Document Type

Article

Journal/Book Title

Journal of Chemical Physics

Publication Date

1989

Volume

91

First Page

7809

Last Page

7817

DOI

10.1063/1.457249

Abstract

The combination of supermolecular Møller–Plesset treatment with the perturbation theory of intermolecular forces is applied in the analysis of the potential energy surface of Ar–NH3. Anisotropy of the self‐consistent field (SCF) potential is determined by the first‐order exchange repulsion. Second‐order dispersion energy, the dominating attractive contribution, is anisotropic in the reciprocal sense to the first‐order exchange, i.e., minima in one nearly coincide with maxima in the other. The estimated second‐order correlation correction to the exchange effect is nearly as large as a half ΔESCF in the minimum and has a ‘‘smoothing’’ effect on the anisotropy of ϵ(20)disp. The model which combines ΔESCF with dispersion energy (SCF+D) is not accurate enough to quantitatively describe both radial and angular dependence of interaction energy. Comparison is also made between Ar–NH3 and Ar–PH3, as well as with the Ar dimer.

Comments

Originally published by American Institute of Physics in the Journal of Chemical Physics.

Publisher's PDF can be accessed through the remote link.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.