A Systems Approach to Select a Deployment Scheme to Minimize Re-contact When Deploying Many Satellites During One Launch Mission

Steven J. Buckley, Volunteer Emeritus, Air Force Research Laboratory Bucklesjs@aol.com, (505) 975-5846

Heather A. Buckley, Student, University of New Mexico, <u>buckley@unm.edu</u>, (505) 264-4485

Dr. Peter W. Wegner, Director Advanced Concepts, Space Dynamics Laboratory, Peter.wegner@sdl.usu.edu, (435) 713-3130

Agenda

- A Case for Small Satellites
- The Problem
- A Systems Approach To Solving The Problem: Orbital Maneuvers
 - Launch Vehicle
 - Adapters
 - Orbital Mechanics
- Radial Tertiary Satellite Deployment Scheme:
 - Advantages
 - Disadvantages
- Radial Tertiary Satellite Deployment Scheme: Things to Consider

A Case for Small Satellites

- Proliferation of small, canisterized satellites has created options to accomplish a variety of space missions
 - Satellite capability is no longer a function of the size and mass of the satellite
- Development of new components for tiny satellites has exploded during the last decade
 - Star Trackers
 - Encryption Systems
 - Momentum Wheels
 - Etc.

Tiny Satellites Can Accomplish Full-capability Missions While Massing 10
Kilograms Or Less: Tiny Satellites Deserve A Priority Based On Mission Not On
Size

The Problem

- Multi-payload launch missions present serious architectural problems
 - Protection of primary satellite
 - Must avoid re-contact between primary and all other objects
 - Re-contact between all satellites
 - Small deployment velocity results in essentially common orbits
 - Management of all satellites as they decay
 - All deployed objects are managed as a hazard to navigation after insertion

Deployment Scheme Required Capabilities: Launch Vehicle

- Launch vehicles must be able to carry the adapters
 - 38-inch interface is common to several small launch vehicles
- Launch vehicle must be able to orient the adapters during deployment operations
 - Required accuracy is approximately 5-10 degrees
- Launch vehicle must be able to hold orientation of the adapters during the deployment operations
 - Each deployment of a small satellite is an impulsive event and must be countered
- Launch vehicle must be capable of conducting two collision avoidance maneuvers
 - One to deploy primary satellite
 - One to move rocket body from tertiary satellites orbit

Deployment Scheme Required Capabilities: Adapters

- Multi-payload adapters allow carriage of many small satellites while preserving most of the launch vehicle capability
 - NASA Ames Research Center developed the NASA Ames NanoSat Launch Adapter (NLAS)
 - Can carry eight 3 U equivalent cubesats
 - LoadPath's CubeStack a development by the Air Force Research Lab
 - Can carry eight 3 U equivalent cubesats
 - These multi-payloads adapters provide small separation velocities to the tertiary payloads (~1.5 m/s)

Multi-Payload Adapters (Wafers)

Courtesy Ames Research Center

NLAS Adapter

Deployment Scheme Required Capabilities: Orbital Mechanics

- Small deployment velocity results in near-coincident orbits
 - Satellite pathways are within single-digit meters separation of each other
- Hohlmann Transfer Orbit with small deployment velocities results in very close orbits
- Radial and anti-radial maneuvers allow satellites to be clustered based on deployment attitude of the rocket body
 - All deployments must include an out-of-plane maneuver
- Adequate separation from large targets such as a primary satellite and the rocket body must be accomplished by a clearance maneuver

Radial/Anti-Radial Maneuvers, Coupled With an Out-of-Plane Maneuver and the Adapter Architectures Allow Minimal Maneuvering of the Rocket Body While Still Achieving a System of Clustered Satellites With a Lower Probability of Re-Contact

Sequence of Deployment Maneuvers for All Orbital Bodies

- 1. Separate primary satellite
 - Establishes final primary satellite orbit
- 2. Accomplish clearance avoidance maneuver on rocket body
 - Establishes deployment orbit for tertiary satellites
 - Minimizes re-contact with primary satellite
- 3. Accomplish series of paired deployments of tertiary satellites
 - Deploy on short (30-120 second) intervals
 - Establishes system of tertiary satellite orbits
 - Minimizes re-contact possibility between all tertiary satellites
- 4. Accomplish clearance avoidance maneuver on rocket body
 - Minimizes re-contact possibility between rocket body and tertiary satellites
 - Provides further separation between rocket body and primary satellite

Effect of Radial Impulse on Circular Deployment Orbit

Effect of Anti-Radial Impulse on Circular Deployment Orbit

Effect of Combined Radial and Anti-Radial Maneuvers on Cubesat 1 and 2

Effect of Combined Radial and Anti-Radial Maneuvers on Cubesat 1 and 2

Effect of Combined Radial and Anti-Radial Maneuvers on Cubesat 1 and 2

A Systems Approach To Solving The Problem: Orbital Maneuvers

Cube 1 to Cube 2 Separation

Radial Tertiary Satellite Deployment Scheme: Advantages

- Relatively stable orbits achieved at deployment
 - Satellites deployed in common direction maintain relative positions
 - Stable until perturbations take effect
- Satellites deployed in opposite directions maintain adequate separation
 - Miss distances cycle between tens of meters and kilometers
 - Stable until perturbations take effect
- Maximum closing velocities of satellites are single digit m/s (similar to 18" drop to ground)
 - These impacts would not create orbital debris!
- Care must be taken to completely eliminate the rocket body and primary satellite orbits from the common tertiary satellite orbits

Radial Tertiary Satellite Deployment Scheme: Disadvantages

- Not suitable for spacing satellites in a beads-on-a-string constellation
 - Rocket body does not have attitude control system life-time or accuracy to position large number of tertiary satellites on custom vectors
 - Satellites deployed in the same direction are stable with relatively close separation distances (tens of meters)
 - Satellites deployed in opposite directions come relatively close to each other at the original deployment point in the orbit
- All bets are off several months into the mission when perturbations take effect
 - Satellite perturbations of the constellation are indeterminate

Radial Tertiary Satellite Deployment Scheme: Things to Consider

- No deployment scheme is fool-proof
 - This scheme only minimizes the probability of re-contact
 - Does allow tertiary satellites to orbit as a disciplined system
 - Perturbations are impossible to predict exactly
- Relative stability of this deployment scheme offers an opportunity to treat the tertiary satellites as a single orbital system
 - Facilitates hazards-to-navigation management of the swarm
- All large targets must be deconflicted from the tertiary satellite orbital swarm

This Paper is Intended to Define a Deployment Scheme Methodology. The orbital designer must consider all hardware/software/orbital factors when designing a custom deployment scheme for a particular mission. You must do the analysis yourself!

Acronyms And Definitions

- 1. CubeStack: Multi-payload adapter used to support up to eight 3U cubesats as tertiary payloads.
- 2. Hohmann Transfer Orbit (HTO): Method to transfer from one orbit to another using velocity vector and anti-velocity vector maneuvers.
- 3. NASA Ames NanoSat Launch Adapter (NLAS): Multi-payload adapter used to support up to eight 3U cubesats as tertiary payloads.
- 4. Out-of-Plane Maneuver: Using impulses normal to the plane of the orbit to change the inclination of the satellite.
- 5. Primary Satellite: Large satellite constituting the primary payload on a given launch. This satellite pays most of the cost of the launch, as well as defining most mission requirements.
- 6. Radial/Anti-Radial Maneuver: Using impulses in the radial and anti-radial directions (straight up and straight down) to change the satellites orbit.
- 7. Resident Space Objects (RSOs): Satellites and other objects in permanent Earth orbit.
- 8. Rocket Body: The last stage of a launch vehicle that deploys all primary, secondary, and tertiary satellites and remains on orbit after the deployment event.
- 9. Secondary Satellite: Large satellite flying as an auxiliary payload on a given launch. This satellite pays a significant part of the cost of the launch, as well as defining some mission requirements.
- 10. Tertiary Satellite: Small satellites flying as launch vehicle mass on a given launch. This satellite pays almost none of the cost of the launch, as well as defining no mission requirements.
- 11. Velocity Vector/Anti-Velocity vector maneuver: One-half of a Hohmann Transfer Orbit.