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M. Romano, D.A. Friedman, T.J. Shay, Laboratory Experimentation of Autonomous Spacecraft 
Approach and Docking to a Collaborative Target, AIAA Journal of Spacecraft and 
Rockets, Vol. 44, No. 1, pp. 164-173, January-February 2007. 

2005-2006: AUDASS: S/C Simulators on Flat Floor
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2006-Present: Interacting S/C w/ Micro-CMG & Rotating Thrusters

J. Hall, M. Romano, A Novel Robotic Spacecraft Simulator with Mini-Control Moment 
Gyroscopes and Rotating Thrusters. Submitted to IEEE AIM 2007.
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Key AMPHIS Parameters

Dual semi-circular rotating 
thrusters

Air propellant
.28 N max thrust

Single-gimbaled miniature 
control moment gyro

.668 Nm max torque
.098 Nms momentum storage
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Benefits of 3DOF work on a flat floor

With respect to spacecraft involved in proximity 
operations, the in-plane and cross-track dynamics are 
decoupled, as modeled by the Hill-Clohessy-Wiltshire 
(HCW) equations.
With the orbital dynamics considered to be a disturbance 
during the proximity navigation phase of a rendezvous 
maneuver, the spacecraft navigation and control system 
can provide necessary compensation
The hardware-in-the-loop nature of the flat floor test-bed 
can be used to fully reproduce the interaction of the GNC 
algorithms with the actual dynamics of the sensors, 
actuators and data transmission
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Motivation for Rotating Thruster Configuration

Advantages of vectorable thrusters 
Ability to decrease propellant use through optimized 
thrust vectors
Free up both surface area and spacecraft volume for 
other components such as docking interfaces, sensor 
packages, payloads
Reduction in propulsion system complexity through the 
elimination of requisite valves and piping

Disadvantages
Single String Control if one eliminates momentum 
exchange devices
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AMPHIS Equations of Motion

Developed using 
Lagrangian formulation

Generalized coordinates 
taken to be inertial position 
of the body (X,Y) and the 
angle of the body x-axis wrt
to the inertial X-axis (θ)

Kinetic Energy only due to 
the negligible slope of the 
flat floor and frictionless 
environment
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AMPHIS Equations of Motion

Well-studied control-affine system form where
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AMPHIS Equations of Motion with Proper Controls

Resolving the thrust 
vectors from each thruster 
into their respective x and 
y components and 
providing a logic so that if 
the required force is 
negative use thruster A 
and positive use thruster 
B, the EOM are proper 
with respect to the controls , ,
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Notions of Controllability

Small Time Local Controllability (STLC)
The reachable set is time limited in that it represents the 
set of all states that are reachable in a given time less 
than or equal to a desired time.

• I can get where I want when I want

Most naturally suited for environments with obstacles 
or path constraints.
If the initial state is taken to be zero for control-affine 
systems with drift, then STLC can be studied in this 
vicinity
Can be determined using Lie Algebra methods
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Summarization of STLC Results for AMPHIS simulator

Considering different 
combinations of actuators 
for the 3-DoF AMPHIS 
simulator, a complete 
development of the 
controllability of the 
system can be found
The system is STLC with 
only the paired vectorable 
thruster configuration (as 
highlighted)
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Input-Output Linearization

A decoupling nonlinear control law can be found to 
feedback linearize this nonlinear system where there are 
no internal dynamics
The linearized system can then be feedback stabilized 
using standard linear control system theory.  For initial 
studies, a Linear Quadratic Regulator is employed, 
yielding satisfactory results.  
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Simulation Results 0 , 3, 5, 45 degf f fx y θ= = = =x 0
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Simulation Results 0 , 3, 5, 45 degf f fx y θ= = = =x 0
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Conclusion

Application of rotating thrusters to full 6-DOF 
spacecraft model

Need to consider drift vector (non-zero initial condition 
for standard keplarian model)
Consider HCW equations where equilibrium point is 
center of RSW coordinate system and can achieve zero 
initial condition
Preliminary results using Lie algebra methods show that 
two hemi-spherical opposite face mounted thrusters can 
provide STLC (Canfield Joint)

Tests on AMPHIS testbed verified simulation 
results
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Movies

Hemispherical Joint Firing Demonstration
Courtesy: Dr. Stephen Canfield, Professor,

Mechanical Engineering, Tennessee Tech University

AMPHIS Demonstration Simulation Video
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