

Affordable Rad-Hard – Impossible Dream?

Presented to 2008 Small Satellite Conference

- Vision of parts mix for future satellites
- FPGA commodity parts for space
- Structured ASICs nano-scale performance at low cost
- Catalog parts minimally invasive process for enhanced hardness
- ASICs library for hardened by design

Parts Mix for Future Satellites

- Tightly constrained piecepart budgets
- Reduced development time
- Decreased power allocations
- Increased onboard processing
- Standardized interfaces

SIRF VIRTEX 5 Program

- Total Dose 300 krad(Si)
- Single Event Latchup None
- Single Event Upset
 - 1E-2 data err/chip-day
 - 1E-4 config err/chip-day

Assumptions: AFRL rough estimates for comparable million gate applications. Typical ASIC budget is \$10M, 2 yrs; typical FPGA budget is \$2M, 6 months.

Structured ASIC Concept

SRAM

Reticle Floorplan

- One 10 x 10 die
 - Full feature die
- Two 7 X 7 die
 - One full feature
 - One memory heavy
- □ Four 5 X 5 die
 - Two full feature
 - Two logic only
 - One full feature reserved for Lot Qualification
- Four 3 X 3 die
 - Three logic only
 - One location reserved for Reliability Test Coupon

Die Size	Total Pads	Pwr/GND	CMOS User IO	SERDES	PLL	Block SRAM	Distributed DP SRAM	Equivalent Logic Gates	SERDES LVDS*	PLL	VROM
3 x 3	172	60	96	0	0	None	~86K Bits	~126k	No	No	None
5 x 5 A	276	112	158	0	0	None	~217K Bits	~318K	No	No	256K Bits
5 x 5 B	276	92	128	28	18	5 Blocks 8K X 8	~125K Bits	~183K	Yes (4 Lanes)	Yes	512K Bits
7 x 7 A	410	114	192	56	18	7 Blocks 8K X 8	~356K Bits	~522K	Yes (8 Lanes)	Yes	512K Bits
7 x 7 B	410	154	248	0	0	28 Blocks 8K X 8	~164K Bits	~240K	No	No	512K Bits
10 x 10	604	152	328	112	31	8 Blocks 8K X 8	~850K Bits	~1.2M	Yes (16 Lanes)	Yes	512K Bits

LVDS IO is only available if not using the SERDES lane(s).

16 Mbit SRAM Team

- Silicon Space Technology
 - Minimally Invasive Implant Technology
 - 16 Mbit Architecture
 - Silicon Design Solutions Designers
 - DPACI Prototype packaging
- Texas Instruments
 - 180 nm process
 - 12 wafers processed
 - 3 splits
 - Baseline
 - Implant A
 - Implant B
 - First pass yield 40% to 50% (573 devices)
 - Process compatible with hardening catalog parts

16 Mbit SRAM Characteristics

- C05HA512K32 is a high performance CMOS SRAM organized as 524,288 words with 32-bit word.
- Configurable as Master or Slave device during package. Master device (C05HA512K32M) can initiate autonomous scrub and demand scrub cycles on Slave device (C05HA512K32S).
- 20ns read, 10ns write maximum access time
- Functionally compatible with commercial 512Kx32 SRAM devices
- Built-in EDAC (Error Detection and Correction) to mitigate soft errors
- Built-in Scrub Engine for autonomous correction
- CMOS compatible input and output level, three state bidirectional data bus
- 3.3 +/- 0.3V I/O, 1.8 +/- 0.15V CORE
- Radiation performance
 - Use both substrate engineering and radiation hardened by design (HBD)
- Packaging -- 68-lead ceramic quad flatpack (CQFP68)

Library for Affordable ASICs*

- 1014 Cells equivalent to commercial library with parameterized options for speed, power, radiation hardness. Designed and verified for IBM 9SF process.
 - Status V1 Library Status
 - Electrical, Functional, Radiation characterization complete
 - EDA views, models validated
 - Used in multiple circuit designs
 - SET generation and sensitivity characterization in work
 - DICE Status
 - V2 Passed Go-NoGos, mitigated angular effects
 - V3 Jan '08 Test Used on OPERA/PDV1
 - V4 May '08 Test

Development Step	Data included				
Synthesis	Liberty Format Files (.lib) Synopsys Data Base Files (.db)				
Simulation	Verilog simulation models VHDL VITAL simulation models Cadence schematics				
Placement & Routing	Cell physical geometry Cell frame views Cell timing views Cell power views Technology file				
Verification	Cell SPICE netlist Verification decks version				
Support data	Cell datasheets Models & Design rules version				

Bottom Line: The government owns this technology and will ensure that it is made available to any and all government contractors and both Boeing and DARPA concur with this position.

- Affordability must be judged in terms of total system cost
 - Acquisition
 - Test
 - Application engineering
- Programs are underway to ensure the availability of reasonably priced, high performance pieceparts for space systems