

Dallas EEProm Equipment Profile for Rapid Integration and System Modeling

Forrest Rogers-Marcovitz Aerospace Systems Laboratory, Washington University in Saint Louis

> *Phelps Williams* Robotic Systems Laboratory, Santa Clara University

SCHOOL OF ENGINEERING & APPLIED SCIENCE

DEEP enables subsystem-level embedded operational intelligence, system modeling, and rapid integration capabilities

Presentation Order:

- Need for Rapid Integration
- Past RIT Success
- Motivation
- Scope
- DEEP Concept
- DEEP Implementation
- Future Work
- Conclusion

Santa Clara University

SCHOOL OF ENGINEERING & APPLIED SCIENCE

Need for Rapid Integration

ASL RSL

RI&T Need

Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Conclusion

Santa Clara

University

Washington University in St. Louis SCHOOL OF ENGINEERING

& APPLIED SCIENCE

Problems Faced in Satellite Integration:

- Complex system interactions
 - Weeks or Months
- Competing Proprietary Protocols
- Interface Control Documents (ICD)
 - Consumes time and resources

Goals of Rapid Integration:

- Provide Plug-and-Play functionality
 - similar to USB
- Increase Modular Design
- Create Standard Interface
- Decrease Integration Time
 - Days

Past Rapid Integration Success

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Conclusion

Successful RI&T Demonstration

2006 AIAA/USU Conference on Small SatellitesFunctional Integration of Akoya and ONYX via a common bus within 30 minutes

Flight Integration:

April 2007:

- Full Spacecraft Integration: 10 days!
 - •Akoya and ONYX integration in parallel
- Rapid Integration of SCU payload: 126 seconds!

Santa Clara University

University in St.Louis School of Engineering & Applied Science

Based on Emerald Protocol:

- Standard Power and Data Bus
- I²C and Dallas 1-wire Interfaces
- Distributed Computing Architecture

Motivation

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Conclusion

Issues Encountered in RIT Demo

- Conflicting Addresses
- System Interactions must be known prior to integration
- Commands and Responses required external definition
- System configuration required external maintenance
- No way to recognize new system integrated onto bus

DEEP eliminates pre-integration coordination and create subsystemlevel embedded operational intelligence.

Scope

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation

Future Work

DEEP is designed to meet the needs of University Class and other small satellites

University Class Satellites

- Are small, low-cost satellites with short design timelines
- Take higher risks with potentially larger pay-offs

& APPLIED SCIENCE

Many of the DEEP concepts are applicable to more complex spacecraft designs and other plug-and-play systems

DEEP Concept

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Conclusion

SCHOOL OF ENGINEERING & APPLIED SCIENCE

- Embedded EEPROM memory device on functional elements
 - Contains conceptual model of operational traits:
 - Operational state definition
 - System characteristics (thermal, power, physical, etc)
 - Commands and responses
 - Onboard Datasheet
- Enables dynamic generation of functional model
- System-wide service awareness
- Automated software generation

DEEP Concept

Santa Clara University Washington University in St. Louis SCHOOL OF ENGINEERING & APPLIED SCIENCE

• Enable design and simulation of advanced concepts prior to implementation

DEEP Concept

NANOSAT.WUSTL.EDU

AEROSPACE SYSTEMS LAB, WASHINGTON UNIVERSITY IN ST. LOUIS

DEEP Implementation

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Recommendation

- Required Elements for DEEP Operation
 - Standardized Communications bus [Dallas 1-Wire]
 - Common Memory Device [Dallas 1-wire EEPROM Memory]

RSL.ENGR.SCU.EDU

NANOSAT.WUSTL.EDU

Common Memory Structure [Equipment Profiles]

DEEP Implementation

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Recommendation

- Heritage hardware design (AVRSat Modules)
 - Hardware utilizes existing bus standard Emerald Protocol suite
 - DEEP services tailored to existing hardware
 - EEPROM devices chosen based on existing bus implementation (Dallas 1-Wire)

Future Work

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Conclusion

Future Work:

- Continued development of DEEP Concept
 - Develop Model Interactions
 - Model Based Reasoning Anomaly Management
 - Expand Sensor and Hardware Model Library
 - Automated Software Generation
 - Mission Conceptualization Framework

Conclusion

ASL RSL

RI&T Need Past RIT Success Motivation Scope DEEP Concept DEEP Implementation Future Work Conclusion **DEEP enables** embedded operational intelligence, system modeling, and rapid integration capabilities in small satellites

NANOSAT.WUSTL.EDU

AEROSPACE SYSTEMS LAB, WASHINGTON UNIVERSITY IN ST. LOUIS Forrest Rogers-Marcovitz, forrestrm@gmail.com