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Overview

Introduction

Overview of Spacecraft Model

Novel LQR/APF Control Algorithm
Artificial Potential Function (APF)
Spacecraft Convergence using LQR instead of APF
Adaptation of APF-based Collision Avoidance

Docking Performance Evaluation and Sample Simulation

Conclusion (Questions and Discussion)
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Introduction: Abstract
Development of an autonomous distributed control algorithm for 
multiple spacecraft in close proximity operations is examined.  

This research aims to give a contribution to the control of multiple 
spacecraft for emerging missions, which may require gathering, 
rendezvous, and docking.  

A control algorithm is proposed which combines the efficiency of
the Linear Quadratic Regulator (LQR) and the robust collision 
avoidance capability of the Artificial Potential Function method
(APF).  The LQR control effort serves as the attractive force toward 
goal positions, while the APF-type repulsive functions provide 
collision avoidance for both fixed and moving obstacles.  

The multiple spacecraft close proximity control algorithm gave 
promising results in simulations involving multiple spacecraft 
maneuvers. 
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Spacecraft Models

6 DOF Dynamic Spacecraft Model
Perturbations

Gravity Gradient depends on spacecraft mass distribution
Non-Symmetric Earth (J2-J4 coefficients)
Atmospheric Drag
Third Body effects due to Sun and Moon
Solar Radiation Pressure
Thrusters for translational control – Mass variation
Momentum Exchange Device (MED) for attitude control

Model Validation and Visualization via STK
Refer to AIAA Modeling and Simulation Technology (MST) Conference 
(Hilton Head, SC on 22 Aug 2007)
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Control Algorithms
Artificial Potential Functions

Translational Geometry
Obstacle Avoidance

Linear Quadratic Regulator (LQR)
Control efficiency versus time of maneuver
Incorporates linearized relative dynamics

Model/Sensor Uncertainty
Actuator Limitation
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Control Algorithms:  Development Assumptions
Control algorithms were evaluated as developed

Efficiency of control effort
• Δv based on changes in velocity commanded

Duration of maneuver
• Limited due to operational need for rendezvous/docking maneuver

Precision upon approach of goal
• Maneuver termination as a relative range is achieved
• Within 2 mm is good enough for docking…limited by sensors

Assumptions:
Initial spacecraft relative position within 1 km
Initial relative velocity is neutral (0 m/s)
Actuation limited due to thruster response
1 sec simulation rate (allowing future hardware implementation)
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Control Algorithms: Artificial Potential Function (APF)

Potential function can be Lyapunov based function
Convergence follows the negative gradient (negative rate of change)
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Control Algorithms:  Spacecraft APF

APF Control Block Diagram
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Control Algorithms: Refined APF with collision avoidance

Goal potential
Velocity damping relationship required for position 

• Goal position approach precision
• Actuator limitations (thruster firings)
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Control Algorithms: Refined APF with collision avoidance

Obstacle potential
Gaussian based to allow for direct incorporation of uncertainties
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Control Algorithms:  Spacecraft LQR/APF

LQR/APF Control Block Diagram
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Control Algorithms: LQR/APF Controller
LQR iterative optimal feedback yields

Collision avoidance is based on damping components of velocity and acceleration 

and

LQR/APF:
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Performance Evaluation: Close Proximity Operations
Multiple spacecraft close proximity ops
Convergence, Rally, and Rendezvous
Docking
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Performance Evaluation:  Docking
Docking maneuvers require precise convergence to the outer boundary of a Target 
spacecraft while avoiding collision

Collision avoidance of 
stationary obstacles and 
moving spacecraft

Asterisk (*) indicates 
thrust actuator saturation

Far Docking LQR/APF APF 
Δv = 4.1792 Δv = 3.7513 * Far with Obstacle 

RSW [0, 1000, 0] td = 1530 td = 1478 
Δv = 4.5243 Δv = 4.1084 * Far with Obstacle 

RSW [412,-812,-412] td = 1870 td = 1488 
Δv = 4.7083 Δv = 5.2832 * Far with Obstacle 

RSW [575, 575, 575] td = 1719 td = 1549 
Δv =4.9268 * Δv = 5.2024 * Far with Obstacle  

RSW [1000, 0, 0] td = 1520 td = 1602 
Δv = 3.6151 Δv = 3.8136 * Far with Obstacle  

RSW [0, 0, 1000] td = 1678 td = 1496 
Δv = 3.0789 Δv = 5.1804 * Far with Obstacle  

RSW [707, 707, 0] td = 1463 td = 1509 
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Performance Evaluation:  Far Docking (2nd Chase Spacecraft)
LQR/APF: APF:
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Performance Evaluation:  STK Visualization
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Conclusions

Develop a novel, robust, and effective LQR/APF 
control algorithm which can be applied to a wide 
variety of emerging spacecraft servicing missions

Build confidence and provide path for spacecraft 
close proximity operation, on-orbit assembly and 
reconfiguration missions

Preparation for ground testing on the NPS AMPHIS 
2D dynamics of orbital flight (3 DOF)
Communication and synchronization refinement
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