#### **MICRO LABSAT**

- Technology Demonstration Microsatellite for Future Missions -



JAXA:

Toru Yamamoto

Hidekazu Hashimoto Shinichiro Nishida

NICT: Shinichi Kimura

UNIV. OF TOKYO: Shinichi Nakasuka



#### **Outline of This Presentation**



- Motivation of The Project
- MICRO LABSAT System Overview
- On-orbit Experiments and its Results
- Next Project
- Conclusions

### "Deadlock" of R&D for Future Space Technologies only in Japan?



- Projects become BIG → Much cost and high risk
- Study on improvement of reliability becomes important – especially for projects already authorized



- R&D is in "deadlock" situation
  - No opportunity of demonstration for new technology
  - No iteration of R&D cycle







On-orbit Experiments



**Next Project** 

### Solution – Microsatellite as Future Technology Demonstrator



- Low cost
- Low risk
- Short-term development



- Challenging experiments with reasonable cost and risk
- Rapid iteration of R&D cycle



 Microsatellites have potential to contribute efficient R&D activities and break the "deadlock" situation!



# MICRO LABSAT – Challenge of JAXA for Technology Demonstration Microsatellites



 Challenge: Can microsatellites contribute efficient R&D for new technologies of future missions?

Objectives of MICRO LABSAT Project

- Develop a low cost microsatellite which enables researchers to demonstrate several challenging technologies in space
- Provide hands-on training for young engineers
- Experiment on on-orbit servicing system is selected as a sample of the challenging technology to be demonstrated





# MICRO LABSAT – System Overview(1/2)

- Spin-stabilization for regular operation
  - Passive, Simple, Reliable
- Tree-axis stabilization for mission operation
  - Temporary transfer from spin to three-axis control
  - Momentum bias control



## MICRO LABSAT – System Overview(2/2)

- Use many Commercial Off-the-Shelf (COTS) components
  - Commercial 32 bit MPU
  - Commercial RAM and ROM with voting mechanism
  - Commercial Real-time operating system
  - Commercial Ni-MH battery cells
  - Mission components
     (Image processing computer, CMOS and CCD cameras)





On-orbit Experiments



**Next Project** 

### Scenario of On-orbit Experiment for On-orbit Servicing Technology



Experiments are divided into three parts:



#### **Experiment One:**

### Image Processing Computer and CMOS Cameras(1/2)





Image Processing Mission Computer (MOBC)

- Commercial
   64bit RISC MPU
- 100 MIPS
- 10 MFLOPS

- 1.4 kg
- On-board
   Reprogramming



#### CMOS Monitoring Camera (CMR)

- Modified commercial digital still camera
- CMOS

- VGA (640 \* 480)
- 140 g
- 1.4 W
- Essential element of on-orbit servicing technologies
- Infrastructure of several on-orbit experiment



#### **Experiment One:**

### Advanced Image Processing Computer and CMOS Cameras(2/2)





- MOBC and CMR works well on-orbit
- Re-programming is used for many advanced image processing experiments
- No sign of degradations in images by CMR for one and a half year

#### **Experiment Two:**

### **Autonomous Target Recognition**













32 sec after target ejection

49 sec after target ejection

- Autonomous extraction and recognition software was developed and demonstrated on MICRO LABSAT
- Target is a flying orange-colored object released from the satellite
- Extraction and recognition of the target from image with bright and complicated background like Earth
- Autonomous extraction and recognition was successfully Result: achieved







On-orbit **Experiments** 



**Next Project** 

#### **Experiment Three:**

### Target Motion Estimation and Visual Feedback Tracking Control (1/2)





Flying target with black marker was released



Motion estimation using characteristic points



Visual feedback tracking control

- Target Motion Estimation and Visual Feedback Tracking Control
- Essential technology to capture tumbling object in space
- Position, velocity, attitude, rate, and moment of inertia ratio are estimated by Kalman filter
- Two tracking control method for spacecraft with only two wheels:
  - Switching Time Search Controller: SWSC
  - Sliding Mode Controller



#### **Experiment Three:**

### Target Motion Estimation and Visual Feedback Tracking Control (2/2)







- 93 Images of the target was captured
- Extraction of characteristic points was performed on-board
- Motion estimation was successfully performed on-ground in near real-time fashion
- Visual feedback control experiment was successfully performed



### Next Project: MICRO LABSAT II





- Second microsatellite in MICRO LABSAT program
- Demonstration of highly-functional full-scale microsatellite bus for near future earth observation missions
- Advanced experiment: Collaboration with nano-satellite
- Concept design and development of critical components are now progressing...



#### **Conclusions**



- MICRO LABSAT is a technology demonstration microsatellite to evaluate its possibility to break the "deadlock" situation
- Experiments on on-orbit servicing technology were planned and accomplished
- MICRO LABSAT succeeded to provide many researchers an opportunity to perform experiments in space with reasonable cost and risk
- Now MICRO LABSAT is still in good condition and operated everyday
- MICRO LABSAT II project has already started