CICERO – A Distributed Small Satellite Radio Occultation Pathfinder Mission

Community Initiative for Continuous Earth Remote Observation

L. Jasper, D. Nuding, E. Barlow, E. Hogan, S. O'Keefe University of Colorado, Boulder

Motivation

Global problem that has yet to be adequately recognized:

Limited future spacecraft for weather/climate observation

- The CICERO Mission is designed to fill this void
 - Constellation of satellites providing GPS
 RO measurements
 - Global coverage
 - Accurate: 9% improvement
 - Pathfinder to fly 2 satellites
 - CICERO bus is a flexible SmallSat platform for constellation
 - Ample margins with minimal optimizationrobust, lower cost!

Paper describes RO mission and objectives in greater detail Paper describes novel, highly capable ADCS & its performance

GPS Radio Occultation

What is GPS RO?

- Radio signals in atmosphere bend due to refractivity
- Bending shows up as excess range in GPS phase observable
- Invertible to get temperature, water vapor, and pressure profiles

RO Mission Considerations

- Must receive occulting signals
 - Point high gain antennas at Earth's limb
 - RO antenna design
 - Important for attitude pointing, rates, knowledge
- Opportunistically collect signals
 - System capable of GLONASS, GPS, L1 L5 signals
 - Drives selection of receiver
- Must deliver data in timely manner
 - Fast data-to-ground for weather prediction
 - Determines ground station location(s) and COMM bandwidth
- Low Cost
 - Small Satellite
 - Hardware Selection

RO antenna gain pattern

CICERO Science Data Products

Data Type (Neutral Atmosphere)	Threshold
Number of Profiles per Day	565
Vertical Profile Range	2-60
Vertical Data Resolution a. Altitude Range 2-25 km b. Altitude Range 25-60 km	0.1 1.0
Average Latency - minutes	90

Data Type (Ionosphere)	Threshold
Altitude Range (km)	60-500
Vertical Resolution (km)	2
Measurement Range (TECU)	3-1000
TEC Observations per day	860,000
Average Latency - minutes	90
Scintillation Amplitude Index and Phase Sampling Rate (Hz)	50

Mission Overview

- 650 ± 50 km, sun-synchronous orbit
 - 1:30 a.m. descending node
- Nadir pointer, w/ sun pointing capability
- Single string, w/ selective redundancy
- X-band downlink, S-band uplink

Spacecraft Overview		
Mass	104 kg	
Dimensions (Wingspan)	28 x 24 x 36 inches (120 inches)	
Power	110 W, 28 V	
Data Volume	35 MB/orbit	

Design Philosophy

- Optimization: high programmatic costs
 - Purposely created robust design
 - Rapid development: FlatSat in 1yr. 3 mo.
 - Standardized bus for mission

Ride share, reducing launch costs

- U.S. and European vehicles considered
- ESPA Rideshare (worst case vibe loads)
- Acquire EEE components w/o expensive lot tests
 - Well known candidate hardware
 - Avoid certification costs
- Use COTS when programmatically & technically advantageous
 - ST, RW, Batteries, Gyro, Radios, GPS
 - TRL 9 components

Nominal Operations

Sun-Pointing

- Kick-off/safe mode
- Solar cells within 30° of sun
- Large margins on power production
- Large thermal margins

Thrusting State

Thrusting State

CICERO Pathfinder Mission

LASP Open Information

page 12

Conclusions

- Constellation provides lower cost weather forecasting
- CICERO bus designed to perform RO mission
- High data output for forecasting
- Utilizes small satellite design philosophy
 - Low cost through minimal optimization, but high robustness
 - Small team = agile team

Acknowledgements

- CICERO design team
- Dr. Hanspeter Schaub
- Dr. Penina Axelrad
- Mike McGrath
- LASP
- GeoOptics

Back-up

CICERO External Hardware

Impact of GPS RO on Forecasting

