Document Type


Journal/Book Title/Conference

U.S. Weather Forecasting






American Meteorological Society

Publication Date


First Page


Last Page





Using a composite procedure, North American Mesoscale Model (NAM) forecast and observed environments associated with zonally oriented, quasi-stationary surface fronts for 64 cases during July–August 2006–08 were examined for a large region encompassing the central United States. NAM adequately simulated the general synoptic features associated with the frontal environments (e.g., patterns in the low-level wind fields) as well as the positions of the fronts. However, kinematic fields important to frontogenesis such as horizontal deformation and convergence were overpredicted. Surface-based convective available potential energy (CAPE) and precipitable water were also overpredicted, which was likely related to the overprediction of the kinematic fields through convergence of water vapor flux. In addition, a spurious coherence between forecast deformation and precipitation was found using spatial correlation coefficients. Composite precipitation forecasts featured a broad area of rainfall stretched parallel to the composite front, whereas the composite observed precipitation covered a smaller area and had aWNW–ESE orientation relative to the front, consistent with mesoscale convective systems (MCSs) propagating at a slight right angle relative to the thermal gradient. Thus, deficiencies in the NAM precipitation forecasts may at least partially result from the inability to depict MCSs properly. It was observed that errors in the precipitation forecasts appeared to lag those of the kinematic fields, and so it seems likely that deficiencies in the precipitation forecasts are related to the overprediction of the kinematic fields such as deformation. However, no attempts were made to establish whether the overpredicted kinematic fields actually contributed to the errors in the precipitation forecasts or whether the overpredicted kinematic fields were simply an artifact of the precipitation errors. Regardless of the relationship between such errors, recognition of typical warm-season environments associated with these errors should be useful to operational forecasters.