Risk Management of Student-run, Small Satellite Programs

Elizabeth Deems August 16, 2006

MASSACHUSETTS INSTITUTE DE TECHNOLOGY

What is Risk Management?

Risk

- "A factor, thing, element, or course involving uncertain danger; a hazard." (m-w.com)
- Risk Management Process
 - Identify issues that may be potential pitfalls
 - Create and implement a plan to mitigate risks
 - Monitor and update risks and risk status

Why Use Risk Management?

- Focus on mission success and safety
- Identify problems early -> design changes, better allocation of resources
- Teach all steps of the engineering process
- Learn to resolve technical & managerial problems

http://www.sondrenorheim.com/images2/E03.jpg

Risk Items Unique to Small Satellites

Overall

- Fundamental elements of satellite programs in industry ~= those found at universities
 - Universities normally have "less" of all major resources
- Risk poses different threats to university-based programs than to industry projects

Experience

- Little experience to:
 - Design well
 - Identify risks
 - Suggest mitigation strategies

Schedule

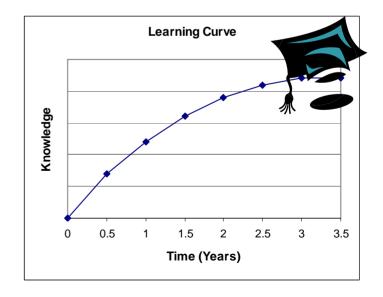
Schedules linked to money, personnel, and resources

Follow-Through

Plan handover of information

Risk Items, cont'd

Funding


- Obtaining support
- Competition against non-universities
- Funding affects schedule

Staff

- Students are students
 - Other obligations
 - Learning curve
- Turnover
- Single-string workers
 - Delay if a person leaves unexpectedly
- Class projects
 - Short class timeframes lead to one of the following:
 - Short development & production time
 - Handover to entirely new workforce
 - Unfinished project

Risk Management for Student-run, Small Satellite Programs

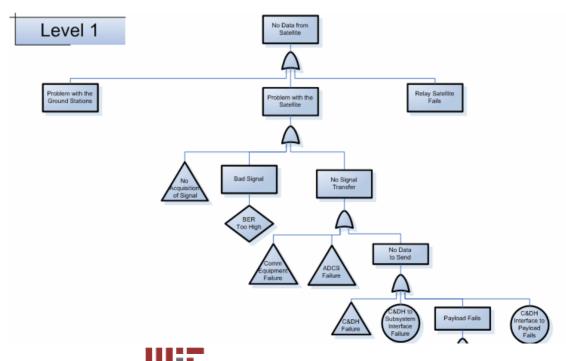
Main objective:

 Develop an approach to identify failure modes in universityaffiliated, small satellite programs

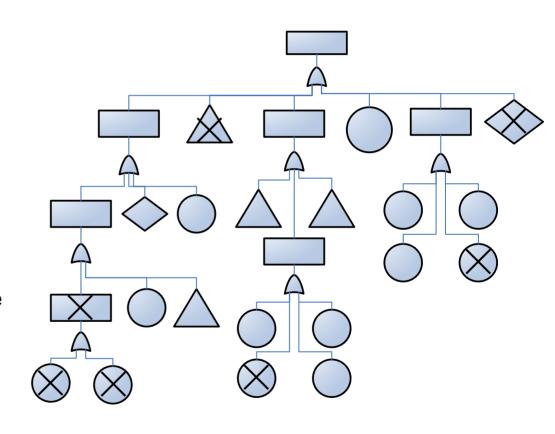
Outcome:

- Created Master Logic Diagram (MLD) for small satellites
 - Helps identify all potential levels of failures

I wish I knew the potential failure modes here!

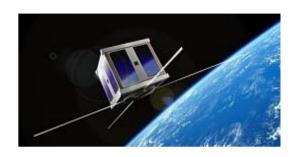

http://www.egr.vcu.edu/images/ece/annou ncements/ece-ieee se conf sm.jpg

ASSACHUSETTS INSTITUTE OF TECHNOLOGY

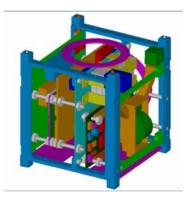

Master Logic Diagram Overview

- An MLD ~= High-level fault tree
- The structure of the tree shows different levels of failures
 - Top Level: Critical end states (faults of the system)
 - Intermediate Levels: Subsystem failures
 - Lower Levels: Component errors & the initiating events

Development of an MLD for Small Satellites


- Why an MLD?
 - Student-run small satellite programs need more guidance
- Uses of an MLD
 - Beginning a Design
 - See the types of risks
 - Plan resources
 - Working with a Design
 - Choose what parts of the MLD are needed
 - Result: MLD for the project
 - Teaching Tool

Benefits of Using the MLD


- Programmatic differences
 - Provides a structured risk identification format
- Funding and Schedule
 - Funding source likely requires the program to identify risks, and the MLD will help do so
 - More resources -> High-risk areas
- Experience
 - Provides a bigger picture of the satellite's failure modes
 - Decreases students' learning curve
 - Increases knowledge of the entire system
- Follow-through
 - Gives a better way to document risk
 - Easier to communicate failure modes
 - Sharing between schools easier with a consistent layout

www.cubesat.auc.dk/

http://www.daviddarling.info/

http://www.mae.cornell.edu/ cubesat

Case Study – Before the MLD

For MIT's Mars Gravity Biosatellite power failure modes

No power	All solar panels fail to deploy	C&DH fails
		Structures fail
	Rechargeable batteries fail	Lost charge
		Bad connection
		One battery fails
	Converter fails	
Less than max power	Fewer than all panels deploy	Structures fail
	A few panels fail	
	Voltage from panels < bus voltage	
	GNC fails	No info on eclipse
No power during	Batteries don't recharge	Solar panels don't
		Bad connection

Case Study – With the MLD

Color monole foil	Mechanical H/W failure	Colon or lo	VICII CIIC	
Solar panels fail	iviedianicai H/ w failure		d atmostrans foils	
		Insulation between array a	na structure fails	
		Concentrator fails	1	
		Diodes fail	1	
		Radiation damage		
	Off-temperature			
	Panels not deployed	Structures	Unable to withstand torques	
			Unable to maintain stiffness	Off-nominal temperature
			Cannot withstand launch	See Structures
			Space environment	
		C&DH fails	See C&DH	
	Interfaces	Electrical		
		Mechanical		
	Panels not pointed to sun	ADCS fails	See ADCS	
		Structures fail	See Structures	
		Backup power fails	See Power	
		C&DH fails	See C&DH	
	Not enough power	BOL sizing incorrect		
		EOL sizing incorrect	Degradation	Space environment degradation
				Cell or array degradation
		Peak-power tracker fails	•	
		Shadowing on panels		
		Off-nominal satellite conditions		
		Off-nominal ground condit	ions	
Primary batteries fail	Mechanical H/W Failure			
	Off-nominal temp	See Thermal		
	Electrical			
	Sizing incorrect			
Secondary batteries fail		Charging fails	Loses charge	
			Fails to recharge	
		Mechanical H/W failure	<u> </u>	
		Off-temperature		
	Electrical			
	Sizing incorrect			
Power not controlled/re	Mechanical H/W Failure	Controller fails		
		Converter fails		
		Regulator fails	+	+
		Power amplifier fails	+	<u> </u>
	Off-temperature	See Thermal	+	
	C&DH fails	See C&DH		
Power not distributed	Wiring fails		+	
	Fault protection fails		+	
	Mechanical H/W Failure	Switching gear fails	+	
	TYTEMBURGET I VV T allule	Switching god Talls		

Future Plans

Goals:

- Receive feedback from other satellite programs
 - Help make this tool more comprehensive and helpful
- Share newer versions with the entire small satellite community
 - Utilize this risk template in small satellite programs
 - Share information between schools
- Experiment to test whether this technique reduces risk

Website: http://web.mit.edu/edeems/www/

Contact: Elizabeth Deems

edeems@mit.edu

617-258-8726

Acknowledgements

- Colonel John Keesee: MIT Advisor
- Prof. Bob Twiggs: Stanford
- Dr. Mason Peck: Cornell
- Carl Claussen, Derek Huerta, Dr. Jordi Puig-Suari, Kyle Leveque: Cal Poly San Luis Obispo
- Brian Larsen: Montana State
- Dr. Michael Swartwout: Washington University in St. Louis
- Dr. Robert Zee: University of Toronto
- Cameron Boyd: Queensland University of Technology
- Dr. Stephen Horan: New Mexico State University
- Dr. Chris Kitts: University of California at Santa Clara
- George Hunyadi: University Satellite Program
- Jason Mintz: University of Minnesota
- Dr. Hank Pernicka: University of Missouri-Rolla
- Neil Melville, and Giovanna Brizio: Student Space Exploration and Technology Initiative

12/12