Integrating Lithium Polymer Charging and Peak Power Tracking on a CubeSat Class Satellite

Dan Kaste, Dan Brinks, Jim Moore, Hugh White Zach Palmer and Will Holmes

Presentation Overview

- Students Involved
- Mission Summary
 - Design for Assembly
 - Mesh Network
 - Science Instruments
- Power System
 - Design Principles
- Summary / Conclusion

Students Involved

- Dan Kaste
- Hugh White
- Dan Brinks
- Jared Sutter
- Jim Moore
- Zach Palmer

Mission Objectives

- Demonstrate a functional wireless mesh network in orbit
- Take concurrent multipoint measurements of space plasma density
- Detect Very Low Frequency (VLF) "Whistler Waves" with spatial and temporal resolution.
- Langmuir Plasma probe and VLF must be able to interface into Boston University's BUSAT
- Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT

Satellite System

Mission Objectives

- Demonstrate a functional wireless mesh network in orbit
- Take concurrent multipoint measurements of space plasma density
- Detect Very Low Frequency (VLF) "Whistler Waves" with spatial and temporal resolution.
- Langmuir Plasma probe and VLF must be able to interface into Boston University's BUSAT
- Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT

Mission Objectives

- Demonstrate a functional wireless mesh network in orbit
- Take concurrent multipoint measurements of space plasma density
- Detect Very Low Frequency (VLF) "Whistler Waves" with spatial and temporal resolution.
- Langmuir Plasma probe and VLF must be able to interface into Boston University's BUSAT
- Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT

Mission Objectives

- Demonstrate a functional wireless mesh network in orbit
- Take concurrent multipoint measurements of space plasma density
- Detect Very Low Frequency (VLF) "Whistler Waves" with spatial and temporal resolution.
- Langmuir Plasma probe and VLF must be able to interface into Boston University's BUSAT
- Satellite must Demonstrate a high level of modularity, allowing subsystems to be reused on future missions and on BUSAT

Langmuir Plasma Probe

- Purpose:
 Measure low energy,
 thermal electrons (0
 to 6 eV) (L1-2)
- Returns both Density and Energy (Temperature)

VLF Receiver

Detect "Whistler Waves."

Image from Stanford website

Presentation Overview

- Students Involved
- Mission Summary
 - Design for Assembly
 - Mesh Network
 - Science Instruments
- Power System
 - Design Principles
- Summary / Conclusion

Power System Requirements

- Maintain Downlink Capability
 - Available power always above 2 watt hours
 - Charge batteries correctly

Power System Requirements

- Maintain Downlink Capability
 - Available power always above 2 watt hours
 - Charge batteries correctly
- Maximize Power Flow into Satellite
- Distribute Power to Satellite
- Have an efficiency greater than 80%

Power System

Power System

Status

- Implementation of Peek Power Tracking / Li Battery Charging not Complete
 - First Iteration of Circuit Board
 Complete
 - Software awaiting Hardware
 - Look for Testing Results at Booth at Next Year's Conference
- Satellite Subsystems Developed
 - VLF, Plasma, Communications (Mesh Network), System

Lessons Learned / Summary

- Pay Attention to Assembly and Systems Engineering from the beginning of a Project.
- Make sure that Complexity does not increase.
- While satellite not delivered, six students were trained.

