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3. How to find normal modes.

How do we find the normal modes and resonant frequencies without making a clever

guess? Well, you can get a more complete explanation in an upper-level mechanics course,

but the gist of the trick involves a little linear algebra. The idea is the same for any number

of coupled oscillators, but let us stick to our example of two oscillators.

To begin, we again assemble the 2 coordinates, qi, i = 1, 2, into a column vector q,

q =

✓
q1
q2

◆
. (3.1)

Let K be the 2⇥ 2 symmetric matrix

K =

✓
!̃2 + !̃02

�!̃02

�!̃02 !̃2 + !̃02

◆
. (3.2)

The coupled oscillator equations (2.3), (2.4) can be written in matrix form as (exercise)

d2q

dt2
= �Kq. (3.3)

The fact that the matrix K is not diagonal corresponds to the fact that the equations for

qi(t) are coupled.

Exercise: Check that the matrix form of the uncoupled equations (2.1), (2.2) gives a

diagonal matrix K.

Our strategy for solving (3.3) is to find the eigenvalues � and eigenvectors e of K. These

are the solutions to the equation

Ke = �e, (3.4)

where � is a scalar and e is a (column) vector. We will make two assumptions about the

solutions to this well-known type of linear algebra problem. First, we assume that the

two (possibly equal) eigenvalues, �1 and �2 are all positive. Second, we assume that the

corresponding eigenvectors, e1 and e2, are linearly independent.* This means that any

column vector v can be expressed as

v = v1e2 + v2e2,

for some real numbers v1 and v2, which are the components of v. We shall soon see why

we need these assumptions and when they are satisfied.

* In other words, the eigenvectors form a basis for the vector space of 2-component column
vectors.
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Given the solutions (�1, e1), (�2, e2) to (3.4), we can build a solution to (3.3) as follows.

Write

q(t) = ↵1(t)e1 + ↵2(t)e2. (3.5)

Exercise: Why can we always do this?

Using
d2q

dt2
=

d2↵1
dt2

e1 +
d2↵2
dt2

e2, (3.6)

and†
Kq = ↵1(t)Ke1 + ↵2(t)Ke2

= �1↵1(t)e1 + �2↵2(t)e2,
(3.7)

you can easily check that (3.5) defines a solution to (3.3) if and only if✓
d2↵1
dt2

+ �1↵1(t)

◆
e1 +

✓
d2↵2
dt2

+ �2↵2(t)

◆
e2 = 0. (3.8)

Using the linear independence of the eigenvectors, this means (exercise) that ↵1 and ↵2
each solves the harmonic oscillator equation with frequency

p

�1 and
p

�2, respectively:

d2↵n
dt2

= ��n↵n(t), n = 1, 2. (3.9)

The general solution to (3.3) can then be written as (exercise)

q(t) = Re(A1e
i
p

�1te1 +A2e
i
p

�2te2), (3.10)

where A1 and A2 are any complex numbers. Thus, by finding the eigenvalues and eigen-

vectors we can reduce our problem to the harmonic oscillator equation, which we already

know how to solve.

Now you can see why we made those assumptions about the eigenvalues and eigenvec-

tors. Firstly, if the eigenvectors don’t form a basis, we can’t assume q takes the form (3.5)

nor that (3.8) implies (3.9). It is an important theorem from linear algebra that for any

symmetric matrix with real entries, such as (3.2), the eigenvectors will form a basis, so this

assumption is satisfied in our current example. Secondly, the frequencies
p

�n will be real

numbers if and only if the eigenvalues �n are always positive. While the aforementioned

linear algebra theorem guarantees the eigenvalues of a symmetric matrix will be real, it

doesn’t guarantee that they will be positive. However, as we shall see, for the coupled os-

cillators the eigenvalues are positive definite, which one should expect on physical grounds.

(Exercise: How would you interpret the situation in which the eigenvalues are negative?).

† Note that here we use the fact that matrix multiplication is a linear operation.
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Comparing our general solution (3.10) with (2.12) we see that the resonant frequencies

ought to be related to the eigenvalues of K via

⌦i =
p

�i, i = 1, 2

and the normal modes should correspond to the eigenvectors ei. Let us work this out in

detail.

The eigenvalues of K are obtained by finding the two solutions � to the equation (3.4).

This equation is equivalent to

(K � �I)e = 0,

where I is the identity matrix. A standard result from linear algebra is that this equation

has a non-trivial solution† e if and only � is a solution of the characteristic (or secular)

equation:

det[K � �I] = 0.

You can easily check that the secular equation for (3.2) is

�2 � 2(!̃2 + !̃02)�� !̃04 + (!̃2 + !̃02)2 = 0.

This quadratic equation is easily solved to get the two roots (exercise)

�1 = !̃2

�2 = !̃2 + 2!̃02.
(3.11)

Note that we have just recovered the (squares of the) resonant frequencies by finding the

eigenvalues of K.

To find the eigenvectors ei of K we substitute each of the eigenvalues �i, i = 1, 2

into the eigenvalue equation (3.4) and solve for the components of the ei using standard

techniques. As a very nice exercise you should check that the resulting eigenvectors are of

the form

e1 = a

✓
1
1

◆
e2 = b

✓
�1
1

◆ (3.12)

where a and b are any constants, which can be absorbed into the definition of A1 and A2

in (3.10) (exercise).

Exercise: Just from the form of (3.4), can you explain why the eigenvectors are only

determined up to an overall multiplicative factor?

† Exercise: what is the trivial solution?
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Using these eigenvectors in (3.10) we recover the expression (2.12) – you really should

verify this yourself. In particular, it is the eigenvectors of K that determine the column

vectors appearing in (2.16) (exercise).

Note that the eigenvectors are linearly independent as advertised (exercise). Indeed,

using the usual scalar product on the vector space of column vectors v and w,

(v,w) = vTw,

you can check that e1 and e2 are orthogonal (see Problems).

To summarize: The resonant frequencies of a system of coupled oscillators, described

by the matrix di↵erential equation

d2

dt2
q = �Kq,

are determined by the eigenvalues of the matrix K. The normal modes of vibration are

determined by the eigenvectors of K.
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