Date of Award:

Spring 2017

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Instructional Technology and Learning Sciences

Advisor/Chair:

Yanghee Kim

Abstract

Understanding the relationship between fractions and decimals is an important step in developing an overall understanding of rational numbers. Research has demonstrated the feasibility of technology in the form of virtual manipulatives for facilitating students’ meaningful understanding of rational number concepts. This exploratory dissertation study was conducted for the two closely related purposes: first, to investigate a sample of fifth-grade students’ reasoning regarding the relationship between fractions and decimals for fractions with terminating decimal representations while using virtual manipulative incorporating parallel number lines; second, to investigate the affordances of the virtual manipulatives for supporting the students’ reasoning about the decimal-fraction relationship.

The study employed qualitative methods in which the researcher collected and analyzed data from fifth-grade students’ verbal explanations, hand gestures, and mouse cursor motions. During the course of the study, four fifth-grade students participated in an initial clinical interview, five task-based clinical interviews while using the number line-based virtual manipulatives, and a final clinical interview. The researcher coded the data into categories that indicated the students’ synthetic models, their strategies for converting between fractions and decimals, and evidence of students’ accessing the affordances of the virtual manipulatives (e.g., students’ hand gestures, mouse cursor motions, and verbal explanations).

The study yielded results regarding the students’ conceptions of the decimal-fraction relationship. The students’ synthetic models primarily showed their recognition of the relationship between the unit fraction 1/8 and its decimal 0.125. Additionally, the students used a diversity of strategies for converting between fractions and decimals. Moreover, results indicate that the pattern of strategies students used for conversions of decimals to fractions was different from the pattern of strategies students used for conversions of fractions to decimals. The study also yielded results for the affordances of the virtual manipulatives for supporting the students’ reasoning regarding the decimal-fraction relationship. The analysis of students’ hand gestures, mouse cursor motions, and verbal explanations revealed the affordances of alignment and partition of the virtual manipulatives for supporting the students’ reasoning about the decimal-fraction relationship. Additionally, the results indicate that the students drew on the affordances of alignment and partition more frequently during decimal to fraction conversions than during fraction to decimal conversions.

Share

COinS