

The Future of the Microsatellite

Program in Canada

Dr. Simon Grocott Dynacon Inc

9 August 2005

Introduction

- Canadian Space Agency SmallSat/MicroSat program began in 2003. Plan:
 - 3 small satellites (<250 kg) launched every 2 years
 - 3 microsatellites (<75 kg) launched every 2 years
- Objective:
 - Provide low cost access to space for Canadian scientific payloads

Outline

- Discussing Microsatellite program
 - Dynacon completed Phase A in June 2005
- Overview of microsatellite missions
- Microsatellite mission requirements
- Design Approach for microsatellite bus

Microsatellite Missions

- NEOSSat (Near Earth Orbit Surveillance Satellite)
 - NESS (Near Earth Space Surveillance)
 - CSA mission to discover Near Earth Asteroids and comets
 - HEOSS (High Earth Orbit Space Surveillance)
 - DRDC mission to identify and track satellites in MEO and higher orbits
- Radar Altimeter Satellite
 - Monitor sea wave height to allow ship operators to avoid areas with large waves
- Technology Demonstration satellite
 - Provide flight opportunities for industry to space qualify new technology and establish flight heritage

Mission Requirements

Parameter	NEOSSat	Radar Altimeter	Technology Demonstration		
Payload Mass	19.3 kg	25 kg	30 kg		
Volume	900 x 250 x 250 mm	400 x 400 x 230 mm	TBD		
Power Average / Peak	11 W / 11 W	32 W / 55 W	30 W / 60 W		
Payload Voltage	28 ± 6 V	28 ± 6 V	28 ± 6 V		
Orbit	630 to 700 km altitude, sun-synchronous, dawn- dusk	500 to 800 km altitude, 70° inclination, circular	600 to 850 km altitude, sun-synchronous		
Attitude Stability Mode	3-axis inertial stabilized	nadir pointing	nadir pointing		
Attitude Pointing Control	72 arcsecond (NESS), 300 arcseconds (HEOSS)	1° with respect to nadir	1° with respect to roll, pitch, and yaw		
Attitude Pointing Stability	0.5 arcsec (over 100 seconds)	TBD	TBD		
Downlink Data Rate	2 Mbps, S-Band	1 Mbps, S-Band	1.5 Mbps, S-Band		
Uplink Data Rate	4 kbps, S-Band	4 kbps, S-Band	4 kbps, S-Band		
On-Board Data Storage	1GB	128 MB	256 MB		
Launch Vehicle	Compatible with multiple launch vehicles (DNEPR, Rockot, Taurus etc)				

Electronic Architecture

Mechanical Design Approach

Generic Tray Stack Modules PAF Adapter and Substructure

Launch Load Considerations

Launch	Min Natural	Quasi-static	Sinusoidal	Random	Factors of Safety
Vehicle	Frequency	Loads	Vibration Loads	Vibration	·
Taurus	Axial 35 to 45 or > 70 Hz; Lateral 25 Hz	Axial 8.0 g Lateral 2.5 g		0.004 g ² /Hz at approx 100 Hz 12.6 g _{rms}	
Minotaur	Axial 35 to 45 or > 70 Hz; Lateral 25 Hz	Axial 8.0 g Lateral 2.5 g		$0.004 \text{ g}^2/\text{Hz}$ at approx 100 Hz $3.5 \text{ g}_{\text{rms}}$	
Rockot	Axial 33 Hz; Lateral 15 Hz	Axial 8.1 g Lateral 0.9 g	Axial 0.8 g Lateral 0.5 g	6.8 g _{rms}	$FS_u = 1.25$ $FS_v = 1.1$
Dnepr	Axial 20 Hz; Lateral 10 Hz	Axial 8.3 g Lateral 0.8 g	$\leq 0.6 \text{ g at} \leq 20 \text{ Hz}$	$0.022 \text{ g}^2/\text{Hz}$ at 100 Hz $6.3 \text{ g}_{\text{rms}}$	$FS_u = 1.5$ for flight loads
Delta IV ESPA	35 Hz	Axial 8.5 g Lateral 8.5 g		0.024 g ² /Hz at 100 Hz 6.04 g _{rms}	
Atlas V ESPA	Axial 15 Hz; Lateral 8 Hz	Axial 5.5 g Lateral 0.4 g	Axial 2.0 g Lateral 2.0 g		
Cosmos-3M		Axial 6.8 g	≤ 0.6 g at ≤ 100 Hz	0.040 g ² /Hz at 100 Hz 7.6 g _{rms}	$FS_{u} = 1.30$
Worst Case	Axial 70 Hz Lateral 35 Hz	Axial 8.5 g Lateral 8.5 g	Axial 2.0 g Lateral 2.0 g	$0.040 \text{ g}^2/\text{Hz}$ $12.6 \text{ g}_{\text{rms}}$	$FS_{u} = 1.50$ $FS_{v} = 1.10$

- Design Core structure for worst case loads
- Design mission specific structure for launch vehicle

Conclusion

- Multimission Microsatellite bus developed
- Avionics core common to all missions
 - C&DH computer
 Power system electronics
 - TT&C systemADCS computer
- Modular set of avionics that are selected as required
- Primary structure tray stack common to missions
- Mission specific secondary structure and PAF

