

Evaluation of Lithium Polymer Technology for Small Satellite Applications

Craig Clark (Clyde Space) and Evelyne Simon (European Space Agency)

15th August 2007

Introduction

- In 2003, ESA commissioned a study into the state of the art Lithium Polymer technology
- The main objectives of the study were to:
 - Identify space applications already using lithium ion technology that would benefit by switching technology.
 - To evaluate the state-of-the-art and their suitability for the identified applications
- The results point strongly to small to miniature spacecraft.

Study Structure

- Space applications
- Selection of 5 cells
- Evaluation of 5 cells

Study by SSTL and ABSL

Life Testing

} ESA Internal Testing

Potential Space Applications

- Nanosatellites

15 August 2007 2007

Potential Space Applications

Comparative Performance Evaluation

- Palmsat
- Herschel Planck
- Rosetta (as flown)
- Rosetta (redesigned to optimise for Lithium Polymer)
- Venus Express
- Eurostar3000
- Beagle2

Comparative Performance Evaluation

Cell Selection

Evaluation Criteria	Weight	Scoring
Technical		Total of 30 points for technical
Energy Density	10	
Cycle Life	5	
Radiation Tolerance	10	
Outgassing	5	
Survey Responsiveness	15	Willingness to participate in space applications
Commercial	20	Geopolitical factors, economic stability
Flexibility	10	Capability to manufacture different chemistry and size variants.
Manufacturing Volume	10	Favours small production volumes over prototyping/high vol.
Space Heritage	15	Cell heritage

Cell Selection

Code	Weight	Dimensions	Capacity	Voltage	Energy	
					Density	
	/ g	/ mm	/ A hr	/ V	/W hr kg-1	/ W hr litre-1
A	65.5	5.3 x 64.0 x 95.0	3.30	3.70	186	383
С	33.0	3.4 x 55.0 x 85.0	1.60	3.70	179	372
D	44.0	4.8 x 55.0 x 84.5	2.00	3.70	168	332
F	22.0	5.0 x 37.0 x 59.0	1.02	3.70	172	346
G	175	6.4 x 94.0 x 127.0	9.13	3.70	197	454

Evaluation Testing

DPA
Vacuum
Radiation

A and C

D

F

G

60Co radiation test up to 500 Krad: No effect noticed

Evaluation Testing

Capacity (@ C/10)
Resistance
Self Discharge

Test	24hr storage	-10°C	0°C	20°C	40°C
Α	✓	✓	✓	//	11
С	✓	✓	√√	√√	√√
D	✓	✓	✓	/ /	11
F	✓	✓	/ /	//	44
G	x	x	✓	√√	44

Evaluation Testing

Test	Α	С	D	F	G
Vacuum	x	x	x	✓	x
DPA	✓	✓	✓	✓	✓
Radiation	✓	✓	✓	✓	✓
Capacity	✓	√√	✓	√√	x
Resistance	✓	√√	✓	V V	x
Self discharge	✓	✓	✓	✓	x
Mission scenario	✓	✓	✓	✓	x
EMF vs SOC	✓	✓	✓	✓	✓

Life Testing

- Under reduced pressure (15-20 mbars)
- 30 % DoD cycling at 20°C, capacity check every 50 cycles.
- Discharge rate: C
- Charge rate: C/2 + tapering

Clyde Space CubeSat EPS with Integrated Lithium Polymer Battery

Conclusion

- Small and miniature spacecraft have been identified as applications where lithium polymer has significant advantages over lithium ion technology.
- From a technical perspective, the technology is ready for use on missions with a design life of at least one year.
- Clyde Space is continuing to develop the technology to prove longer mission life capability and more variety in battery configurations.
- Please visit if you are in Scotland:
 - IAC2008 is in Glasgow!!

