

A Plug-and-play Approach Based on the I²C Standard

SPA on a Shoe-string

James Lyke¹, Fredrick Bruhn², Josette Calixte-Rosengren³, Jacob Christensen⁴, Bryan Hansen⁵, Gael Chosson⁶, Henrik Lofgren⁷, Jan Schulte², Scott Cannon⁴, Jesse Mee¹, Alonzo Vera⁶, Robert Vick⁷

¹AFRL; ²AAC Microtec (Sweden); ³FMV (Sweden), ⁴USU; ⁵SDL; ⁶micro-RDC; ⁷SAIC

Outline

- A space-plug-and-play architecture (SPA)
- International collaboration
- Why SPA-1?
- The mini-PnP/SPA-1 protocol
- Using mini-PnP/SPA-1
- State of mini-PnP/SPA-1 development
- Mission concepts
- Conclusions

A space-plug-and-play architecture (SPA)

USB interface chip

SPA as a brand of PnP

- Every component is a "black box"
 - Self-describing (using electronic data sheets)
 - Single-point interfaces (power,data,sync)
- Connect them to form a network
- They communicate with messages
- The network understands components and how to put them together automatically (selforganizing)

AAC Microtec Benefits of SPA

- Dramatic reduction in system development timeline
 - Simplification of Effort in integration and test
 - Promotion of component and software re-use
- Increase openness and ease of software development (all spacecraft data exposed) – "satellite as a desktop"
- Increased industry competition for components through open intelligent interfaces
- Additional robustness / resilience (a la carte redundancy)
- Late-point additions / graceful accommodation of requirement changes
- Future-proofing: Focus on invention and creation of missions, not the "tyranny of interface"

Learn more about SPA tonight at the Space Dynamics Laboratory!

Gen 1 ASIM

Where is SPA?

ÅAC Microtec

Gen 2 ASIM

PnPSat 1

STREET, STREET

PnPSat 2

Tacsat 3

- Interfaces
- Tools
- Components
- Satellites
- Flight heritage
 - Sounding rocket
 - Orbiting on TacSat 3

CubeFlow

International collaboration Nanosatellite And Pnp Architecture (NAPA)

- USAF and FMV signed program agreement* August 2009
- Primary objectives
 - Harmonize plug-and-play approaches of the two nations
 - Establish joint testbeds for exchange of PnP components
 - Demonstrate interchangeability between testbeds
- Early findings
 - SPA architecture represented common approach
 - Concluded that a "minimalistic" version was needed
 - Led to pursuit of "mini-PnP" technology as joint effort
 - Mini-PnP is a generic plug-and-play technology (similar to USB)
 - SPA-1 is a form of mini-PnP suitable for space

^{*}Bi-lateral Project Agreement (PA-TRDP-US-SW-AF-09-002).

Why SPA-1?

- Nanosatellites are least able to tolerate overhead in interface components
- One size does not fit all...

The mini-PnP (MP)/SPA-1 protocol

- We sought the simplest possible electrical interface – chose I²C (few wires, multidrop, simple state machines, ubiquitous)
- The choice left us "only" to decide what to do above the physical layer
- Many protocols for I2C have been developed (SMbus,ACPI), none "plug-and-play"
- Team jointly created generic (non-space-specific) protocol for I²C ("mini-PnP") as open source (non-ITAR) protocol (space-qualified version – SPA-1 – created in US would be subject to ITAR)

MP/SPA-1

opcode (1 byte) message length (2 bytes) payload (length bytes)

Commands (opcode)	Responses (opcode)
Self test	Status
Reset	Data
Initialize	xTEDS
Request version	xTEDS & PID
Request xTEDS	Version
Request data subscription	Hello
Cancel data subscription	
Power on	
Power off	
Command	
Time at tone (SCET)	
General call for registration	
Update address	
Ack	
Not Ack	

Mini-PnP/SPA-1 Address resolution

- All mini PnP devices have unique global identification (guid)
- Implement address resolution by performing a "general call"
- All devices use 0x11 as an initial address.
- Devices become multi-master and "walk up" address space until they find an open spot and claim it

FMV (AACMicrotec Mini-PnP/SPA-1 Electronic Data Sheet (xTEDS*) registration

- Mechanism defined to permit the extraction of electronic datasheets from mini-PnP device
- Host parses xTEDS* and registers device services for use by other devices and applications

Mini-PnP/SPA-1 Round Robin communication

 Mini-PnP Implements a Command ("write"), Response ("read"), and General Call as a continuous cycle using a non-weighted round-robin, visiting all known devices and looking for new ones

Using mini-PnP/SPA-1 Building spacecraft with SPA: you'll need

components...

..at least one computer...

... and routers / hubs / switches (possibly)

Connect together to form a spacecraft...

FMV (AAC Microtec State of mini-PnP/SPA-1 development

- ASIMs (US) / RTUs (Sweden) in development
 - 1. Low cost (~ 30\$US) prototype / experimentation modules (mini-PnP)
 - 2. Pre-flight units (~100\$US) cofired ceramic / QFN modules (10mm x 10mm) (quasi – SPA-1)
 - Flight units (~??US) cofired ceramic / rad-hard / QFN modules (10mm x 10mm) (SPA-1)
- Other flight units / evaluation units with enhanced features available from AAC Microtec

Radiation Tolerant nano-RTU

- FPGA based
 - 20 kRAD SEU/SEE free using TMR, EDAC, parity and CRC
 - Fully pipelined PIC16 soft core (16F84) with 1 MIPS/MHz
 - In circuit/system programmable
 - Power consumption ~ 20-150 mW
 - PCB version (34 x 34 mm²)
- Interface to low speed devices ~ 100 kbit/s (SPA-1)

SPA-1 RTU block diagram

SPA-1 RTU (MCM)

SPA-1 RTU (board version)

Upcoming Work

- Continued development on mini-PnP and SPA modules and evaluation kits
- Flight project developments
 - RAMPART mixed network of ASIM/RTU modules to study radiation effects
 - Trailblazer 1.5 "simple-as-possible" exploratory cubesat (completely SPA-1 based)
 - QuadSat/PnP

System design example (QuadSat-PnP)

Conclusions

- The SPA Plug-and-play architecture offers a new model for rapidly and flexibly building spacecraft through intelligent modularity
- A joint US/Sweden program ("NAPA") has developed improvements to SPA to allow simple spacecraft components to support plug-andplay
- The development of the generic minimalist protocol has been described
- The mini-PnP protocol will be open source / ITAR free, but space adaptation of mini-PnP (referred to as "SPA-1") results in ITAR restrictions (when performed in the US)
- AAC Microtec (Sweden) has created interface modules that implement mini-PnP in rad-tolerant form
- System design example has been described