Miniature Autonomous Star Tracker Based on CMOS APS

DONG Ying, YOU Zheng, XING Fei, CHOU Qin

Dept. of Precision Instrument and Mechanics
Tsinghua University of China

- Introduction
- Optics
- Electronics
- Package
- Tests
- Conclusion

Introduction

- Vacuum tube based star tracker
- CCD based star tracker
- Autonomous Star Tracker (AST)
 - equipped with microprocessor and memory
 - provide attitude information directly
 - CCD based AST has been commercialized

Introduction

- APS based star tracker
 - manufactured using COMS technology
 - high integration & low power consumption
 - construction of small, power saving, inexpensive star tracker

- Introduction
- Optics
- Electronics
- Package
- Tests
- Conclusion

Spot Diagram

Energy Convergence

Chromatism

500~600nm

600~700nm

700~800nm

Distortion

- Introduction
- Optics
- Electronics
- Package
- Tests
- Conclusion

Electronics

- 1: APS readout module
- 2: Image filter and process module
- 3 : Threshold segmentation and process module
- 4 : Efficient data storage module
- 5 : Star spots data reconstruction module
- 6: Star spots centroiding module
- 7: Star pattern recognition module
- 8: Attitude calculation module
- 9: Host-computer communication module
- 10 : Catalog and database load module

Electronics

- Introduction
- Optics
- Electronics
- Package
- Tests
- Conclusion

Package

- Introduction
- Optics
- Electronics
- Package
- Tests
- Conclusion

System configuration

Hardware test results:

Real nigh sky image

Corresponding Skymap image

5Mv magnitude sensitivity. Less than 3W power consumption. Less than 2s all sky attitude acquisition time. Up to 5Hz update rate

software test principle

$$\phi' = \arctan \left(-A_{S-C} \frac{1}{21}A_{S-C}\right) = \phi + \alpha$$
 $\theta' = \theta$
 $\psi' = \psi$

software test results

The rate of \(\psi \) is calculated to be about 15°/hour

 θ and ψ were invariable with 0.0057° and 0.0073° uncertainty

No identification failure had happened.

- Introduction
- Optics
- Electronics
- Package
- Tests
- Conclusion

Conclusion

- The concept of PSF based optical design, modularization strategy of electrical design, and compact package contribute to a small size, high rate, low power consumption and low cost star tracker
- New method of star tracker performances test uses
 Earth rotation as the reference instead of the expensive astronomical telescope
- Real night sky tests demonstrated that the circuit quality, magnitude sensitivity, location accuracy and sky coverage of the star tracker prototype could meet the requirements of a successful operation of autonomous star tracker