A Low-Power Dual-Processor Computing System for Advanced Nanosatellite Missions

Nathaniel Colson
Purdue University
ncolson@purdue.edu

22nd Annual AIAA/USU Conference on Small Satellites August 13, 2008

Overview

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Conclusion

Two Processors:

- DSP
 - 500 MHz
 - 1 W

- Microcomputer
 - 8 MHz
 - < 10 mW

Overview

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

- Very large computational power available
- Low average power consumption

Attitude Determination and Control

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

- Primary engineering mission:
 - Attitude determination within 1 degree
 - Attitude control within 5 degrees
- Algorithm:

- Matrix / vector multiplications
- Matrix inversions
- Floating point variables

ZMobile DSP System

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Conclusion

 Zmobile Mixed Signal board from Schmid Engineering:

- Graphical DSP programming with Embedded LabVIEW
- Four 14-bit A/D channels
- Five UARTS
- Programmable self-shutdown

Host Computer

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Conclusion

Tasks:

- Generating wakeup signals for ZMobile DSP
- Generating PWMs to drive torque coils
- Performing all Command and Data Handling

Communications On Board system

- Generic C&DH system from Taylor University
- Supports I2C, SPI, RS232
- Based on ultra low-power
 MSP430

Host Computer

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Conclusion

Microcomputer Upgrade:

- MSP430-1611
 - 10 KB RAM
 - 48 KB FlashMemory
 - 2.5 mA SupplyCurrent
 - 2 Serial Interfaces

- MSP430-**5438**
 - 16 KB RAM
 - 256 KB FlashMemory
 - 1.55 mA SupplyCurrent
 - 4 Serial Interfaces

- 6-layer PCB
- 4"x4" board size

- 4-layer PCB
- 4"x2.4" board size

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Average Power Consumption

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

```
1.0 W * 10% Duty cycle
+
10 mW * 100% Duty cycle
=
< 125 mW
```

Design Verification

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Conclusion

Computational Performance

Power Consumption

Inter-processor Communication

Overview

Attitude D & C

ZMobile DSP

Host Computer

Operation

Results

Conclusion

Nathaniel Colson

ncolson@purdue.edu

Paul Moonjelly

pmoonjel@purdue.edu

Faculty advisor: Prof. David Filmer

filmer@purdue.edu

Special thanks to:

Schmid Engineering, Taylor University, Manikkavasagan Ambalavanan, Curt Freeman, Robert Manning, John Tsohas, Kautilya Vemulapalli

