OLFAR, A Radio Telescope Based On Nano-Satellites in Moon Orbit

S. Engelen, C.J.M. Verhoeven (TU Delft), M.J.Bentum (University of Twente) 19-8-2010

Overview

- Introduction
- Low frequency radio astronomy in space
- The space segment
- Project status

Introduction

The science case for OLFAR(1)

LOFAR: Low Frequency Array

- Range: 10-250 MHz
- Distributed sparse array
 - 26 stations on-line
 - 13 under construction
- Targets:
 - Epoch of Reionisation
 - Deep extragalactic surveys
 - Transient sources
 - Ultra high energy cosmic rays
 - Solar science and space weather
 - Cosmic magnetism

LOFAR node

Introduction

The science case for OLFAR(2)

Atmosphere not (fully) transparent for <30 MHz

Need for a space segment to augment the sensitivity of LOFAR at

low frequencies

- NASA launched RAE-1 into earth orbit (1968)
 - Discovered the ionosphere is highly active
 - Earth emits very strong Kilometric Auroral Emissions

Low Frequency science in lunar orbit

RAE-2

Source: J.K. Alexander et al. (1975)

The payload

Frequency range

Antennas

Number of elements

Maximum baseline

Spectral resolution

Processing bandwidth

Spatial resolution at 1 MHz

Snapshot integration time

Sensitivity

Instantaneous bandwidth

Deployment location

1-30 MHz

Dipole or tripole

50

Between 60 and 100 km

1 kHz

100 kHz

0.35 degrees

1 s

Confusion limited

TBD

Moon orbit, Earth-Moon L2 or Sun-

Earth L4/5

The case for a nano-satellite swarm(1)

What is a swarm?

- A distributed system consisting of:
 - A large number of identical elemental satellites (nodes)
 - Simple rules within each satellite determine its behaviour
 - Emergent behaviour shows in the behaviour of the swarm as a whole
 - No local command structure is present the swarm is controlled globally.
 - Elements are exchangeable and disposable
 - Cooperation is key

The case for a nano-satellite swarm(2)

	Formation flying S/C	Constellation	Fractioned S/C	S/C Swarm
Navigational accuracy	Very high	Moderate	Moderate	High
Orbital control precision per element	Very high	Moderate	High	Low
Position control of the virtual instrument	Very High	Moderate	High	High
Redundancy	Very low	Low	Moderate	Very high
Impact of the loss of an element	Loss of mission	Reduced functionality	Loss of specific function	Reduced coverage/ resolution
Element complexity	High	High	Moderate	Very low
System design complexity	High	Low	Moderate	High
Time-to-market	Very long	Long	Short	Short
Launch window flexibility	Low	Moderate	High	Very high
Maintainability	Low	Low	Moderate	High
Possibilities for extension /expansion	Low	Low	Low	Very high
Autonomy	Moderate	None	Low	Very high

The OLFAR swarm(1)

- 50 autonomous nanosatellites in lunar orbit
- Global swarm and science phase control by ground station operators
- Autonomous, individual lunar orbit insertion, using colloid thrusters – increases flexibility and expandability

TNO MEMS Colloid Thruster Module

The OLFAR swarm(3)

Leading element

Posit determin			position nisation	W	ait	Coordinated sampling	Data pre- processing	Synchronise dataset	Correlate	Synchronise dataset	Downlink
Central element											
Wait	Posi determi		Time & p	position nisation	Wait	Coordinated sampling	Data pre- processing	Synchronise dataset	Wait	Synchronise dataset	Downlink
Lagging element								1		1	
W	ait		sition mination	ı	position nisation	Coordinated sampling	Data pre- processing	Synchronise dataset	Wait	Synchronise dataset	Downlink

- Time-phase diagram of multiple nodes shows benefits of full element-level autonomy
- Inter-satellite communication is a must, though will have to be limited by 'smart' selection of protocols
- Redundancy is provided mostly through the high number of nodes

Project status

- The OLFAR project is already partly funded
- Research and development has started both at academia and research institutes, supported by industry.
- A LF radio-chip has been designed
 - To be launched on Delfi-N3XT in 2012
 - Frequency span: 30 kHz to 30 MHz
 - Output bandwidth: 50 kHz.
- Critical components of the space segment have been identified
- Missions and projects are being outlined focussing on their development.

Questions?

