Document Type

Article

Journal/Book Title/Conference

Journal of Industrial Teacher Education

Volume

43

Issue

3

Publisher

National Association of Industrial and Technical Teacher Educators

Publication Date

2006

First Page

45

Last Page

63

Abstract

Initiatives to integrate engineering design within the field of technology education are increasingly evident (Lewis, 2005; Wicklein, 2006). Alliances between technology education and engineering were prominent in the development of the Standards for Technological Literacy (International Technology Education Association, 2000), and leaders from both disciplines have expressed support for the outcomes described in the Standards (Bybee, 2000; Council of the National Academy of Engineering, 2000; Dugger, Meade, Delany, and Nichols, 2003; Gorham, Newberry, and Bickart, 2003). The National Science Foundation (NSF) has also encouraged and funded opportunities for technology educators and engineers to work collaboratively. The Bridges for Engineering Education projects and more recently the $10 million, 5-year funding for the National Center for Engineering and Technology Education exemplify the commitment of the NSF to support these activities.

The history of technology education is replete with trends and changes in curriculum, technical content, instructional materials and equipment, instructional strategies, and even identity (Lewis, 2004, 1999; Sanders, 2001). The profession has revised its name and made substantial efforts to affect public perceptions of the field. The historical benchmarks in technology education bear labels such as Industrial Arts Curriculum Project, Maryland Plan, Jackson’s Mill, or Technology for All Americans. A movement to embrace engineering design as a focal element in technology education would be another significant event in the ongoing history of technology education and could become another benchmark in shaping the profession.

Perspectives regarding the role engineering should play within the discipline of technology education vary considerably. These positions range from advocating that technology education take on the role of pre-engineering for high school students to arguments in favor of retaining a broad focus for technology education in which it treats engineering design as simply one of many forms of creative activity. The perspective underlying the position presented here is that technology education should retain a general education role, providing hands-on learning activities for all students and encompassing approaches to design and problem-solving that extend beyond engineering to embrace aesthetics and artistic creativity. Engineering design, however, can provide a focus for the field of technology education that is applicable for students in all grade levels and career pathways.

Implementing an engineering design focus within technology education has significant ramifications. Classroom teachers, teacher educators, and support staff will need additional knowledge and skills to successfully shift the focus of the field toward engineering design. Changes will especially affect the preparation of technology teachers. Curriculum, educational philosophy, instructional strategies, and collaborative relationships are among the facets that will be influenced by this initiative. In each of these areas there are perhaps more questions than answers, and thoughtful discussion and research are needed to guide decision-making. It is essential that the field recognize the key issues so that steps are taken to provide and facilitate necessary professional development.