Date of Award:

2017

Document Type:

Thesis

Degree Name:

Master of Engineering (ME)

Department:

Civil and Environmental Engineering

Advisor/Chair:

Ziqi Song

Co-Advisor/Chair:

Keith Christensen

Third Advisor:

Joseph A. Caliendo

Abstract

The individuals with disabilities are disproportionately vulnerable to hazards. However, there is very little research inquiry focused on evacuation environments and the behavior of individuals with disabilities. The most widely applied computational method used to study how effective the built environment facilities emergency evacuations in individuals-based modeling. Current pedestrian evacuation models rarely include individuals with disabilities in their simulated populations due to there being very few empirical studies of the evacuation behavior of individuals with disabilities. As a result, the models do not replicate accurate patterns of pedestrian or evacuation behavior of a heterogeneous population, which results in the evacuation needs of individuals with disabilities being generally overlooked.

To begin addressing this limitation, our research group at Utah State University (USU) has performed empirical research to observe the microscopic evacuation behavior of individuals with disabilities in heterogeneous population contexts. The purpose of this research was to: (1) develop and analyze evacuation curves to understand and assess evacuation strategies for heterogeneous populations, and (2) analyze the microscopic behavior of evacuees at exit doors necessary for developing credible and valid pedestrian and evacuation models. Doing so will contribute to evacuation models which replicate accurate patterns of pedestrian and evacuation behavior of heterogeneous populations, leading to the consideration of the evacuation needs of individuals with disabilities.

Checksum

0a42e4521d92cc2bd88ad44cfa0f5df7

Share

COinS