



# Maximum Power Point Tracking Techniques for Efficient Photovoltaic Microsatellite Power Supply System

Hadi Malek, Sara Dadras, YangQuan Chen

ECE Dept. of Utah State University, Logan, Utah;

Hadi.malek@ieee.org

**Robert Burt, James Cook** 

**Space Dynamics Laboratory** 

1695 N. Research Parkway, North Logan, Utah; 435-713-3337

Robert.Burt@sdl.usu.edu

#### Outline of Presentation

- Why MPPT?
- Different algorithms
- Extremum Seeking Control
- Hardware Implementation
- Fractional Order Extremum Seeking Control



#### Maximum power point

There is an exponential relationship between current and

voltage in PV cell.

$$I = I'_{SC} - I_{o1}(e^{q(V+IR_S)/kT} - 1) - I_{o2}(e^{q(V+IR_S)/2kT} - 1) - \frac{(V+IR_S)}{R_{Sh}}$$

$$I = I'_{SC} - I_{o}(e^{q(V+IR_S)/A_{o}kT} - 1) - \frac{(V+IR_S)}{R_{Sh}}$$







# **Different Algorithms of MPPT**

- Voltage Based Peak Power Tracking.
- Current Based Peak Power Tracking.
- Incremental conductance.
- Perturb & Observe. (P&O)



# **Different Algorithms**

#### Perturb and Observation





Startup



It is crucial to note that all of the plant components are allowed to be unknown.

### м

# **Extremum Seeking Control**



The periodic perturbations used in the loop perform modulation and demodulation, and their role is to make the extremum of the equilibrium map, which is flat, and therefore appears as a zero gain block, appear, in a time-average sense, as a gain proportional to the second derivative at the extremum

The role of the washout filter is to eliminate the bias to the DC component of the equilibrium map

# Hardware Implementation





•The EPS includes two solar array inputs that feed into separate Battery Charge Regulators (BCR). The BCRs use a buck converter topology implemented with a current mode DC-DC converter.

# Constraints

- An ultra-low power FPGA is used to implement the algorithm and controller. The low power FPGA is a key component. It allows for minimum power consumption by the EPS and was selected due to a higher tolerance to radiation effects over other commercially available components.
- The low power simple architecture forces all algorithms to only use fixed point integer based math, No floating point. This becomes one of the major design constraints for this project.

# **Experiment Setup**





| Manufacture | Model Number | Description                  |
|-------------|--------------|------------------------------|
|             |              |                              |
| Agilent     | E3631        | Triple Output Power Supply   |
| Agilent     | E4360A       | Modular SAS Mainframe        |
| Agilent     | E4362        | Solar Array Simulator Module |
| Agilent     | E4362        | Solar Array Simulator Module |
| Chroma      | 6314         | Electronic Load Mainframe    |
| Chroma      | 63102        | Dual Channel Load Module     |
| Chroma      | 63107        | Dual Channel Load Module     |
| Dell        | M90          | Lapt op Computer + Monitor   |

# **Experimental Results**

Steady State: This test was a 30 second sample in time of the EPS power output with a fixed solar array input.





| Metric               | ESC Value   | P&O Value    |
|----------------------|-------------|--------------|
| Average Peak-to-Peak | 0.024 watts | 0.109 watts  |
| Average Power        | 7.199 watts | 7.149 watts  |
| Minimum Power Output | 7.179 watts | 6.933 watts  |
| Maximum Power Output | 7.212 watts | 7.2093 watts |

# **Experimental Results**

#### **Dynamic Testing:**







# Conclusions:

- in the steady state condition, ESC can extract more power from PV panels, has smaller peak-peak power ripple, and provides greater immunity for channel to channel interference in comparison with P&O controller.
- In the dynamic response test, the P&O algorithm clearly outperforms the IO-ESC algorithm as presently implemented.
- Because of time constraints, we were not able to implement the slope seeking control portion of the ESC algorithm and compare it to the P&O. Obviously; ESC cannot follow fast slopes and cannot satisfy high dynamic response MPPT requirements without this slope seeking portion as we can see in the experimental results.

#### Fractional Order ESC



Replace Integer Order Integrator with Fractional Order Integrator.

#### Simulation results of FO ESC



# Experimental results of FO ESC









#### м

#### Conclusions:

the fractional order ESC has a better performance in comparison with integer order ESC.

#### 100

# Acknowledgments

We would like to acknowledge and thank

- The Air Force Research Laboratory for providing the funding for this research effort without which it could not have been possible.
- The Space Dynamics Laboratory and Utah State University for support of time and other laboratory resources involved in the testing.

# Thank you!

Q&A?





## М

# **Extremum Seeking Control**



C(s) will be used to improve the stability properties of the extremum seeking scheme.

This compensator can be regarded as a phase-lead compensator which improves the phase margin in a loop with a high relative degree.

One limitation to the speed of adaptation will be imposed by the presence of the measurement noise input n.



#### suppose

$$\widetilde{\theta} = \theta^* - \hat{\theta}$$

then, based on the above diagram, we have

$$\theta(t) = \hat{\theta}(t) + a\sin(\omega t) \to \theta(t) = \theta^* - \tilde{\theta} + a\sin(\omega t)$$
$$\to \theta(t) - \theta^* = -\tilde{\theta} + a\sin(\omega t)$$



$$J(\theta) = J^* + \frac{J''}{2} (\theta - \theta^*)^2 = J^* + \frac{J''}{2} (a \sin(\omega t) - \tilde{\theta})^2$$

$$= J^* + \frac{J''}{2} a^2 \sin^2(\omega t) + \frac{J''}{2} \tilde{\theta}^2 - J'' a \tilde{\theta} \sin(\omega t)$$

$$= J^* + \frac{a^2 J''}{4} - \frac{a^2 J''}{4} \cos(2\omega t) + \frac{J''}{2} \tilde{\theta}^2 - J'' a \tilde{\theta} \sin(\omega t)$$



$$\chi(t) = -\frac{a^2 J''}{4} \cos(2\omega t) + \frac{J''}{2} \tilde{\theta}^2 - J'' a \tilde{\theta} \sin(\omega t)$$

$$\xi(t) = \chi(t)\sin(\omega t)$$

$$= -\frac{a^2 J''}{4} \sin(\omega t) \cos(2\omega t)) + \frac{J''}{2} \tilde{\theta}^2 \sin(\omega t) - J'' a \tilde{\theta} \sin^2(\omega t)$$



$$\xi(t) = -\frac{a^2 J''}{4} \sin(\omega t) \cos(2\omega t) + \frac{J''}{2} \tilde{\theta}^2 \sin(\omega t) - J'' a \tilde{\theta} \sin^2(\omega t)$$

$$= -\frac{a^2 J''}{8} [\sin(3\omega t) - \sin(\omega t)] + \frac{J''}{2} \tilde{\theta}^2 \sin(\omega t) - \frac{J'' a \tilde{\theta}}{2} [1 - \cos(2\omega t)]$$

$$= -\frac{J'' a \tilde{\theta}}{2} + \frac{J'' a \tilde{\theta}}{2} \cos(2\omega t) - \frac{a^2 J''}{8} [\sin(3\omega t) - \sin(\omega t)] + \frac{J''}{2} \tilde{\theta}^2 \sin(\omega t)$$



$$\hat{\theta}(t) = -\frac{\gamma}{s} \frac{J''a\tilde{\theta}(t)}{2} \to \hat{\theta}(t) = -\frac{\gamma J''a\tilde{\theta}(t)}{2}$$

$$\xrightarrow{\tilde{\theta} = \theta^* - \hat{\theta}} \to \hat{\tilde{\theta}}(t) = -\frac{\gamma J''a\tilde{\theta}(t)}{2} \xrightarrow{\gamma J''a > 0} \to \tilde{\theta}(t) \Rightarrow 0$$

$$\to \theta^* - \hat{\theta} \Rightarrow 0 \to \theta^* = \hat{\theta}$$