ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

Anthony Paris
Kevin Anderson
Jet Propulsion Laboratory
California Institute of Technology

Prasanna Chandrasekhar, Brian Zay, Terrance McQueeney Ashwin-Ushas Corporation, Inc., Lakewood, NJ

August 10, 2005

Introduction

- Thermal control challenges for small spacecraft
 - insufficient thermal mass
 - limited electrical power for survival heating
- Thermal insulation (e.g. MLI blanketing) is the most straightforward approach, but not always the solution

- Mechanical Louvers
 - used to modulate heat rejection from radiators
 - bulky mechanical devices, difficult to miniaturize
 - often opened and closed via a bi-metallic thermostatic actuator with a single temperature set point
- Thin-film variable-emittance coatings offer the functionality of mechanical louvers but with decreased mass, cost, and mechanical complexity

Mechanical Louvers

Variable-emittance Coating

Variable-Emittance Radiators

California Institute of Technology

- A controlled variation of the Infra-red emittance of a radiator can maintain the temperature or heat rejection in response to changing environment
- Effect of variability of infrared emissivity of a flat plate radiator with no solar irradiation:

Stefan-Boltzmann Law: Q = AεσT₁⁴

- Constant Heat Rejection: $T_2/T_1 = (\epsilon_1/\epsilon_2)^{0.25}$

- Constant Temperature: $Q_2/Q_1 = \epsilon_2/\epsilon_1$

- Several variable-emittance technologies are being developed by DOD and NASA sponsored Small Business Innovation Research (SBIR) grants for potential space applications:
 - Microelectromechanical (MEMS) machined microlouvers
 - Electrophoretic and Electrostatic surfaces
 - Electrochromic Coatings

Thin-film Electrochromic Coatings

California Institute of Technology

- Electrochromics are electroactive materials that show a reversible optical property change when an electric field is applied.
- Visible-NIR region: (0.4 to 1.1 μm); IR Region: (2 to 45 μm)
- Reflective and/or transmissive characteristics of the film are changed by the application of a small activation electrical potential (usually DC, <± 5 V.)
- Infra-red modulation:
 - Dark state = highly IR-absorbing
 - Light state = IR-transparent
- Potential for active and continuous modulation of radiator emissivity values
- Requires minimal electrical power to operate (depends upon leakage current)

Electrochromic Devices (Ashwin-Ushas, Inc.)

Conducting Polymer-based Electrochromics Polymer-based

California Institute of Technology

- Ashwin-Ushas Corp. / NASA-JPL
- Devices are composed of a number of layers similar to the anode, cathode, and electrolyte in a battery
 - Active CP layer undergoes electrochemically-induced oxidation and reduction with an applied voltage.
 - Completely reduced state is IRtransparent. Partially oxidized state is highly IR-absorbing.
 - Ionic Electrolyte liquid from -100°C to + 280°C
- Performance:
 - Emissivity change: ~0.55
 - Emissivity limits tailorable: 0.15 to 0.85
 - Solar Absorptance < 0.29
- Thin (< 0.5 mm), flexible panel construction
- Light weight: ~ 0.8 kg/m^2
- Low power consumption:
 - Peak Transient ~4 mW/cm2 for < 30 sec
 - Steady-state: < 40 µW/cm2

Conducting Polymer Au Layer Microporous membrane **Conducting Polymer** Au Layer Membrane

Front (Working) **Electrode**

Back (Counter) Electrode

Microspacecraft Application

California Institute of Technology

- Micro-Inspector is a deployable, mobile camera platform intended for inspection of exterior surfaces of a host spacecraft
- Based on the Low Cost Adjunct
 Microspacecraft (LCAM) architecture

Attributes:

- less than 3 kg and 25 cm³
- solar array and battery powered
- low pressure, liquid butane-based propulsion system

Thermal Control Requirements:

- maintain all avionics/instruments/batteries within allowable temperatures
- utilize waste heat from avionics and instruments to vaporize propellant
- manage the waste heat so that the butane propellant does not become overpressurized

Micro-Inspector Electrochromic Radiator

- Electrochromic Device (ED) from Ashwin-Ushas to be applied to the underside thermal radiator
- Device consumes less than 20 mW steady-state power
- High emissivity state (ε =0.7) allows for rejection of waste heat loads
- Low emissivity state (ε =0.15 to 0.3) conserves waste heat for butane vaporization
- Thermal modeling indicates Electrochromic radiator extends steady-state operation modes for large off-sun angles

Micro-Inspector Thermal Modeling Results

Electrochromics Development Testing

- **Ashwin-Ushas Electrochromic devices are** currently being developed for increased reliability
- NASA SBIR program: environmental exposure (gamma radiation, UV, solar wind, atomic oxygen, hard vacuum, thermal cycling)
- Micro-Inspector development entails testing a number of devices for performance, material compatibility, manufacturability, and durability.
 - Calorimetric and reflectometer performance testing
 - Iso-butane propellant chemical compatibility tests
 - Long term storage in vacuum, openatmosphere, and gaseous Nitrogen environments
 - System thermal vacuum performance testing

Summary/Future Work

- Conducting Polymer Electrochromic Devices from Ashwin-Ushas Corporation are being developed for microspacecraft thermal control applications
- An Electrochromic radiator is currently baselined as the primary thermal control device for the Micro-Inspector spacecraft project at JPL
- A technology development program is underway to assess and improve the performance, manufacturability, material compatibility, and lifetime of the electrochromic device technology.
- Further development testing as part of the Micro-Inspector project will include vibrational tests and thermal cycling tests to gauge environmental stress and system thermal vacuum tests to validate performance.
- Acknowledgements: National Aeronautics and Space Administration, NASA Exploration Systems Research & Technology's (ESR&T) Advanced Space Operations (ASO) Technology Maturation Program, NASA Small Business Innovation Research Program