Performance Assessment of Single and Dual-Frequency, Commercial-based GPS Receiver for LEO orbit

Keisuke Yoshihara, OShinichiro Takayama, Toru yamamoto, Yoshinori Kondoh, Hidekazu Hashimoto Japan Aerospace Exploration Agency (JAXA)

> Alfred Ng, Anton De Ruiter, James Lee Canadian Space Agency (CSA)

21th ANNUAL AIAA/USU CONFERENCE ON SMALL SATELLITES

CONTENTS

- 1. Background
- 2. Dual Frequency GPS Reciever "OEM4-G2L"
 - Description of NovAtel OEM4-G2L
 - Performance Tests of OEM4-G2L
- 3. JAXA's Micro-GPSR(MGPSR)
 - Description of MGPSR
 - Performance tests
- 4. Introduction of JC2SAT-FF Mission
- 5. Summary

Background

Previous GPS receivers

- Many of GPS receivers operate on L1 frequency and its navigation accuracy is limited by <u>ionospheric path delay</u>.
- Earlier studies proposed the correction method for its delay using an ionospheric model for LEO altitude.

Dual Frequency GPS receivers

- •Direct correction of ionospheric path delay.
- •The onboard navigation accuracy is much better than that of single frequency GPS receivers.
- •Limitaion on available selection of space-capable one.

We've adopted the low cost commercial dual frequency GPS receiver NovAtel "OEM4-G2L"

Description of NovAtel OEM4-G2L

Remarkable points

- Small size, weight, and low power consumption
- 24 tracking channel (12ch for L1 C/A & 12ch for L2 P-code frequency)
- ➢ Firmware modification
 - Removal of altitude and velocity limitation and correction of tropospheric delay.

(The study[®] of "OEM4-G2" reports the large position error of 13m with tropospheric delay correction. ©.Montenbruck, DLR)

item	specification
size[mm]	60 x 100 x 16
Weight [g]	56
Power [W]	1.6W @ 3.3V
Englishan	1575.42MHz (L1)
Frequency	1227.60MHz(L2)
interfece	RS232, RS422, TTL,
interface	PPS
Pata rate [Hz]	20
–	

Performance Test of OEM4-G2L

GPS signal simulator : Spirent STR4760

≻Test item :

- 1. Initial acquision test
- 2. Error free scenario test
- 3. Ionospheric error scenarios (constant TEC model) case1 : TEC value = 1e17 electron/m^2 case2 : TEC value = 1e18 electron/m^2

Attenution Gain [dB]

Elevation [dea]

Common setting of simulator

Initial Acquisition Performance Test

≻Objective

To evaluate the Time To First Fix (TTFF) from cold start.

- ➢Simulation configuration
- 12ch output
- Ionosphere model : constant TEC (1.0e17 electron/m2)

≻<u>Results</u>

- TTFF is about 2 to 8min. (5 to 40min @ MGPSR)
- OEM4-G2L is well able to operate under low earth orbit

Case	TTFF [sec]	Latitude at receiver activation [deg]
1	315	-0.03314
2	118	75.76264
3	497	26.62787
4	115	-47.9419
5	111	-55.8707

Performance Assessment (Error Free Scenario Test)

≻Objective

To provide the reference data for the other test cases and verify the effect of the removal of tropospheric delay correction on the firmware.

- ➢Simulation configuration
- 8ch output
- Ionospheric error : OFF
- \rightarrow Error sources are recevier clock and measurement noise.

Error Free Scenario (Position Error)

Canadian Space Agence spatiale Agency canadienne 8

Summary of Error Free Scenario

- Removal of Tropospheric delay lead to good accuracy
- Navigation accuracy is deteriorated when GDOP is high.
- → Antenna layout and filter design should be considered carefully.

	Radial	Cross-track	Along-track	
Mean Position Error	0.0258 [m]	-0.0127 [m]	-0.00919 [m]	
Position Error S.D.	0.571 [m]	0.186 [m]	0.252[m]	
Mean velocity Error	0.0579 [m/s]	0.00264[m/s]	0.00498[m/s]	
Velocity Error S.D.	0.0766[m/s]	0.0282[m/s]	0.0322[m/s]	

Summary of the results

⊗S.D. : Standard Deviation

Ionospheric Error Scenario Test

≻Objective

To evaluate the effectivity of the dual frequency (L1 & L2) observation to remove the ionospheric delay.

➢Simulation configuration

- 8ch output
- Ionospheric model : constant TEC (1.0e17 electron/m2)

Ionospheric Error Scenario (position errror)

Summary of Ionospheric Error Scenario

- Navigation accuracy is still good even in ionospheric path delay.
- Dual frequency observation is well able to remove the lonospheric path delay.

	Radial	Cross-track	Along-track	
Mean Position Error	0.0624 [m]	-0.00982[m]	-0.0292 [m]	
Position Error S.D.	0.584 [m]	0.186 [m]	0.247[m]	
Mean velocity Error	0.0604 [m/s]	0.00039[m/s]	-0.0091[m/s]	
Velocity Error S.D.	0.0744[m/s]	0.0229[m/s]	0.0256[m/s]	

Summary of results

High TEC Scenario Test

➢ Objective

To evaluate the effect of the large ionospheric delay on the GPS receiver.

- ➢Simulation Configuration
- 8ch output
- ionosphere model : constant TEC (1.0e18 electron/m2)

High TEC Scenario (Position error 1/2)

High TEC Scenario (Position Error 2/2)

Position error remarkably increased with loss of L2 signal

15

Summary of High TEC scenario

- Navigation errors are mainly due to poor DOP.
- But..., some data shows large position error in relatively good DOP.
- These position errors are due to loss of L2 signal
 - OEM4-G2L switches to the model based ionospheric delay correction.
 - The model (Klobcar model) used in this case does not suitable to space use.

	Radial	Cross-track	Along-track	
Mean Position Error	0.00479 [m]	-0.00753[m]	-0.141 [m]	
Position Error S.D.	1.06[m]	0.294 [m]	0.549[m]	
Mean velocity Error	0.124 [m/s]	0.0129[m/s]	-0.080[m/s]	
Velocity Error S.D.	0.179[m/s]	0.0581[m/s]	0.109[m/s]	

Summary of results

JAXA Micro-GPS Receiver (MGPSR)

- The COTS based single frequency GPS receiver
- Firmware modification
 - Carrier phase output is added.
 - removal of altitude limit, Tropospheric and Ionospheric delay correction

Item	Specifications
Size	72 x 50 x 40 mm
Mass	215g
Power	1.5W (typical)
Frequency	1575.42 MHz (L1)
No. of channels	8 ch
Output data	PPS signal Navigation data Raw data Ephemeris data
Interface	RS-422, +5VDC
17	

Ionosphere Scenario Tests (compared with OEM4-G2L)

➤ Navigation accuracy of MGPSR is affected by the Ionospheric delay especially in radial direction.

	Radial	Cross-track	Along- track	20 15 E 10 Along- track Error Along- track Error
Mean Position Error	0.0624 [m]	-0.00982[m]	-0.0292 [m]	
Position Error S.D.	0.584 [m]	0.186 [m]	0.247[m]	^C - 10 - 15 ⁵ 00 2000 2500 3000 3500 4000 4500 50 - 20 Time [see]

Results of OEM4-G2L

18

High TEC Scenario Test (compared with OEM4-G2L)

Ionospheric delay affect the navigation error of the MGPSR more significantly than that of OEM4-G2L.

Results	of	MGP	SR
---------	----	-----	----

	Radial	Cross-track	Along-track	50 40					Radial Error
Mean Position Error	0.00479 [m]	-0.00753[m]	-0.141 [m]	正 20 近 10 近 10					Alono-track Error
Position Error S.D.	1.06[m]	0.294 [m]	0.549[m]	<u>9</u> - 10 8 - 20 - 30 - 40					
				- 50 25	00	3000	3500 Time	4000	4500 50

Results of OEM4-G2L

JC2Sat-FF Mission

JC2Sat-FF Mission

- International joint research between CSA and JAXA.
- A nanosat formation flying mission based on differential drag technique and GPS based relative navigation.
- The orbit information of each nanosat is obtained by its respective GPS receiver. This information is then transmitted via a S-band antenna to the other nanosat.
- On-orbit Attitude & Orbit Determination Systems software will then compute the separation between the nanosats and then determine the needed control authority to maintain the baseline.

SUMMARY

- Simulation based performance assessment of a commercial dual frequency GPS receiver NovAtel "OEM4-G2L" is performed. The result shows ;
 - OEM4-G2L shows well initial acquisition performance in LEO.
 - Under the condition in which Ionospheric delay is correctly removed by the dual frequency observation, the OEM4-G2L provides accurate navigation solution.
- The comparison of the performance between OEM4-G2L and JAXA MGPSR shows some advantages of the dual frequency receiver.
- More detailed study such as assessment of raw measurement accuracy will be performed in the future works.

