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Background Information

• University Nanosat Program
– Provided funds for the design, fabrication, 

and testing of TEST
– Fostered opportunities for spacecraft 

research and education
• TEST Nanosatellite Project

– TEST = Thunderstorm Effects in Space 
Technology

– Intent: To study the correlation of various 
thunderstorm related phenomena.

• 3-Axis Attitude Control
– TEST experiment requirements led to initial 

investigations in 3-axis control
– Further attitude control studies pursued for 

master’s thesis

Figure 1: TEST

Figure 2: ADCS 
Electronics



Introduction

• Project Objectives
– To develop an intuitive and comprehensive spacecraft simulator 

for satellite attitude control development and testing.
– To develop a robust reaction wheel attitude control strategy for

Earth-pointing low Earth orbit satellites.
– To develop an adaptable momentum unloading strategy for 

better power management.
• Industry Relevance

– Simulation confidence = confidence in mission success
– Robustness ensures against known model uncertainty
– Better power management allows for more possibilities



Presentation Overview

• Spacecraft Simulation
– Coordinate system definitions
– Modeling the spacecraft orbit
– Modeling the external disturbances
– Modeling the attitude response

• Attitude Control
– Linearization of the dynamic 

equations of attitude motion
– Pulling out the inertial uncertainty
– Controller synthesis and analysis
– Fuzzy gain-scheduling for magnetic 

momentum unloading
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Figure 3: Orbit Simulation

Figure 4: Feedback Diagram



Spacecraft Simulation

Figure 5: Spacecraft Simulator



Coordinate Systems

Figure 6: GCRF

Figure 7: LVLH

• Inertial Coordinate Systems
– Newton’s laws require a fixed 

inertial frame
– Geocentric and heliocentric 

systems are needed for most 
spacecraft applications

• Terrestrial Coordinate Systems
– Frames from which satellite 

observations are made
– Fixed to the rotating Earth

• Reference Coordinate Systems
– Satellite-based
– Frames most often used to 

describe the satellite attitude



Orbit Model

• Orbit model computes the position and velocity of the satellite 
with respect to the Earth and the Sun

• Based on Newton’s law of universal gravitation and Kepler’s
first law of planetary motion
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Orbit Model (Continued)

Figure 8: HE Frame Figure 9: LVLH Frame

Figure 10: GCRF Frame Figure 11: ITRF Frame



Disturbance Model

• Computes the expected environmental disturbance torques 
for computer simulation

• Gravity Gradient Torque

• Solar Radiation Torque

• Aerodynamic Friction Torque

• Magnetic Dipole Torque
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Attitude Response Model

• Computes satellite attitude response to external disturbances
• Dynamic Equations of Attitude Motion

– Needed for computer simulations
– Derived from the general expression of angular momentum

• Kinematic Equations of Motion
– Integrated to compute the change in attitude over time
– Differ in form according to the parameterization chosen

• Combined Equations of Attitude Motion
– Completely describes the rotational motion of the satellite
– Cast as a system of first order non-linear differential equations
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Linearization

• A linear approximation of the dynamic equations of attitude 
motion must be found to use linear control techniques

( )hIuIN +×++= ωωω
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d

• Using small angle approximations the angular velocity and 
gravity gradient torque are expressed in terms of Euler angles

• Substituting these new expressions into the dynamic equation 
of attitude motion and discarding higher order terms gives
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Parametric Uncertainty

• An LFT framework is sought to handle the plant uncertainty
• Sources of Uncertainty

– Material property variation
– Changing environment
– Unmodeled dynamics

• Parametric Uncertainty
– Reaction wheel angular momentum is time-varying
– Inertial properties are difficult to measure/calculate
– Multiplicative and/or additive uncertainty

• Pulling out the
– Let the input w include the input noise and sensor noise
– Let the output z include the weighted state error x and control 

effort u

s'δ



Parametric Uncertainty (Continued)

Figure 15: DPK Model
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Parametric Uncertainty (Continued)
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• State Space Models

• LFT for Controller Synthesis • LFT for Stability Analysis
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Figure 16: Lower LFT Figure 17: Upper LFT



Controller Synthesis

• Standard H   Problem∞
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Given the dynamical system

Find the dynamic system K
that minimizes
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• Solution to H    Problem
– Riccati method
– LMI method
– Often requires a search

∞

• Remarks on H   Synthesis
– Minimizes the worst-case 

effect on the energy of z
due to the excitation w

– Appropriate when little is 
known about the spectral 
characteristics of w

• Computing the H   Norm
– For SISO transfer functions 

the Bode plot may be used
– For MIMO state-space 

systems, the infinity norm 
is found using the bisection 
algorithm
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Stability Analysis

• Small Gain Theorem
∆Assume    is a complex ball with bounded norm, then the system 

given by Figure 17 is well-posed and internally stable for
( ) .1,1 <≤∆ ∞∞ KGMiff

• Conservativeness of the Small Gain Theorem
Small gain theorem ignores any known block diagonal structure of
the uncertainty .∆

• Scaled Small Gain Theorem
The system             is robustly well-connected (i.e. stable) iff( )a∆,M
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TEST Nanosat Example

mxsat 30.0= mysat 30.0= mzsat 45.0=
• Satellite Inertial Parameters

kgmsat 0.30=

( ) 222
ˆˆ 7312.0

12
1 mkgzymI satsatsat ⋅=+=xx

( ) 222
ˆˆ 7312.0

12
1 mkgzxmI satsatsat ⋅=+=yy

( ) 222
ˆˆ 4500.0

12
1 mkgyxmI satsatsat ⋅=+=zz

mrwheel 04.0= kgmwheel 00.1=

22 0008.0
2
1 mkgrmI wheelwheelwheel ⋅==

s
rad0.001040 =ω

• Wheel Inertial Parameters

• Orbital Angular Velocity



TEST Nanosat Example (Continued)
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• Inertial Uncertainty

• Assume unity weights on all inputs and outputs
µ• -analysis Results using DK-iteration
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• Conclusions and Remarks
– Produces stable results within the specified range of uncertainty
– Stability and performance cannot be assessed in terms of 
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Momentum Unloading

( )hBM ∆×−= 2B
k ( )[ ]hBBhT ∆⋅−∆−= 2

2 B
B
k

• The reaction wheels will saturate if an external torque greater 
than the sum of the environmental torques is not applied.

• Basic Control Law for Magnetic Momentum Unloading

• Determining the Control Gain k
– Control law is time-varying because B is time varying
– Search must be performed to find a feasible solution

• Problems with Constant Gain Solution
– Does not take advantage of ideal unloading conditions
– May result in power failure during critical satellite operations

• Advantages of a Fuzzy Logic Gain-scheduler
– Relatively simple to implements
– Fairly robust under a changing environment



TEST Nanosat Example
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• Assume the same satellite parameters as in the last example
• Step 1: Input Variables and Ranges

– Let the first input describe the relative orientation of the Sun
vector to the solar array normal vectors Nk

– Let the second input describe the relative orientation of the B-
field to the momentum error vector

– Note that this particular choice of inputs is somewhat arbitrary
.h∆

• Step 2: Output Variables and Ranges
[ ]1,0∈k

• Step 3: Fuzzy Membership Functions
– Assume 3 evenly distributed membership functions for each input
– Assume 5 evenly distributed membership functions for the output



TEST Nanosat Example (Continued)

• Step 4: Fuzzification
1. If u1 is low and u2 is low, then k is very low.
2. If u1 is low and u2 is med, then k is very low.
3. If u1 is low and u2 is high, then k is med.
4. If u1 is med and u2 is low, then k is very low.
5. If u1 is med and u2 is med, then k is very low.
6. If u1 is med and u2 is high, then k is high.
7. If u1 is high and u2 is low, then k is med.
8. If u1 is high and u2 is med, then k is high.
9. If u1 is high and u2 is high, then k is very high.

• Step 5: Defuzzification
Assume a centroid deffuzzification with cutoff 
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TEST Nanosat Example (Continued)

Figure 18: Fuzzy Inputs and Outputs



TEST Nanosat Example (Continued)

Figure 19: Wheel Speeds



Conclusion

∞

• Summary of Major Themes
– Practical spacecraft simulation tutorial

• Coordinate systems
• Orbit model
• External disturbance model
• Attitude response model

– Robust control in the presence of parametric uncertainty
• LFT formulation
• H    synthesis method
• Stability analysis using the structured singular value

– Fuzzy gain-scheduling for momentum unloading
• Basic magnetic control law
• Power management using fuzzy logic
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