A Model Based Toolset for Supporting Rapid Integration and Verification of Spacecraft Electronics

Anand S Madhusoodanan

Brandon Eames

Electrical and Computer Engineering

Utah State University

Wednesday, August 29, 2007

Overview

- Motivation: Self-verification in rapidly integrated systems
- Approach: Domain Specific Modeling + RapidCode Generation
- Modeling Devices, Device Communication
- Generating System Self Test

Rapid Spacecraft System Integration

- Responsive Space Initiative: SPA-U (USB) based plug-n-play electronics
 - Online device discovery and integration
 - "Intelligent" devices
 - > xTED: Electronic Data Sheet
 - Middleware for dynamic device integration, data routing
- Question: How to verify the integrated system?
 - Were the proper devices "plugged in"?
 - Does the system have all the necessary components?

Approach

- Visual Modeling
- Virtually capture devices, system prior to building system
- Automatic code generation
 - Communications middleware API
 - On-board self test to check integrated system health

Toolflow

Graphical Modeling Tool

Communications Middleware

Auto Generation


```
int write(.....)

{
    usb_claim_interface (....);
    if (endpoint is a bulk endpoint)
    {
        bytes_written = usb_bulk_write (........);
        usb_release_interface (...);
        return (bytes_written);
    }
}
int read(.....)
{
    usb_claim_interface(....);
    if(endpoint is a bulk endpoint)
    {
        bytes_read = usb_bulk_read(........);
        usb_release_interface(...);
        return(bytes_read);
    }
}
```

```
int write(......)

{
    usb_claim_interface (....);
    if (endpoint is a bulk endpoint)
    {
        bytes_written = usb_bulk_write (........);
        usb_release_interface (....);
        return (bytes_written);
    }
    int read(......)

{
        usb_claim_interface(....);
        if(endpoint is a bulk endpoint)
        {
              bytes_read = usb_bulk_read(........);
              usb_release_interface(....);
              return(bytes_read);
        }
}
```

On-board Self Test Software

The Generic Modeling Environment

- Tool Infrastructure for implementing Domain-Specific Modeling Languages (DSMLs)
- High-level interfaces for interpreter creation: "compiler" for the visual language
 - Translate the captured diagrams into "something useful"

Modeling Device Communication

- Device-specific message sequences
- Facilitate determining health status of device

Modeling Spacecraft Electronics

Test Platform

- Technologic Systems TS
 - -7260
 - > ARM based processor
 - ▶ Linux
- DLP Sensor
 - Temperature Sensor
 - USB-Serial Interface
- Libusb library
 - User-space device drivers

Summary of Work

- Address the problem to verification of rapidly integrated spacecraft systems
- Visual design tool
- Rapidly generate glue code that acts as middleware
- Generation of test suites
 - Probe each connected device for device health
 - Assure all devices are present