found that watershed-scale morphometrics and hydrologic/climatic variables 

successfully explained variation in SRC exponent and coefficient values.  Our study, as well as 

those of Fan et al. [2012] and Hu et al. [2011] found that channel-floodplain morphology was 

consistently important for explaining variation in SRC shape.  Our RF models developed with 

only watershed-scale predictor metrics consistently performed worse than models developed with 

both watershed and near-channel metrics.  Moreover, our study found that many of the basin-

scale variables important in the models of Syvitski [2000] and Mimikou [1982] did not 

adequately explain the variation in SRC shape for rivers throughout Minnesota and were removed 
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from our RF models.  This inconsistency may be due to the differing spatial scales at which the 

analyses were conducted.  Syvitski’s [2000] study, for example, encompassed rivers throughout 

the world, including rivers across a wide range of climatic and topographic settings.  With such 

wide ranges, watershed morphometrics appear to adequately represent the different processes and 

erosion rates that result in variations in SRC shape.  At the scale of our study, however, which 

encompassed smaller watersheds spread over a more homogenous landscape (in terms of large-

scale topography, geology, and climate), these metrics may not have varied over a wide enough 

range to show any effect.  An alternative interpretation is that at the regional scale of our study, 

the assumption that watershed-scale morphometrics can capture processes important to fine 

sediment generation and transport within the watershed breaks down.  That interpretation would 

further suggest, then, that that assumption may not be valid at the larger scale of analysis either, 

but that those watershed-scale morphometrics are simply correlated with other variables (e.g., 

near-channel relief) that are in reality fundamentally controlling the sediment response.   

The variability in shape and steepness of the Q-TSS relationships we analyzed has 

important implications for water quality regulations. Because near-channel geomorphic 

conditions and geologic history vary at local as well as regional scales, strong variation in Q-TSS 

relations occurs within the boundaries delineating nutrient regions currently used for TMDL 

regulation of TSS levels in Minnesota.  For example, paired gages on several streams in the 

Minnesota River Basin exhibit distinct shapes, even though they are within the same TSS TMDL 

zone.  The lower gage on High Island Creek (Henderson) had an exponent of 0.69 and coefficient 

of 103 mg/L, whereas the upper gage (Arlington) had an exponent of -0.12 and coefficient of 29 

mg/L.  The catchments above the two gages have similar land use, surface geology, climate, and 

soil properties, and are managed for TSS standards under the same criterion, and yet have vastly 

different background Q-TSS relationships.  Thus, it appears that the current regulatory framework 

does not account for important local variability in TSS dynamics and that an approach to 
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delineating regions for TSS standards that incorporated more detailed local geomorphic and 

environmental conditions could provide a more rigorous basis for regulation.   

While we acknowledge that long-term and short-term rates are not always equal 

[Kirchner et al., 2001] it is useful to consider how landscape and river network attributes may 

influence sediment regimes over multiple timescales. Our findings that sediment dynamics (as 

described by SRC parameters) in Minnesota are not strongly associated with variation in 

watershed-scale topographic relief, mean annual precipitation, or mean annual temperature agree 

with the findings presented by von Blanckenburg [2005] that long-term denudation rates do not 

vary systematically with those variables.  Results from our study also support the observations of 

Riebe et al. [2001] and von Blanckenburg [2005] that long term denudation rates are high in areas 

of rapid uplift or base level fall, with the latter strongly influencing near-channel morphology in 

Minnesota.  We observed the largest SRC exponents at gages within the knick zones of 

Minnesota River tributaries and in the driftless area of southeastern Minnesota, characterized by 

tall alluvial terrace streambanks and wide valleys.  Base level changes and associated channel 

incision have established the large values of near-channel local relief and steep stream gradients 

within the Minnesota River Basin knick zones.  Similarly, rivers in the driftless area (the 

Whitewater and Root Rivers) also experienced base level fall in the late Pleistocene as glacial 

outwash events scoured the channel, and have experienced base level rise over the Holocene after 

a glacial outwash event on the Chippewa River dammed up the Mississippi River downstream. 

Further, they experienced largescale disturbance in the form of rapid hillslope denudation from 

agricultural uplands in the late 1800s and early 1900s and associated deposition of large alluvial 

terraces in confined and partly confined river valleys [Trimble, 2009; Stout et al., 2014].  

Significantly out of equilibrium, and similarly characterized by high near-channel relief, these 

rivers also have large sediment loads and steep SRCs.  Thus, even though our models used 
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current geomorphic conditions to predict Q-TSS dynamics, it is important to consider the 

geologic and base level history that may be driving those dynamics over longer timescales. 

Our results confirmed that near-channel geomorphic conditions were important to 

watershed sediment dynamics across the wide range of landscape settings investigated here.  

When high-resolution topography data are available to characterize those near-channel 

conditions, such information may significantly improve predictions. Future research should focus 

on developing increasingly targeted and meaningful near-channel morphometrics.  With 

increasing availability of high resolution topography data for accurately characterizing the near-

channel environment, we expect that future models for predicting the shape, steepness and 

vertical offset of Q-TSS relations will benefit from evaluating a combination of watershed-

average and near-channel metrics. 
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CONCLUSIONS 

 

Our analysis of Q-TSS relationships throughout the state of Minnesota revealed that the 

steepness of the curves is mainly explained by near-channel geomorphic conditions and base 

level controls, whereas TSS concentrations at average and low flows are controlled by land use 

within the basin.  Near-channel characteristics, particularly local relief and stream gradient, were 

consistently among the most important predictor variables in our models, supporting the notion 

that the near-channel environment contains useful information with regard to sediment sources 

and dynamics in rivers.  We obtained much better predictive models by being able to quantify the 

near-channel environment than by using watershed-average descriptive metrics alone.   Land use 

within the watersheds, particularly agricultural and forest land cover, was important in 

determining the vertical offset (or TSS at average flow conditions) of Q-TSS relations. However, 

most of the basin-scale metrics used to explore controls on SRC parameters and sediment loads in 

previous studies were excluded from our models because they were determined by the RF 

algorithm to be unimportant and unable to explain variation in SRC parameters for our study 

gages.   

It is important to note that our statistical modeling does not establish causation in the 

relationships we observe.  Nevertheless, it does provide insight into which factors are likely 

important in determining suspended sediment regimes.  The technique of examining variation in 

Q-TSS relationships and the geomorphic and environmental settings associated with those 

relationships appears to provide an indirect but useful way of identifying important sediment 

sources within a watershed.  Moreover, by better understanding geomorphic and environmental 

conditions associated with certain suspended sediment response patterns, this type of analysis 

could help inform the process of delineating regulatory zones for sediment.   
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Appendix A. Tables of Values for All Response and Predictor Variables Used in RF Models 

 

Table A.1. Watershed Morphometry Metrics 

 

 

Gage 

 

Gage 

Number* 

Watershed 

Relief 

(m) 

Watershed 

Mean 

Elevation 

(m) 

Watershed Mean 

Topographic 

Slope 

(Degrees) 

Hypsometric 

Integral 

(-) 

Watershed 

Area 

(km2) 

Beaver Creek nr Beaver 

Falls, CSAH2 

25053002 

(05316570) 
76 329 1.50 0.72 526 

Bois de Sioux River near 

Doran, MN 

54018001 

(05051300) 
101 328 1.23 0.76 4915 

Chippewa River nr Cyrus, 

140th St 

26003001 

(05301930) 
175 412 3.11 0.35 923 

Chippewa River nr Milan, 

MN40 

26057001 

(05304500) 
233 365 2.34 0.31 4897 

Clearwater River at Red 

Lake Falls, MN 

66050001 

(05078500) 
206 383 1.97 0.45 3517 

Cottonwood River nr 

Lamberton, US14 
29062002 199 401 2.02 0.41 1156 

Cottonwood River nr New 

Ulm, MN68 

29001001 

(05317000) 
275 367 1.91 0.45 3386 

Credit River at Savage 0.9 139 295 4.09 0.53 200 

Hawk Creek nr Granite 

Falls, CR52 

25037001 

(05314540) 
116 332 1.68 0.46 1318 

High Island Creek nr 

Arlington, CR9 

33075001 

(05326700) 
42 318 1.34 0.49 427 

High Island Creek nr 

Henderson, CSAH6 

33091001 

(05327000) 
116 312 1.65 0.77 621 

Kandiyohi CD27 nr 

Sunburg, CSAH1 
26047001 27 381 2.25 0.49 32 

Kettle River below 

Sandstone, MN 

35065001 

(05336700) 
155 364 2.14 0.51 2265 

Lac qui Parle River nr Lac 

qui Parle, CSAH31 

24023001 

(05300000) 
325 419 2.20 0.40 2507 
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  Table A.1. (cont.) 

Le Sueur River at St. Clair, 

CSAH 28 
32079001 126 348 2.26 0.45 903 

Le Sueur River near 

Rapidan, MN 66 

32077002 

(05320500) 
181 332 1.88 0.52 2865 

Le Sueur River nr 

Rapidan, CR8 
32076001 168 339 2.29 0.53 1155 

Leaf River nr Staples, 

CSAH29 

13058001 

(05244440) 
189 429 1.80 0.26 2219 

Middle Fork Whitewater 

River near St. Charles, MN 

40019001 

(05376100) 
98 357 3.79 0.52 65 

North Branch Root River 

at Chatfield, CSAH2 
43079001 148 392 2.82 0.69 503 

North Fork Crow River nr 

Rockford, Farmington Ave 

18088001 

(05278400) 
157 347 2.44 0.46 3487 

Otter Tail River at 

Breckenridge, CSAH16 

56105001 

(05046502) 
321 414 3.16 0.38 4943 

Pipestone Creek at 

Pipestone, MN 

82035001 

(06482430) 
59 537 1.10 0.25 79 

Pomme De Terre River at 

Appleton, MN 

23007001 

(05294000) 
226 363 2.51 0.28 2241 

Red Lake River at Fisher, 

MN 

63078001 

(05080000) 
249 363 1.31 0.46 14646 

Red River of the North at 

Wahpeton, ND 
57006001 102 326 1.24 0.75 5201 

Redwood River at Russell, 

CR15 

27043001 

(05314973) 
157 529 2.36 0.49 603 

Redwood River nr 

Redwood Falls, MN 

27035001 

(05316500) 
312 422 2.05 0.40 1619 

Root River nr Mound 

Prairie, CSAH25 

43007002 

(05386070) 
240 359 6.12 0.67 4115 

Sand Creek at Jordan 8.2 139 308 3.17 0.59 613 

Sand Hill River at Climax, 

MN 

61039001 

(05069000) 
208 335 1.64 0.40 1195 
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Table A.1. (cont.) 

Seven Mile Creek nr North 

Star, MN169 

28063001 

 
81 299 1.73 0.85 94 

Snake River nr Pine City, 

MN 

36076001 

(05338500) 
152 341 1.97 0.39 2507 

South Branch Root River at 

Lanesboro, Rochelle Ave N 

43049001 

(05384120) 
190 378 4.67 0.68 737 

       

South Branch Root River 

nr Carimona, CSAH12 

43067001 

(05384030) 
141 400 3.22 0.72 345 

South Fork Crow River at 

Delano, Bridge Ave 

19001001 

(05279400) 
178 325 1.90 0.61 3286 

South Fork Crow River nr 

Cosmos, MN7 

19024001 

(05278500) 
62 345 1.67 0.22 631 

South Fork Root River at 

Amherst, CSAH23 
43034001 98 368 4.36 0.54 58 

South Fork Whitewater 

River near Altura, MN 

40024001 

(05376500) 
180 362 4.58 0.72 203 

Sucker Creek at County 

Rd. 290 near Palmers, MN 

02031001 

(04015339) 
301 422 3.82 0.68 90 

Vermillion River at 

Farmington, Ash St 
38020001 98 315 3.21 0.41 99 

Vermillion River at 

Farmington, Denmark Ave 
38027002 100 313 3.27 0.39 158 

Watonwan River nr 

Garden City, CSAH13 

31051001 

(05319500) 
203 349 1.57 0.36 2194 

Yellow Bank River nr 

Odessa, CSAH40 

22012001 

(05293000) 
340 420 2.53 0.41 1207 

Yellow Medicine River nr 

Granite Falls, MN 

25075001 

(05313500) 
301 404 2.07 0.34 1745 

 

* Gage numbers are the DNR/MPCA cooperative ID numbers.  Numbers in parentheses are USGS gage numbers, provided for 

gages that are also associated with the USGS.  Sand Creek and Credit River gages are not part of either network.  The ID 

number provided is the distance of the gage upstream (river miles) from the mouth of the river. 
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Table A.2. Watershed Land Use/Land Cover Metrics 

 

Gage 

Percent 

Agriculture 

(%) 

Percent 

Wetland 

(%) 

Percent 

Forest 

(%) 

Percent 

Lakes 

(%) 

Waterbody Percent (Lake, 

Marsh, Reservoir) 

(%) 

Beaver Creek nr Beaver 

Falls, CSAH2 91.7 2.7 2.1 0.0 0.1 

Bois de Sioux River near 

Doran, MN 88.4 3.9 2.0 2.7 3.6 

Chippewa River nr 

Cyrus, 140th St 76.6 1.4 9.7 8.6 9.1 

Chippewa River nr 

Milan, MN40 82.5 3.0 5.8 5.3 6.5 

Clearwater River at Red 

Lake Falls, MN 60.4 9.9 24.7 2.3 9.3 

Cottonwood River nr 

Lamberton, US14 90.9 2.0 3.8 0.6 0.9 

Cottonwood River nr 

New Ulm, MN68 91.7 1.9 3.2 0.6 0.9 

Credit River at Savage 43.6 3.8 16.7 6.6 12.1 

Hawk Creek nr Granite 

Falls, CR52 89.8 1.6 2.3 2.2 2.6 

High Island Creek nr 

Arlington, CR9 92.5 1.7 1.9 2.3 3.1 

High Island Creek nr 

Henderson, CSAH6 90.7 1.6 3.5 2.3 2.9 

Kandiyohi CD27 nr 

Sunburg, CSAH1 94.1 0.6 3.3 0.0 1.0 

Kettle River below 

Sandstone, MN 15.9 37.3 41.1 1.8 22.8 

Lac qui Parle River nr 

Lac qui Parle, CSAH31 78.2 5.2 13.0 1.1 1.8 

Le Sueur River at St. 

Clair, CSAH 28 89.3 1.9 3.9 1.8 2.7 

Le Sueur River near 

Rapidan, MN 66 89.2 2.2 3.6 2.0 3.0 



 

   
 

7
7

 

 Table A.2. (cont.) 

Le Sueur River nr 

Rapidan, CR8 87.2 

 

2.4 4.4 2.4 3.7 

Leaf River nr Staples, 

CSAH29 54.0 

 

11.7 29.4 1.5 11.2 

Middle Fork 

Whitewater River near 

St. Charles, MN 85.6 

 

0.1 12.7 0.0 0.0 

North Branch Root 

River at Chatfield, 

CSAH2 77.4 

 

0.2 18.8 0.1 0.1 

North Fork Crow River 

nr Rockford, 

Farmington Ave 78.6 

 

2.1 8.3 6.3 8.3 

Otter Tail River at 

Breckenridge, CSAH16 44.1 

 

3.1 30.6 14.1 17.3 

Pipestone Creek at 

Pipestone, MN 90.6 

 

0.1 4.4 0.0 0.0 

Pomme De Terre River 

at Appleton, MN 76.4 

 

3.4 8.5 7.4 8.0 

Red Lake River at 

Fisher, MN 40.8 

 

32.2 13.0 9.7 33.0 

Red River of the North 

at Wahpeton, ND 88.7 

 

3.7 2.0 2.6 3.4 

Redwood River at 

Russell, CR15 77.1 

 

1.1 14.9 3.0 3.4 

Redwood River nr 

Redwood Falls, MN 85.8 

 

1.8 7.0 1.4 1.7 

Root River nr Mound 

Prairie, CSAH25 66.6 

 

0.2 30.4 0.0 0.0 

Sand Creek at Jordan 82.6  1.7 8.2 2.7 5.2 

Sand Hill River at 

Climax, MN 84.5 

 

3.8 6.8 2.2 3.0 

Seven Mile Creek nr 

North Star, MN169 88.9 

 

5.3 3.4 0.7 4.1 
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 Table A.2. (cont.) 

Snake River nr Pine 

City, MN 32.1 

 

21.3 42.1 1.3 15.1 

South Branch Root 

River at Lanesboro, 

Rochelle Ave N 73.2 

 

0.2 23.7 0.0 0.0 

South Branch Root 

River nr Carimona, 

CSAH12 80.4 

 

0.2 17.3 0.1 0.1 

South Fork Crow River 

at Delano, Bridge Ave 87.5 

 

1.2 3.9 3.5 4.6 

South Fork Crow River 

nr Cosmos, MN7 85.4 

 

1.3 2.4 6.3 7.3 

South Fork Root River 

at Amherst, CSAH23 80.4 

 

0.1 17.6 0.0 0.0 

South Fork Whitewater 

River near Altura, MN 72.4 

 

0.1 20.7 0.0 0.0 

Sucker Creek at County 

Rd. 290 near Palmers, 

MN 1.7 

 

21.7 75.1 0.4 14.1 

Vermillion River at 

Farmington, Ash St 75.9 

 

1.4 14.0 0.7 1.0 

Vermillion River at 

Farmington, Denmark 

Ave 62.5 

 

1.0 13.0 1.9 2.0 

Watonwan River nr 

Garden City, CSAH13 92.1 

 

1.7 2.2 1.3 1.6 

Yellow Bank River nr 

Odessa, CSAH40 69.0 

 

2.9 24.9 1.3 1.5 

Yellow Medicine River 

nr Granite Falls, MN 88.1 

 

2.7 5.9 0.9 1.2 
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Table A.3. Watershed Soil and Geology Characteristics 

 

 

Gage 

Rock Free 

K-factor, 

All 

Horizons 

Rock Free 

K-factor, 

Top 

Horizon 

Whole Soil 

K-factor, 

All 

Horizons 

Whole Soil 

K-factor, 

Top 

Horizon 

STATSGO 

K-factor 

Surface Geology, 

Uniaxial 

Compressive 

Strength 

(MPa) 

Surface 

Geology 

Category at 

Gage 

Dominant 

Surface 

Geology 

Category in 

Watershed 

Beaver Creek nr Beaver 

Falls, CSAH2 
0.35 0.27 0.35 0.27 0.30 1.42 Unconsolidated Calcareous Till 

Bois de Sioux River near 

Doran, MN 
0.37 0.25 0.37 0.25 0.32 1.27 Unconsolidated Calcareous Till 

Chippewa River nr Cyrus, 

140th St 
0.33 0.24 0.33 0.24 0.30 1.37 Unconsolidated Calcareous Till 

Chippewa River nr Milan, 

MN40 
0.36 0.27 0.36 0.27 0.27 1.40 Unconsolidated Calcareous Till 

Clearwater River at Red 

Lake Falls, MN 
0.32 0.23 0.32 0.23 0.25 1.25 Unconsolidated Unconsolidated 

Cottonwood River nr 

Lamberton, US14 
0.36 0.27 0.36 0.27 0.30 1.38 Unconsolidated Calcareous Till 

Cottonwood River nr New 

Ulm, MN68 
0.34 0.27 0.34 0.27 0.29 1.40 Unconsolidated Calcareous Till 

Credit River at Savage 0.33 0.29 0.33 0.29 0.28 1.40 Unconsolidated Calcareous Till 

Hawk Creek nr Granite 

Falls, CR52 
0.39 0.29 0.39 0.29 0.31 1.41 Unconsolidated Calcareous Till 

High Island Creek nr 

Arlington, CR9 
0.33 0.28 0.33 0.28 0.30 1.40 Calcareous Till Calcareous Till 

High Island Creek nr 

Henderson, CSAH6 
0.33 0.28 0.33 0.28 0.30 1.40 Unconsolidated Calcareous Till 

Kandiyohi CD27 nr 

Sunburg, CSAH1 
0.33 0.27 0.33 0.27 0.29 1.40 Calcareous Till Calcareous Till 

Kettle River below 

Sandstone, MN 
0.37 0.28 0.37 0.28 0.28 1.26 Unconsolidated 

Non-Calcareous 

Till 

Lac qui Parle River nr 

Lac qui Parle, CSAH31 
0.36 0.25 0.36 0.25 0.31 1.40 Unconsolidated Calcareous Till 

Le Sueur River at St. 

Clair, CSAH 28 
0.34 0.28 0.34 0.28 0.31 1.40 Calcareous Till Calcareous Till 
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Table A.3. (cont.) 

 

Le Sueur River near 

Rapidan, MN 66 
0.34 0.28 0.34 0.28 0.31 1.17 Unconsolidated Unconsolidated 

Le Sueur River nr 

Rapidan, CR8 
0.34 0.28 0.34 0.28 0.30 1.39 Unconsolidated Calcareous Till 

Leaf River nr Staples, 

CSAH29 
0.27 0.20 0.27 0.20 0.20 1.35 Unconsolidated Unconsolidated 

Middle Fork Whitewater 

River near St. Charles, 

MN 

0.52 0.34 0.51 0.34 0.36 1.59 Calcareous Till Calcareous Till 

North Branch Root River 

at Chatfield, CSAH2 
0.43 0.30 0.43 0.30 0.31 1.46 Unconsolidated Calcareous Till 

North Fork Crow River nr 

Rockford, Farmington 

Ave 

0.31 0.25 0.31 0.25 0.24 1.42 Unconsolidated Calcareous Till 

Otter Tail River at 

Breckenridge, CSAH16 
0.30 0.22 0.29 0.22 0.23 1.38 Unconsolidated Calcareous Till 

Pipestone Creek at 

Pipestone, MN 
0.44 0.30 0.44 0.30 0.32 0.77 Calcareous Till Calcareous Till 

Pomme De Terre River at 

Appleton, MN 
0.35 0.24 0.35 0.24 0.29 1.41 Unconsolidated Unconsolidated 

Red Lake River at Fisher, 

MN 
0.33 0.23 0.33 0.23 0.25 1.11 Unconsolidated Unconsolidated 

Red River of the North at 

Wahpeton, ND 
0.37 0.25 0.37 0.25 0.32 1.24 Unconsolidated Calcareous Till 

Redwood River at Russell, 

CR15 
0.39 0.27 0.39 0.27 0.32 1.40 Unconsolidated Calcareous Till 

Redwood River nr 

Redwood Falls, MN 
0.36 0.27 0.36 0.27 0.30 1.38 Unconsolidated Calcareous Till 

Root River nr Mound 

Prairie, CSAH25 
0.47 0.34 0.46 0.34 0.32 1.53 Unconsolidated Colluvium 

Sand Creek at Jordan 0.34 0.28 0.34 0.28 0.30 1.40 Calcareous Till Calcareous Till 

Sand Hill River at Climax, 

MN 
0.37 0.27 0.37 0.27 0.28 1.25 Unconsolidated Unconsolidated 
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Table A.3. (cont.) 

 

 

 

 

Seven Mile Creek nr 

North Star, MN169 
0.34 0.28 0.34 0.28 0.30 1.40 Calcareous Till Calcareous Till 

Snake River nr Pine City, 

MN 
0.47 0.32 0.47 0.32 0.27 1.21 Unconsolidated 

Non-Calcareous 

Till 

South Branch Root River 

at Lanesboro, Rochelle 

Ave N 

0.47 0.34 0.47 0.34 0.32 1.42 Colluvium Colluvium 

South Branch Root River 

nr Carimona, CSAH12 
0.45 0.31 0.45 0.31 0.28 1.40 Colluvium Colluvium 

South Fork Crow River at 

Delano, Bridge Ave 
0.33 0.26 0.33 0.26 0.30 1.41 Unconsolidated Calcareous Till 

South Fork Crow River nr 

Cosmos, MN7 
0.33 0.26 0.33 0.26 0.31 1.40 Unconsolidated Calcareous Till 

South Fork Root River at 

Amherst, CSAH23 
0.50 0.37 0.50 0.37 0.38 1.40 Calcareous Till Calcareous Till 

South Fork Whitewater 

River near Altura, MN 
0.46 0.32 0.45 0.32 0.34 1.50 Colluvium Colluvium 

Sucker Creek at County 

Rd. 290 near Palmers, MN 
0.50 0.34 0.45 0.34 0.30 1.40 

Non-Calcareous 

Till 

Non-Calcareous 

Till 

Vermillion River at 

Farmington, Ash St 
0.36 0.28 0.36 0.28 0.27 1.41 Unconsolidated Unconsolidated 

Vermillion River at 

Farmington, Denmark 

Ave 

0.38 0.27 0.38 0.27 0.27 1.41 Unconsolidated Unconsolidated 

Watonwan River nr 

Garden City, CSAH13 
0.33 0.27 0.33 0.27 0.30 1.36 Unconsolidated Unconsolidated 

Yellow Bank River nr 

Odessa, CSAH40 
0.36 0.24 0.36 0.24 0.30 1.40 Unconsolidated Calcareous Till 

Yellow Medicine River nr 

Granite Falls, MN 
0.36 0.27 0.36 0.27 0.31 1.40 Calcareous Till Calcareous Till 



 

   
 

8
2

 

Table A.4. Watershed Climate and Hydrology Metrics 

 

 

Gage 

 

Avg. 

Maximum 

Temperature 

(°C) 

 

Mean 

Annual 

Precipitation 

(mm) 

5-year Recurrence 

10-Minute Duration 

Precipitation 

Intensity 

(mm/hr) 

5-year Recurrence 

60-Minute Duration 

Precipitation 

Intensity 

(mm/hr) 

5-year Recurrence 

24-Hour Duration 

Precipitation 

Intensity 

(mm/hr) 

 

 

Baseflow 

Index 

(%) 
Beaver Creek nr Beaver 

Falls, CSAH2 
12.5 717.5 120.0 43.9 3.4 45.9 

Bois de Sioux River near 

Doran, MN 
12.0 622.7 110.4 40.2 3.3 38.9 

Chippewa River nr Cyrus, 

140th St 
11.1 657.6 116.8 42.1 3.4 56.2 

Chippewa River nr Milan, 

MN40 
11.9 674.9 116.1 42.8 3.5 48.3 

Clearwater River at Red 

Lake Falls, MN 
10.0 617.8 112.4 40.7 3.2 48.3 

Cottonwood River nr 

Lamberton, US14 
12.7 709.7 126.5 44.2 3.6 38.3 

Cottonwood River nr New 

Ulm, MN68 
12.8 721.7 126.3 44.6 3.6 43.1 

Credit River at Savage 12.9 793.8 120.4 45.5 3.7 52.8 
Hawk Creek nr Granite 

Falls, CR52 
12.4 705.9 115.0 43.5 3.5 45.7 

High Island Creek nr 

Arlington, CR9 
12.6 752.1 124.6 44.7 3.7 48.9 

High Island Creek nr 

Henderson, CSAH6 
12.6 762.4 124.1 44.7 3.7 49.5 

Kandiyohi CD27 nr 

Sunburg, CSAH1 
12.2 711.6 117.8 44.0 3.6 47.9 

Kettle River below 

Sandstone, MN 
10.8 760.7 114.3 41.9 3.6 48.7 

Lac qui Parle River nr Lac 

qui Parle, CSAH31 
12.5 652.9 111.4 42.3 3.4 32.6 

Le Sueur River at St. Clair, 

CSAH 28 
12.7 828.1 126.2 46.5 3.9 50.1 
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Table A.4. (cont.) 

Le Sueur River near 

Rapidan, MN 66 
12.9 818.1 128.4 47.0 4.0 49.2 

Le Sueur River nr Rapidan, 

CR8 
12.7 821.2 126.2 46.3 3.9 49.7 

Leaf River nr Staples, 

CSAH29 
10.5 663.1 114.1 42.1 3.4 67.7 

Middle Fork Whitewater 

River near St. Charles, MN 
12.4 858.0 120.4 46.5 4.0 68.0 

North Branch Root River at 

Chatfield, CSAH2 
12.2 861.6 121.2 46.7 4.0 61.4 

North Fork Crow River nr 

Rockford, Farmington Ave 
12.2 738.7 122.4 44.1 3.6 52.5 

Otter Tail River at 

Breckenridge, CSAH16 
10.7 648.7 111.9 41.4 3.3 61.5 

Pipestone Creek at 

Pipestone, MN 
12.5 685.9 120.0 44.4 3.6 32.9 

Pomme De Terre River at 

Appleton, MN 
11.6 643.3 113.6 41.3 3.4 48.4 

Red Lake River at Fisher, 

MN 
9.9 615.4 111.4 40.0 3.3 42.5 

Red River of the North at 

Wahpeton, ND 
11.9 621.8 110.2 40.2 3.3 39.1 

Redwood River at Russell, 

CR15 
12.2 691.1 119.5 44.0 3.6 33.5 

Redwood River nr Redwood 

Falls, MN 
12.5 691.0 119.5 43.8 3.6 36.2 

Root River nr Mound 

Prairie, CSAH25 
12.5 873.0 121.2 46.9 4.0 64.9 

Sand Creek at Jordan 12.8 784.8 121.4 45.4 3.7 51.1 
Sand Hill River at Climax, 

MN 
10.3 617.7 112.7 41.1 3.3 44.0 

Seven Mile Creek nr North 

Star, MN169 
12.9 775.3 124.6 44.6 3.8 46.9 
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Table A.4. (cont.) 

Snake River nr Pine City, 

MN 
11.2 765.4 120.4 43.8 3.5 52.4 

South Branch Root River at 

Lanesboro, Rochelle Ave N 
12.4 875.0 121.1 47.3 4.0 60.0 

South Branch Root River nr 

Carimona, CSAH12 
12.2 870.5 121.0 47.4 4.0 56.5 

South Fork Crow River at 

Delano, Bridge Ave 
12.4 746.3 123.6 44.5 3.6 49.9 

South Fork Crow River nr 

Cosmos, MN7 
12.3 734.1 122.5 44.9 3.6 49.5 

South Fork Root River at 

Amherst, CSAH23 
12.6 879.9 121.9 47.4 4.0 63.2 

South Fork Whitewater 

River near Altura, MN 
12.4 859.0 119.6 45.9 3.9 68.8 

Sucker Creek at County Rd. 

290 near Palmers, MN 
9.4 774.1 108.7 37.0 3.4 48.0 

Vermillion River at 

Farmington, Ash St 
12.9 796.2 120.2 45.7 3.7 52.1 

Vermillion River at 

Farmington, Denmark Ave 
12.9 797.1 120.2 45.7 3.7 52.3 

Watonwan River nr Garden 

City, CSAH13 
12.9 749.2 126.1 45.9 3.7 49.3 

Yellow Bank River nr 

Odessa, CSAH40 
12.3 623.8 113.4 40.8 3.3 31.5 

Yellow Medicine River nr 

Granite Falls, MN 
12.6 675.5 113.2 43.1 3.5 34.9 
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Table A.5.  Cumulative, Distance-Weighted Near-channel Metrics, 10 km Upstream of Gage 

 

 

Gage 

 

 

Local 

Relief 

(m) 

 

 

Topographic 

Slope 

(Degrees) 

Rock-Free 

K-factor, 

All 

Horizons 

(-) 

Rock-Free 

K-factor, 

Top 

Horizon 

(-) 

Whole-Soil 

K-factor, 

All 

Horizons 

(-) 

Whole-

Soil K-

factor, Top 

Horizon 

(-) 

 

 

Waterbody 

Area 

(km2) 

 

 

Stream 

Power 

(W) 

 

Unit 

Stream 

Power 

(W/m) 

 

 

Channel 

Gradient 

(Degrees) 

Beaver Creek nr 

Beaver Falls, CSAH2 
48.4 36.7 1.7 1.5 1.7 1.5 0.00 5512 59 3 

Bois de Sioux River 

near Doran, MN 
16.2 17.6 2.5 1.7 2.5 1.7 0.00 10540 79 4 

Chippewa River nr 

Cyrus, 140th St 
11.4 10.5 1.9 1.5 1.9 1.5 0.00 1509 21 1 

Chippewa River nr 

Milan, MN40 
44.5 24.4 2.7 2.3 2.6 2.2 0.00 41621 228 10 

Clearwater River at 

Red Lake Falls, MN 
72.2 56.3 2.3 1.4 2.3 1.4 0.00 44687 207 8 

Cottonwood River nr 

Lamberton, US14 
23.5 21.9 3.0 2.2 3.0 2.2 0.00 4960 34 2 

Cottonwood River nr 

New Ulm, MN68 
47.4 35.9 1.8 1.5 1.8 1.5 0.00 16395 59 2 

Credit River at Savage 51.4 40.8 2.4 1.7 2.4 1.7 0.00 3274 53 4 

Hawk Creek nr 

Granite Falls, CR52 
47.3 37.5 1.9 1.6 1.9 1.6 0.00 4775 54 4 

High Island Creek nr 

Arlington, CR9 
16.9 16.0 1.9 1.7 1.9 1.7 0.00 2351 35 2 

High Island Creek nr 

Henderson, CSAH6 
84.1 65.0 2.7 2.4 2.7 2.4 0.01 6990 94 6 

Kandiyohi CD27 nr 

Sunburg, CSAH1 
31.5 31.4 2.5 1.9 2.5 1.9 0.00 712 40 4 

Kettle River below 

Sandstone, MN 
100.9 80.1 4.5 3.1 4.4 3.1 0.00 92839 344 17 

Lac qui Parle River nr 

Lac qui Parle, CSAH31 
48.2 40.2 3.1 2.0 3.1 2.0 0.00 24598 129 5 

Le Sueur River at St. 

Clair, CSAH 28 
50.5 45.3 2.9 2.3 2.9 2.3 0.00 21989 143 6 
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Table A.5. (cont.) 

Le Sueur River near 

Rapidan, MN 66 
76.9 56.2 2.4 1.7 2.4 1.7 0.00 28343 119 6 

Le Sueur River nr 

Rapidan, CR8 
63.8 51.2 2.2 1.6 2.2 1.6 0.00 12505 80 4 

Leaf River nr Staples, 

CSAH29 
17.5 17.8 1.9 1.1 1.9 1.1 0.00 4993 21 1 

Middle Fork 

Whitewater River near 

St. Charles, MN 

124.5 91.4 6.3 4.6 6.3 4.6 0.00 19364 230 13 

North Branch Root 

River at Chatfield, 

CSAH2 

93.8 66.6 4.1 3.2 4.0 3.2 0.00 38425 184 9 

North Fork Crow 

River nr Rockford, 

Farmington Ave 

20.3 16.8 1.4 1.1 1.4 1.1 0.01 5594 31 1 

Otter Tail River at 

Breckenridge, CSAH16 
10.9 10.0 2.5 1.7 2.5 1.7 0.00 7836 49 2 

Pipestone Creek at 

Pipestone, MN 
23.7 26.1 5.2 3.7 5.2 3.7 0.00 592 27 3 

Pomme De Terre River 

at Appleton, MN 
25.5 24.3 2.3 1.8 2.3 1.8 0.12 6367 65 4 

Red Lake River at 

Fisher, MN 
10.4 9.9 1.7 1.5 1.7 1.5 0.00 36597 119 4 

Red River of the North 

at Wahpeton, ND 
22.4 22.4 3.3 2.1 3.3 2.1 0.00 8793 66 6 

Redwood River at 

Russell, CR15 
69.9 66.4 4.3 2.8 4.2 2.8 0.00 4035 59 4 

Redwood River nr 

Redwood Falls, MN 
49.0 37.9 2.4 1.6 2.4 1.6 0.00 13728 81 3 

Root River nr Mound 

Prairie, CSAH25 
193.8 131.2 5.9 4.3 5.6 4.3 0.00 134718 354 16 

Sand Creek at Jordan 44.9 38.1 2.1 1.6 2.1 1.6 0.00 8062 69 3 

Sand Hill River at 

Climax, MN 
53.4 52.2 3.3 2.8 3.3 2.8 0.00 13481 117 6 
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Table A.5. (cont.) 

Seven Mile Creek nr 

North Star, MN169 
175.3 128.1 3.0 2.7 3.0 2.7 0.00 6591 150 12 

Snake River nr Pine 

City, MN 
21.0 16.7 3.6 2.9 3.6 2.9 0.64 16884 44 2 

South Branch Root 

River at Lanesboro, 

Rochelle Ave N 

176.5 125.2 6.0 4.4 5.8 4.4 0.01 48447 261 14 

South Branch Root 

River nr Carimona, 

CSAH12 

150.3 113.5 6.8 5.1 6.7 5.1 0.00 28153 213 14 

South Fork Crow River 

at Delano, Bridge Ave 
42.6 38.3 3.8 3.0 3.8 3.0 0.01 11249 74 4 

South Fork Crow River 

nr Cosmos, MN7 
19.5 19.9 3.8 2.8 3.8 2.8 0.00 646 15 1 

South Fork Root River 

at Amherst, CSAH23 
90.6 67.9 4.9 3.8 4.8 3.8 0.00 18261 218 13 

South Fork Whitewater 

River near Altura, MN 
203.6 124.4 4.6 3.1 3.1 2.9 0.00 32515 283 16 

Sucker Creek at 

County Rd. 290 near 

Palmers, MN 

48.9 38.4 3.5 2.5 3.3 2.5 0.00 24516 187 9 

Vermillion River at 

Farmington, Ash St 
22.5 20.7 3.2 2.4 3.2 2.4 0.01 1315 25 2 

Vermillion River at 

Farmington, Denmark 

Ave 

28.6 27.9 4.8 3.1 4.8 3.1 0.00 2113 34 2 

Watonwan River nr 

Garden City, CSAH13 
47.3 38.2 1.7 1.3 1.7 1.3 0.00 19011 75 3 

Yellow Bank River nr 

Odessa, CSAH40 
43.7 36.5 2.5 1.6 2.5 1.6 0.00 14016 113 6 

Yellow Medicine River 

nr Granite Falls, MN 
46.0 37.7 3.5 2.5 3.5 2.5 0.00 33269 197 10 
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Table A.6.  Cumulative, Distance-Weighted Near-channel Metrics, 50 km Upstream of Gage 

 

 

Gage 

 

 

Local 

Relief 

(m) 

 

 

Topographic 

Slope 

(Degrees) 

Rock-Free 

K-factor, 

All 

Horizons 

Rock-Free 

K-factor, 

Top 

Horizon 

Whole-Soil 

K-factor, 

All 

Horizons 

Whole-

Soil K-

factor, Top 

Horizon 

 

 

Waterbody 

Area 

(km2) 

 

 

Stream 

Power 

(W) 

 

Unit 

Stream 

Power 

(W/m) 

 

 

Channel 

Gradient 

(Degrees) 

Beaver Creek nr 

Beaver Falls, CSAH2 
228 184 13.8 11.3 13.8 11.3 0.0 16328.8 223.2 14.9 

Bois de Sioux River 

near Doran, MN 
170 176 28.7 19.6 28.6 19.6 0.1 43294.4 416.1 27.3 

Chippewa River nr 

Cyrus, 140th St 
244 196 22.5 16.5 22.4 16.5 0.2 7518.1 197.2 20.6 

Chippewa River nr 

Milan, MN40 
335 258 34.5 25.3 34.2 25.1 0.1 179336.8 1042.8 47.0 

Clearwater River at 

Red Lake Falls, MN 
348 288 18.8 13.3 18.8 13.3 0.0 126947.8 742.8 37.1 

Cottonwood River nr 

Lamberton, US14 
240 208 23.4 18.1 23.3 17.9 0.0 19408.6 217.7 15.9 

Cottonwood River nr 

New Ulm, MN68 
391 301 13.2 11.0 13.2 11.0 0.0 97291.9 442.2 23.1 

Credit River at Savage 215 176 11.8 9.2 11.8 9.2 0.2 7550.0 150.5 16.5 

Hawk Creek nr 

Granite Falls, CR52 
257 208 18.6 13.0 18.5 13.0 0.0 27927.7 311.7 19.2 

High Island Creek nr 

Arlington, CR9 
97 96 15.9 12.5 15.9 12.5 0.5 4710.1 82.8 6.0 

High Island Creek nr 

Henderson, CSAH6 
467 377 20.8 18.3 20.8 18.3 0.1 28761.1 457.9 30.9 

Kandiyohi CD27 nr 

Sunburg, CSAH1 
98 95 10.0 7.9 10.0 7.9 0.0 1208.0 81.3 10.0 

Kettle River below 

Sandstone, MN 
435 354 20.7 13.8 20.6 13.8 0.2 196077.7 789.3 42.0 

Lac qui Parle River nr 

Lac qui Parle, CSAH31 
274 232 18.6 13.1 18.6 13.1 0.0 96561.4 555.4 25.7 

Le Sueur River at St. 

Clair, CSAH 28 
327 296 21.6 17.4 21.6 17.4 0.2 56787.7 434.8 23.4 
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Table A.6. (cont.) 

Le Sueur River near 

Rapidan, MN 66 
643 499 21.0 16.3 21.0 16.3 0.0 131917.0 832.7 42.9 

Le Sueur River nr 

Rapidan, CR8 
451 367 15.8 12.6 15.8 12.6 0.0 54753.6 459.6 28.0 

Leaf River nr Staples, 

CSAH29 
144 142 18.1 12.7 18.1 12.7 0.9 15218.6 116.9 7.4 

Middle Fork 

Whitewater River near 

St. Charles, MN 

535 394 39.6 27.3 39.3 27.3 0.0 39227.1 649.8 45.7 

North Branch Root 

River at Chatfield, 

CSAH2 

844 601 34.3 25.2 32.1 24.9 0.0 198374.2 1246.8 74.5 

North Fork Crow 

River nr Rockford, 

Farmington Ave 

200 174 21.2 16.4 21.1 16.3 0.6 14719.1 165.1 12.8 

Otter Tail River at 

Breckenridge, CSAH16 
104 103 15.8 11.3 15.7 11.3 0.1 29960.3 211.3 13.0 

Pipestone Creek at 

Pipestone, MN 
124 131 33.0 23.4 33.0 23.4 0.0 2304.9 112.1 12.0 

Pomme De Terre River 

at Appleton, MN 
118 112 13.3 9.7 13.3 9.7 0.2 14717.2 160.6 10.5 

Red Lake River at 

Fisher, MN 
169 163 21.5 16.3 21.4 16.3 0.0 137765.4 689.2 37.9 

Red River of the North 

at Wahpeton, ND 
124 125 24.6 16.2 24.5 16.2 0.0 29299.9 261.4 20.2 

Redwood River at 

Russell, CR15 
448 385 31.3 19.6 31.1 19.5 0.1 24349.7 452.3 32.1 

Redwood River nr 

Redwood Falls, MN 
200 169 15.2 11.0 15.2 11.0 0.0 44863.5 299.2 14.9 

Root River nr Mound 

Prairie, CSAH25 
2437 1696 92.6 69.3 88.0 68.2 0.0 715799.5 3429.6 212.6 

Sand Creek at Jordan 469 396 29.9 22.6 29.9 22.5 0.3 31401.6 435.3 30.0 

Sand Hill River at 

Climax, MN 
160 164 13.5 10.7 13.5 10.7 0.0 35210.4 319.8 18.1 
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Table A.6. (cont.) 

Seven Mile Creek nr 

North Star, MN169 
385 309 15.0 12.5 15.0 12.5 0.1 12770.5 352.1 29.9 

Snake River nr Pine 

City, MN 
200 177 34.4 26.3 33.9 26.2 2.6 37892.7 196.7 14.3 

South Branch Root 

River at Lanesboro, 

Rochelle Ave N 

1593 1125 57.6 43.2 56.1 43.1 0.0 168629.1 1545.6 106.2 

South Branch Root 

River nr Carimona, 

CSAH12 

1095 784 45.9 33.4 44.5 33.2 0.0 118561.2 1187.0 78.3 

South Fork Crow River 

at Delano, Bridge Ave 
297 264 29.9 21.2 29.9 21.1 0.6 43319.9 355.2 22.9 

South Fork Crow River 

nr Cosmos, MN7 
201 213 31.3 23.6 31.2 23.6 0.2 5615.7 149.3 14.3 

South Fork Root River 

at Amherst, CSAH23 
356 261 24.2 19.0 24.1 19.0 0.0 29347.0 435.4 29.2 

South Fork Whitewater 

River near Altura, MN 
1219 801 36.1 25.3 30.2 24.3 0.0 163522.9 1645.0 101.3 

Sucker Creek at 

County Rd. 290 near 

Palmers, MN 

203 168 18.1 13.0 16.8 13.0 0.2 44389.3 374.6 19.4 

Vermillion River at 

Farmington, Ash St 
178 155 22.2 15.6 22.1 15.6 0.1 4903.7 150.4 14.3 

Vermillion River at 

Farmington, Denmark 

Ave 

244 218 32.6 22.1 32.6 22.1 0.0 6645.2 194.9 18.2 

Watonwan River nr 

Garden City, CSAH13 
240 198 12.0 9.8 12.0 9.8 0.0 56350.6 263.4 11.3 

Yellow Bank River nr 

Odessa, CSAH40 
321 265 22.5 14.6 22.5 14.5 0.1 44642.7 441.2 26.1 

Yellow Medicine River 

nr Granite Falls, MN 
231 207 22.6 16.3 22.5 16.3 0.0 72536.8 474.1 26.4 
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Table A.7.  Rating Curve Parameters 1 

 

 

Gage 

Rising 

Limb 

Exponent 

 

Rising 

Limb 

Coefficient 

(mg/L) 

Rising 

Limb 

n 

 

Falling 

Limb  

Exponent 

 

Falling 

Limb  

Coefficient 

(mg/L) 

Falling 

Limb 

n 

 

 

Combined  

Exponent 

 

 

Combined  

Coefficient 

(mg/L) 

 

Combined  

n 

 

Beaver Creek nr Beaver 

Falls, CSAH2 
0.74 29 106 0.63 16 139 0.73 20 245 

Bois de Sioux River near 

Doran, MN 
0.17 70 96 0.11 55 157 0.14 61 253 

Chippewa River nr Cyrus, 

140th St 
-2.32 144 29 -2.36 133 55 -2.36 138 84 

Chippewa River nr Milan, 

MN40 
0.22 58 58 -0.33 50 84 0.08 47 142 

Clearwater River at Red 

Lake Falls, MN 
1.11 14 80 0.81 12 184 0.91 12 264 

Cottonwood River nr 

Lamberton, US14 
0.21 99 92 0.15 39 102 0.24 61 194 

Cottonwood River nr New 

Ulm, MN68 
0.73 101 130 0.56 59 182 0.66 75 312 

Credit River at Savage 1.22 6 71 0.86 4 106 1.04 5 177 

Hawk Creek nr Granite Falls, 

CR52 
0.62 40 73 0.65 17 95 0.75 21 168 

High Island Creek nr 

Arlington, CR9 
-0.08 35 120 -0.16 24 121 -0.12 29 241 

High Island Creek nr 

Henderson, CSAH6 
0.74 154 133 0.65 72 148 0.69 103 281 

Kandiyohi CD27 nr Sunburg, 

CSAH1 
0.30 12 23 0.17 7 39 0.35 7 62 

Kettle River below 

Sandstone, MN 
0.57 5 77 0.29 3 100 0.43 4 177 

Lac qui Parle River nr Lac 

qui Parle, CSAH31 
0.47 41 125 0.37 32 137 0.42 36 262 

Le Sueur River at St. Clair, 

CSAH 28 
0.47 94 60 0.34 59 101 0.42 71 161 
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Table A.7. (cont.) 

Le Sueur River near 

Rapidan, MN 66 
0.67 187 157 0.64 79 208 0.68 114 365 

Le Sueur River nr Rapidan, 

CR8 
0.61 202 78 0.61 92 128 0.66 124 206 

Leaf River nr Staples, 

CSAH29 
-0.25 10 43 -0.52 9 63 -0.41 9 106 

Middle Fork Whitewater 

River near St. Charles, MN 
1.03 110 88 0.77 37 70 1.06 69 158 

North Branch Root River at 

Chatfield, CSAH2 
1.01 28 27 0.97 16 28 1.07 21 55 

North Fork Crow River nr 

Rockford, Farmington Ave 
-1.71 50 35 -2.52 68 41 -2.07 56 76 

Otter Tail River at 

Breckenridge, CSAH16 
0.17 37 18 -0.48 40 23 -0.16 38 41 

Pipestone Creek at Pipestone, 

MN 
0.66 16 31 0.66 5 42 0.65 8 73 

Pomme De Terre River at 

Appleton, MN 
-0.22 68 40 -0.78 75 74 -0.54 71 114 

Red Lake River at Fisher, 

MN 
0.94 67 79 0.48 52 114 0.71 57 193 

Red River of the North at 

Wahpeton, ND 
0.57 57 59 0.43 44 75 0.49 49 134 

Redwood River at Russell, 

CR15 
0.53 27 35 0.45 18 74 0.49 21 109 

Redwood River nr Redwood 

Falls, MN 
0.21 95 92 0.37 46 114 0.34 61 206 

Root River nr Mound Prairie, 

CSAH25 
1.62 86 59 1.44 55 105 1.58 65 164 

Sand Creek at Jordan 0.90 12 38 1.00 5 93 1.01 6 131 

Sand Hill River at Climax, 

MN 
0.39 91 70 0.44 74 166 0.43 79 236 

Seven Mile Creek nr North 

Star, MN169 
1.05 55 109 1.39 13 90 1.27 26 199 
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Table A.7. (cont.) 

Snake River nr Pine City, 

MN 
-0.01 5 122 -0.06 4 132 -0.04 5 254 

South Branch Root River at 

Lanesboro, Rochelle Ave N 
1.40 51 32 1.12 32 30 1.38 42 62 

South Branch Root River nr 

Carimona, CSAH12 
0.52 97 63 1.46 17 26 0.93 48 89 

South Fork Crow River at 

Delano, Bridge Ave 
-0.64 65 48 -0.84 53 46 -0.68 56 94 

South Fork Crow River nr 

Cosmos, MN7 
-0.02 31 15 -0.06 31 48 -0.04 31 63 

South Fork Root River at 

Amherst, CSAH23 
0.95 37 23 0.77 27 17 0.90 31 40 

South Fork Whitewater River 

near Altura, MN 
1.58 47 31 1.56 20 27 1.69 31 58 

Sucker Creek at County Rd. 

290 near Palmers, MN 
0.87 8 113 0.69 5 102 0.83 6 215 

Vermillion River at 

Farmington, Ash St 
0.43 11 72 0.21 6 78 0.40 8 150 

Vermillion River at 

Farmington, Denmark Ave 
0.55 14 66 0.26 8 72 0.56 11 138 

Watonwan River nr Garden 

City, CSAH13 
0.25 90 142 0.29 55 220 0.32 64 362 

Yellow Bank River nr 

Odessa, CSAH40 
0.91 19 71 0.86 12 129 0.92 13 200 

Yellow Medicine River nr 

Granite Falls, MN 
0.45 55 49 0.18 40 53 0.33 46 102 
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 Table A.8.  Rating Curve Parameters 2 

Gage 

 

Shape 

 

 

Hysteresis 

 

Low Flow 

(90% Exceedance Q) 

TSS 

(mg/L) 

Beaver Creek nr Beaver 

Falls, CSAH2 
Threshold 0.32 8.000691 

Bois de Sioux River near 

Doran, MN 
Power 0.07 42.64276 

Chippewa River nr Cyrus, 

140th St 
Peaked/Negative 0.06 33.28053 

Chippewa River nr Milan, 

MN40 
Peaked/Negative 0.41 31.51656 

Clearwater River at Red 

Lake Falls, MN 
Power 0.08 3.219883 

Cottonwood River nr 

Lamberton, US14 
Power 0.39 32.869 

Cottonwood River nr New 

Ulm, MN68 
Power 0.25 18.25709 

Credit River at Savage Power 0.28 1.104034 

Hawk Creek nr Granite 

Falls, CR52 
Threshold 0.34 21.67791 

High Island Creek nr 

Arlington, CR9 
Peaked/Negative 0.10 38.90307 

High Island Creek nr 

Henderson, CSAH6 
Power 0.30 19.7752 

Kandiyohi CD27 nr 

Sunburg, CSAH1 
Threshold 0.34 11.82638 

Kettle River below 

Sandstone, MN 
Power 0.22 1.997218 

Lac qui Parle River nr Lac 

qui Parle, CSAH31 
Power 0.07 13.19774 

Le Sueur River at St. Clair, 

CSAH 28 
Power 0.16 26.75581 
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    Table A.8. (cont.) 

Le Sueur River near 

Rapidan, MN 66 
Power 0.37 28.09424 

Le Sueur River nr Rapidan, 

CR8 
Power 0.34 28.95912 

Leaf River nr Staples, 

CSAH29 
Peaked/Negative 0.21 2.161273 

Middle Fork Whitewater 

River near St. Charles, MN 
Power 0.60 20.44843 

North Branch Root River at 

Chatfield, CSAH2 
Power 0.27 5.876883 

North Fork Crow River nr 

Rockford, Farmington Ave 
Peaked/Negative 0.25 36.59295 

Otter Tail River at 

Breckenridge, CSAH16 
Peaked/Negative 0.18 28.23386 

Pipestone Creek at 

Pipestone, MN 
Threshold 0.52 17.49607 

Pomme De Terre River at 

Appleton, MN 
Peaked/Negative 0.25 30.88971 

Red Lake River at Fisher, 

MN 
Power 0.06 24.08384 

Red River of the North at 

Wahpeton, ND 
Power 0.09 28.44277 

Redwood River at Russell, 

CR15 
Power 0.19 4.840874 

Redwood River nr Redwood 

Falls, MN 
Threshold 0.23 27.47547 

Root River nr Mound 

Prairie, CSAH25 
Power 0.24 22.82156 

Sand Creek at Jordan Threshold 0.27 3.9383 

Sand Hill River at Climax, 

MN 
Power 0.08 42.15183 

Seven Mile Creek nr North 

Star, MN169 
Threshold 0.42 3.55528 

 



 

   
 

9
6

 

    Table A.8. (cont.) 

Snake River nr Pine City, 

MN 
Peaked/Negative 0.04 4.963689 

South Branch Root River at 

Lanesboro, Rochelle Ave N 
Power 0.32 10.07131 

South Branch Root River nr 

Carimona, CSAH12 
Threshold 0.28 4.238888 

South Fork Crow River at 

Delano, Bridge Ave 
Peaked/Negative 0.21 24.24112 

South Fork Crow River nr 

Cosmos, MN7 
Peaked/Negative -0.05 34.29802 

South Fork Root River at 

Amherst, CSAH23 
Threshold 0.30 28.06102 

South Fork Whitewater 

River near Altura, MN 
Power 0.38 5.116525 

Sucker Creek at County Rd. 

290 near Palmers, MN 
Power 0.23 1.26898 

Vermillion River at 

Farmington, Ash St 
Power 0.22 4.298237 

Vermillion River at 

Farmington, Denmark Ave 
Power 0.31 5.499473 

Watonwan River nr Garden 

City, CSAH13 
Threshold 0.20 18.73141 

Yellow Bank River nr 

Odessa, CSAH40 
Threshold 0.23 7.877737 

Yellow Medicine River nr 

Granite Falls, MN 
Threshold 0.35 16.94151 
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Appendix B. Daily Discharge versus Instantaneous Discharge Analysis 

 

 

Daily mean discharge data are reported by the DNR/MPCA cooperative for the TSS 

measurements.  We also obtained 15-minute interval discharge data from the gaging agencies 

(MDNR, USGS, or MCES depending on the gage), and associated the high-resolution discharge 

data with the TSS measurements.  The high-resolution data are more representative of the 

streamflow conditions at the exact time the sediment samples were obtained, especially during 

rising and falling limbs of flood flows, where the flow may change dramatically over the course 

of the day.  In such cases, the mean flow may not be a very good estimate of the discharge at the 

instant the sample was taken.  However, for most gages, the high-resolution data were only 

available for the years after 2007, meaning that over half of the study period lacked high-

resolution Q data.   

We compared Q-TSS rating curves constructed using the available high-resolution data 

with rating curves constructed using the daily Q data (using only data points which also had 

corresponding high-resolution Q data).  Note that these comparisons were done using SRCs 

constructed using all Q-TSS data points, not the high-flow (i.e. rising and falling limb) subsets of 

the data used for our RF models.  Figures B.1 and B.2 show the percent difference and absolute 

difference, respectively, in SRC exponents for SRC constructed using the mean daily discharge 

and high-resolution discharge.  For most gages, with the exception of several small watersheds 

with flashier discharge regimes, the rating curves constructed with daily and high-resolution data 

were quite similar.  Most gages have less than 10 percent difference between the two exponent 

values.  The few gages that have higher percent differences, notably the Snake River and 

Kandiyohi County Ditch 27, have very small exponent values, skewing the percent difference 

calculation high.  The absolute differences plot shows that these gages do not have large absolute 
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differences in the exponent values.  Therefore, we decided to use the daily Q data rather than the 

high-resolution data, making the judgement that using a longer period of record (with slightly less 

accurate Q measurements) was preferable to using Q data with better accuracy but reduced 

temporal coverage. 

 

 
 

Figure B.1. Absolute difference in rating curve exponents for SRCs created using mean daily and 

instantaneous flow data.  
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Figure B.2. Percent difference in exponents for SRCs created using mean daily and instantaneous 

flow data.  Note Snake River is an outlier, with large percent difference but very little absolute 

difference, due to exponent value very near to zero.
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Appendix C. Q-TSS Relations for All Study Gages 
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