Date of Award:

5-2014

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Civil and Environmental Engineering

Advisor/Chair:

R. Ryan Dupont

Abstract

A field-scale commercial compost study was conducted to evaluate the impact of the Bio-Environmental Resource Recovery International (BERRI) Microbial Assisted Regeneration System (MARS) process, specifically its proprietary microbial inocula, on compost production of various agricultural waste and municipal solid waste (MSW) mixtures. Treated and control windrows were constructed to compare the MARS inoculum by quantity and quality of compost produced, organic stabilization time, and individual component sorting (i.e., green waste, wood, agriculture waste, food waste, MSW, C&D debris, and tires). Specific VOC and SVOC compounds, as well as a common pesticide, carbaryl, were added specifically for this study and the compounds were analyzed for degradation rates. The quality of the compost product was assessed using a method developed for classifying municipal solid waste compost. The quantity of compost produced was determined by screening the entire volumes of each pile to determine a gross production of compost for each pile. Compost samples were analyzed by headspace gas chromatography mass spectrometry for VOCs, methylene chloride extraction and gas chromatography mass spectrometry for SVOCs, and methanol extraction and high-performance liquid chromatography mass spectrometry for carbaryl. The quality of compost was found to have a very low nutrient capacity making the compost only useable as a soil conditioner. Treated piles showed a significantly larger amount of compost production and a decreased time for organic stabilization. No significant degradation of plastics or woods components was observed in any of the treatments used in the study.