Date of Award:

5-2012

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Chemistry and Biochemistry

Advisor/Chair:

Lance C. Seefeldt

Abstract

Driven by the rising costs, decreasing convenience, and increased demand of fossil fuels, the need for alternative, sustainable energy sources has caused a spark in interest in biomass-based fuels. Oleaginous organisms such as yeast, algae, and bacteria have been considered as microscopic biofactories for oils that can be converted into biodiesel. The process of growing such organisms using current technology requires an alarming amount of freshwater, which is another resource of growing concern. The research detailed within explains how several sources of underutilized wastewater can serve as growth medium in the biodiesel production process. Using only nitrogen and in one case phosphorus as external supplements, algae were shown to grow on produced water from oil and gas industry waste, local municipal wastewater, environmental brackish water from the Great Salt Lake, and wastewater from the potato processing industry. In each case, growth and biodiesel production in wastewaters was as good as or better than laboratory media. The bacterial organism Rhodococcus opacus PD630 and the yeast organism Cryptococcus curvatus were also used to grow on the dairy manufacturing wastewater whey permeate, a large source of underutilized fixed carbon, with successful lipid production. C. curvatus was also used to successfully grow and form large amounts of biodiesel from ice cream factory wastewater and from wheat straw hydrolysate. In each case, the need for freshwater and outside nutrients was nearly entirely replaced, with the exception of some nitrogen supplementation, with a wastewater nutrient source, thus adding to the sustainability of biomass-based fuels.

Comments

This work made publicly available electronically on September 20, 2012.

Included in

Chemistry Commons

Share

COinS