

Deploying an Innovative

In-Situ Technology Test Bed (ISTTB)

Redefine Technologies

Along with Space Access Technologies & University of Colorado & NASA Ames

Presented by:

Steve Wichman - President of Redefine Technologies 720-317-5182 steve.wichman@redefine.com

New Technologies

- Software
 - RTI: Dynamic Mission On-orbit Control Kit
- Hardware
 - Space Micro: Proton 300K
 - Design_Net: Modular Reconfigurable Avionics
- Components
 - AeroAstro: Miniature Star Tracker

Flight Testing

- Convince someone
- TacSat or NMP
- Univ. class

- Whole' satellites costs \$\$\$
 - Management
 - Integration
 - Schedule

Self Manifest TM

Designer

Programs Office

- You choose when you fly
- Test early
- You design your experiment
 Test thoroughly

 - Inexpensive launch
 - Multiple launch opportunities

Technology
into Future
Resources

In-Situ Technology Test Bed (ISTTB)

Technology
into Future
Resources

RideShare and ISTTB

- Excess capacity on existing launches
- Regular, reliable and repeatable

- P-PODs, nanosatellites
- And now, ISTTB gives...
 - Software
 - Board-level hardware
 - Component-level devices

Spinning
Technology
into Future
Resources

- Payload Box
 - C&DH
 - Comm
 - Thermal
 - DUT Bay
- Battery Box
 - Power
 - ADS

ISTTB Flight Boxes

Spinning
Technology
into Future
Resources

Mounting to RSA

ISTTB Battery Box

P-POD or RocketPod

into Future Resources 151

Mission

- What does this satellite do? How does it work?
 - Identify early testing needs
 - You design and run the most relevant experiments
 - Self Manifest TM that technology on a launch
 - Sensors read real-world environment
 - Dosimeter card
 - Voltage, current, temperature
 - Position and attitude
 - Support Board: send and receive test patterns to your device
 - Flight computer will collect test results
 - Mission Operations will retrieve your data

Spinning
Technology
into Future
Resources

Test Bed DUTs

(Devices-Under-Test)

- Software
 - Dedicated flight computer
 - 1, 8 or 16 MB memory available
 - GPIO and other data bus clients
- Board-level hardware
 - 3.3V, 5V power for a 3U size card
 - (x3) cPCI slots (other interfaces coming soon)
 - Support board with GPIO and 'data suppliers'
- Component-level devices
 - 28 V power
 - 4000 cm³ (260 in³) @ 2.0 kg (4.4 lbs)
 - Iso-grid mounting pattern
 - Your choice of interfaces: USB, I2C, SpW, serial, GPIO, Eth

Examples of Tests

- Software
 - Get real voltage and current readings and react to them
 - Base decisions on real GPS output
- Board-level hardware
 - T3RSS (NASA Ames)
 - Dynamic test pattern generator on the support board and a 'comparator' after the board
- Component-level devices
 - Reactions wheels or torque coils
 - Read attitude sensors and see how it affects the RSA

Benefits

- Each DUT gets:
 - 100% dedicated test time = Primary Payload
 - Multiple flight opportunities = 1-3 per year
 - Manifest to launch readiness in 1-9 months
 - Real-world testing environment
 - *Complimentary* and/or *alternative* option to cyclotron beam testing for electronics
 - Real thermal cycles in a vacuum
 - Real launch environments

Benefits (cont)

- Each DUT gets:
 - Affordable business opportunity
 - No payload on-board considered a "national or scientific emergency" (i.e. Hubble, GPS, NOAA, etc)
 - Increase your TRL $(6 \rightarrow 7/8)$
 - Flight heritage = jump start your product line
 - Incremental Program Office approach
 - Test early
 - Actually get the latest-and-greatest

Resources 15

Future of ISTTB

- Commercial companies
 - Validate flight software/hardware/components
 - Flight test prior to 'real-science' or 'real-tactical' missions
 - Multiple flights per year
- ORS, DARPA, NRL, NASA
 - Rapid technology testing use the latest-and-greatest instead of keeping it on the shelf
 - Concentrate on the technology/science
 - Eliminate much of the management/integration overhead

Technology
into Future
Resources

Hardware

Questions?

Electronics
ISTTB

Flight Comm Support GPS
Computer System Boards Receiver

Hardware ISTTB

- What is the price of an ISTTB ride? *
 - S/W and Board-level hardware
 - \$100K \$400K
 - Component-level device
 - \$300+

* Subject to change

Technology
into Future
Resources

- What orbit will ISTTB fly in?
 - Variety of orbits:
 - LEO (low inclination to polar)
 - MEO
 - GTO
 - Depending on where the other payloads are going

- Length of an ISTTB mission?
 - The ISTTB may orbit for years depending on orbit
 - Standard test time is 3 months

- ISTTB's telemetry capability?
 - Uplink and downlink
 - Throughput #s: ??? (kb/sec per pass duration)
 - Depending on orbit/COMM chosen

Technology
into Future
Resources

FAQ #5

- What attitude will ISTTB adopt?
 - The RSA does not have attitude control*
 - The second stage = gravity-gradient

* Unless that is what you're testing

- What capabilities does the Support Board include?
 - Pseudo-custom board to suit your needs
 - Data provider FPGA to pump data to your device
 - Data comparator FPGA to compare device output to expected output then report differences
 - GPIO, USB, I2C, SpW, serial
 - Read GPS, sensors
 - Actuating device: camera, relay

- How many ISTTB flight opportunities?
 - 1 to 3 per year
 - Depending on extra room available and primary customer payload (i.e. classified)

- What was your initial purpose to develop the ISTTB?
 - NASA Ames redundancy research = Triple³
 Redundant Spacecraft Subsystems (T3RSS)
 - T3RSS board is proposed as the first payload
 - Open the opportunity to others...

Technology
into Future
Resources

- When is the first ISTTB flight?
 - 2009-2010 timeframe

- What are other options?
 - TacSat
 - NMP
 - Old options:
 - NASA's Orbiting Technology Testbed Initiative (OTTI)
 - Space Environment Testbed (SET)

Spinning
Technology
into Future
Resources

FAQ #11

• (your question)

Deploying an Innovative In-Situ Technology Test Bed (ISTTB)

Redefine Technologies

Along with Space Access Technologies & University of Colorado

Presented by:

Steve Wichman - President of Redefine Technologies 720-317-5182 steve.wichman@redefine.com

Backup Slides

Spinning
Technology
into Future
Resources IM

Electronics ISSTB

Hardware

Spinning
Technology
into Future
Resources

Hardware ISSTB

Spinning
Technology
into Future
Resources

Launch Vehicle

Rideshare Adapter

Battery Box

Nanosat

ISTTB

P-POD or RocketPod

Deploying an Innovative In-Situ Technology Test Bed (ISTTB)

Redefine Technologies

Along with Space Access Technologies & University of Colorado

Presented by:

Steve Wichman - President of Redefine Technologies 720-317-5182 steve.wichman@redefine.com